d67c88967c9dffff964acf33183bb8d6301dc87c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 extern unsigned long sysctl_user_reserve_kbytes;
48 extern unsigned long sysctl_admin_reserve_kbytes;
49
50 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
52 /* to align the pointer to the (next) page boundary */
53 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
55 /*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
64 extern struct kmem_cache *vm_area_cachep;
65
66 #ifndef CONFIG_MMU
67 extern struct rb_root nommu_region_tree;
68 extern struct rw_semaphore nommu_region_sem;
69
70 extern unsigned int kobjsize(const void *objp);
71 #endif
72
73 /*
74 * vm_flags in vm_area_struct, see mm_types.h.
75 */
76 #define VM_NONE 0x00000000
77
78 #define VM_READ 0x00000001 /* currently active flags */
79 #define VM_WRITE 0x00000002
80 #define VM_EXEC 0x00000004
81 #define VM_SHARED 0x00000008
82
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85 #define VM_MAYWRITE 0x00000020
86 #define VM_MAYEXEC 0x00000040
87 #define VM_MAYSHARE 0x00000080
88
89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
91 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
93 #define VM_LOCKED 0x00002000
94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
102 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
103 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
104 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
105 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
106 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
107 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
108 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
109
110 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
111 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
112 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
113 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
114
115 #if defined(CONFIG_X86)
116 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
117 #elif defined(CONFIG_PPC)
118 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
119 #elif defined(CONFIG_PARISC)
120 # define VM_GROWSUP VM_ARCH_1
121 #elif defined(CONFIG_METAG)
122 # define VM_GROWSUP VM_ARCH_1
123 #elif defined(CONFIG_IA64)
124 # define VM_GROWSUP VM_ARCH_1
125 #elif !defined(CONFIG_MMU)
126 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
127 #endif
128
129 #ifndef VM_GROWSUP
130 # define VM_GROWSUP VM_NONE
131 #endif
132
133 /* Bits set in the VMA until the stack is in its final location */
134 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
135
136 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
137 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
138 #endif
139
140 #ifdef CONFIG_STACK_GROWSUP
141 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
142 #else
143 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
144 #endif
145
146 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
147 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
148 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
149 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
150 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
151
152 /*
153 * Special vmas that are non-mergable, non-mlock()able.
154 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
155 */
156 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
157
158 /*
159 * mapping from the currently active vm_flags protection bits (the
160 * low four bits) to a page protection mask..
161 */
162 extern pgprot_t protection_map[16];
163
164 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
165 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
166 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
167 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
168 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
169 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
170 #define FAULT_FLAG_TRIED 0x40 /* second try */
171 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
172
173 /*
174 * vm_fault is filled by the the pagefault handler and passed to the vma's
175 * ->fault function. The vma's ->fault is responsible for returning a bitmask
176 * of VM_FAULT_xxx flags that give details about how the fault was handled.
177 *
178 * pgoff should be used in favour of virtual_address, if possible. If pgoff
179 * is used, one may implement ->remap_pages to get nonlinear mapping support.
180 */
181 struct vm_fault {
182 unsigned int flags; /* FAULT_FLAG_xxx flags */
183 pgoff_t pgoff; /* Logical page offset based on vma */
184 void __user *virtual_address; /* Faulting virtual address */
185
186 struct page *page; /* ->fault handlers should return a
187 * page here, unless VM_FAULT_NOPAGE
188 * is set (which is also implied by
189 * VM_FAULT_ERROR).
190 */
191 };
192
193 /*
194 * These are the virtual MM functions - opening of an area, closing and
195 * unmapping it (needed to keep files on disk up-to-date etc), pointer
196 * to the functions called when a no-page or a wp-page exception occurs.
197 */
198 struct vm_operations_struct {
199 void (*open)(struct vm_area_struct * area);
200 void (*close)(struct vm_area_struct * area);
201 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
202
203 /* notification that a previously read-only page is about to become
204 * writable, if an error is returned it will cause a SIGBUS */
205 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
206
207 /* called by access_process_vm when get_user_pages() fails, typically
208 * for use by special VMAs that can switch between memory and hardware
209 */
210 int (*access)(struct vm_area_struct *vma, unsigned long addr,
211 void *buf, int len, int write);
212 #ifdef CONFIG_NUMA
213 /*
214 * set_policy() op must add a reference to any non-NULL @new mempolicy
215 * to hold the policy upon return. Caller should pass NULL @new to
216 * remove a policy and fall back to surrounding context--i.e. do not
217 * install a MPOL_DEFAULT policy, nor the task or system default
218 * mempolicy.
219 */
220 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
221
222 /*
223 * get_policy() op must add reference [mpol_get()] to any policy at
224 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
225 * in mm/mempolicy.c will do this automatically.
226 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
227 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
228 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
229 * must return NULL--i.e., do not "fallback" to task or system default
230 * policy.
231 */
232 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
233 unsigned long addr);
234 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
235 const nodemask_t *to, unsigned long flags);
236 #endif
237 /* called by sys_remap_file_pages() to populate non-linear mapping */
238 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
239 unsigned long size, pgoff_t pgoff);
240 };
241
242 struct mmu_gather;
243 struct inode;
244
245 #define page_private(page) ((page)->private)
246 #define set_page_private(page, v) ((page)->private = (v))
247
248 /* It's valid only if the page is free path or free_list */
249 static inline void set_freepage_migratetype(struct page *page, int migratetype)
250 {
251 page->index = migratetype;
252 }
253
254 /* It's valid only if the page is free path or free_list */
255 static inline int get_freepage_migratetype(struct page *page)
256 {
257 return page->index;
258 }
259
260 /*
261 * FIXME: take this include out, include page-flags.h in
262 * files which need it (119 of them)
263 */
264 #include <linux/page-flags.h>
265 #include <linux/huge_mm.h>
266
267 /*
268 * Methods to modify the page usage count.
269 *
270 * What counts for a page usage:
271 * - cache mapping (page->mapping)
272 * - private data (page->private)
273 * - page mapped in a task's page tables, each mapping
274 * is counted separately
275 *
276 * Also, many kernel routines increase the page count before a critical
277 * routine so they can be sure the page doesn't go away from under them.
278 */
279
280 /*
281 * Drop a ref, return true if the refcount fell to zero (the page has no users)
282 */
283 static inline int put_page_testzero(struct page *page)
284 {
285 VM_BUG_ON(atomic_read(&page->_count) == 0);
286 return atomic_dec_and_test(&page->_count);
287 }
288
289 /*
290 * Try to grab a ref unless the page has a refcount of zero, return false if
291 * that is the case.
