vm: add VM_FAULT_SIGSEGV handling support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 extern unsigned long sysctl_user_reserve_kbytes;
48 extern unsigned long sysctl_admin_reserve_kbytes;
49
50 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
52 /* to align the pointer to the (next) page boundary */
53 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
55 /*
56 * Linux kernel virtual memory manager primitives.
57 * The idea being to have a "virtual" mm in the same way
58 * we have a virtual fs - giving a cleaner interface to the
59 * mm details, and allowing different kinds of memory mappings
60 * (from shared memory to executable loading to arbitrary
61 * mmap() functions).
62 */
63
64 extern struct kmem_cache *vm_area_cachep;
65
66 #ifndef CONFIG_MMU
67 extern struct rb_root nommu_region_tree;
68 extern struct rw_semaphore nommu_region_sem;
69
70 extern unsigned int kobjsize(const void *objp);
71 #endif
72
73 /*
74 * vm_flags in vm_area_struct, see mm_types.h.
75 */
76 #define VM_NONE 0x00000000
77
78 #define VM_READ 0x00000001 /* currently active flags */
79 #define VM_WRITE 0x00000002
80 #define VM_EXEC 0x00000004
81 #define VM_SHARED 0x00000008
82
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
85 #define VM_MAYWRITE 0x00000020
86 #define VM_MAYEXEC 0x00000040
87 #define VM_MAYSHARE 0x00000080
88
89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
90 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
91 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
92
93 #define VM_LOCKED 0x00002000
94 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95
96 /* Used by sys_madvise() */
97 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
98 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99
100 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
101 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
107 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
108
109 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
110 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
111 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
112 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
113
114 #if defined(CONFIG_X86)
115 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
116 #elif defined(CONFIG_PPC)
117 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
118 #elif defined(CONFIG_PARISC)
119 # define VM_GROWSUP VM_ARCH_1
120 #elif defined(CONFIG_METAG)
121 # define VM_GROWSUP VM_ARCH_1
122 #elif defined(CONFIG_IA64)
123 # define VM_GROWSUP VM_ARCH_1
124 #elif !defined(CONFIG_MMU)
125 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
126 #endif
127
128 #ifndef VM_GROWSUP
129 # define VM_GROWSUP VM_NONE
130 #endif
131
132 /* Bits set in the VMA until the stack is in its final location */
133 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
134
135 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
136 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
137 #endif
138
139 #ifdef CONFIG_STACK_GROWSUP
140 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141 #else
142 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143 #endif
144
145 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
146 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
147 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
148 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
149 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
150
151 /*
152 * Special vmas that are non-mergable, non-mlock()able.
153 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
154 */
155 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
156
157 /*
158 * mapping from the currently active vm_flags protection bits (the
159 * low four bits) to a page protection mask..
160 */
161 extern pgprot_t protection_map[16];
162
163 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
164 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
165 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
166 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
167 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
168 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
169 #define FAULT_FLAG_TRIED 0x40 /* second try */
170 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
171
172 /*
173 * vm_fault is filled by the the pagefault handler and passed to the vma's
174 * ->fault function. The vma's ->fault is responsible for returning a bitmask
175 * of VM_FAULT_xxx flags that give details about how the fault was handled.
176 *
177 * pgoff should be used in favour of virtual_address, if possible. If pgoff
178 * is used, one may implement ->remap_pages to get nonlinear mapping support.
179 */
180 struct vm_fault {
181 unsigned int flags; /* FAULT_FLAG_xxx flags */
182 pgoff_t pgoff; /* Logical page offset based on vma */
183 void __user *virtual_address; /* Faulting virtual address */
184
185 struct page *page; /* ->fault handlers should return a
186 * page here, unless VM_FAULT_NOPAGE
187 * is set (which is also implied by
188 * VM_FAULT_ERROR).
189 */
190 };
191
192 /*
193 * These are the virtual MM functions - opening of an area, closing and
194 * unmapping it (needed to keep files on disk up-to-date etc), pointer
195 * to the functions called when a no-page or a wp-page exception occurs.
196 */
197 struct vm_operations_struct {
198 void (*open)(struct vm_area_struct * area);
199 void (*close)(struct vm_area_struct * area);
200 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
201
202 /* notification that a previously read-only page is about to become
203 * writable, if an error is returned it will cause a SIGBUS */
204 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
205
206 /* called by access_process_vm when get_user_pages() fails, typically
207 * for use by special VMAs that can switch between memory and hardware
208 */
209 int (*access)(struct vm_area_struct *vma, unsigned long addr,
210 void *buf, int len, int write);
211 #ifdef CONFIG_NUMA
212 /*
213 * set_policy() op must add a reference to any non-NULL @new mempolicy
214 * to hold the policy upon return. Caller should pass NULL @new to
215 * remove a policy and fall back to surrounding context--i.e. do not
216 * install a MPOL_DEFAULT policy, nor the task or system default
217 * mempolicy.
218 */
219 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
220
221 /*
222 * get_policy() op must add reference [mpol_get()] to any policy at
223 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
224 * in mm/mempolicy.c will do this automatically.
225 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
226 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
227 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
228 * must return NULL--i.e., do not "fallback" to task or system default
229 * policy.
230 */
231 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
232 unsigned long addr);
233 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
234 const nodemask_t *to, unsigned long flags);
235 #endif
236 /* called by sys_remap_file_pages() to populate non-linear mapping */
237 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
238 unsigned long size, pgoff_t pgoff);
239 };
240
241 struct mmu_gather;
242 struct inode;
243
244 #define page_private(page) ((page)->private)
245 #define set_page_private(page, v) ((page)->private = (v))
246
247 /* It's valid only if the page is free path or free_list */
248 static inline void set_freepage_migratetype(struct page *page, int migratetype)
249 {
250 page->index = migratetype;
251 }
252
253 /* It's valid only if the page is free path or free_list */
254 static inline int get_freepage_migratetype(struct page *page)
255 {
256 return page->index;
257 }
258
259 /*
260 * FIXME: take this include out, include page-flags.h in
261 * files which need it (119 of them)
262 */
263 #include <linux/page-flags.h>
264 #include <linux/huge_mm.h>
265
266 /*
267 * Methods to modify the page usage count.
268 *
269 * What counts for a page usage:
270 * - cache mapping (page->mapping)
271 * - private data (page->private)
272 * - page mapped in a task's page tables, each mapping
273 * is counted separately
274 *
275 * Also, many kernel routines increase the page count before a critical
276 * routine so they can be sure the page doesn't go away from under them.
