mm: avoid taking rmap locks in move_ptes()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
48
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
51
52 /*
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
58 * mmap() functions).
59 */
60
61 extern struct kmem_cache *vm_area_cachep;
62
63 #ifndef CONFIG_MMU
64 extern struct rb_root nommu_region_tree;
65 extern struct rw_semaphore nommu_region_sem;
66
67 extern unsigned int kobjsize(const void *objp);
68 #endif
69
70 /*
71 * vm_flags in vm_area_struct, see mm_types.h.
72 */
73 #define VM_NONE 0x00000000
74
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
85
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
89
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
105
106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
110
111 #if defined(CONFIG_X86)
112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP VM_ARCH_1
117 #elif defined(CONFIG_IA64)
118 # define VM_GROWSUP VM_ARCH_1
119 #elif !defined(CONFIG_MMU)
120 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
121 #endif
122
123 #ifndef VM_GROWSUP
124 # define VM_GROWSUP VM_NONE
125 #endif
126
127 /* Bits set in the VMA until the stack is in its final location */
128 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
129
130 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
132 #endif
133
134 #ifdef CONFIG_STACK_GROWSUP
135 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
136 #else
137 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
138 #endif
139
140 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
145
146 /*
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
149 */
150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
151
152 /*
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
155 */
156 extern pgprot_t protection_map[16];
157
158 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
160 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
161 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
162 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
163 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
164
165 /*
166 * vm_fault is filled by the the pagefault handler and passed to the vma's
167 * ->fault function. The vma's ->fault is responsible for returning a bitmask
168 * of VM_FAULT_xxx flags that give details about how the fault was handled.
169 *
170 * pgoff should be used in favour of virtual_address, if possible. If pgoff
171 * is used, one may implement ->remap_pages to get nonlinear mapping support.
172 */
173 struct vm_fault {
174 unsigned int flags; /* FAULT_FLAG_xxx flags */
175 pgoff_t pgoff; /* Logical page offset based on vma */
176 void __user *virtual_address; /* Faulting virtual address */
177
178 struct page *page; /* ->fault handlers should return a
179 * page here, unless VM_FAULT_NOPAGE
180 * is set (which is also implied by
181 * VM_FAULT_ERROR).
182 */
183 };
184
185 /*
186 * These are the virtual MM functions - opening of an area, closing and
187 * unmapping it (needed to keep files on disk up-to-date etc), pointer
188 * to the functions called when a no-page or a wp-page exception occurs.
189 */
190 struct vm_operations_struct {
191 void (*open)(struct vm_area_struct * area);
192 void (*close)(struct vm_area_struct * area);
193 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
194
195 /* notification that a previously read-only page is about to become
196 * writable, if an error is returned it will cause a SIGBUS */
197 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
198
199 /* called by access_process_vm when get_user_pages() fails, typically
200 * for use by special VMAs that can switch between memory and hardware
201 */
202 int (*access)(struct vm_area_struct *vma, unsigned long addr,
203 void *buf, int len, int write);
204 #ifdef CONFIG_NUMA
205 /*
206 * set_policy() op must add a reference to any non-NULL @new mempolicy
207 * to hold the policy upon return. Caller should pass NULL @new to
208 * remove a policy and fall back to surrounding context--i.e. do not
209 * install a MPOL_DEFAULT policy, nor the task or system default
210 * mempolicy.
211 */
212 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213
214 /*
215 * get_policy() op must add reference [mpol_get()] to any policy at
216 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
217 * in mm/mempolicy.c will do this automatically.
218 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
219 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
220 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
221 * must return NULL--i.e., do not "fallback" to task or system default
222 * policy.