292 */
293 static inline int get_page_unless_zero(struct page *page)
294 {
295 return atomic_inc_not_zero(&page->_count);
296 }
297
298 extern int page_is_ram(unsigned long pfn);
299
300 /* Support for virtually mapped pages */
301 struct page *vmalloc_to_page(const void *addr);
302 unsigned long vmalloc_to_pfn(const void *addr);
303
304 /*
305 * Determine if an address is within the vmalloc range
306 *
307 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
308 * is no special casing required.
309 */
310 static inline int is_vmalloc_addr(const void *x)
311 {
312 #ifdef CONFIG_MMU
313 unsigned long addr = (unsigned long)x;
314
315 return addr >= VMALLOC_START && addr < VMALLOC_END;
316 #else
317 return 0;
318 #endif
319 }
320 #ifdef CONFIG_MMU
321 extern int is_vmalloc_or_module_addr(const void *x);
322 #else
323 static inline int is_vmalloc_or_module_addr(const void *x)
324 {
325 return 0;
326 }
327 #endif
328
329 extern void kvfree(const void *addr);
330
331 static inline void compound_lock(struct page *page)
332 {
333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 VM_BUG_ON(PageSlab(page));
335 bit_spin_lock(PG_compound_lock, &page->flags);
336 #endif
337 }
338
339 static inline void compound_unlock(struct page *page)
340 {
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 VM_BUG_ON(PageSlab(page));
343 bit_spin_unlock(PG_compound_lock, &page->flags);
344 #endif
345 }
346
347 static inline unsigned long compound_lock_irqsave(struct page *page)
348 {
349 unsigned long uninitialized_var(flags);
350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 local_irq_save(flags);
352 compound_lock(page);
353 #endif
354 return flags;
355 }
356
357 static inline void compound_unlock_irqrestore(struct page *page,
358 unsigned long flags)
359 {
360 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
361 compound_unlock(page);
362 local_irq_restore(flags);
363 #endif
364 }
365
366 static inline struct page *compound_head(struct page *page)
367 {
368 if (unlikely(PageTail(page))) {
369 struct page *head = page->first_page;
370
371 /*
372 * page->first_page may be a dangling pointer to an old
373 * compound page, so recheck that it is still a tail
374 * page before returning.
375 */
376 smp_rmb();
377 if (likely(PageTail(page)))
378 return head;
379 }
380 return page;
381 }
382
383 /*
384 * The atomic page->_mapcount, starts from -1: so that transitions
385 * both from it and to it can be tracked, using atomic_inc_and_test
386 * and atomic_add_negative(-1).
387 */
388 static inline void page_mapcount_reset(struct page *page)
389 {
390 atomic_set(&(page)->_mapcount, -1);
391 }
392
393 static inline int page_mapcount(struct page *page)
394 {
395 return atomic_read(&(page)->_mapcount) + 1;
396 }
397
398 static inline int page_count(struct page *page)
399 {
400 return atomic_read(&compound_head(page)->_count);
401 }
402
403 static inline void get_huge_page_tail(struct page *page)
404 {
405 /*
406 * __split_huge_page_refcount() cannot run
407 * from under us.
408 */
409 VM_BUG_ON(page_mapcount(page) < 0);
410 VM_BUG_ON(atomic_read(&page->_count) != 0);
411 atomic_inc(&page->_mapcount);
412 }
413
414 extern bool __get_page_tail(struct page *page);
415
416 static inline void get_page(struct page *page)
417 {
418 if (unlikely(PageTail(page)))
419 if (likely(__get_page_tail(page)))
420 return;
421 /*
422 * Getting a normal page or the head of a compound page
423 * requires to already have an elevated page->_count.
424 */
425 VM_BUG_ON(atomic_read(&page->_count) <= 0);
426 atomic_inc(&page->_count);
427 }
428
429 static inline struct page *virt_to_head_page(const void *x)
430 {
431 struct page *page = virt_to_page(x);
432 return compound_head(page);
433 }
434
435 /*
436 * Setup the page count before being freed into the page allocator for
437 * the first time (boot or memory hotplug)
438 */
439 static inline void init_page_count(struct page *page)
440 {
441 atomic_set(&page->_count, 1);
442 }
443
444 /*
445 * PageBuddy() indicate that the page is free and in the buddy system
446 * (see mm/page_alloc.c).
447 *
448 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
449 * -2 so that an underflow of the page_mapcount() won't be mistaken
450 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
451 * efficiently by most CPU architectures.
452 */
453 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
454
455 static inline int PageBuddy(struct page *page)
456 {
457 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
458 }
459
460 static inline void __SetPageBuddy(struct page *page)
461 {
462 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
463 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
464 }
465
466 static inline void __ClearPageBuddy(struct page *page)
467 {
468 VM_BUG_ON(!PageBuddy(page));
469 atomic_set(&page->_mapcount, -1);
470 }
471
472 void put_page(struct page *page);
473 void put_pages_list(struct list_head *pages);
474
475 void split_page(struct page *page, unsigned int order);
476 int split_free_page(struct page *page);
477
478 /*
479 * Compound pages have a destructor function. Provide a
480 * prototype for that function and accessor functions.
481 * These are _only_ valid on the head of a PG_compound page.
482 */
483 typedef void compound_page_dtor(struct page *);
484
485 static inline void set_compound_page_dtor(struct page *page,
486 compound_page_dtor *dtor)
487 {
488 page[1].lru.next = (void *)dtor;
489 }
490
491 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
492 {
493 return (compound_page_dtor *)page[1].lru.next;
494 }
495
496 static inline int compound_order(struct page *page)
497 {
498 if (!PageHead(page))
499 return 0;
500 return (unsigned long)page[1].lru.prev;
501 }
502
503 static inline int compound_trans_order(struct page *page)
504 {
505 int order;
506 unsigned long flags;
507
508 if (!PageHead(page))
509 return 0;
510
511 flags = compound_lock_irqsave(page);
512 order = compound_order(page);
513 compound_unlock_irqrestore(page, flags);
514 return order;
515 }
516
517 static inline void set_compound_order(struct page *page, unsigned long order)
518 {
519 page[1].lru.prev = (void *)order;
520 }
521
522 #ifdef CONFIG_MMU
523 /*
524 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
525 * servicing faults for write access. In the normal case, do always want
526 * pte_mkwrite. But get_user_pages can cause write faults for mappings
527 * that do not have writing enabled, when used by access_process_vm.