277 */
278
279 /*
280 * Drop a ref, return true if the refcount fell to zero (the page has no users)
281 */
282 static inline int put_page_testzero(struct page *page)
283 {
284 VM_BUG_ON(atomic_read(&page->_count) == 0);
285 return atomic_dec_and_test(&page->_count);
286 }
287
288 /*
289 * Try to grab a ref unless the page has a refcount of zero, return false if
290 * that is the case.
291 */
292 static inline int get_page_unless_zero(struct page *page)
293 {
294 return atomic_inc_not_zero(&page->_count);
295 }
296
297 extern int page_is_ram(unsigned long pfn);
298
299 /* Support for virtually mapped pages */
300 struct page *vmalloc_to_page(const void *addr);
301 unsigned long vmalloc_to_pfn(const void *addr);
302
303 /*
304 * Determine if an address is within the vmalloc range
305 *
306 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
307 * is no special casing required.
308 */
309 static inline int is_vmalloc_addr(const void *x)
310 {
311 #ifdef CONFIG_MMU
312 unsigned long addr = (unsigned long)x;
313
314 return addr >= VMALLOC_START && addr < VMALLOC_END;
315 #else
316 return 0;
317 #endif
318 }
319 #ifdef CONFIG_MMU
320 extern int is_vmalloc_or_module_addr(const void *x);
321 #else
322 static inline int is_vmalloc_or_module_addr(const void *x)
323 {
324 return 0;
325 }
326 #endif
327
328 static inline void compound_lock(struct page *page)
329 {
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 VM_BUG_ON(PageSlab(page));
332 bit_spin_lock(PG_compound_lock, &page->flags);
333 #endif
334 }
335
336 static inline void compound_unlock(struct page *page)
337 {
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 VM_BUG_ON(PageSlab(page));
340 bit_spin_unlock(PG_compound_lock, &page->flags);
341 #endif
342 }
343
344 static inline unsigned long compound_lock_irqsave(struct page *page)
345 {
346 unsigned long uninitialized_var(flags);
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 local_irq_save(flags);
349 compound_lock(page);
350 #endif
351 return flags;
352 }
353
354 static inline void compound_unlock_irqrestore(struct page *page,
355 unsigned long flags)
356 {
357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
358 compound_unlock(page);
359 local_irq_restore(flags);
360 #endif
361 }
362
363 static inline struct page *compound_head(struct page *page)
364 {
365 if (unlikely(PageTail(page))) {
366 struct page *head = page->first_page;
367
368 /*
369 * page->first_page may be a dangling pointer to an old
370 * compound page, so recheck that it is still a tail
371 * page before returning.
372 */
373 smp_rmb();
374 if (likely(PageTail(page)))
375 return head;
376 }
377 return page;
378 }
379
380 /*
381 * The atomic page->_mapcount, starts from -1: so that transitions
382 * both from it and to it can be tracked, using atomic_inc_and_test
383 * and atomic_add_negative(-1).
384 */
385 static inline void page_mapcount_reset(struct page *page)
386 {
387 atomic_set(&(page)->_mapcount, -1);
388 }
389
390 static inline int page_mapcount(struct page *page)
391 {
392 return atomic_read(&(page)->_mapcount) + 1;
393 }
394
395 static inline int page_count(struct page *page)
396 {
397 return atomic_read(&compound_head(page)->_count);
398 }
399
400 static inline void get_huge_page_tail(struct page *page)
401 {
402 /*
403 * __split_huge_page_refcount() cannot run
404 * from under us.
405 */
406 VM_BUG_ON(page_mapcount(page) < 0);
407 VM_BUG_ON(atomic_read(&page->_count) != 0);
408 atomic_inc(&page->_mapcount);
409 }
410
411 extern bool __get_page_tail(struct page *page);
412
413 static inline void get_page(struct page *page)
414 {
415 if (unlikely(PageTail(page)))
416 if (likely(__get_page_tail(page)))
417 return;
418 /*
419 * Getting a normal page or the head of a compound page
420 * requires to already have an elevated page->_count.
421 */
422 VM_BUG_ON(atomic_read(&page->_count) <= 0);
423 atomic_inc(&page->_count);
424 }
425
426 static inline struct page *virt_to_head_page(const void *x)
427 {
428 struct page *page = virt_to_page(x);
429 return compound_head(page);
430 }
431
432 /*
433 * Setup the page count before being freed into the page allocator for
434 * the first time (boot or memory hotplug)
435 */
436 static inline void init_page_count(struct page *page)
437 {
438 atomic_set(&page->_count, 1);
439 }
440
441 /*
442 * PageBuddy() indicate that the page is free and in the buddy system
443 * (see mm/page_alloc.c).
444 *
445 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
446 * -2 so that an underflow of the page_mapcount() won't be mistaken
447 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
448 * efficiently by most CPU architectures.
449 */
450 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
451
452 static inline int PageBuddy(struct page *page)
453 {
454 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
455 }
456
457 static inline void __SetPageBuddy(struct page *page)
458 {
459 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
460 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
461 }
462
463 static inline void __ClearPageBuddy(struct page *page)
464 {
465 VM_BUG_ON(!PageBuddy(page));
466 atomic_set(&page->_mapcount, -1);
467 }
468
469 void put_page(struct page *page);
470 void put_pages_list(struct list_head *pages);
471
472 void split_page(struct page *page, unsigned int order);
473 int split_free_page(struct page *page);
474
475 /*
476 * Compound pages have a destructor function. Provide a
477 * prototype for that function and accessor functions.
478 * These are _only_ valid on the head of a PG_compound page.
479 */
480 typedef void compound_page_dtor(struct page *);
481
482 static inline void set_compound_page_dtor(struct page *page,
483 compound_page_dtor *dtor)
484 {
485 page[1].lru.next = (void *)dtor;
486 }
487
488 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
489 {
490 return (compound_page_dtor *)page[1].lru.next;
491 }
492
493 static inline int compound_order(struct page *page)
494 {
495 if (!PageHead(page))
496 return 0;
497 return (unsigned long)page[1].lru.prev;
498 }
499
500 static inline int compound_trans_order(struct page *page)
501 {
502 int order;
503 unsigned long flags;
504
505 if (!PageHead(page))
506 return 0;
507
508 flags = compound_lock_irqsave(page);
509 order = compound_order(page);
510 compound_unlock_irqrestore(page, flags);
511 return order;
512 }
513
514 static inline void set_compound_order(struct page *page, unsigned long order)
515 {
516 page[1].lru.prev = (void *)order;
517 }
518
519 #ifdef CONFIG_MMU
520 /*
521 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
522 * servicing faults for write access. In the normal case, do always want
523 * pte_mkwrite. But get_user_pages can cause write faults for mappings
524 * that do not have writing enabled, when used by access_process_vm.
