mm: propagate error from stack expansion even for guard page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 extern unsigned long sysctl_user_reserve_kbytes;
48 extern unsigned long sysctl_admin_reserve_kbytes;
49
50 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
52 /* to align the pointer to the (next) page boundary */
53 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
55 /*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
64 extern struct kmem_cache *vm_area_cachep;
65
66 #ifndef CONFIG_MMU
67 extern struct rb_root nommu_region_tree;
68 extern struct rw_semaphore nommu_region_sem;
69
70 extern unsigned int kobjsize(const void *objp);
71 #endif
72
73 /*
74 * vm_flags in vm_area_struct, see mm_types.h.
75 */
76 #define VM_NONE 0x00000000
77
78 #define VM_READ 0x00000001 /* currently active flags */
79 #define VM_WRITE 0x00000002
80 #define VM_EXEC 0x00000004
81 #define VM_SHARED 0x00000008
82
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85 #define VM_MAYWRITE 0x00000020
86 #define VM_MAYEXEC 0x00000040
87 #define VM_MAYSHARE 0x00000080
88
89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
91 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
93 #define VM_LOCKED 0x00002000
94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
107 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
108
109 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
110 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
111 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
112 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
113
114 #if defined(CONFIG_X86)
115 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
116 #elif defined(CONFIG_PPC)
117 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
118 #elif defined(CONFIG_PARISC)
119 # define VM_GROWSUP VM_ARCH_1
120 #elif defined(CONFIG_METAG)
121 # define VM_GROWSUP VM_ARCH_1
122 #elif defined(CONFIG_IA64)
123 # define VM_GROWSUP VM_ARCH_1
124 #elif !defined(CONFIG_MMU)
125 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
126 #endif
127
128 #ifndef VM_GROWSUP
129 # define VM_GROWSUP VM_NONE
130 #endif
131
132 /* Bits set in the VMA until the stack is in its final location */
133 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
134
135 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
136 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
137 #endif
138
139 #ifdef CONFIG_STACK_GROWSUP
140 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141 #else
142 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143 #endif
144
145 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
146 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
147 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
148 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
149 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
150
151 /*
152 * Special vmas that are non-mergable, non-mlock()able.
153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
154 */
155 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
156
157 /*
158 * mapping from the currently active vm_flags protection bits (the
159 * low four bits) to a page protection mask..
160 */
161 extern pgprot_t protection_map[16];
162
163 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
164 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
165 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
166 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
167 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
168 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
169 #define FAULT_FLAG_TRIED 0x40 /* second try */
170 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
171
172 /*
173 * vm_fault is filled by the the pagefault handler and passed to the vma's
174 * ->fault function. The vma's ->fault is responsible for returning a bitmask
175 * of VM_FAULT_xxx flags that give details about how the fault was handled.
176 *
177 * pgoff should be used in favour of virtual_address, if possible. If pgoff
178 * is used, one may implement ->remap_pages to get nonlinear mapping support.
179 */
180 struct vm_fault {
181 unsigned int flags; /* FAULT_FLAG_xxx flags */
182 pgoff_t pgoff; /* Logical page offset based on vma */
183 void __user *virtual_address; /* Faulting virtual address */
184
185 struct page *page; /* ->fault handlers should return a
186 * page here, unless VM_FAULT_NOPAGE
187 * is set (which is also implied by
188 * VM_FAULT_ERROR).
189 */
190 };
191
192 /*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197 struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
200 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
201
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
204 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
205
206 /* called by access_process_vm when get_user_pages() fails, typically
207 * for use by special VMAs that can switch between memory and hardware
208 */
209 int (*access)(struct vm_area_struct *vma, unsigned long addr,
210 void *buf, int len, int write);
211 #ifdef CONFIG_NUMA
212 /*
213 * set_policy() op must add a reference to any non-NULL @new mempolicy
214 * to hold the policy upon return. Caller should pass NULL @new to
215 * remove a policy and fall back to surrounding context--i.e. do not
216 * install a MPOL_DEFAULT policy, nor the task or system default
217 * mempolicy.
218 */
219 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
220
221 /*
222 * get_policy() op must add reference [mpol_get()] to any policy at
223 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
224 * in mm/mempolicy.c will do this automatically.
225 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
226 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
227 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
228 * must return NULL--i.e., do not "fallback" to task or system default
229 * policy.
230 */
231 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
232 unsigned long addr);
233 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
234 const nodemask_t *to, unsigned long flags);
235 #endif
236 /* called by sys_remap_file_pages() to populate non-linear mapping */
237 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
238 unsigned long size, pgoff_t pgoff);
239 };
240
241 struct mmu_gather;
242 struct inode;
243
244 #define page_private(page) ((page)->private)
245 #define set_page_private(page, v) ((page)->private = (v))
246
247 /* It's valid only if the page is free path or free_list */
248 static inline void set_freepage_migratetype(struct page *page, int migratetype)
249 {
250 page->index = migratetype;
251 }
252
253 /* It's valid only if the page is free path or free_list */
254 static inline int get_freepage_migratetype(struct page *page)
255 {
256 return page->index;
257 }
258
259 /*
260 * FIXME: take this include out, include page-flags.h in
261 * files which need it (119 of them)
262 */
263 #include <linux/page-flags.h>
264 #include <linux/huge_mm.h>
265
266 /*
267 * Methods to modify the page usage count.
268 *
269 * What counts for a page usage:
270 * - cache mapping (page->mapping)
271 * - private data (page->private)
272 * - page mapped in a task's page tables, each mapping
273 * is counted separately
274 *
275 * Also, many kernel routines increase the page count before a critical
276 * routine so they can be sure the page doesn't go away from under them.
277 */
278
279 /*
280 * Drop a ref, return true if the refcount fell to zero (the page has no users)
281 */
282 static inline int put_page_testzero(struct page *page)
283 {
284 VM_BUG_ON(atomic_read(&page->_count) == 0);
285 return atomic_dec_and_test(&page->_count);
286 }
287
288 /*
289 * Try to grab a ref unless the page has a refcount of zero, return false if
290 * that is the case.
291 */
292 static inline int get_page_unless_zero(struct page *page)
293 {
294 return atomic_inc_not_zero(&page->_count);
295 }
296
297 extern int page_is_ram(unsigned long pfn);
298
299 /* Support for virtually mapped pages */
300 struct page *vmalloc_to_page(const void *addr);
301 unsigned long vmalloc_to_pfn(const void *addr);
302
303 /*
304 * Determine if an address is within the vmalloc range
305 *
306 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
307 * is no special casing required.