528 */
529 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
530 {
531 if (likely(vma->vm_flags & VM_WRITE))
532 pte = pte_mkwrite(pte);
533 return pte;
534 }
535 #endif
536
537 /*
538 * Multiple processes may "see" the same page. E.g. for untouched
539 * mappings of /dev/null, all processes see the same page full of
540 * zeroes, and text pages of executables and shared libraries have
541 * only one copy in memory, at most, normally.
542 *
543 * For the non-reserved pages, page_count(page) denotes a reference count.
544 * page_count() == 0 means the page is free. page->lru is then used for
545 * freelist management in the buddy allocator.
546 * page_count() > 0 means the page has been allocated.
547 *
548 * Pages are allocated by the slab allocator in order to provide memory
549 * to kmalloc and kmem_cache_alloc. In this case, the management of the
550 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
551 * unless a particular usage is carefully commented. (the responsibility of
552 * freeing the kmalloc memory is the caller's, of course).
553 *
554 * A page may be used by anyone else who does a __get_free_page().
555 * In this case, page_count still tracks the references, and should only
556 * be used through the normal accessor functions. The top bits of page->flags
557 * and page->virtual store page management information, but all other fields
558 * are unused and could be used privately, carefully. The management of this
559 * page is the responsibility of the one who allocated it, and those who have
560 * subsequently been given references to it.
561 *
562 * The other pages (we may call them "pagecache pages") are completely
563 * managed by the Linux memory manager: I/O, buffers, swapping etc.
564 * The following discussion applies only to them.
565 *
566 * A pagecache page contains an opaque `private' member, which belongs to the
567 * page's address_space. Usually, this is the address of a circular list of
568 * the page's disk buffers. PG_private must be set to tell the VM to call
569 * into the filesystem to release these pages.
570 *
571 * A page may belong to an inode's memory mapping. In this case, page->mapping
572 * is the pointer to the inode, and page->index is the file offset of the page,
573 * in units of PAGE_CACHE_SIZE.
574 *
575 * If pagecache pages are not associated with an inode, they are said to be
576 * anonymous pages. These may become associated with the swapcache, and in that
577 * case PG_swapcache is set, and page->private is an offset into the swapcache.
578 *
579 * In either case (swapcache or inode backed), the pagecache itself holds one
580 * reference to the page. Setting PG_private should also increment the
581 * refcount. The each user mapping also has a reference to the page.
582 *
583 * The pagecache pages are stored in a per-mapping radix tree, which is
584 * rooted at mapping->page_tree, and indexed by offset.
585 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
586 * lists, we instead now tag pages as dirty/writeback in the radix tree.
587 *
588 * All pagecache pages may be subject to I/O:
589 * - inode pages may need to be read from disk,
590 * - inode pages which have been modified and are MAP_SHARED may need
591 * to be written back to the inode on disk,
592 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
593 * modified may need to be swapped out to swap space and (later) to be read
594 * back into memory.
595 */
596
597 /*
598 * The zone field is never updated after free_area_init_core()
599 * sets it, so none of the operations on it need to be atomic.
600 */
601
602 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
603 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
604 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
605 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
606 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
607
608 /*
609 * Define the bit shifts to access each section. For non-existent
610 * sections we define the shift as 0; that plus a 0 mask ensures
611 * the compiler will optimise away reference to them.
612 */
613 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
614 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
615 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
616 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
617
618 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619 #ifdef NODE_NOT_IN_PAGE_FLAGS
620 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
621 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
623 #else
624 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
625 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
627 #endif
628
629 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
630
631 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
633 #endif
634
635 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
638 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
639 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
640
641 static inline enum zone_type page_zonenum(const struct page *page)
642 {
643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
644 }
645
646 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
647 #define SECTION_IN_PAGE_FLAGS
648 #endif
649
650 /*
651 * The identification function is only used by the buddy allocator for
652 * determining if two pages could be buddies. We are not really
653 * identifying a zone since we could be using a the section number
654 * id if we have not node id available in page flags.
655 * We guarantee only that it will return the same value for two
656 * combinable pages in a zone.
657 */
658 static inline int page_zone_id(struct page *page)
659 {
660 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
661 }
662
663 static inline int zone_to_nid(struct zone *zone)
664 {
665 #ifdef CONFIG_NUMA
666 return zone->node;
667 #else
668 return 0;
669 #endif
670 }
671
672 #ifdef NODE_NOT_IN_PAGE_FLAGS
673 extern int page_to_nid(const struct page *page);
674 #else
675 static inline int page_to_nid(const struct page *page)
676 {
677 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
678 }
679 #endif
680
681 #ifdef CONFIG_NUMA_BALANCING
682 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
683 static inline int page_nid_xchg_last(struct page *page, int nid)
684 {
685 return xchg(&page->_last_nid, nid);
686 }
687
688 static inline int page_nid_last(struct page *page)
689 {
690 return page->_last_nid;
691 }
692 static inline void page_nid_reset_last(struct page *page)
693 {
694 page->_last_nid = -1;
695 }
696 #else
697 static inline int page_nid_last(struct page *page)
698 {
699 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
700 }
701
702 extern int page_nid_xchg_last(struct page *page, int nid);
703
704 static inline void page_nid_reset_last(struct page *page)
705 {
706 int nid = (1 << LAST_NID_SHIFT) - 1;
707
708 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
709 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
710 }
711 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
712 #else
713 static inline int page_nid_xchg_last(struct page *page, int nid)
714 {
715 return page_to_nid(page);
716 }
717
718 static inline int page_nid_last(struct page *page)
719 {
720 return page_to_nid(page);
721 }
722
723 static inline void page_nid_reset_last(struct page *page)
724 {
725 }
726 #endif
727
728 static inline struct zone *page_zone(const struct page *page)
729 {
730 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
731 }
732
733 #ifdef SECTION_IN_PAGE_FLAGS
734 static inline void set_page_section(struct page *page, unsigned long section)
735 {
736 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
737 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
738 }
739
740 static inline unsigned long page_to_section(const struct page *page)
741 {
742 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
743 }
744 #endif
745
746 static inline void set_page_zone(struct page *page, enum zone_type zone)
747 {
748 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
749 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
750 }
751
752 static inline void set_page_node(struct page *page, unsigned long node)
753 {
754 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
755 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
756 }
757
758 static inline void set_page_links(struct page *page, enum zone_type zone,
759 unsigned long node, unsigned long pfn)
760 {
761 set_page_zone(page, zone);
762 set_page_node(page, node);
763 #ifdef SECTION_IN_PAGE_FLAGS
764 set_page_section(page, pfn_to_section_nr(pfn));
765 #endif
766 }
767
768 /*
769 * Some inline functions in vmstat.h depend on page_zone()
770 */
771 #include <linux/vmstat.h>
772
773 static __always_inline void *lowmem_page_address(const struct page *page)
774 {
775 return __va(PFN_PHYS(page_to_pfn(page)));
776 }
777
778 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
779 #define HASHED_PAGE_VIRTUAL
780 #endif
781
782 #if defined(WANT_PAGE_VIRTUAL)
783 static inline void *page_address(const struct page *page)
784 {
785 return page->virtual;
786 }
787 static inline void set_page_address(struct page *page, void *address)
788 {
789 page->virtual = address;
790 }
791 #define page_address_init() do { } while(0)
792 #endif
793
794 #if defined(HASHED_PAGE_VIRTUAL)
795 void *page_address(const struct page *page);
796 void set_page_address(struct page *page, void *virtual);
797 void page_address_init(void);
798 #endif
799
800 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
801 #define page_address(page) lowmem_page_address(page)
802 #define set_page_address(page, address) do { } while(0)
803 #define page_address_init() do { } while(0)
804 #endif
805
806 /*
807 * On an anonymous page mapped into a user virtual memory area,
808 * page->mapping points to its anon_vma, not to a struct address_space;
809 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
810 *
811 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
812 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
813 * and then page->mapping points, not to an anon_vma, but to a private
814 * structure which KSM associates with that merged page. See ksm.h.