525 */
526 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
527 {
528 if (likely(vma->vm_flags & VM_WRITE))
529 pte = pte_mkwrite(pte);
530 return pte;
531 }
532 #endif
533
534 /*
535 * Multiple processes may "see" the same page. E.g. for untouched
536 * mappings of /dev/null, all processes see the same page full of
537 * zeroes, and text pages of executables and shared libraries have
538 * only one copy in memory, at most, normally.
539 *
540 * For the non-reserved pages, page_count(page) denotes a reference count.
541 * page_count() == 0 means the page is free. page->lru is then used for
542 * freelist management in the buddy allocator.
543 * page_count() > 0 means the page has been allocated.
544 *
545 * Pages are allocated by the slab allocator in order to provide memory
546 * to kmalloc and kmem_cache_alloc. In this case, the management of the
547 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
548 * unless a particular usage is carefully commented. (the responsibility of
549 * freeing the kmalloc memory is the caller's, of course).
550 *
551 * A page may be used by anyone else who does a __get_free_page().
552 * In this case, page_count still tracks the references, and should only
553 * be used through the normal accessor functions. The top bits of page->flags
554 * and page->virtual store page management information, but all other fields
555 * are unused and could be used privately, carefully. The management of this
556 * page is the responsibility of the one who allocated it, and those who have
557 * subsequently been given references to it.
558 *
559 * The other pages (we may call them "pagecache pages") are completely
560 * managed by the Linux memory manager: I/O, buffers, swapping etc.
561 * The following discussion applies only to them.
562 *
563 * A pagecache page contains an opaque `private' member, which belongs to the
564 * page's address_space. Usually, this is the address of a circular list of
565 * the page's disk buffers. PG_private must be set to tell the VM to call
566 * into the filesystem to release these pages.
567 *
568 * A page may belong to an inode's memory mapping. In this case, page->mapping
569 * is the pointer to the inode, and page->index is the file offset of the page,
570 * in units of PAGE_CACHE_SIZE.
571 *
572 * If pagecache pages are not associated with an inode, they are said to be
573 * anonymous pages. These may become associated with the swapcache, and in that
574 * case PG_swapcache is set, and page->private is an offset into the swapcache.
575 *
576 * In either case (swapcache or inode backed), the pagecache itself holds one
577 * reference to the page. Setting PG_private should also increment the
578 * refcount. The each user mapping also has a reference to the page.
579 *
580 * The pagecache pages are stored in a per-mapping radix tree, which is
581 * rooted at mapping->page_tree, and indexed by offset.
582 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
583 * lists, we instead now tag pages as dirty/writeback in the radix tree.
584 *
585 * All pagecache pages may be subject to I/O:
586 * - inode pages may need to be read from disk,
587 * - inode pages which have been modified and are MAP_SHARED may need
588 * to be written back to the inode on disk,
589 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
590 * modified may need to be swapped out to swap space and (later) to be read
591 * back into memory.
592 */
593
594 /*
595 * The zone field is never updated after free_area_init_core()
596 * sets it, so none of the operations on it need to be atomic.
597 */
598
599 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
600 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
601 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
602 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
603 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
604
605 /*
606 * Define the bit shifts to access each section. For non-existent
607 * sections we define the shift as 0; that plus a 0 mask ensures
608 * the compiler will optimise away reference to them.
609 */
610 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
611 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
612 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
613 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
614
615 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
616 #ifdef NODE_NOT_IN_PAGE_FLAGS
617 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
618 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
619 SECTIONS_PGOFF : ZONES_PGOFF)
620 #else
621 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
622 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
623 NODES_PGOFF : ZONES_PGOFF)
624 #endif
625
626 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
627
628 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
629 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
630 #endif
631
632 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
633 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
634 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
635 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
636 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
637
638 static inline enum zone_type page_zonenum(const struct page *page)
639 {
640 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
641 }
642
643 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
644 #define SECTION_IN_PAGE_FLAGS
645 #endif
646
647 /*
648 * The identification function is only used by the buddy allocator for
649 * determining if two pages could be buddies. We are not really
650 * identifying a zone since we could be using a the section number
651 * id if we have not node id available in page flags.
652 * We guarantee only that it will return the same value for two
653 * combinable pages in a zone.
654 */
655 static inline int page_zone_id(struct page *page)
656 {
657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
658 }
659
660 static inline int zone_to_nid(struct zone *zone)
661 {
662 #ifdef CONFIG_NUMA
663 return zone->node;
664 #else
665 return 0;
666 #endif
667 }
668
669 #ifdef NODE_NOT_IN_PAGE_FLAGS
670 extern int page_to_nid(const struct page *page);
671 #else
672 static inline int page_to_nid(const struct page *page)
673 {
674 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
675 }
676 #endif
677
678 #ifdef CONFIG_NUMA_BALANCING
679 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
680 static inline int page_nid_xchg_last(struct page *page, int nid)
681 {
682 return xchg(&page->_last_nid, nid);
683 }
684
685 static inline int page_nid_last(struct page *page)
686 {
687 return page->_last_nid;
688 }
689 static inline void page_nid_reset_last(struct page *page)
690 {
691 page->_last_nid = -1;
692 }
693 #else
694 static inline int page_nid_last(struct page *page)
695 {
696 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
697 }
698
699 extern int page_nid_xchg_last(struct page *page, int nid);
700
701 static inline void page_nid_reset_last(struct page *page)
702 {
703 int nid = (1 << LAST_NID_SHIFT) - 1;
704
705 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
706 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
707 }
708 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
709 #else
710 static inline int page_nid_xchg_last(struct page *page, int nid)
711 {
712 return page_to_nid(page);
713 }
714
715 static inline int page_nid_last(struct page *page)
716 {
717 return page_to_nid(page);
718 }
719
720 static inline void page_nid_reset_last(struct page *page)
721 {
722 }
723 #endif
724
725 static inline struct zone *page_zone(const struct page *page)
726 {
727 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
728 }
729
730 #ifdef SECTION_IN_PAGE_FLAGS
731 static inline void set_page_section(struct page *page, unsigned long section)
732 {
733 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
734 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
735 }
736
737 static inline unsigned long page_to_section(const struct page *page)
738 {
739 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
740 }
741 #endif
742
743 static inline void set_page_zone(struct page *page, enum zone_type zone)
744 {
745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
747 }
748
749 static inline void set_page_node(struct page *page, unsigned long node)
750 {
751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
753 }
754
755 static inline void set_page_links(struct page *page, enum zone_type zone,
756 unsigned long node, unsigned long pfn)
757 {
758 set_page_zone(page, zone);
759 set_page_node(page, node);
760 #ifdef SECTION_IN_PAGE_FLAGS
761 set_page_section(page, pfn_to_section_nr(pfn));
762 #endif
763 }
764
765 /*
766 * Some inline functions in vmstat.h depend on page_zone()
767 */
768 #include <linux/vmstat.h>
769
770 static __always_inline void *lowmem_page_address(const struct page *page)
771 {
772 return __va(PFN_PHYS(page_to_pfn(page)));
773 }
774
775 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
776 #define HASHED_PAGE_VIRTUAL
777 #endif
778
779 #if defined(WANT_PAGE_VIRTUAL)
780 static inline void *page_address(const struct page *page)
781 {
782 return page->virtual;
783 }
784 static inline void set_page_address(struct page *page, void *address)
785 {
786 page->virtual = address;
787 }
788 #define page_address_init() do { } while(0)
789 #endif
790
791 #if defined(HASHED_PAGE_VIRTUAL)
792 void *page_address(const struct page *page);
793 void set_page_address(struct page *page, void *virtual);
794 void page_address_init(void);
795 #endif
796
797 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
798 #define page_address(page) lowmem_page_address(page)
799 #define set_page_address(page, address) do { } while(0)
800 #define page_address_init() do { } while(0)
801 #endif
802
803 /*
804 * On an anonymous page mapped into a user virtual memory area,
805 * page->mapping points to its anon_vma, not to a struct address_space;
806 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
807 *
808 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
809 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
810 * and then page->mapping points, not to an anon_vma, but to a private
811 * structure which KSM associates with that merged page. See ksm.h.