223 */
224 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
225 unsigned long addr);
226 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
227 const nodemask_t *to, unsigned long flags);
228 #endif
229 /* called by sys_remap_file_pages() to populate non-linear mapping */
230 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
231 unsigned long size, pgoff_t pgoff);
232 };
233
234 struct mmu_gather;
235 struct inode;
236
237 #define page_private(page) ((page)->private)
238 #define set_page_private(page, v) ((page)->private = (v))
239
240 /*
241 * FIXME: take this include out, include page-flags.h in
242 * files which need it (119 of them)
243 */
244 #include <linux/page-flags.h>
245 #include <linux/huge_mm.h>
246
247 /*
248 * Methods to modify the page usage count.
249 *
250 * What counts for a page usage:
251 * - cache mapping (page->mapping)
252 * - private data (page->private)
253 * - page mapped in a task's page tables, each mapping
254 * is counted separately
255 *
256 * Also, many kernel routines increase the page count before a critical
257 * routine so they can be sure the page doesn't go away from under them.
258 */
259
260 /*
261 * Drop a ref, return true if the refcount fell to zero (the page has no users)
262 */
263 static inline int put_page_testzero(struct page *page)
264 {
265 VM_BUG_ON(atomic_read(&page->_count) == 0);
266 return atomic_dec_and_test(&page->_count);
267 }
268
269 /*
270 * Try to grab a ref unless the page has a refcount of zero, return false if
271 * that is the case.
272 */
273 static inline int get_page_unless_zero(struct page *page)
274 {
275 return atomic_inc_not_zero(&page->_count);
276 }
277
278 extern int page_is_ram(unsigned long pfn);
279
280 /* Support for virtually mapped pages */
281 struct page *vmalloc_to_page(const void *addr);
282 unsigned long vmalloc_to_pfn(const void *addr);
283
284 /*
285 * Determine if an address is within the vmalloc range
286 *
287 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
288 * is no special casing required.
289 */
290 static inline int is_vmalloc_addr(const void *x)
291 {
292 #ifdef CONFIG_MMU
293 unsigned long addr = (unsigned long)x;
294
295 return addr >= VMALLOC_START && addr < VMALLOC_END;
296 #else
297 return 0;
298 #endif
299 }
300 #ifdef CONFIG_MMU
301 extern int is_vmalloc_or_module_addr(const void *x);
302 #else
303 static inline int is_vmalloc_or_module_addr(const void *x)
304 {
305 return 0;
306 }
307 #endif
308
309 static inline void compound_lock(struct page *page)
310 {
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 VM_BUG_ON(PageSlab(page));
313 bit_spin_lock(PG_compound_lock, &page->flags);
314 #endif
315 }
316
317 static inline void compound_unlock(struct page *page)
318 {
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 VM_BUG_ON(PageSlab(page));
321 bit_spin_unlock(PG_compound_lock, &page->flags);
322 #endif
323 }
324
325 static inline unsigned long compound_lock_irqsave(struct page *page)
326 {
327 unsigned long uninitialized_var(flags);
328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 local_irq_save(flags);
330 compound_lock(page);
331 #endif
332 return flags;
333 }
334
335 static inline void compound_unlock_irqrestore(struct page *page,
336 unsigned long flags)
337 {
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 compound_unlock(page);
340 local_irq_restore(flags);
341 #endif
342 }
343
344 static inline struct page *compound_head(struct page *page)
345 {
346 if (unlikely(PageTail(page)))
347 return page->first_page;
348 return page;
349 }
350
351 /*
352 * The atomic page->_mapcount, starts from -1: so that transitions
353 * both from it and to it can be tracked, using atomic_inc_and_test
354 * and atomic_add_negative(-1).
355 */
356 static inline void reset_page_mapcount(struct page *page)
357 {
358 atomic_set(&(page)->_mapcount, -1);
359 }
360
361 static inline int page_mapcount(struct page *page)
362 {
363 return atomic_read(&(page)->_mapcount) + 1;
364 }
365
366 static inline int page_count(struct page *page)
367 {
368 return atomic_read(&compound_head(page)->_count);
369 }
370
371 static inline void get_huge_page_tail(struct page *page)
372 {
373 /*
374 * __split_huge_page_refcount() cannot run
375 * from under us.