308 */
309 static inline int is_vmalloc_addr(const void *x)
310 {
311 #ifdef CONFIG_MMU
312 unsigned long addr = (unsigned long)x;
313
314 return addr >= VMALLOC_START && addr < VMALLOC_END;
315 #else
316 return 0;
317 #endif
318 }
319 #ifdef CONFIG_MMU
320 extern int is_vmalloc_or_module_addr(const void *x);
321 #else
322 static inline int is_vmalloc_or_module_addr(const void *x)
323 {
324 return 0;
325 }
326 #endif
327
328 static inline void compound_lock(struct page *page)
329 {
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 VM_BUG_ON(PageSlab(page));
332 bit_spin_lock(PG_compound_lock, &page->flags);
333 #endif
334 }
335
336 static inline void compound_unlock(struct page *page)
337 {
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 VM_BUG_ON(PageSlab(page));
340 bit_spin_unlock(PG_compound_lock, &page->flags);
341 #endif
342 }
343
344 static inline unsigned long compound_lock_irqsave(struct page *page)
345 {
346 unsigned long uninitialized_var(flags);
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 local_irq_save(flags);
349 compound_lock(page);
350 #endif
351 return flags;
352 }
353
354 static inline void compound_unlock_irqrestore(struct page *page,
355 unsigned long flags)
356 {
357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
358 compound_unlock(page);
359 local_irq_restore(flags);
360 #endif
361 }
362
363 static inline struct page *compound_head(struct page *page)
364 {
365 if (unlikely(PageTail(page))) {
366 struct page *head = page->first_page;
367
368 /*
369 * page->first_page may be a dangling pointer to an old
370 * compound page, so recheck that it is still a tail
371 * page before returning.
372 */
373 smp_rmb();
374 if (likely(PageTail(page)))
375 return head;
376 }
377 return page;
378 }
379
380 /*
381 * The atomic page->_mapcount, starts from -1: so that transitions
382 * both from it and to it can be tracked, using atomic_inc_and_test
383 * and atomic_add_negative(-1).
384 */
385 static inline void page_mapcount_reset(struct page *page)
386 {
387 atomic_set(&(page)->_mapcount, -1);
388 }
389
390 static inline int page_mapcount(struct page *page)
391 {
392 return atomic_read(&(page)->_mapcount) + 1;
393 }
394
395 static inline int page_count(struct page *page)
396 {
397 return atomic_read(&compound_head(page)->_count);
398 }
399
400 static inline void get_huge_page_tail(struct page *page)
401 {
402 /*
403 * __split_huge_page_refcount() cannot run
404 * from under us.
405 */
406 VM_BUG_ON(page_mapcount(page) < 0);
407 VM_BUG_ON(atomic_read(&page->_count) != 0);
408 atomic_inc(&page->_mapcount);
409 }
410
411 extern bool __get_page_tail(struct page *page);
412
413 static inline void get_page(struct page *page)
414 {
415 if (unlikely(PageTail(page)))
416 if (likely(__get_page_tail(page)))
417 return;
418 /*
419 * Getting a normal page or the head of a compound page
420 * requires to already have an elevated page->_count.
421 */
422 VM_BUG_ON(atomic_read(&page->_count) <= 0);
423 atomic_inc(&page->_count);
424 }
425
426 static inline struct page *virt_to_head_page(const void *x)
427 {
428 struct page *page = virt_to_page(x);
429 return compound_head(page);
430 }
431
432 /*
433 * Setup the page count before being freed into the page allocator for
434 * the first time (boot or memory hotplug)
435 */
436 static inline void init_page_count(struct page *page)
437 {
438 atomic_set(&page->_count, 1);
439 }
440
441 /*
442 * PageBuddy() indicate that the page is free and in the buddy system
443 * (see mm/page_alloc.c).
444 *
445 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
446 * -2 so that an underflow of the page_mapcount() won't be mistaken
447 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
448 * efficiently by most CPU architectures.
449 */
450 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
451
452 static inline int PageBuddy(struct page *page)
453 {
454 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
455 }
456
457 static inline void __SetPageBuddy(struct page *page)
458 {
459 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
460 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
461 }
462
463 static inline void __ClearPageBuddy(struct page *page)
464 {
465 VM_BUG_ON(!PageBuddy(page));
466 atomic_set(&page->_mapcount, -1);
467 }
468
469 void put_page(struct page *page);
470 void put_pages_list(struct list_head *pages);
471
472 void split_page(struct page *page, unsigned int order);
473 int split_free_page(struct page *page);
474
475 /*
476 * Compound pages have a destructor function. Provide a
477 * prototype for that function and accessor functions.
478 * These are _only_ valid on the head of a PG_compound page.
479 */
480 typedef void compound_page_dtor(struct page *);
481
482 static inline void set_compound_page_dtor(struct page *page,
483 compound_page_dtor *dtor)
484 {
485 page[1].lru.next = (void *)dtor;
486 }
487
488 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
489 {
490 return (compound_page_dtor *)page[1].lru.next;
491 }
492
493 static inline int compound_order(struct page *page)
494 {
495 if (!PageHead(page))
496 return 0;
497 return (unsigned long)page[1].lru.prev;
498 }
499
500 static inline int compound_trans_order(struct page *page)
501 {
502 int order;
503 unsigned long flags;
504
505 if (!PageHead(page))
506 return 0;
507
508 flags = compound_lock_irqsave(page);
509 order = compound_order(page);
510 compound_unlock_irqrestore(page, flags);
511 return order;
512 }
513
514 static inline void set_compound_order(struct page *page, unsigned long order)
515 {
516 page[1].lru.prev = (void *)order;
517 }
518
519 #ifdef CONFIG_MMU
520 /*
521 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
522 * servicing faults for write access. In the normal case, do always want
523 * pte_mkwrite. But get_user_pages can cause write faults for mappings
524 * that do not have writing enabled, when used by access_process_vm.
525 */
526 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
527 {
528 if (likely(vma->vm_flags & VM_WRITE))
529 pte = pte_mkwrite(pte);
530 return pte;
531 }
532 #endif
533
534 /*
535 * Multiple processes may "see" the same page. E.g. for untouched
536 * mappings of /dev/null, all processes see the same page full of
537 * zeroes, and text pages of executables and shared libraries have
538 * only one copy in memory, at most, normally.
539 *
540 * For the non-reserved pages, page_count(page) denotes a reference count.