812 *
813 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
814 *
815 * Please note that, confusingly, "page_mapping" refers to the inode
816 * address_space which maps the page from disk; whereas "page_mapped"
817 * refers to user virtual address space into which the page is mapped.
818 */
819 #define PAGE_MAPPING_ANON 1
820 #define PAGE_MAPPING_KSM 2
821 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
822
823 extern struct address_space *page_mapping(struct page *page);
824
825 /* Neutral page->mapping pointer to address_space or anon_vma or other */
826 static inline void *page_rmapping(struct page *page)
827 {
828 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
829 }
830
831 extern struct address_space *__page_file_mapping(struct page *);
832
833 static inline
834 struct address_space *page_file_mapping(struct page *page)
835 {
836 if (unlikely(PageSwapCache(page)))
837 return __page_file_mapping(page);
838
839 return page->mapping;
840 }
841
842 static inline int PageAnon(struct page *page)
843 {
844 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
845 }
846
847 /*
848 * Return the pagecache index of the passed page. Regular pagecache pages
849 * use ->index whereas swapcache pages use ->private
850 */
851 static inline pgoff_t page_index(struct page *page)
852 {
853 if (unlikely(PageSwapCache(page)))
854 return page_private(page);
855 return page->index;
856 }
857
858 extern pgoff_t __page_file_index(struct page *page);
859
860 /*
861 * Return the file index of the page. Regular pagecache pages use ->index
862 * whereas swapcache pages use swp_offset(->private)
863 */
864 static inline pgoff_t page_file_index(struct page *page)
865 {
866 if (unlikely(PageSwapCache(page)))
867 return __page_file_index(page);
868
869 return page->index;
870 }
871
872 /*
873 * Return true if this page is mapped into pagetables.
874 */
875 static inline int page_mapped(struct page *page)
876 {
877 return atomic_read(&(page)->_mapcount) >= 0;
878 }
879
880 /*
881 * Different kinds of faults, as returned by handle_mm_fault().
882 * Used to decide whether a process gets delivered SIGBUS or
883 * just gets major/minor fault counters bumped up.
884 */
885
886 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
887
888 #define VM_FAULT_OOM 0x0001
889 #define VM_FAULT_SIGBUS 0x0002
890 #define VM_FAULT_MAJOR 0x0004
891 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
892 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
893 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
894 #define VM_FAULT_SIGSEGV 0x0040
895
896 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
897 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
898 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
899
900 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
901
902 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
903 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)
904
905 /* Encode hstate index for a hwpoisoned large page */
906 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
907 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
908
909 /*
910 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
911 */
912 extern void pagefault_out_of_memory(void);
913
914 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
915
916 /*
917 * Flags passed to show_mem() and show_free_areas() to suppress output in
918 * various contexts.
919 */
920 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
921 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
922
923 extern void show_free_areas(unsigned int flags);
924 extern bool skip_free_areas_node(unsigned int flags, int nid);
925
926 int shmem_zero_setup(struct vm_area_struct *);
927
928 extern int can_do_mlock(void);
929 extern int user_shm_lock(size_t, struct user_struct *);
930 extern void user_shm_unlock(size_t, struct user_struct *);
931
932 /*
933 * Parameter block passed down to zap_pte_range in exceptional cases.
934 */
935 struct zap_details {
936 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
937 struct address_space *check_mapping; /* Check page->mapping if set */
938 pgoff_t first_index; /* Lowest page->index to unmap */
939 pgoff_t last_index; /* Highest page->index to unmap */
940 };
941
942 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
943 pte_t pte);
944
945 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
946 unsigned long size);
947 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
948 unsigned long size, struct zap_details *);
949 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
950 unsigned long start, unsigned long end);
951
952 /**
953 * mm_walk - callbacks for walk_page_range
954 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
955 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
956 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
957 * this handler is required to be able to handle
958 * pmd_trans_huge() pmds. They may simply choose to
959 * split_huge_page() instead of handling it explicitly.
960 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
961 * @pte_hole: if set, called for each hole at all levels
962 * @hugetlb_entry: if set, called for each hugetlb entry
963 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
964 * is used.