376 */
377 VM_BUG_ON(page_mapcount(page) < 0);
378 VM_BUG_ON(atomic_read(&page->_count) != 0);
379 atomic_inc(&page->_mapcount);
380 }
381
382 extern bool __get_page_tail(struct page *page);
383
384 static inline void get_page(struct page *page)
385 {
386 if (unlikely(PageTail(page)))
387 if (likely(__get_page_tail(page)))
388 return;
389 /*
390 * Getting a normal page or the head of a compound page
391 * requires to already have an elevated page->_count.
392 */
393 VM_BUG_ON(atomic_read(&page->_count) <= 0);
394 atomic_inc(&page->_count);
395 }
396
397 static inline struct page *virt_to_head_page(const void *x)
398 {
399 struct page *page = virt_to_page(x);
400 return compound_head(page);
401 }
402
403 /*
404 * Setup the page count before being freed into the page allocator for
405 * the first time (boot or memory hotplug)
406 */
407 static inline void init_page_count(struct page *page)
408 {
409 atomic_set(&page->_count, 1);
410 }
411
412 /*
413 * PageBuddy() indicate that the page is free and in the buddy system
414 * (see mm/page_alloc.c).
415 *
416 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
417 * -2 so that an underflow of the page_mapcount() won't be mistaken
418 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
419 * efficiently by most CPU architectures.
420 */
421 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
422
423 static inline int PageBuddy(struct page *page)
424 {
425 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
426 }
427
428 static inline void __SetPageBuddy(struct page *page)
429 {
430 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
431 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
432 }
433
434 static inline void __ClearPageBuddy(struct page *page)
435 {
436 VM_BUG_ON(!PageBuddy(page));
437 atomic_set(&page->_mapcount, -1);
438 }
439
440 void put_page(struct page *page);
441 void put_pages_list(struct list_head *pages);
442
443 void split_page(struct page *page, unsigned int order);
444 int split_free_page(struct page *page);
445 int capture_free_page(struct page *page, int alloc_order, int migratetype);
446
447 /*
448 * Compound pages have a destructor function. Provide a
449 * prototype for that function and accessor functions.
450 * These are _only_ valid on the head of a PG_compound page.
451 */
452 typedef void compound_page_dtor(struct page *);
453
454 static inline void set_compound_page_dtor(struct page *page,
455 compound_page_dtor *dtor)
456 {
457 page[1].lru.next = (void *)dtor;
458 }
459
460 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
461 {
462 return (compound_page_dtor *)page[1].lru.next;
463 }
464
465 static inline int compound_order(struct page *page)
466 {
467 if (!PageHead(page))
468 return 0;
469 return (unsigned long)page[1].lru.prev;
470 }
471
472 static inline int compound_trans_order(struct page *page)
473 {
474 int order;
475 unsigned long flags;
476
477 if (!PageHead(page))
478 return 0;
479
480 flags = compound_lock_irqsave(page);
481 order = compound_order(page);
482 compound_unlock_irqrestore(page, flags);
483 return order;
484 }
485
486 static inline void set_compound_order(struct page *page, unsigned long order)
487 {
488 page[1].lru.prev = (void *)order;
489 }
490
491 #ifdef CONFIG_MMU
492 /*
493 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
494 * servicing faults for write access. In the normal case, do always want
495 * pte_mkwrite. But get_user_pages can cause write faults for mappings
496 * that do not have writing enabled, when used by access_process_vm.
497 */
498 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
499 {
500 if (likely(vma->vm_flags & VM_WRITE))
501 pte = pte_mkwrite(pte);
502 return pte;
503 }
504 #endif
505
506 /*
507 * Multiple processes may "see" the same page. E.g. for untouched
508 * mappings of /dev/null, all processes see the same page full of
509 * zeroes, and text pages of executables and shared libraries have
510 * only one copy in memory, at most, normally.