541 * page_count() == 0 means the page is free. page->lru is then used for
542 * freelist management in the buddy allocator.
543 * page_count() > 0 means the page has been allocated.
544 *
545 * Pages are allocated by the slab allocator in order to provide memory
546 * to kmalloc and kmem_cache_alloc. In this case, the management of the
547 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
548 * unless a particular usage is carefully commented. (the responsibility of
549 * freeing the kmalloc memory is the caller's, of course).
550 *
551 * A page may be used by anyone else who does a __get_free_page().
552 * In this case, page_count still tracks the references, and should only
553 * be used through the normal accessor functions. The top bits of page->flags
554 * and page->virtual store page management information, but all other fields
555 * are unused and could be used privately, carefully. The management of this
556 * page is the responsibility of the one who allocated it, and those who have
557 * subsequently been given references to it.
558 *
559 * The other pages (we may call them "pagecache pages") are completely
560 * managed by the Linux memory manager: I/O, buffers, swapping etc.
561 * The following discussion applies only to them.
562 *
563 * A pagecache page contains an opaque `private' member, which belongs to the
564 * page's address_space. Usually, this is the address of a circular list of
565 * the page's disk buffers. PG_private must be set to tell the VM to call
566 * into the filesystem to release these pages.
567 *
568 * A page may belong to an inode's memory mapping. In this case, page->mapping
569 * is the pointer to the inode, and page->index is the file offset of the page,
570 * in units of PAGE_CACHE_SIZE.
571 *
572 * If pagecache pages are not associated with an inode, they are said to be
573 * anonymous pages. These may become associated with the swapcache, and in that
574 * case PG_swapcache is set, and page->private is an offset into the swapcache.
575 *
576 * In either case (swapcache or inode backed), the pagecache itself holds one
577 * reference to the page. Setting PG_private should also increment the
578 * refcount. The each user mapping also has a reference to the page.
579 *
580 * The pagecache pages are stored in a per-mapping radix tree, which is
581 * rooted at mapping->page_tree, and indexed by offset.
582 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
583 * lists, we instead now tag pages as dirty/writeback in the radix tree.
584 *
585 * All pagecache pages may be subject to I/O:
586 * - inode pages may need to be read from disk,
587 * - inode pages which have been modified and are MAP_SHARED may need
588 * to be written back to the inode on disk,
589 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
590 * modified may need to be swapped out to swap space and (later) to be read
591 * back into memory.
592 */
593
594 /*
595 * The zone field is never updated after free_area_init_core()
596 * sets it, so none of the operations on it need to be atomic.
597 */
598
599 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
600 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
601 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
602 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
603 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
604
605 /*
606 * Define the bit shifts to access each section. For non-existent
607 * sections we define the shift as 0; that plus a 0 mask ensures
608 * the compiler will optimise away reference to them.
609 */
610 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
611 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
612 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
613 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
614
615 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
616 #ifdef NODE_NOT_IN_PAGE_FLAGS
617 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
618 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
619 SECTIONS_PGOFF : ZONES_PGOFF)
620 #else
621 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
622 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
623 NODES_PGOFF : ZONES_PGOFF)
624 #endif
625
626 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
627
628 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
629 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
630 #endif
631
632 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
633 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
634 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
635 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
636 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
637
638 static inline enum zone_type page_zonenum(const struct page *page)
639 {
640 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
641 }
642
643 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
644 #define SECTION_IN_PAGE_FLAGS
645 #endif
646
647 /*
648 * The identification function is only used by the buddy allocator for
649 * determining if two pages could be buddies. We are not really
650 * identifying a zone since we could be using a the section number
651 * id if we have not node id available in page flags.
652 * We guarantee only that it will return the same value for two
653 * combinable pages in a zone.
654 */
655 static inline int page_zone_id(struct page *page)
656 {
657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
658 }
659
660 static inline int zone_to_nid(struct zone *zone)
661 {
662 #ifdef CONFIG_NUMA
663 return zone->node;
664 #else
665 return 0;
666 #endif
667 }
668
669 #ifdef NODE_NOT_IN_PAGE_FLAGS
670 extern int page_to_nid(const struct page *page);
671 #else
672 static inline int page_to_nid(const struct page *page)
673 {
674 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
675 }
676 #endif
677
678 #ifdef CONFIG_NUMA_BALANCING
679 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
680 static inline int page_nid_xchg_last(struct page *page, int nid)
681 {
682 return xchg(&page->_last_nid, nid);
683 }
684
685 static inline int page_nid_last(struct page *page)
686 {
687 return page->_last_nid;
688 }
689 static inline void page_nid_reset_last(struct page *page)
690 {
691 page->_last_nid = -1;
692 }
693 #else
694 static inline int page_nid_last(struct page *page)
695 {
696 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
697 }
698
699 extern int page_nid_xchg_last(struct page *page, int nid);
700
701 static inline void page_nid_reset_last(struct page *page)
702 {
703 int nid = (1 << LAST_NID_SHIFT) - 1;
704
705 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
706 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
707 }
708 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
709 #else
710 static inline int page_nid_xchg_last(struct page *page, int nid)
711 {
712 return page_to_nid(page);
713 }
714
715 static inline int page_nid_last(struct page *page)
716 {
717 return page_to_nid(page);
718 }
719
720 static inline void page_nid_reset_last(struct page *page)
721 {
722 }
723 #endif
724
725 static inline struct zone *page_zone(const struct page *page)
726 {
727 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
728 }
729
730 #ifdef SECTION_IN_PAGE_FLAGS
731 static inline void set_page_section(struct page *page, unsigned long section)
732 {
733 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
734 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
735 }
736
737 static inline unsigned long page_to_section(const struct page *page)
738 {
739 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
740 }
741 #endif
742
743 static inline void set_page_zone(struct page *page, enum zone_type zone)
744 {
745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
747 }
748
749 static inline void set_page_node(struct page *page, unsigned long node)
750 {
751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
753 }
754
755 static inline void set_page_links(struct page *page, enum zone_type zone,
756 unsigned long node, unsigned long pfn)
757 {
758 set_page_zone(page, zone);
759 set_page_node(page, node);
760 #ifdef SECTION_IN_PAGE_FLAGS
761 set_page_section(page, pfn_to_section_nr(pfn));
762 #endif
763 }
764
765 /*
766 * Some inline functions in vmstat.h depend on page_zone()
767 */
768 #include <linux/vmstat.h>
769
770 static __always_inline void *lowmem_page_address(const struct page *page)
771 {
772 return __va(PFN_PHYS(page_to_pfn(page)));
773 }
774
775 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
776 #define HASHED_PAGE_VIRTUAL
777 #endif
778
779 #if defined(WANT_PAGE_VIRTUAL)
780 static inline void *page_address(const struct page *page)
781 {
782 return page->virtual;
783 }
784 static inline void set_page_address(struct page *page, void *address)
785 {
786 page->virtual = address;
787 }
788 #define page_address_init() do { } while(0)
789 #endif
790
791 #if defined(HASHED_PAGE_VIRTUAL)
792 void *page_address(const struct page *page);
793 void set_page_address(struct page *page, void *virtual);
794 void page_address_init(void);
795 #endif
796
797 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
798 #define page_address(page) lowmem_page_address(page)
799 #define set_page_address(page, address) do { } while(0)
800 #define page_address_init() do { } while(0)
801 #endif
802
803 /*
804 * On an anonymous page mapped into a user virtual memory area,
805 * page->mapping points to its anon_vma, not to a struct address_space;
806 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
807 *
808 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
809 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
810 * and then page->mapping points, not to an anon_vma, but to a private
811 * structure which KSM associates with that merged page. See ksm.h.