965 *
966 * (see walk_page_range for more details)
967 */
968 struct mm_walk {
969 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
970 unsigned long next, struct mm_walk *walk);
971 int (*pud_entry)(pud_t *pud, unsigned long addr,
972 unsigned long next, struct mm_walk *walk);
973 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
974 unsigned long next, struct mm_walk *walk);
975 int (*pte_entry)(pte_t *pte, unsigned long addr,
976 unsigned long next, struct mm_walk *walk);
977 int (*pte_hole)(unsigned long addr, unsigned long next,
978 struct mm_walk *walk);
979 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
980 unsigned long addr, unsigned long next,
981 struct mm_walk *walk);
982 struct mm_struct *mm;
983 void *private;
984 };
985
986 int walk_page_range(unsigned long addr, unsigned long end,
987 struct mm_walk *walk);
988 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
989 unsigned long end, unsigned long floor, unsigned long ceiling);
990 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
991 struct vm_area_struct *vma);
992 void unmap_mapping_range(struct address_space *mapping,
993 loff_t const holebegin, loff_t const holelen, int even_cows);
994 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
995 unsigned long *pfn);
996 int follow_phys(struct vm_area_struct *vma, unsigned long address,
997 unsigned int flags, unsigned long *prot, resource_size_t *phys);
998 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
999 void *buf, int len, int write);
1000
1001 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1002 loff_t const holebegin, loff_t const holelen)
1003 {
1004 unmap_mapping_range(mapping, holebegin, holelen, 0);
1005 }
1006
1007 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1008 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1009 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1010 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1011 int truncate_inode_page(struct address_space *mapping, struct page *page);
1012 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1013 int invalidate_inode_page(struct page *page);
1014
1015 #ifdef CONFIG_MMU
1016 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1017 unsigned long address, unsigned int flags);
1018 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1019 unsigned long address, unsigned int fault_flags);
1020 #else
1021 static inline int handle_mm_fault(struct mm_struct *mm,
1022 struct vm_area_struct *vma, unsigned long address,
1023 unsigned int flags)
1024 {
1025 /* should never happen if there's no MMU */
1026 BUG();
1027 return VM_FAULT_SIGBUS;
1028 }
1029 static inline int fixup_user_fault(struct task_struct *tsk,
1030 struct mm_struct *mm, unsigned long address,
1031 unsigned int fault_flags)
1032 {
1033 /* should never happen if there's no MMU */
1034 BUG();
1035 return -EFAULT;
1036 }
1037 #endif
1038
1039 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1040 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1041 void *buf, int len, int write);
1042
1043 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1044 unsigned long start, unsigned long nr_pages,
1045 unsigned int foll_flags, struct page **pages,
1046 struct vm_area_struct **vmas, int *nonblocking);
1047 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1048 unsigned long start, unsigned long nr_pages,
1049 int write, int force, struct page **pages,
1050 struct vm_area_struct **vmas);
1051 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1052 struct page **pages);
1053 struct kvec;
1054 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1055 struct page **pages);
1056 int get_kernel_page(unsigned long start, int write, struct page **pages);
1057 struct page *get_dump_page(unsigned long addr);
1058
1059 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1060 extern void do_invalidatepage(struct page *page, unsigned long offset);
1061
1062 int __set_page_dirty_nobuffers(struct page *page);
1063 int __set_page_dirty_no_writeback(struct page *page);
1064 int redirty_page_for_writepage(struct writeback_control *wbc,
1065 struct page *page);
1066 void account_page_dirtied(struct page *page, struct address_space *mapping);
1067 void account_page_writeback(struct page *page);
1068 int set_page_dirty(struct page *page);
1069 int set_page_dirty_lock(struct page *page);
1070 int clear_page_dirty_for_io(struct page *page);
1071
1072 /* Is the vma a continuation of the stack vma above it? */
1073 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1074 {
1075 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1076 }
1077
1078 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1079 unsigned long addr)
1080 {
1081 return (vma->vm_flags & VM_GROWSDOWN) &&
1082 (vma->vm_start == addr) &&
1083 !vma_growsdown(vma->vm_prev, addr);
1084 }
1085
1086 /* Is the vma a continuation of the stack vma below it? */
1087 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1088 {
1089 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1090 }
1091
1092 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1093 unsigned long addr)
1094 {
1095 return (vma->vm_flags & VM_GROWSUP) &&
1096 (vma->vm_end == addr) &&
1097 !vma_growsup(vma->vm_next, addr);
1098 }
1099
1100 extern pid_t
1101 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1102
1103 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1104 unsigned long old_addr, struct vm_area_struct *new_vma,
1105 unsigned long new_addr, unsigned long len,
1106 bool need_rmap_locks);
1107 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1108 unsigned long end, pgprot_t newprot,
1109 int dirty_accountable, int prot_numa);
1110 extern int mprotect_fixup(struct vm_area_struct *vma,
1111 struct vm_area_struct **pprev, unsigned long start,
1112 unsigned long end, unsigned long newflags);
1113
1114 /*
1115 * doesn't attempt to fault and will return short.
1116 */
1117 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1118 struct page **pages);
1119 /*
1120 * per-process(per-mm_struct) statistics.
1121 */
1122 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1123 {
1124 long val = atomic_long_read(&mm->rss_stat.count[member]);
1125
1126 #ifdef SPLIT_RSS_COUNTING
1127 /*
1128 * counter is updated in asynchronous manner and may go to minus.
1129 * But it's never be expected number for users.
1130 */
1131 if (val < 0)
1132 val = 0;
1133 #endif
1134 return (unsigned long)val;
1135 }
1136
1137 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1138 {
1139 atomic_long_add(value, &mm->rss_stat.count[member]);
1140 }
1141
1142 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1143 {
1144 atomic_long_inc(&mm->rss_stat.count[member]);
1145 }
1146
1147 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1148 {
1149 atomic_long_dec(&mm->rss_stat.count[member]);
1150 }
1151
1152 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1153 {
1154 return get_mm_counter(mm, MM_FILEPAGES) +
1155 get_mm_counter(mm, MM_ANONPAGES);
1156 }
1157
1158 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1159 {
1160 return max(mm->hiwater_rss, get_mm_rss(mm));
1161 }
1162
1163 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1164 {
1165 return max(mm->hiwater_vm, mm->total_vm);
1166 }
1167
1168 static inline void update_hiwater_rss(struct mm_struct *mm)
1169 {
1170 unsigned long _rss = get_mm_rss(mm);
1171
1172 if ((mm)->hiwater_rss < _rss)
1173 (mm)->hiwater_rss = _rss;
1174 }
1175
1176 static inline void update_hiwater_vm(struct mm_struct *mm)
1177 {
1178 if (mm->hiwater_vm < mm->total_vm)
1179 mm->hiwater_vm = mm->total_vm;
1180 }
1181
1182 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1183 struct mm_struct *mm)
1184 {
1185 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1186
1187 if (*maxrss < hiwater_rss)
1188 *maxrss = hiwater_rss;
1189 }
1190
1191 #if defined(SPLIT_RSS_COUNTING)
1192 void sync_mm_rss(struct mm_struct *mm);
1193 #else
1194 static inline void sync_mm_rss(struct mm_struct *mm)
1195 {
1196 }
1197 #endif
1198
1199 int vma_wants_writenotify(struct vm_area_struct *vma);
1200
1201 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1202 spinlock_t **ptl);
1203 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1204 spinlock_t **ptl)
1205 {
1206 pte_t *ptep;
1207 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1208 return ptep;
1209 }
1210
1211 #ifdef __PAGETABLE_PUD_FOLDED
1212 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1213 unsigned long address)
1214 {
1215 return 0;
1216 }
1217 #else
1218 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1219 #endif
1220
1221 #ifdef __PAGETABLE_PMD_FOLDED
1222 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1223 unsigned long address)
1224 {
1225 return 0;
1226 }
1227 #else
1228 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1229 #endif
1230
1231 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1232 pmd_t *pmd, unsigned long address);
1233 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1234
1235 /*
1236 * The following ifdef needed to get the 4level-fixup.h header to work.