511 *
512 * For the non-reserved pages, page_count(page) denotes a reference count.
513 * page_count() == 0 means the page is free. page->lru is then used for
514 * freelist management in the buddy allocator.
515 * page_count() > 0 means the page has been allocated.
516 *
517 * Pages are allocated by the slab allocator in order to provide memory
518 * to kmalloc and kmem_cache_alloc. In this case, the management of the
519 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
520 * unless a particular usage is carefully commented. (the responsibility of
521 * freeing the kmalloc memory is the caller's, of course).
522 *
523 * A page may be used by anyone else who does a __get_free_page().
524 * In this case, page_count still tracks the references, and should only
525 * be used through the normal accessor functions. The top bits of page->flags
526 * and page->virtual store page management information, but all other fields
527 * are unused and could be used privately, carefully. The management of this
528 * page is the responsibility of the one who allocated it, and those who have
529 * subsequently been given references to it.
530 *
531 * The other pages (we may call them "pagecache pages") are completely
532 * managed by the Linux memory manager: I/O, buffers, swapping etc.
533 * The following discussion applies only to them.
534 *
535 * A pagecache page contains an opaque `private' member, which belongs to the
536 * page's address_space. Usually, this is the address of a circular list of
537 * the page's disk buffers. PG_private must be set to tell the VM to call
538 * into the filesystem to release these pages.
539 *
540 * A page may belong to an inode's memory mapping. In this case, page->mapping
541 * is the pointer to the inode, and page->index is the file offset of the page,
542 * in units of PAGE_CACHE_SIZE.
543 *
544 * If pagecache pages are not associated with an inode, they are said to be
545 * anonymous pages. These may become associated with the swapcache, and in that
546 * case PG_swapcache is set, and page->private is an offset into the swapcache.
547 *
548 * In either case (swapcache or inode backed), the pagecache itself holds one
549 * reference to the page. Setting PG_private should also increment the
550 * refcount. The each user mapping also has a reference to the page.
551 *
552 * The pagecache pages are stored in a per-mapping radix tree, which is
553 * rooted at mapping->page_tree, and indexed by offset.
554 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
555 * lists, we instead now tag pages as dirty/writeback in the radix tree.
556 *
557 * All pagecache pages may be subject to I/O:
558 * - inode pages may need to be read from disk,
559 * - inode pages which have been modified and are MAP_SHARED may need
560 * to be written back to the inode on disk,
561 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
562 * modified may need to be swapped out to swap space and (later) to be read
563 * back into memory.
564 */
565
566 /*
567 * The zone field is never updated after free_area_init_core()
568 * sets it, so none of the operations on it need to be atomic.
569 */
570
571
572 /*
573 * page->flags layout:
574 *
575 * There are three possibilities for how page->flags get
576 * laid out. The first is for the normal case, without
577 * sparsemem. The second is for sparsemem when there is
578 * plenty of space for node and section. The last is when
579 * we have run out of space and have to fall back to an
580 * alternate (slower) way of determining the node.
581 *
582 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
583 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
584 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
585 */
586 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
587 #define SECTIONS_WIDTH SECTIONS_SHIFT
588 #else
589 #define SECTIONS_WIDTH 0
590 #endif
591
592 #define ZONES_WIDTH ZONES_SHIFT
593
594 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
595 #define NODES_WIDTH NODES_SHIFT
596 #else
597 #ifdef CONFIG_SPARSEMEM_VMEMMAP
598 #error "Vmemmap: No space for nodes field in page flags"
599 #endif
600 #define NODES_WIDTH 0
601 #endif
602
603 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
604 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
605 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
606 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
607
608 /*
609 * We are going to use the flags for the page to node mapping if its in
610 * there. This includes the case where there is no node, so it is implicit.
611 */
612 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
613 #define NODE_NOT_IN_PAGE_FLAGS
614 #endif
615
616 /*
617 * Define the bit shifts to access each section. For non-existent
618 * sections we define the shift as 0; that plus a 0 mask ensures
619 * the compiler will optimise away reference to them.