815 *
816 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
817 *
818 * Please note that, confusingly, "page_mapping" refers to the inode
819 * address_space which maps the page from disk; whereas "page_mapped"
820 * refers to user virtual address space into which the page is mapped.
821 */
822 #define PAGE_MAPPING_ANON 1
823 #define PAGE_MAPPING_KSM 2
824 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
825
826 extern struct address_space *page_mapping(struct page *page);
827
828 /* Neutral page->mapping pointer to address_space or anon_vma or other */
829 static inline void *page_rmapping(struct page *page)
830 {
831 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
832 }
833
834 extern struct address_space *__page_file_mapping(struct page *);
835
836 static inline
837 struct address_space *page_file_mapping(struct page *page)
838 {
839 if (unlikely(PageSwapCache(page)))
840 return __page_file_mapping(page);
841
842 return page->mapping;
843 }
844
845 static inline int PageAnon(struct page *page)
846 {
847 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
848 }
849
850 /*
851 * Return the pagecache index of the passed page. Regular pagecache pages
852 * use ->index whereas swapcache pages use ->private
853 */
854 static inline pgoff_t page_index(struct page *page)
855 {
856 if (unlikely(PageSwapCache(page)))
857 return page_private(page);
858 return page->index;
859 }
860
861 extern pgoff_t __page_file_index(struct page *page);
862
863 /*
864 * Return the file index of the page. Regular pagecache pages use ->index
865 * whereas swapcache pages use swp_offset(->private)
866 */
867 static inline pgoff_t page_file_index(struct page *page)
868 {
869 if (unlikely(PageSwapCache(page)))
870 return __page_file_index(page);
871
872 return page->index;
873 }
874
875 /*
876 * Return true if this page is mapped into pagetables.
877 */
878 static inline int page_mapped(struct page *page)
879 {
880 return atomic_read(&(page)->_mapcount) >= 0;
881 }
882
883 /*
884 * Different kinds of faults, as returned by handle_mm_fault().
885 * Used to decide whether a process gets delivered SIGBUS or
886 * just gets major/minor fault counters bumped up.
887 */
888
889 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
890
891 #define VM_FAULT_OOM 0x0001
892 #define VM_FAULT_SIGBUS 0x0002
893 #define VM_FAULT_MAJOR 0x0004
894 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
895 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
896 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
897
898 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
899 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
900 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
901
902 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
903
904 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
905 VM_FAULT_HWPOISON_LARGE)
906
907 /* Encode hstate index for a hwpoisoned large page */
908 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
909 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
910
911 /*
912 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
913 */
914 extern void pagefault_out_of_memory(void);
915
916 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
917
918 /*
919 * Flags passed to show_mem() and show_free_areas() to suppress output in
920 * various contexts.
921 */
922 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
923 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
924
925 extern void show_free_areas(unsigned int flags);
926 extern bool skip_free_areas_node(unsigned int flags, int nid);
927
928 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
929 int shmem_zero_setup(struct vm_area_struct *);
930
931 extern int can_do_mlock(void);
932 extern int user_shm_lock(size_t, struct user_struct *);
933 extern void user_shm_unlock(size_t, struct user_struct *);
934
935 /*
936 * Parameter block passed down to zap_pte_range in exceptional cases.
937 */
938 struct zap_details {
939 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
940 struct address_space *check_mapping; /* Check page->mapping if set */
941 pgoff_t first_index; /* Lowest page->index to unmap */
942 pgoff_t last_index; /* Highest page->index to unmap */
943 };
944
945 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
946 pte_t pte);
947
948 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
949 unsigned long size);
950 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
951 unsigned long size, struct zap_details *);
952 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
953 unsigned long start, unsigned long end);
954
955 /**
956 * mm_walk - callbacks for walk_page_range
957 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
958 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
959 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
960 * this handler is required to be able to handle
961 * pmd_trans_huge() pmds. They may simply choose to
962 * split_huge_page() instead of handling it explicitly.
963 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
964 * @pte_hole: if set, called for each hole at all levels
965 * @hugetlb_entry: if set, called for each hugetlb entry
966 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
967 * is used.