1237 * Remove it when 4level-fixup.h has been removed.
1238 */
1239 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1240 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1241 {
1242 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1243 NULL: pud_offset(pgd, address);
1244 }
1245
1246 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1247 {
1248 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1249 NULL: pmd_offset(pud, address);
1250 }
1251 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1252
1253 #if USE_SPLIT_PTLOCKS
1254 /*
1255 * We tuck a spinlock to guard each pagetable page into its struct page,
1256 * at page->private, with BUILD_BUG_ON to make sure that this will not
1257 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1258 * When freeing, reset page->mapping so free_pages_check won't complain.
1259 */
1260 #define __pte_lockptr(page) &((page)->ptl)
1261 #define pte_lock_init(_page) do { \
1262 spin_lock_init(__pte_lockptr(_page)); \
1263 } while (0)
1264 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1265 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1266 #else /* !USE_SPLIT_PTLOCKS */
1267 /*
1268 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1269 */
1270 #define pte_lock_init(page) do {} while (0)
1271 #define pte_lock_deinit(page) do {} while (0)
1272 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1273 #endif /* USE_SPLIT_PTLOCKS */
1274
1275 static inline void pgtable_page_ctor(struct page *page)
1276 {
1277 pte_lock_init(page);
1278 inc_zone_page_state(page, NR_PAGETABLE);
1279 }
1280
1281 static inline void pgtable_page_dtor(struct page *page)
1282 {
1283 pte_lock_deinit(page);
1284 dec_zone_page_state(page, NR_PAGETABLE);
1285 }
1286
1287 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1288 ({ \
1289 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1290 pte_t *__pte = pte_offset_map(pmd, address); \
1291 *(ptlp) = __ptl; \
1292 spin_lock(__ptl); \
1293 __pte; \
1294 })
1295
1296 #define pte_unmap_unlock(pte, ptl) do { \
1297 spin_unlock(ptl); \
1298 pte_unmap(pte); \
1299 } while (0)
1300
1301 #define pte_alloc_map(mm, vma, pmd, address) \
1302 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1303 pmd, address))? \
1304 NULL: pte_offset_map(pmd, address))
1305
1306 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1307 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1308 pmd, address))? \
1309 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1310
1311 #define pte_alloc_kernel(pmd, address) \
1312 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1313 NULL: pte_offset_kernel(pmd, address))
1314
1315 extern void free_area_init(unsigned long * zones_size);
1316 extern void free_area_init_node(int nid, unsigned long * zones_size,
1317 unsigned long zone_start_pfn, unsigned long *zholes_size);
1318 extern void free_initmem(void);
1319
1320 /*
1321 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1322 * into the buddy system. The freed pages will be poisoned with pattern
1323 * "poison" if it's non-zero.
1324 * Return pages freed into the buddy system.
1325 */
1326 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1327 int poison, char *s);
1328 #ifdef CONFIG_HIGHMEM
1329 /*
1330 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1331 * and totalram_pages.
1332 */
1333 extern void free_highmem_page(struct page *page);
1334 #endif
1335
1336 static inline void adjust_managed_page_count(struct page *page, long count)
1337 {
1338 totalram_pages += count;
1339 }
1340
1341 /* Free the reserved page into the buddy system, so it gets managed. */
1342 static inline void __free_reserved_page(struct page *page)
1343 {
1344 ClearPageReserved(page);
1345 init_page_count(page);
1346 __free_page(page);
1347 }
1348
1349 static inline void free_reserved_page(struct page *page)
1350 {
1351 __free_reserved_page(page);
1352 adjust_managed_page_count(page, 1);
1353 }
1354
1355 static inline void mark_page_reserved(struct page *page)
1356 {
1357 SetPageReserved(page);
1358 adjust_managed_page_count(page, -1);
1359 }
1360
1361 /*
1362 * Default method to free all the __init memory into the buddy system.
1363 * The freed pages will be poisoned with pattern "poison" if it is
1364 * non-zero. Return pages freed into the buddy system.
1365 */
1366 static inline unsigned long free_initmem_default(int poison)
1367 {
1368 extern char __init_begin[], __init_end[];
1369
1370 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1371 ((unsigned long)&__init_end) & PAGE_MASK,
1372 poison, "unused kernel");
1373 }
1374
1375 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1376 /*
1377 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1378 * zones, allocate the backing mem_map and account for memory holes in a more
1379 * architecture independent manner. This is a substitute for creating the
1380 * zone_sizes[] and zholes_size[] arrays and passing them to
1381 * free_area_init_node()
1382 *
1383 * An architecture is expected to register range of page frames backed by
1384 * physical memory with memblock_add[_node]() before calling
1385 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1386 * usage, an architecture is expected to do something like
1387 *
1388 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1389 * max_highmem_pfn};
1390 * for_each_valid_physical_page_range()
1391 * memblock_add_node(base, size, nid)
1392 * free_area_init_nodes(max_zone_pfns);
1393 *
1394 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1395 * registered physical page range. Similarly
1396 * sparse_memory_present_with_active_regions() calls memory_present() for
1397 * each range when SPARSEMEM is enabled.