620 */
621 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
622 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
623 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
624
625 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
626 #ifdef NODE_NOT_IN_PAGE_FLAGS
627 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
628 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
629 SECTIONS_PGOFF : ZONES_PGOFF)
630 #else
631 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
632 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
633 NODES_PGOFF : ZONES_PGOFF)
634 #endif
635
636 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
637
638 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
639 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
640 #endif
641
642 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
643 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
644 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
645 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
646
647 static inline enum zone_type page_zonenum(const struct page *page)
648 {
649 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
650 }
651
652 /*
653 * The identification function is only used by the buddy allocator for
654 * determining if two pages could be buddies. We are not really
655 * identifying a zone since we could be using a the section number
656 * id if we have not node id available in page flags.
657 * We guarantee only that it will return the same value for two
658 * combinable pages in a zone.
659 */
660 static inline int page_zone_id(struct page *page)
661 {
662 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
663 }
664
665 static inline int zone_to_nid(struct zone *zone)
666 {
667 #ifdef CONFIG_NUMA
668 return zone->node;
669 #else
670 return 0;
671 #endif
672 }
673
674 #ifdef NODE_NOT_IN_PAGE_FLAGS
675 extern int page_to_nid(const struct page *page);
676 #else
677 static inline int page_to_nid(const struct page *page)
678 {
679 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
680 }
681 #endif
682
683 static inline struct zone *page_zone(const struct page *page)
684 {
685 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
686 }
687
688 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
689 static inline void set_page_section(struct page *page, unsigned long section)
690 {
691 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
692 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
693 }
694
695 static inline unsigned long page_to_section(const struct page *page)
696 {
697 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
698 }
699 #endif
700
701 static inline void set_page_zone(struct page *page, enum zone_type zone)
702 {
703 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
704 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
705 }
706
707 static inline void set_page_node(struct page *page, unsigned long node)
708 {
709 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
710 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
711 }
712
713 static inline void set_page_links(struct page *page, enum zone_type zone,
714 unsigned long node, unsigned long pfn)
715 {
716 set_page_zone(page, zone);
717 set_page_node(page, node);
718 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
719 set_page_section(page, pfn_to_section_nr(pfn));
720 #endif
721 }
722
723 /*
724 * Some inline functions in vmstat.h depend on page_zone()
725 */
726 #include <linux/vmstat.h>
727
728 static __always_inline void *lowmem_page_address(const struct page *page)
729 {
730 return __va(PFN_PHYS(page_to_pfn(page)));
731 }
732
733 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
734 #define HASHED_PAGE_VIRTUAL
735 #endif
736
737 #if defined(WANT_PAGE_VIRTUAL)
738 #define page_address(page) ((page)->virtual)
739 #define set_page_address(page, address) \
740 do { \
741 (page)->virtual = (address); \
742 } while(0)
743 #define page_address_init() do { } while(0)
744 #endif
745
746 #if defined(HASHED_PAGE_VIRTUAL)
747 void *page_address(const struct page *page);
748 void set_page_address(struct page *page, void *virtual);
749 void page_address_init(void);
750 #endif
751
752 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
753 #define page_address(page) lowmem_page_address(page)
754 #define set_page_address(page, address) do { } while(0)
755 #define page_address_init() do { } while(0)
756 #endif
757
758 /*
759 * On an anonymous page mapped into a user virtual memory area,
760 * page->mapping points to its anon_vma, not to a struct address_space;
761 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
762 *
763 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
764 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
765 * and then page->mapping points, not to an anon_vma, but to a private
766 * structure which KSM associates with that merged page. See ksm.h.
767 *
768 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
769 *
770 * Please note that, confusingly, "page_mapping" refers to the inode
771 * address_space which maps the page from disk; whereas "page_mapped"
772 * refers to user virtual address space into which the page is mapped.