812 *
813 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
814 *
815 * Please note that, confusingly, "page_mapping" refers to the inode
816 * address_space which maps the page from disk; whereas "page_mapped"
817 * refers to user virtual address space into which the page is mapped.
818 */
819 #define PAGE_MAPPING_ANON 1
820 #define PAGE_MAPPING_KSM 2
821 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
822
823 extern struct address_space *page_mapping(struct page *page);
824
825 /* Neutral page->mapping pointer to address_space or anon_vma or other */
826 static inline void *page_rmapping(struct page *page)
827 {
828 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
829 }
830
831 extern struct address_space *__page_file_mapping(struct page *);
832
833 static inline
834 struct address_space *page_file_mapping(struct page *page)
835 {
836 if (unlikely(PageSwapCache(page)))
837 return __page_file_mapping(page);
838
839 return page->mapping;
840 }
841
842 static inline int PageAnon(struct page *page)
843 {
844 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
845 }
846
847 /*
848 * Return the pagecache index of the passed page. Regular pagecache pages
849 * use ->index whereas swapcache pages use ->private
850 */
851 static inline pgoff_t page_index(struct page *page)
852 {
853 if (unlikely(PageSwapCache(page)))
854 return page_private(page);
855 return page->index;
856 }
857
858 extern pgoff_t __page_file_index(struct page *page);
859
860 /*
861 * Return the file index of the page. Regular pagecache pages use ->index
862 * whereas swapcache pages use swp_offset(->private)
863 */
864 static inline pgoff_t page_file_index(struct page *page)
865 {
866 if (unlikely(PageSwapCache(page)))
867 return __page_file_index(page);
868
869 return page->index;
870 }
871
872 /*
873 * Return true if this page is mapped into pagetables.
874 */
875 static inline int page_mapped(struct page *page)
876 {
877 return atomic_read(&(page)->_mapcount) >= 0;
878 }
879
880 /*
881 * Different kinds of faults, as returned by handle_mm_fault().
882 * Used to decide whether a process gets delivered SIGBUS or
883 * just gets major/minor fault counters bumped up.
884 */
885
886 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
887
888 #define VM_FAULT_OOM 0x0001
889 #define VM_FAULT_SIGBUS 0x0002
890 #define VM_FAULT_MAJOR 0x0004
891 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
892 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
893 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
894
895 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
896 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
897 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
898
899 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
900
901 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
902 VM_FAULT_HWPOISON_LARGE)
903
904 /* Encode hstate index for a hwpoisoned large page */
905 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
906 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
907
908 /*
909 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
910 */
911 extern void pagefault_out_of_memory(void);
912
913 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
914
915 /*
916 * Flags passed to show_mem() and show_free_areas() to suppress output in
917 * various contexts.
918 */
919 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
920 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
921
922 extern void show_free_areas(unsigned int flags);
923 extern bool skip_free_areas_node(unsigned int flags, int nid);
924
925 int shmem_zero_setup(struct vm_area_struct *);
926
927 extern int can_do_mlock(void);
928 extern int user_shm_lock(size_t, struct user_struct *);
929 extern void user_shm_unlock(size_t, struct user_struct *);
930
931 /*
932 * Parameter block passed down to zap_pte_range in exceptional cases.
933 */
934 struct zap_details {
935 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
936 struct address_space *check_mapping; /* Check page->mapping if set */
937 pgoff_t first_index; /* Lowest page->index to unmap */
938 pgoff_t last_index; /* Highest page->index to unmap */
939 };
940
941 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
942 pte_t pte);
943
944 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
945 unsigned long size);
946 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
947 unsigned long size, struct zap_details *);
948 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
949 unsigned long start, unsigned long end);
950
951 /**
952 * mm_walk - callbacks for walk_page_range
953 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
954 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
955 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
956 * this handler is required to be able to handle
957 * pmd_trans_huge() pmds. They may simply choose to
958 * split_huge_page() instead of handling it explicitly.
959 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
960 * @pte_hole: if set, called for each hole at all levels
961 * @hugetlb_entry: if set, called for each hugetlb entry
962 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
963 * is used.