1398 *
1399 * See mm/page_alloc.c for more information on each function exposed by
1400 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1401 */
1402 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1403 unsigned long node_map_pfn_alignment(void);
1404 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1405 unsigned long end_pfn);
1406 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1407 unsigned long end_pfn);
1408 extern void get_pfn_range_for_nid(unsigned int nid,
1409 unsigned long *start_pfn, unsigned long *end_pfn);
1410 extern unsigned long find_min_pfn_with_active_regions(void);
1411 extern void free_bootmem_with_active_regions(int nid,
1412 unsigned long max_low_pfn);
1413 extern void sparse_memory_present_with_active_regions(int nid);
1414
1415 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1416
1417 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1418 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1419 static inline int __early_pfn_to_nid(unsigned long pfn)
1420 {
1421 return 0;
1422 }
1423 #else
1424 /* please see mm/page_alloc.c */
1425 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1426 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1427 /* there is a per-arch backend function. */
1428 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1429 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1430 #endif
1431
1432 extern void set_dma_reserve(unsigned long new_dma_reserve);
1433 extern void memmap_init_zone(unsigned long, int, unsigned long,
1434 unsigned long, enum memmap_context);
1435 extern void setup_per_zone_wmarks(void);
1436 extern int __meminit init_per_zone_wmark_min(void);
1437 extern void mem_init(void);
1438 extern void __init mmap_init(void);
1439 extern void show_mem(unsigned int flags);
1440 extern void si_meminfo(struct sysinfo * val);
1441 extern void si_meminfo_node(struct sysinfo *val, int nid);
1442
1443 extern __printf(3, 4)
1444 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1445
1446 extern void setup_per_cpu_pageset(void);
1447
1448 extern void zone_pcp_update(struct zone *zone);
1449 extern void zone_pcp_reset(struct zone *zone);
1450
1451 /* page_alloc.c */
1452 extern int min_free_kbytes;
1453
1454 /* nommu.c */
1455 extern atomic_long_t mmap_pages_allocated;
1456 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1457
1458 /* interval_tree.c */
1459 void vma_interval_tree_insert(struct vm_area_struct *node,
1460 struct rb_root *root);
1461 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1462 struct vm_area_struct *prev,
1463 struct rb_root *root);
1464 void vma_interval_tree_remove(struct vm_area_struct *node,
1465 struct rb_root *root);
1466 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1467 unsigned long start, unsigned long last);
1468 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1469 unsigned long start, unsigned long last);
1470
1471 #define vma_interval_tree_foreach(vma, root, start, last) \
1472 for (vma = vma_interval_tree_iter_first(root, start, last); \
1473 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1474
1475 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1476 struct list_head *list)
1477 {
1478 list_add_tail(&vma->shared.nonlinear, list);
1479 }
1480
1481 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1482 struct rb_root *root);
1483 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1484 struct rb_root *root);
1485 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1486 struct rb_root *root, unsigned long start, unsigned long last);
1487 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1488 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1489 #ifdef CONFIG_DEBUG_VM_RB
1490 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1491 #endif
1492
1493 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1494 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1495 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1496
1497 /* mmap.c */
1498 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1499 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1500 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1501 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1502 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1503 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1504 struct mempolicy *);
1505 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1506 extern int split_vma(struct mm_struct *,
1507 struct vm_area_struct *, unsigned long addr, int new_below);
1508 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1509 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1510 struct rb_node **, struct rb_node *);
1511 extern void unlink_file_vma(struct vm_area_struct *);
1512 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1513 unsigned long addr, unsigned long len, pgoff_t pgoff,
1514 bool *need_rmap_locks);
1515 extern void exit_mmap(struct mm_struct *);
1516
1517 extern int mm_take_all_locks(struct mm_struct *mm);
1518 extern void mm_drop_all_locks(struct mm_struct *mm);
1519
1520 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1521 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1522
1523 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1524 extern int install_special_mapping(struct mm_struct *mm,
1525 unsigned long addr, unsigned long len,
1526 unsigned long flags, struct page **pages);
1527
1528 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1529
1530 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1531 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1532 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1533 unsigned long len, unsigned long prot, unsigned long flags,
1534 unsigned long pgoff, unsigned long *populate);
1535 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1536
1537 #ifdef CONFIG_MMU
1538 extern int __mm_populate(unsigned long addr, unsigned long len,
1539 int ignore_errors);
1540 static inline void mm_populate(unsigned long addr, unsigned long len)
1541 {
1542 /* Ignore errors */
1543 (void) __mm_populate(addr, len, 1);
1544 }
1545 #else
1546 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1547 #endif
1548
1549 /* These take the mm semaphore themselves */
1550 extern unsigned long vm_brk(unsigned long, unsigned long);
1551 extern int vm_munmap(unsigned long, size_t);
1552 extern unsigned long vm_mmap(struct file *, unsigned long,
1553 unsigned long, unsigned long,
1554 unsigned long, unsigned long);
1555
1556 struct vm_unmapped_area_info {
1557 #define VM_UNMAPPED_AREA_TOPDOWN 1
1558 unsigned long flags;
1559 unsigned long length;
1560 unsigned long low_limit;
1561 unsigned long high_limit;
1562 unsigned long align_mask;
1563 unsigned long align_offset;
1564 };
1565
1566 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1567 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1568
1569 /*
1570 * Search for an unmapped address range.
1571 *
1572 * We are looking for a range that:
1573 * - does not intersect with any VMA;
1574 * - is contained within the [low_limit, high_limit) interval;
1575 * - is at least the desired size.