968 *
969 * (see walk_page_range for more details)
970 */
971 struct mm_walk {
972 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
973 unsigned long next, struct mm_walk *walk);
974 int (*pud_entry)(pud_t *pud, unsigned long addr,
975 unsigned long next, struct mm_walk *walk);
976 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
977 unsigned long next, struct mm_walk *walk);
978 int (*pte_entry)(pte_t *pte, unsigned long addr,
979 unsigned long next, struct mm_walk *walk);
980 int (*pte_hole)(unsigned long addr, unsigned long next,
981 struct mm_walk *walk);
982 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
983 unsigned long addr, unsigned long next,
984 struct mm_walk *walk);
985 struct mm_struct *mm;
986 void *private;
987 };
988
989 int walk_page_range(unsigned long addr, unsigned long end,
990 struct mm_walk *walk);
991 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
992 unsigned long end, unsigned long floor, unsigned long ceiling);
993 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
994 struct vm_area_struct *vma);
995 void unmap_mapping_range(struct address_space *mapping,
996 loff_t const holebegin, loff_t const holelen, int even_cows);
997 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
998 unsigned long *pfn);
999 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1000 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1001 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1002 void *buf, int len, int write);
1003
1004 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1005 loff_t const holebegin, loff_t const holelen)
1006 {
1007 unmap_mapping_range(mapping, holebegin, holelen, 0);
1008 }
1009
1010 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1011 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1012 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1013 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1014 int truncate_inode_page(struct address_space *mapping, struct page *page);
1015 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1016 int invalidate_inode_page(struct page *page);
1017
1018 #ifdef CONFIG_MMU
1019 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1020 unsigned long address, unsigned int flags);
1021 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1022 unsigned long address, unsigned int fault_flags);
1023 #else
1024 static inline int handle_mm_fault(struct mm_struct *mm,
1025 struct vm_area_struct *vma, unsigned long address,
1026 unsigned int flags)
1027 {
1028 /* should never happen if there's no MMU */
1029 BUG();
1030 return VM_FAULT_SIGBUS;
1031 }
1032 static inline int fixup_user_fault(struct task_struct *tsk,
1033 struct mm_struct *mm, unsigned long address,
1034 unsigned int fault_flags)
1035 {
1036 /* should never happen if there's no MMU */
1037 BUG();
1038 return -EFAULT;
1039 }
1040 #endif
1041
1042 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1043 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1044 void *buf, int len, int write);
1045
1046 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1047 unsigned long start, unsigned long nr_pages,
1048 unsigned int foll_flags, struct page **pages,
1049 struct vm_area_struct **vmas, int *nonblocking);
1050 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1051 unsigned long start, unsigned long nr_pages,
1052 int write, int force, struct page **pages,
1053 struct vm_area_struct **vmas);
1054 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1055 struct page **pages);
1056 struct kvec;
1057 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1058 struct page **pages);
1059 int get_kernel_page(unsigned long start, int write, struct page **pages);
1060 struct page *get_dump_page(unsigned long addr);
1061
1062 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1063 extern void do_invalidatepage(struct page *page, unsigned long offset);
1064
1065 int __set_page_dirty_nobuffers(struct page *page);
1066 int __set_page_dirty_no_writeback(struct page *page);
1067 int redirty_page_for_writepage(struct writeback_control *wbc,
1068 struct page *page);
1069 void account_page_dirtied(struct page *page, struct address_space *mapping);
1070 void account_page_writeback(struct page *page);
1071 int set_page_dirty(struct page *page);
1072 int set_page_dirty_lock(struct page *page);
1073 int clear_page_dirty_for_io(struct page *page);
1074
1075 /* Is the vma a continuation of the stack vma above it? */
1076 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1077 {
1078 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1079 }
1080
1081 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1082 unsigned long addr)
1083 {
1084 return (vma->vm_flags & VM_GROWSDOWN) &&
1085 (vma->vm_start == addr) &&
1086 !vma_growsdown(vma->vm_prev, addr);
1087 }
1088
1089 /* Is the vma a continuation of the stack vma below it? */
1090 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1091 {
1092 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1093 }
1094
1095 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1096 unsigned long addr)
1097 {
1098 return (vma->vm_flags & VM_GROWSUP) &&
1099 (vma->vm_end == addr) &&
1100 !vma_growsup(vma->vm_next, addr);
1101 }
1102
1103 extern pid_t
1104 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1105
1106 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1107 unsigned long old_addr, struct vm_area_struct *new_vma,
1108 unsigned long new_addr, unsigned long len,
1109 bool need_rmap_locks);
1110 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1111 unsigned long end, pgprot_t newprot,
1112 int dirty_accountable, int prot_numa);
1113 extern int mprotect_fixup(struct vm_area_struct *vma,
1114 struct vm_area_struct **pprev, unsigned long start,
1115 unsigned long end, unsigned long newflags);
1116
1117 /*
1118 * doesn't attempt to fault and will return short.
1119 */
1120 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1121 struct page **pages);
1122 /*
1123 * per-process(per-mm_struct) statistics.
1124 */
1125 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1126 {
1127 long val = atomic_long_read(&mm->rss_stat.count[member]);
1128
1129 #ifdef SPLIT_RSS_COUNTING
1130 /*
1131 * counter is updated in asynchronous manner and may go to minus.
1132 * But it's never be expected number for users.
1133 */
1134 if (val < 0)
1135 val = 0;
1136 #endif
1137 return (unsigned long)val;
1138 }
1139
1140 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1141 {
1142 atomic_long_add(value, &mm->rss_stat.count[member]);
1143 }
1144
1145 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1146 {
1147 atomic_long_inc(&mm->rss_stat.count[member]);
1148 }
1149
1150 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1151 {
1152 atomic_long_dec(&mm->rss_stat.count[member]);
1153 }
1154
1155 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1156 {
1157 return get_mm_counter(mm, MM_FILEPAGES) +
1158 get_mm_counter(mm, MM_ANONPAGES);
1159 }
1160
1161 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1162 {
1163 return max(mm->hiwater_rss, get_mm_rss(mm));
1164 }
1165
1166 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1167 {
1168 return max(mm->hiwater_vm, mm->total_vm);
1169 }
1170
1171 static inline void update_hiwater_rss(struct mm_struct *mm)
1172 {
1173 unsigned long _rss = get_mm_rss(mm);
1174
1175 if ((mm)->hiwater_rss < _rss)
1176 (mm)->hiwater_rss = _rss;
1177 }
1178
1179 static inline void update_hiwater_vm(struct mm_struct *mm)
1180 {
1181 if (mm->hiwater_vm < mm->total_vm)
1182 mm->hiwater_vm = mm->total_vm;
1183 }
1184
1185 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1186 struct mm_struct *mm)
1187 {
1188 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1189
1190 if (*maxrss < hiwater_rss)
1191 *maxrss = hiwater_rss;
1192 }
1193
1194 #if defined(SPLIT_RSS_COUNTING)
1195 void sync_mm_rss(struct mm_struct *mm);
1196 #else
1197 static inline void sync_mm_rss(struct mm_struct *mm)
1198 {
1199 }
1200 #endif
1201
1202 int vma_wants_writenotify(struct vm_area_struct *vma);
1203
1204 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1205 spinlock_t **ptl);
1206 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1207 spinlock_t **ptl)
1208 {
1209 pte_t *ptep;
1210 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1211 return ptep;
1212 }
1213
1214 #ifdef __PAGETABLE_PUD_FOLDED
1215 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1216 unsigned long address)
1217 {
1218 return 0;
1219 }
1220 #else
1221 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1222 #endif
1223
1224 #ifdef __PAGETABLE_PMD_FOLDED
1225 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1226 unsigned long address)
1227 {
1228 return 0;
1229 }
1230 #else
1231 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1232 #endif
1233
1234 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1235 pmd_t *pmd, unsigned long address);
1236 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1237
1238 /*
1239 * The following ifdef needed to get the 4level-fixup.h header to work.