964 *
965 * (see walk_page_range for more details)
966 */
967 struct mm_walk {
968 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
969 unsigned long next, struct mm_walk *walk);
970 int (*pud_entry)(pud_t *pud, unsigned long addr,
971 unsigned long next, struct mm_walk *walk);
972 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
973 unsigned long next, struct mm_walk *walk);
974 int (*pte_entry)(pte_t *pte, unsigned long addr,
975 unsigned long next, struct mm_walk *walk);
976 int (*pte_hole)(unsigned long addr, unsigned long next,
977 struct mm_walk *walk);
978 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
979 unsigned long addr, unsigned long next,
980 struct mm_walk *walk);
981 struct mm_struct *mm;
982 void *private;
983 };
984
985 int walk_page_range(unsigned long addr, unsigned long end,
986 struct mm_walk *walk);
987 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
988 unsigned long end, unsigned long floor, unsigned long ceiling);
989 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
990 struct vm_area_struct *vma);
991 void unmap_mapping_range(struct address_space *mapping,
992 loff_t const holebegin, loff_t const holelen, int even_cows);
993 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
994 unsigned long *pfn);
995 int follow_phys(struct vm_area_struct *vma, unsigned long address,
996 unsigned int flags, unsigned long *prot, resource_size_t *phys);
997 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
998 void *buf, int len, int write);
999
1000 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1001 loff_t const holebegin, loff_t const holelen)
1002 {
1003 unmap_mapping_range(mapping, holebegin, holelen, 0);
1004 }
1005
1006 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1007 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1008 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1009 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1010 int truncate_inode_page(struct address_space *mapping, struct page *page);
1011 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1012 int invalidate_inode_page(struct page *page);
1013
1014 #ifdef CONFIG_MMU
1015 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1016 unsigned long address, unsigned int flags);
1017 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1018 unsigned long address, unsigned int fault_flags);
1019 #else
1020 static inline int handle_mm_fault(struct mm_struct *mm,
1021 struct vm_area_struct *vma, unsigned long address,
1022 unsigned int flags)
1023 {
1024 /* should never happen if there's no MMU */
1025 BUG();
1026 return VM_FAULT_SIGBUS;
1027 }
1028 static inline int fixup_user_fault(struct task_struct *tsk,
1029 struct mm_struct *mm, unsigned long address,
1030 unsigned int fault_flags)
1031 {
1032 /* should never happen if there's no MMU */
1033 BUG();
1034 return -EFAULT;
1035 }
1036 #endif
1037
1038 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1039 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1040 void *buf, int len, int write);
1041
1042 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1043 unsigned long start, unsigned long nr_pages,
1044 unsigned int foll_flags, struct page **pages,
1045 struct vm_area_struct **vmas, int *nonblocking);
1046 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1047 unsigned long start, unsigned long nr_pages,
1048 int write, int force, struct page **pages,
1049 struct vm_area_struct **vmas);
1050 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1051 struct page **pages);
1052 struct kvec;
1053 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1054 struct page **pages);
1055 int get_kernel_page(unsigned long start, int write, struct page **pages);
1056 struct page *get_dump_page(unsigned long addr);
1057
1058 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1059 extern void do_invalidatepage(struct page *page, unsigned long offset);
1060
1061 int __set_page_dirty_nobuffers(struct page *page);
1062 int __set_page_dirty_no_writeback(struct page *page);
1063 int redirty_page_for_writepage(struct writeback_control *wbc,
1064 struct page *page);
1065 void account_page_dirtied(struct page *page, struct address_space *mapping);
1066 void account_page_writeback(struct page *page);
1067 int set_page_dirty(struct page *page);
1068 int set_page_dirty_lock(struct page *page);
1069 int clear_page_dirty_for_io(struct page *page);
1070
1071 /* Is the vma a continuation of the stack vma above it? */
1072 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1073 {
1074 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1075 }
1076
1077 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1078 unsigned long addr)
1079 {
1080 return (vma->vm_flags & VM_GROWSDOWN) &&
1081 (vma->vm_start == addr) &&
1082 !vma_growsdown(vma->vm_prev, addr);
1083 }
1084
1085 /* Is the vma a continuation of the stack vma below it? */
1086 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1087 {
1088 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1089 }
1090
1091 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1092 unsigned long addr)
1093 {
1094 return (vma->vm_flags & VM_GROWSUP) &&
1095 (vma->vm_end == addr) &&
1096 !vma_growsup(vma->vm_next, addr);
1097 }
1098
1099 extern pid_t
1100 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1101
1102 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1103 unsigned long old_addr, struct vm_area_struct *new_vma,
1104 unsigned long new_addr, unsigned long len,
1105 bool need_rmap_locks);
1106 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1107 unsigned long end, pgprot_t newprot,
1108 int dirty_accountable, int prot_numa);
1109 extern int mprotect_fixup(struct vm_area_struct *vma,
1110 struct vm_area_struct **pprev, unsigned long start,
1111 unsigned long end, unsigned long newflags);
1112
1113 /*
1114 * doesn't attempt to fault and will return short.
1115 */
1116 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1117 struct page **pages);
1118 /*
1119 * per-process(per-mm_struct) statistics.
1120 */
1121 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1122 {
1123 long val = atomic_long_read(&mm->rss_stat.count[member]);
1124
1125 #ifdef SPLIT_RSS_COUNTING
1126 /*
1127 * counter is updated in asynchronous manner and may go to minus.
1128 * But it's never be expected number for users.
1129 */
1130 if (val < 0)
1131 val = 0;
1132 #endif
1133 return (unsigned long)val;
1134 }
1135
1136 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1137 {
1138 atomic_long_add(value, &mm->rss_stat.count[member]);
1139 }
1140
1141 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1142 {
1143 atomic_long_inc(&mm->rss_stat.count[member]);
1144 }
1145
1146 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1147 {
1148 atomic_long_dec(&mm->rss_stat.count[member]);
1149 }
1150
1151 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1152 {
1153 return get_mm_counter(mm, MM_FILEPAGES) +
1154 get_mm_counter(mm, MM_ANONPAGES);
1155 }
1156
1157 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1158 {
1159 return max(mm->hiwater_rss, get_mm_rss(mm));
1160 }
1161
1162 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1163 {
1164 return max(mm->hiwater_vm, mm->total_vm);
1165 }
1166
1167 static inline void update_hiwater_rss(struct mm_struct *mm)
1168 {
1169 unsigned long _rss = get_mm_rss(mm);
1170
1171 if ((mm)->hiwater_rss < _rss)
1172 (mm)->hiwater_rss = _rss;
1173 }
1174
1175 static inline void update_hiwater_vm(struct mm_struct *mm)
1176 {
1177 if (mm->hiwater_vm < mm->total_vm)
1178 mm->hiwater_vm = mm->total_vm;
1179 }
1180
1181 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1182 struct mm_struct *mm)
1183 {
1184 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1185
1186 if (*maxrss < hiwater_rss)
1187 *maxrss = hiwater_rss;
1188 }
1189
1190 #if defined(SPLIT_RSS_COUNTING)
1191 void sync_mm_rss(struct mm_struct *mm);
1192 #else
1193 static inline void sync_mm_rss(struct mm_struct *mm)
1194 {
1195 }
1196 #endif
1197
1198 int vma_wants_writenotify(struct vm_area_struct *vma);
1199
1200 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1201 spinlock_t **ptl);
1202 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1203 spinlock_t **ptl)
1204 {
1205 pte_t *ptep;
1206 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1207 return ptep;
1208 }
1209
1210 #ifdef __PAGETABLE_PUD_FOLDED
1211 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1212 unsigned long address)
1213 {
1214 return 0;
1215 }
1216 #else
1217 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1218 #endif
1219
1220 #ifdef __PAGETABLE_PMD_FOLDED
1221 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1222 unsigned long address)
1223 {
1224 return 0;
1225 }
1226 #else
1227 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1228 #endif
1229
1230 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1231 pmd_t *pmd, unsigned long address);
1232 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1233
1234 /*
1235 * The following ifdef needed to get the 4level-fixup.h header to work.