1576 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1577 */
1578 static inline unsigned long
1579 vm_unmapped_area(struct vm_unmapped_area_info *info)
1580 {
1581 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1582 return unmapped_area(info);
1583 else
1584 return unmapped_area_topdown(info);
1585 }
1586
1587 /* truncate.c */
1588 extern void truncate_inode_pages(struct address_space *, loff_t);
1589 extern void truncate_inode_pages_range(struct address_space *,
1590 loff_t lstart, loff_t lend);
1591
1592 /* generic vm_area_ops exported for stackable file systems */
1593 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1594 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1595
1596 /* mm/page-writeback.c */
1597 int write_one_page(struct page *page, int wait);
1598 void task_dirty_inc(struct task_struct *tsk);
1599
1600 /* readahead.c */
1601 #define VM_MAX_READAHEAD 128 /* kbytes */
1602 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1603
1604 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1605 pgoff_t offset, unsigned long nr_to_read);
1606
1607 void page_cache_sync_readahead(struct address_space *mapping,
1608 struct file_ra_state *ra,
1609 struct file *filp,
1610 pgoff_t offset,
1611 unsigned long size);
1612
1613 void page_cache_async_readahead(struct address_space *mapping,
1614 struct file_ra_state *ra,
1615 struct file *filp,
1616 struct page *pg,
1617 pgoff_t offset,
1618 unsigned long size);
1619
1620 unsigned long max_sane_readahead(unsigned long nr);
1621 unsigned long ra_submit(struct file_ra_state *ra,
1622 struct address_space *mapping,
1623 struct file *filp);
1624
1625 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1626 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1627
1628 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1629 extern int expand_downwards(struct vm_area_struct *vma,
1630 unsigned long address);
1631 #if VM_GROWSUP
1632 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1633 #else
1634 #define expand_upwards(vma, address) (0)
1635 #endif
1636
1637 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1638 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1639 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1640 struct vm_area_struct **pprev);
1641
1642 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1643 NULL if none. Assume start_addr < end_addr. */
1644 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1645 {
1646 struct vm_area_struct * vma = find_vma(mm,start_addr);
1647
1648 if (vma && end_addr <= vma->vm_start)
1649 vma = NULL;
1650 return vma;
1651 }
1652
1653 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1654 {
1655 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1656 }
1657
1658 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1659 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1660 unsigned long vm_start, unsigned long vm_end)
1661 {
1662 struct vm_area_struct *vma = find_vma(mm, vm_start);
1663
1664 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1665 vma = NULL;
1666
1667 return vma;
1668 }
1669
1670 #ifdef CONFIG_MMU
1671 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1672 #else
1673 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1674 {
1675 return __pgprot(0);
1676 }
1677 #endif
1678
1679 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1680 unsigned long change_prot_numa(struct vm_area_struct *vma,
1681 unsigned long start, unsigned long end);
1682 #endif
1683
1684 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1685 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1686 unsigned long pfn, unsigned long size, pgprot_t);
1687 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1688 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1689 unsigned long pfn);
1690 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1691 unsigned long pfn);
1692 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1693
1694
1695 struct page *follow_page_mask(struct vm_area_struct *vma,
1696 unsigned long address, unsigned int foll_flags,
1697 unsigned int *page_mask);
1698
1699 static inline struct page *follow_page(struct vm_area_struct *vma,
1700 unsigned long address, unsigned int foll_flags)
1701 {
1702 unsigned int unused_page_mask;
1703 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1704 }
1705
1706 #define FOLL_WRITE 0x01 /* check pte is writable */
1707 #define FOLL_TOUCH 0x02 /* mark page accessed */
1708 #define FOLL_GET 0x04 /* do get_page on page */
1709 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1710 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1711 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1712 * and return without waiting upon it */
1713 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1714 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1715 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1716 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1717 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1718
1719 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1720 void *data);
1721 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1722 unsigned long size, pte_fn_t fn, void *data);
1723
1724 #ifdef CONFIG_PROC_FS
1725 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1726 #else
1727 static inline void vm_stat_account(struct mm_struct *mm,
1728 unsigned long flags, struct file *file, long pages)
1729 {
1730 mm->total_vm += pages;
1731 }
1732 #endif /* CONFIG_PROC_FS */
1733
1734 #ifdef CONFIG_DEBUG_PAGEALLOC
1735 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1736 #ifdef CONFIG_HIBERNATION
1737 extern bool kernel_page_present(struct page *page);
1738 #endif /* CONFIG_HIBERNATION */
1739 #else
1740 static inline void
1741 kernel_map_pages(struct page *page, int numpages, int enable) {}
1742 #ifdef CONFIG_HIBERNATION
1743 static inline bool kernel_page_present(struct page *page) { return true; }
1744 #endif /* CONFIG_HIBERNATION */
1745 #endif
1746
1747 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1748 #ifdef __HAVE_ARCH_GATE_AREA
1749 int in_gate_area_no_mm(unsigned long addr);
1750 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1751 #else
1752 int in_gate_area_no_mm(unsigned long addr);
1753 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1754 #endif /* __HAVE_ARCH_GATE_AREA */
1755
1756 #ifdef CONFIG_SYSCTL
1757 extern int sysctl_drop_caches;
1758 int drop_caches_sysctl_handler(struct ctl_table *, int,
1759 void __user *, size_t *, loff_t *);
1760 #endif
1761
1762 unsigned long shrink_slab(struct shrink_control *shrink,
1763 unsigned long nr_pages_scanned,
1764 unsigned long lru_pages);
1765
1766 #ifndef CONFIG_MMU
1767 #define randomize_va_space 0
1768 #else
1769 extern int randomize_va_space;
1770 #endif
1771
1772 const char * arch_vma_name(struct vm_area_struct *vma);
1773 void print_vma_addr(char *prefix, unsigned long rip);
1774
1775 void sparse_mem_maps_populate_node(struct page **map_map,
1776 unsigned long pnum_begin,
1777 unsigned long pnum_end,
1778 unsigned long map_count,
1779 int nodeid);
1780
1781 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1782 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1783 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1784 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1785 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1786 void *vmemmap_alloc_block(unsigned long size, int node);
1787 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1788 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1789 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1790 int node);
1791 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1792 void vmemmap_populate_print_last(void);
1793 #ifdef CONFIG_MEMORY_HOTPLUG
1794 void vmemmap_free(unsigned long start, unsigned long end);
1795 #endif
1796 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1797 unsigned long size);
1798
1799 enum mf_flags {
1800 MF_COUNT_INCREASED = 1 << 0,
1801 MF_ACTION_REQUIRED = 1 << 1,
1802 MF_MUST_KILL = 1 << 2,
1803 };
1804 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1805 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1806 extern int unpoison_memory(unsigned long pfn);
1807 extern int sysctl_memory_failure_early_kill;
1808 extern int sysctl_memory_failure_recovery;
1809 extern void shake_page(struct page *p, int access);
1810 extern atomic_long_t num_poisoned_pages;
1811 extern int soft_offline_page(struct page *page, int flags);
1812
1813 extern void dump_page(struct page *page);
1814
1815 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1816 extern void clear_huge_page(struct page *page,
1817 unsigned long addr,
1818 unsigned int pages_per_huge_page);
1819 extern void copy_user_huge_page(struct page *dst, struct page *src,
1820 unsigned long addr, struct vm_area_struct *vma,
1821 unsigned int pages_per_huge_page);
1822 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1823
1824 #ifdef CONFIG_DEBUG_PAGEALLOC
1825 extern unsigned int _debug_guardpage_minorder;
1826
1827 static inline unsigned int debug_guardpage_minorder(void)
1828 {
1829 return _debug_guardpage_minorder;
1830 }
1831
1832 static inline bool page_is_guard(struct page *page)
1833 {
1834 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1835 }
1836 #else
1837 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1838 static inline bool page_is_guard(struct page *page) { return false; }
1839 #endif /* CONFIG_DEBUG_PAGEALLOC */
1840
1841 #if MAX_NUMNODES > 1
1842 void __init setup_nr_node_ids(void);
1843 #else
1844 static inline void setup_nr_node_ids(void) {}
1845 #endif
1846
1847 #endif /* __KERNEL__ */
1848 #endif /* _LINUX_MM_H */