1240 * Remove it when 4level-fixup.h has been removed.
1241 */
1242 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1243 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1244 {
1245 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1246 NULL: pud_offset(pgd, address);
1247 }
1248
1249 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1250 {
1251 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1252 NULL: pmd_offset(pud, address);
1253 }
1254 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1255
1256 #if USE_SPLIT_PTLOCKS
1257 /*
1258 * We tuck a spinlock to guard each pagetable page into its struct page,
1259 * at page->private, with BUILD_BUG_ON to make sure that this will not
1260 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1261 * When freeing, reset page->mapping so free_pages_check won't complain.
1262 */
1263 #define __pte_lockptr(page) &((page)->ptl)
1264 #define pte_lock_init(_page) do { \
1265 spin_lock_init(__pte_lockptr(_page)); \
1266 } while (0)
1267 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1268 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1269 #else /* !USE_SPLIT_PTLOCKS */
1270 /*
1271 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1272 */
1273 #define pte_lock_init(page) do {} while (0)
1274 #define pte_lock_deinit(page) do {} while (0)
1275 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1276 #endif /* USE_SPLIT_PTLOCKS */
1277
1278 static inline void pgtable_page_ctor(struct page *page)
1279 {
1280 pte_lock_init(page);
1281 inc_zone_page_state(page, NR_PAGETABLE);
1282 }
1283
1284 static inline void pgtable_page_dtor(struct page *page)
1285 {
1286 pte_lock_deinit(page);
1287 dec_zone_page_state(page, NR_PAGETABLE);
1288 }
1289
1290 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1291 ({ \
1292 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1293 pte_t *__pte = pte_offset_map(pmd, address); \
1294 *(ptlp) = __ptl; \
1295 spin_lock(__ptl); \
1296 __pte; \
1297 })
1298
1299 #define pte_unmap_unlock(pte, ptl) do { \
1300 spin_unlock(ptl); \
1301 pte_unmap(pte); \
1302 } while (0)
1303
1304 #define pte_alloc_map(mm, vma, pmd, address) \
1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1306 pmd, address))? \
1307 NULL: pte_offset_map(pmd, address))
1308
1309 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1310 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1311 pmd, address))? \
1312 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1313
1314 #define pte_alloc_kernel(pmd, address) \
1315 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1316 NULL: pte_offset_kernel(pmd, address))
1317
1318 extern void free_area_init(unsigned long * zones_size);
1319 extern void free_area_init_node(int nid, unsigned long * zones_size,
1320 unsigned long zone_start_pfn, unsigned long *zholes_size);
1321 extern void free_initmem(void);
1322
1323 /*
1324 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1325 * into the buddy system. The freed pages will be poisoned with pattern
1326 * "poison" if it's non-zero.
1327 * Return pages freed into the buddy system.
1328 */
1329 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1330 int poison, char *s);
1331 #ifdef CONFIG_HIGHMEM
1332 /*
1333 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1334 * and totalram_pages.
1335 */
1336 extern void free_highmem_page(struct page *page);
1337 #endif
1338
1339 static inline void adjust_managed_page_count(struct page *page, long count)
1340 {
1341 totalram_pages += count;
1342 }
1343
1344 /* Free the reserved page into the buddy system, so it gets managed. */
1345 static inline void __free_reserved_page(struct page *page)
1346 {
1347 ClearPageReserved(page);
1348 init_page_count(page);
1349 __free_page(page);
1350 }
1351
1352 static inline void free_reserved_page(struct page *page)
1353 {
1354 __free_reserved_page(page);
1355 adjust_managed_page_count(page, 1);
1356 }
1357
1358 static inline void mark_page_reserved(struct page *page)
1359 {
1360 SetPageReserved(page);
1361 adjust_managed_page_count(page, -1);
1362 }
1363
1364 /*
1365 * Default method to free all the __init memory into the buddy system.
1366 * The freed pages will be poisoned with pattern "poison" if it is
1367 * non-zero. Return pages freed into the buddy system.
1368 */
1369 static inline unsigned long free_initmem_default(int poison)
1370 {
1371 extern char __init_begin[], __init_end[];
1372
1373 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1374 ((unsigned long)&__init_end) & PAGE_MASK,
1375 poison, "unused kernel");
1376 }
1377
1378 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1379 /*
1380 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1381 * zones, allocate the backing mem_map and account for memory holes in a more
1382 * architecture independent manner. This is a substitute for creating the
1383 * zone_sizes[] and zholes_size[] arrays and passing them to
1384 * free_area_init_node()
1385 *
1386 * An architecture is expected to register range of page frames backed by
1387 * physical memory with memblock_add[_node]() before calling
1388 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1389 * usage, an architecture is expected to do something like
1390 *
1391 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1392 * max_highmem_pfn};
1393 * for_each_valid_physical_page_range()
1394 * memblock_add_node(base, size, nid)
1395 * free_area_init_nodes(max_zone_pfns);
1396 *
1397 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1398 * registered physical page range. Similarly
1399 * sparse_memory_present_with_active_regions() calls memory_present() for
1400 * each range when SPARSEMEM is enabled.