1236 * Remove it when 4level-fixup.h has been removed.
1237 */
1238 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1239 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1240 {
1241 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1242 NULL: pud_offset(pgd, address);
1243 }
1244
1245 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1246 {
1247 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1248 NULL: pmd_offset(pud, address);
1249 }
1250 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1251
1252 #if USE_SPLIT_PTLOCKS
1253 /*
1254 * We tuck a spinlock to guard each pagetable page into its struct page,
1255 * at page->private, with BUILD_BUG_ON to make sure that this will not
1256 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1257 * When freeing, reset page->mapping so free_pages_check won't complain.
1258 */
1259 #define __pte_lockptr(page) &((page)->ptl)
1260 #define pte_lock_init(_page) do { \
1261 spin_lock_init(__pte_lockptr(_page)); \
1262 } while (0)
1263 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1264 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1265 #else /* !USE_SPLIT_PTLOCKS */
1266 /*
1267 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1268 */
1269 #define pte_lock_init(page) do {} while (0)
1270 #define pte_lock_deinit(page) do {} while (0)
1271 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1272 #endif /* USE_SPLIT_PTLOCKS */
1273
1274 static inline void pgtable_page_ctor(struct page *page)
1275 {
1276 pte_lock_init(page);
1277 inc_zone_page_state(page, NR_PAGETABLE);
1278 }
1279
1280 static inline void pgtable_page_dtor(struct page *page)
1281 {
1282 pte_lock_deinit(page);
1283 dec_zone_page_state(page, NR_PAGETABLE);
1284 }
1285
1286 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1287 ({ \
1288 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1289 pte_t *__pte = pte_offset_map(pmd, address); \
1290 *(ptlp) = __ptl; \
1291 spin_lock(__ptl); \
1292 __pte; \
1293 })
1294
1295 #define pte_unmap_unlock(pte, ptl) do { \
1296 spin_unlock(ptl); \
1297 pte_unmap(pte); \
1298 } while (0)
1299
1300 #define pte_alloc_map(mm, vma, pmd, address) \
1301 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1302 pmd, address))? \
1303 NULL: pte_offset_map(pmd, address))
1304
1305 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1306 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1307 pmd, address))? \
1308 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1309
1310 #define pte_alloc_kernel(pmd, address) \
1311 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1312 NULL: pte_offset_kernel(pmd, address))
1313
1314 extern void free_area_init(unsigned long * zones_size);
1315 extern void free_area_init_node(int nid, unsigned long * zones_size,
1316 unsigned long zone_start_pfn, unsigned long *zholes_size);
1317 extern void free_initmem(void);
1318
1319 /*
1320 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1321 * into the buddy system. The freed pages will be poisoned with pattern
1322 * "poison" if it's non-zero.
1323 * Return pages freed into the buddy system.
1324 */
1325 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1326 int poison, char *s);
1327 #ifdef CONFIG_HIGHMEM
1328 /*
1329 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1330 * and totalram_pages.
1331 */
1332 extern void free_highmem_page(struct page *page);
1333 #endif
1334
1335 static inline void adjust_managed_page_count(struct page *page, long count)
1336 {
1337 totalram_pages += count;
1338 }
1339
1340 /* Free the reserved page into the buddy system, so it gets managed. */
1341 static inline void __free_reserved_page(struct page *page)
1342 {
1343 ClearPageReserved(page);
1344 init_page_count(page);
1345 __free_page(page);
1346 }
1347
1348 static inline void free_reserved_page(struct page *page)
1349 {
1350 __free_reserved_page(page);
1351 adjust_managed_page_count(page, 1);
1352 }
1353
1354 static inline void mark_page_reserved(struct page *page)
1355 {
1356 SetPageReserved(page);
1357 adjust_managed_page_count(page, -1);
1358 }
1359
1360 /*
1361 * Default method to free all the __init memory into the buddy system.
1362 * The freed pages will be poisoned with pattern "poison" if it is
1363 * non-zero. Return pages freed into the buddy system.
1364 */
1365 static inline unsigned long free_initmem_default(int poison)
1366 {
1367 extern char __init_begin[], __init_end[];
1368
1369 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1370 ((unsigned long)&__init_end) & PAGE_MASK,
1371 poison, "unused kernel");
1372 }
1373
1374 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1375 /*
1376 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1377 * zones, allocate the backing mem_map and account for memory holes in a more
1378 * architecture independent manner. This is a substitute for creating the
1379 * zone_sizes[] and zholes_size[] arrays and passing them to
1380 * free_area_init_node()
1381 *
1382 * An architecture is expected to register range of page frames backed by
1383 * physical memory with memblock_add[_node]() before calling
1384 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1385 * usage, an architecture is expected to do something like
1386 *
1387 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1388 * max_highmem_pfn};
1389 * for_each_valid_physical_page_range()
1390 * memblock_add_node(base, size, nid)
1391 * free_area_init_nodes(max_zone_pfns);
1392 *
1393 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1394 * registered physical page range. Similarly
1395 * sparse_memory_present_with_active_regions() calls memory_present() for
1396 * each range when SPARSEMEM is enabled.
1397 *
1398 * See mm/page_alloc.c for more information on each function exposed by
1399 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1400 */
1401 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1402 unsigned long node_map_pfn_alignment(void);
1403 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1404 unsigned long end_pfn);
1405 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1406 unsigned long end_pfn);
1407 extern void get_pfn_range_for_nid(unsigned int nid,
1408 unsigned long *start_pfn, unsigned long *end_pfn);
1409 extern unsigned long find_min_pfn_with_active_regions(void);
1410 extern void free_bootmem_with_active_regions(int nid,
1411 unsigned long max_low_pfn);
1412 extern void sparse_memory_present_with_active_regions(int nid);
1413
1414 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1415
1416 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1417 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1418 static inline int __early_pfn_to_nid(unsigned long pfn)
1419 {
1420 return 0;
1421 }
1422 #else
1423 /* please see mm/page_alloc.c */
1424 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1425 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1426 /* there is a per-arch backend function. */
1427 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1428 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1429 #endif
1430
1431 extern void set_dma_reserve(unsigned long new_dma_reserve);
1432 extern void memmap_init_zone(unsigned long, int, unsigned long,
1433 unsigned long, enum memmap_context);
1434 extern void setup_per_zone_wmarks(void);
1435 extern int __meminit init_per_zone_wmark_min(void);
1436 extern void mem_init(void);
1437 extern void __init mmap_init(void);
1438 extern void show_mem(unsigned int flags);
1439 extern void si_meminfo(struct sysinfo * val);
1440 extern void si_meminfo_node(struct sysinfo *val, int nid);
1441
1442 extern __printf(3, 4)
1443 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1444
1445 extern void setup_per_cpu_pageset(void);
1446
1447 extern void zone_pcp_update(struct zone *zone);
1448 extern void zone_pcp_reset(struct zone *zone);
1449
1450 /* page_alloc.c */
1451 extern int min_free_kbytes;
1452
1453 /* nommu.c */
1454 extern atomic_long_t mmap_pages_allocated;
1455 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1456
1457 /* interval_tree.c */
1458 void vma_interval_tree_insert(struct vm_area_struct *node,
1459 struct rb_root *root);
1460 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1461 struct vm_area_struct *prev,
1462 struct rb_root *root);
1463 void vma_interval_tree_remove(struct vm_area_struct *node,
1464 struct rb_root *root);
1465 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1466 unsigned long start, unsigned long last);
1467 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1468 unsigned long start, unsigned long last);
1469
1470 #define vma_interval_tree_foreach(vma, root, start, last) \
1471 for (vma = vma_interval_tree_iter_first(root, start, last); \
1472 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1473
1474 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1475 struct list_head *list)
1476 {
1477 list_add_tail(&vma->shared.nonlinear, list);
1478 }
1479
1480 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1481 struct rb_root *root);
1482 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1483 struct rb_root *root);
1484 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1485 struct rb_root *root, unsigned long start, unsigned long last);
1486 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1487 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1488 #ifdef CONFIG_DEBUG_VM_RB
1489 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1490 #endif
1491
1492 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1493 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1494 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1495
1496 /* mmap.c */
1497 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1498 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1499 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1500 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1501 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1502 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1503 struct mempolicy *);
1504 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1505 extern int split_vma(struct mm_struct *,
1506 struct vm_area_struct *, unsigned long addr, int new_below);
1507 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1508 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1509 struct rb_node **, struct rb_node *);
1510 extern void unlink_file_vma(struct vm_area_struct *);
1511 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1512 unsigned long addr, unsigned long len, pgoff_t pgoff,
1513 bool *need_rmap_locks);
1514 extern void exit_mmap(struct mm_struct *);
1515
1516 extern int mm_take_all_locks(struct mm_struct *mm);
1517 extern void mm_drop_all_locks(struct mm_struct *mm);
1518
1519 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1520 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1521
1522 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1523 extern int install_special_mapping(struct mm_struct *mm,
1524 unsigned long addr, unsigned long len,
1525 unsigned long flags, struct page **pages);
1526
1527 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1528
1529 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1530 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1531 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1532 unsigned long len, unsigned long prot, unsigned long flags,
1533 unsigned long pgoff, unsigned long *populate);
1534 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1535
1536 #ifdef CONFIG_MMU
1537 extern int __mm_populate(unsigned long addr, unsigned long len,
1538 int ignore_errors);
1539 static inline void mm_populate(unsigned long addr, unsigned long len)
1540 {
1541 /* Ignore errors */
1542 (void) __mm_populate(addr, len, 1);
1543 }
1544 #else
1545 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1546 #endif
1547
1548 /* These take the mm semaphore themselves */
1549 extern unsigned long vm_brk(unsigned long, unsigned long);
1550 extern int vm_munmap(unsigned long, size_t);
1551 extern unsigned long vm_mmap(struct file *, unsigned long,
1552 unsigned long, unsigned long,
1553 unsigned long, unsigned long);
1554
1555 struct vm_unmapped_area_info {
1556 #define VM_UNMAPPED_AREA_TOPDOWN 1
1557 unsigned long flags;
1558 unsigned long length;
1559 unsigned long low_limit;
1560 unsigned long high_limit;
1561 unsigned long align_mask;
1562 unsigned long align_offset;
1563 };
1564
1565 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1566 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1567
1568 /*
1569 * Search for an unmapped address range.
1570 *
1571 * We are looking for a range that:
1572 * - does not intersect with any VMA;
1573 * - is contained within the [low_limit, high_limit) interval;
1574 * - is at least the desired size.