1401 *
1402 * See mm/page_alloc.c for more information on each function exposed by
1403 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1404 */
1405 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1406 unsigned long node_map_pfn_alignment(void);
1407 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1408 unsigned long end_pfn);
1409 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1410 unsigned long end_pfn);
1411 extern void get_pfn_range_for_nid(unsigned int nid,
1412 unsigned long *start_pfn, unsigned long *end_pfn);
1413 extern unsigned long find_min_pfn_with_active_regions(void);
1414 extern void free_bootmem_with_active_regions(int nid,
1415 unsigned long max_low_pfn);
1416 extern void sparse_memory_present_with_active_regions(int nid);
1417
1418 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1419
1420 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1421 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1422 static inline int __early_pfn_to_nid(unsigned long pfn)
1423 {
1424 return 0;
1425 }
1426 #else
1427 /* please see mm/page_alloc.c */
1428 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1429 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1430 /* there is a per-arch backend function. */
1431 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1432 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1433 #endif
1434
1435 extern void set_dma_reserve(unsigned long new_dma_reserve);
1436 extern void memmap_init_zone(unsigned long, int, unsigned long,
1437 unsigned long, enum memmap_context);
1438 extern void setup_per_zone_wmarks(void);
1439 extern int __meminit init_per_zone_wmark_min(void);
1440 extern void mem_init(void);
1441 extern void __init mmap_init(void);
1442 extern void show_mem(unsigned int flags);
1443 extern void si_meminfo(struct sysinfo * val);
1444 extern void si_meminfo_node(struct sysinfo *val, int nid);
1445
1446 extern __printf(3, 4)
1447 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1448
1449 extern void setup_per_cpu_pageset(void);
1450
1451 extern void zone_pcp_update(struct zone *zone);
1452 extern void zone_pcp_reset(struct zone *zone);
1453
1454 /* page_alloc.c */
1455 extern int min_free_kbytes;
1456
1457 /* nommu.c */
1458 extern atomic_long_t mmap_pages_allocated;
1459 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1460
1461 /* interval_tree.c */
1462 void vma_interval_tree_insert(struct vm_area_struct *node,
1463 struct rb_root *root);
1464 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1465 struct vm_area_struct *prev,
1466 struct rb_root *root);
1467 void vma_interval_tree_remove(struct vm_area_struct *node,
1468 struct rb_root *root);
1469 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1470 unsigned long start, unsigned long last);
1471 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1472 unsigned long start, unsigned long last);
1473
1474 #define vma_interval_tree_foreach(vma, root, start, last) \
1475 for (vma = vma_interval_tree_iter_first(root, start, last); \
1476 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1477
1478 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1479 struct list_head *list)
1480 {
1481 list_add_tail(&vma->shared.nonlinear, list);
1482 }
1483
1484 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1485 struct rb_root *root);
1486 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1487 struct rb_root *root);
1488 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1489 struct rb_root *root, unsigned long start, unsigned long last);
1490 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1491 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1492 #ifdef CONFIG_DEBUG_VM_RB
1493 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1494 #endif
1495
1496 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1497 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1498 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1499
1500 /* mmap.c */
1501 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1502 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1503 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1504 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1505 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1506 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1507 struct mempolicy *, const char __user *);
1508 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1509 extern int split_vma(struct mm_struct *,
1510 struct vm_area_struct *, unsigned long addr, int new_below);
1511 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1512 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1513 struct rb_node **, struct rb_node *);
1514 extern void unlink_file_vma(struct vm_area_struct *);
1515 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1516 unsigned long addr, unsigned long len, pgoff_t pgoff,
1517 bool *need_rmap_locks);
1518 extern void exit_mmap(struct mm_struct *);
1519
1520 extern int mm_take_all_locks(struct mm_struct *mm);
1521 extern void mm_drop_all_locks(struct mm_struct *mm);
1522
1523 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1524 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1525
1526 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1527 extern int install_special_mapping(struct mm_struct *mm,
1528 unsigned long addr, unsigned long len,
1529 unsigned long flags, struct page **pages);
1530
1531 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1532
1533 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1534 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1535 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1536 unsigned long len, unsigned long prot, unsigned long flags,
1537 unsigned long pgoff, unsigned long *populate);
1538 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1539
1540 #ifdef CONFIG_MMU
1541 extern int __mm_populate(unsigned long addr, unsigned long len,
1542 int ignore_errors);
1543 static inline void mm_populate(unsigned long addr, unsigned long len)
1544 {
1545 /* Ignore errors */
1546 (void) __mm_populate(addr, len, 1);
1547 }
1548 #else
1549 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1550 #endif
1551
1552 /* These take the mm semaphore themselves */
1553 extern unsigned long vm_brk(unsigned long, unsigned long);
1554 extern int vm_munmap(unsigned long, size_t);
1555 extern unsigned long vm_mmap(struct file *, unsigned long,
1556 unsigned long, unsigned long,
1557 unsigned long, unsigned long);
1558
1559 struct vm_unmapped_area_info {
1560 #define VM_UNMAPPED_AREA_TOPDOWN 1
1561 unsigned long flags;
1562 unsigned long length;
1563 unsigned long low_limit;
1564 unsigned long high_limit;
1565 unsigned long align_mask;
1566 unsigned long align_offset;
1567 };
1568
1569 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1570 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1571
1572 /*
1573 * Search for an unmapped address range.
1574 *
1575 * We are looking for a range that:
1576 * - does not intersect with any VMA;
1577 * - is contained within the [low_limit, high_limit) interval;
1578 * - is at least the desired size.