1575 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1576 */
1577 static inline unsigned long
1578 vm_unmapped_area(struct vm_unmapped_area_info *info)
1579 {
1580 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1581 return unmapped_area(info);
1582 else
1583 return unmapped_area_topdown(info);
1584 }
1585
1586 /* truncate.c */
1587 extern void truncate_inode_pages(struct address_space *, loff_t);
1588 extern void truncate_inode_pages_range(struct address_space *,
1589 loff_t lstart, loff_t lend);
1590
1591 /* generic vm_area_ops exported for stackable file systems */
1592 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1593 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1594
1595 /* mm/page-writeback.c */
1596 int write_one_page(struct page *page, int wait);
1597 void task_dirty_inc(struct task_struct *tsk);
1598
1599 /* readahead.c */
1600 #define VM_MAX_READAHEAD 128 /* kbytes */
1601 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1602
1603 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1604 pgoff_t offset, unsigned long nr_to_read);
1605
1606 void page_cache_sync_readahead(struct address_space *mapping,
1607 struct file_ra_state *ra,
1608 struct file *filp,
1609 pgoff_t offset,
1610 unsigned long size);
1611
1612 void page_cache_async_readahead(struct address_space *mapping,
1613 struct file_ra_state *ra,
1614 struct file *filp,
1615 struct page *pg,
1616 pgoff_t offset,
1617 unsigned long size);
1618
1619 unsigned long max_sane_readahead(unsigned long nr);
1620 unsigned long ra_submit(struct file_ra_state *ra,
1621 struct address_space *mapping,
1622 struct file *filp);
1623
1624 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1625 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1626
1627 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1628 extern int expand_downwards(struct vm_area_struct *vma,
1629 unsigned long address);
1630 #if VM_GROWSUP
1631 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1632 #else
1633 #define expand_upwards(vma, address) (0)
1634 #endif
1635
1636 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1637 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1638 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1639 struct vm_area_struct **pprev);
1640
1641 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1642 NULL if none. Assume start_addr < end_addr. */
1643 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1644 {
1645 struct vm_area_struct * vma = find_vma(mm,start_addr);
1646
1647 if (vma && end_addr <= vma->vm_start)
1648 vma = NULL;
1649 return vma;
1650 }
1651
1652 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1653 {
1654 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1655 }
1656
1657 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1658 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1659 unsigned long vm_start, unsigned long vm_end)
1660 {
1661 struct vm_area_struct *vma = find_vma(mm, vm_start);
1662
1663 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1664 vma = NULL;
1665
1666 return vma;
1667 }
1668
1669 #ifdef CONFIG_MMU
1670 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1671 #else
1672 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1673 {
1674 return __pgprot(0);
1675 }
1676 #endif
1677
1678 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1679 unsigned long change_prot_numa(struct vm_area_struct *vma,
1680 unsigned long start, unsigned long end);
1681 #endif
1682
1683 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1684 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1685 unsigned long pfn, unsigned long size, pgprot_t);
1686 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1687 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1688 unsigned long pfn);
1689 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1690 unsigned long pfn);
1691 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1692
1693
1694 struct page *follow_page_mask(struct vm_area_struct *vma,
1695 unsigned long address, unsigned int foll_flags,
1696 unsigned int *page_mask);
1697
1698 static inline struct page *follow_page(struct vm_area_struct *vma,
1699 unsigned long address, unsigned int foll_flags)
1700 {
1701 unsigned int unused_page_mask;
1702 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1703 }
1704
1705 #define FOLL_WRITE 0x01 /* check pte is writable */
1706 #define FOLL_TOUCH 0x02 /* mark page accessed */
1707 #define FOLL_GET 0x04 /* do get_page on page */
1708 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1709 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1710 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1711 * and return without waiting upon it */
1712 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1713 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1714 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1715 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1716 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1717
1718 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1719 void *data);
1720 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1721 unsigned long size, pte_fn_t fn, void *data);
1722
1723 #ifdef CONFIG_PROC_FS
1724 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1725 #else
1726 static inline void vm_stat_account(struct mm_struct *mm,
1727 unsigned long flags, struct file *file, long pages)
1728 {
1729 mm->total_vm += pages;
1730 }
1731 #endif /* CONFIG_PROC_FS */
1732
1733 #ifdef CONFIG_DEBUG_PAGEALLOC
1734 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1735 #ifdef CONFIG_HIBERNATION
1736 extern bool kernel_page_present(struct page *page);
1737 #endif /* CONFIG_HIBERNATION */
1738 #else
1739 static inline void
1740 kernel_map_pages(struct page *page, int numpages, int enable) {}
1741 #ifdef CONFIG_HIBERNATION
1742 static inline bool kernel_page_present(struct page *page) { return true; }
1743 #endif /* CONFIG_HIBERNATION */
1744 #endif
1745
1746 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1747 #ifdef __HAVE_ARCH_GATE_AREA
1748 int in_gate_area_no_mm(unsigned long addr);
1749 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1750 #else
1751 int in_gate_area_no_mm(unsigned long addr);
1752 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1753 #endif /* __HAVE_ARCH_GATE_AREA */
1754
1755 #ifdef CONFIG_SYSCTL
1756 extern int sysctl_drop_caches;
1757 int drop_caches_sysctl_handler(struct ctl_table *, int,
1758 void __user *, size_t *, loff_t *);
1759 #endif
1760
1761 unsigned long shrink_slab(struct shrink_control *shrink,
1762 unsigned long nr_pages_scanned,
1763 unsigned long lru_pages);
1764
1765 #ifndef CONFIG_MMU
1766 #define randomize_va_space 0
1767 #else
1768 extern int randomize_va_space;
1769 #endif
1770
1771 const char * arch_vma_name(struct vm_area_struct *vma);
1772 void print_vma_addr(char *prefix, unsigned long rip);
1773
1774 void sparse_mem_maps_populate_node(struct page **map_map,
1775 unsigned long pnum_begin,
1776 unsigned long pnum_end,
1777 unsigned long map_count,
1778 int nodeid);
1779
1780 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1781 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1782 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1783 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1784 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1785 void *vmemmap_alloc_block(unsigned long size, int node);
1786 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1787 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1788 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1789 int node);
1790 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1791 void vmemmap_populate_print_last(void);
1792 #ifdef CONFIG_MEMORY_HOTPLUG
1793 void vmemmap_free(unsigned long start, unsigned long end);
1794 #endif
1795 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1796 unsigned long size);
1797
1798 enum mf_flags {
1799 MF_COUNT_INCREASED = 1 << 0,
1800 MF_ACTION_REQUIRED = 1 << 1,
1801 MF_MUST_KILL = 1 << 2,
1802 };
1803 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1804 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1805 extern int unpoison_memory(unsigned long pfn);
1806 extern int sysctl_memory_failure_early_kill;
1807 extern int sysctl_memory_failure_recovery;
1808 extern void shake_page(struct page *p, int access);
1809 extern atomic_long_t num_poisoned_pages;
1810 extern int soft_offline_page(struct page *page, int flags);
1811
1812 extern void dump_page(struct page *page);
1813
1814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1815 extern void clear_huge_page(struct page *page,
1816 unsigned long addr,
1817 unsigned int pages_per_huge_page);
1818 extern void copy_user_huge_page(struct page *dst, struct page *src,
1819 unsigned long addr, struct vm_area_struct *vma,
1820 unsigned int pages_per_huge_page);
1821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1822
1823 #ifdef CONFIG_DEBUG_PAGEALLOC
1824 extern unsigned int _debug_guardpage_minorder;
1825
1826 static inline unsigned int debug_guardpage_minorder(void)
1827 {
1828 return _debug_guardpage_minorder;
1829 }
1830
1831 static inline bool page_is_guard(struct page *page)
1832 {
1833 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1834 }
1835 #else
1836 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1837 static inline bool page_is_guard(struct page *page) { return false; }
1838 #endif /* CONFIG_DEBUG_PAGEALLOC */
1839
1840 #if MAX_NUMNODES > 1
1841 void __init setup_nr_node_ids(void);
1842 #else
1843 static inline void setup_nr_node_ids(void) {}
1844 #endif
1845
1846 #endif /* __KERNEL__ */
1847 #endif /* _LINUX_MM_H */