1579 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1580 */
1581 static inline unsigned long
1582 vm_unmapped_area(struct vm_unmapped_area_info *info)
1583 {
1584 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1585 return unmapped_area(info);
1586 else
1587 return unmapped_area_topdown(info);
1588 }
1589
1590 /* truncate.c */
1591 extern void truncate_inode_pages(struct address_space *, loff_t);
1592 extern void truncate_inode_pages_range(struct address_space *,
1593 loff_t lstart, loff_t lend);
1594
1595 /* generic vm_area_ops exported for stackable file systems */
1596 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1597 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1598
1599 /* mm/page-writeback.c */
1600 int write_one_page(struct page *page, int wait);
1601 void task_dirty_inc(struct task_struct *tsk);
1602
1603 /* readahead.c */
1604 #define VM_MAX_READAHEAD 128 /* kbytes */
1605 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1606
1607 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1608 pgoff_t offset, unsigned long nr_to_read);
1609
1610 void page_cache_sync_readahead(struct address_space *mapping,
1611 struct file_ra_state *ra,
1612 struct file *filp,
1613 pgoff_t offset,
1614 unsigned long size);
1615
1616 void page_cache_async_readahead(struct address_space *mapping,
1617 struct file_ra_state *ra,
1618 struct file *filp,
1619 struct page *pg,
1620 pgoff_t offset,
1621 unsigned long size);
1622
1623 unsigned long max_sane_readahead(unsigned long nr);
1624 unsigned long ra_submit(struct file_ra_state *ra,
1625 struct address_space *mapping,
1626 struct file *filp);
1627
1628 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1629 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1630
1631 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1632 extern int expand_downwards(struct vm_area_struct *vma,
1633 unsigned long address);
1634 #if VM_GROWSUP
1635 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1636 #else
1637 #define expand_upwards(vma, address) (0)
1638 #endif
1639
1640 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1641 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1642 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1643 struct vm_area_struct **pprev);
1644
1645 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1646 NULL if none. Assume start_addr < end_addr. */
1647 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1648 {
1649 struct vm_area_struct * vma = find_vma(mm,start_addr);
1650
1651 if (vma && end_addr <= vma->vm_start)
1652 vma = NULL;
1653 return vma;
1654 }
1655
1656 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1657 {
1658 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1659 }
1660
1661 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1662 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1663 unsigned long vm_start, unsigned long vm_end)
1664 {
1665 struct vm_area_struct *vma = find_vma(mm, vm_start);
1666
1667 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1668 vma = NULL;
1669
1670 return vma;
1671 }
1672
1673 #ifdef CONFIG_MMU
1674 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1675 #else
1676 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1677 {
1678 return __pgprot(0);
1679 }
1680 #endif
1681
1682 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1683 unsigned long change_prot_numa(struct vm_area_struct *vma,
1684 unsigned long start, unsigned long end);
1685 #endif
1686
1687 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1688 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1689 unsigned long pfn, unsigned long size, pgprot_t);
1690 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1691 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1692 unsigned long pfn);
1693 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1694 unsigned long pfn);
1695 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1696
1697
1698 struct page *follow_page_mask(struct vm_area_struct *vma,
1699 unsigned long address, unsigned int foll_flags,
1700 unsigned int *page_mask);
1701
1702 static inline struct page *follow_page(struct vm_area_struct *vma,
1703 unsigned long address, unsigned int foll_flags)
1704 {
1705 unsigned int unused_page_mask;
1706 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1707 }
1708
1709 #define FOLL_WRITE 0x01 /* check pte is writable */
1710 #define FOLL_TOUCH 0x02 /* mark page accessed */
1711 #define FOLL_GET 0x04 /* do get_page on page */
1712 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1713 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1714 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1715 * and return without waiting upon it */
1716 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1717 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1718 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1719 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1720 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1721 #define FOLL_COW 0x4000 /* internal GUP flag */
1722
1723 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1724 void *data);
1725 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1726 unsigned long size, pte_fn_t fn, void *data);
1727
1728 #ifdef CONFIG_PROC_FS
1729 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1730 #else
1731 static inline void vm_stat_account(struct mm_struct *mm,
1732 unsigned long flags, struct file *file, long pages)
1733 {
1734 mm->total_vm += pages;
1735 }
1736 #endif /* CONFIG_PROC_FS */
1737
1738 #ifdef CONFIG_DEBUG_PAGEALLOC
1739 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1740 #ifdef CONFIG_HIBERNATION
1741 extern bool kernel_page_present(struct page *page);
1742 #endif /* CONFIG_HIBERNATION */
1743 #else
1744 static inline void
1745 kernel_map_pages(struct page *page, int numpages, int enable) {}
1746 #ifdef CONFIG_HIBERNATION
1747 static inline bool kernel_page_present(struct page *page) { return true; }
1748 #endif /* CONFIG_HIBERNATION */
1749 #endif
1750
1751 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1752 #ifdef __HAVE_ARCH_GATE_AREA
1753 int in_gate_area_no_mm(unsigned long addr);
1754 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1755 #else
1756 int in_gate_area_no_mm(unsigned long addr);
1757 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1758 #endif /* __HAVE_ARCH_GATE_AREA */
1759
1760 #ifdef CONFIG_SYSCTL
1761 extern int sysctl_drop_caches;
1762 int drop_caches_sysctl_handler(struct ctl_table *, int,
1763 void __user *, size_t *, loff_t *);
1764 #endif
1765
1766 unsigned long shrink_slab(struct shrink_control *shrink,
1767 unsigned long nr_pages_scanned,
1768 unsigned long lru_pages);
1769 void drop_pagecache(void);
1770
1771 #ifndef CONFIG_MMU
1772 #define randomize_va_space 0
1773 #else
1774 extern int randomize_va_space;
1775 #endif
1776
1777 const char * arch_vma_name(struct vm_area_struct *vma);
1778 void print_vma_addr(char *prefix, unsigned long rip);
1779
1780 void sparse_mem_maps_populate_node(struct page **map_map,
1781 unsigned long pnum_begin,
1782 unsigned long pnum_end,
1783 unsigned long map_count,
1784 int nodeid);
1785
1786 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1787 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1788 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1789 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1790 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1791 void *vmemmap_alloc_block(unsigned long size, int node);
1792 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1793 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1794 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1795 int node);
1796 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1797 void vmemmap_populate_print_last(void);
1798 #ifdef CONFIG_MEMORY_HOTPLUG
1799 void vmemmap_free(unsigned long start, unsigned long end);
1800 #endif
1801 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1802 unsigned long size);
1803
1804 enum mf_flags {
1805 MF_COUNT_INCREASED = 1 << 0,
1806 MF_ACTION_REQUIRED = 1 << 1,
1807 MF_MUST_KILL = 1 << 2,
1808 };
1809 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1810 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1811 extern int unpoison_memory(unsigned long pfn);
1812 extern int sysctl_memory_failure_early_kill;
1813 extern int sysctl_memory_failure_recovery;
1814 extern void shake_page(struct page *p, int access);
1815 extern atomic_long_t num_poisoned_pages;
1816 extern int soft_offline_page(struct page *page, int flags);
1817
1818 extern void dump_page(struct page *page);
1819
1820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1821 extern void clear_huge_page(struct page *page,
1822 unsigned long addr,
1823 unsigned int pages_per_huge_page);
1824 extern void copy_user_huge_page(struct page *dst, struct page *src,
1825 unsigned long addr, struct vm_area_struct *vma,
1826 unsigned int pages_per_huge_page);
1827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1828
1829 #ifdef CONFIG_DEBUG_PAGEALLOC
1830 extern unsigned int _debug_guardpage_minorder;
1831
1832 static inline unsigned int debug_guardpage_minorder(void)
1833 {
1834 return _debug_guardpage_minorder;
1835 }
1836
1837 static inline bool page_is_guard(struct page *page)
1838 {
1839 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1840 }
1841 #else
1842 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1843 static inline bool page_is_guard(struct page *page) { return false; }
1844 #endif /* CONFIG_DEBUG_PAGEALLOC */
1845
1846 #if MAX_NUMNODES > 1
1847 void __init setup_nr_node_ids(void);
1848 #else
1849 static inline void setup_nr_node_ids(void) {}
1850 #endif
1851
1852 #endif /* __KERNEL__ */
1853 #endif /* _LINUX_MM_H */