773 */
774 #define PAGE_MAPPING_ANON 1
775 #define PAGE_MAPPING_KSM 2
776 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
777
778 extern struct address_space swapper_space;
779 static inline struct address_space *page_mapping(struct page *page)
780 {
781 struct address_space *mapping = page->mapping;
782
783 VM_BUG_ON(PageSlab(page));
784 if (unlikely(PageSwapCache(page)))
785 mapping = &swapper_space;
786 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
787 mapping = NULL;
788 return mapping;
789 }
790
791 /* Neutral page->mapping pointer to address_space or anon_vma or other */
792 static inline void *page_rmapping(struct page *page)
793 {
794 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
795 }
796
797 extern struct address_space *__page_file_mapping(struct page *);
798
799 static inline
800 struct address_space *page_file_mapping(struct page *page)
801 {
802 if (unlikely(PageSwapCache(page)))
803 return __page_file_mapping(page);
804
805 return page->mapping;
806 }
807
808 static inline int PageAnon(struct page *page)
809 {
810 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
811 }
812
813 /*
814 * Return the pagecache index of the passed page. Regular pagecache pages
815 * use ->index whereas swapcache pages use ->private
816 */
817 static inline pgoff_t page_index(struct page *page)
818 {
819 if (unlikely(PageSwapCache(page)))
820 return page_private(page);
821 return page->index;
822 }
823
824 extern pgoff_t __page_file_index(struct page *page);
825
826 /*
827 * Return the file index of the page. Regular pagecache pages use ->index
828 * whereas swapcache pages use swp_offset(->private)
829 */
830 static inline pgoff_t page_file_index(struct page *page)
831 {
832 if (unlikely(PageSwapCache(page)))
833 return __page_file_index(page);
834
835 return page->index;
836 }
837
838 /*
839 * Return true if this page is mapped into pagetables.
840 */
841 static inline int page_mapped(struct page *page)
842 {
843 return atomic_read(&(page)->_mapcount) >= 0;
844 }
845
846 /*
847 * Different kinds of faults, as returned by handle_mm_fault().
848 * Used to decide whether a process gets delivered SIGBUS or
849 * just gets major/minor fault counters bumped up.
850 */
851
852 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
853
854 #define VM_FAULT_OOM 0x0001
855 #define VM_FAULT_SIGBUS 0x0002
856 #define VM_FAULT_MAJOR 0x0004
857 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
858 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
859 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
860
861 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
862 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
863 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
864
865 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
866
867 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
868 VM_FAULT_HWPOISON_LARGE)
869
870 /* Encode hstate index for a hwpoisoned large page */
871 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
872 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
873
874 /*
875 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
876 */
877 extern void pagefault_out_of_memory(void);
878
879 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
880
881 /*
882 * Flags passed to show_mem() and show_free_areas() to suppress output in
883 * various contexts.
884 */
885 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
886
887 extern void show_free_areas(unsigned int flags);
888 extern bool skip_free_areas_node(unsigned int flags, int nid);
889
890 int shmem_zero_setup(struct vm_area_struct *);
891
892 extern int can_do_mlock(void);
893 extern int user_shm_lock(size_t, struct user_struct *);
894 extern void user_shm_unlock(size_t, struct user_struct *);
895
896 /*
897 * Parameter block passed down to zap_pte_range in exceptional cases.
898 */
899 struct zap_details {
900 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
901 struct address_space *check_mapping; /* Check page->mapping if set */
902 pgoff_t first_index; /* Lowest page->index to unmap */
903 pgoff_t last_index; /* Highest page->index to unmap */
904 };
905
906 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
907 pte_t pte);
908
909 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
910 unsigned long size);
911 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
912 unsigned long size, struct zap_details *);
913 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
914 unsigned long start, unsigned long end);
915
916 /**
917 * mm_walk - callbacks for walk_page_range
918 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
919 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
920 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
921 * this handler is required to be able to handle
922 * pmd_trans_huge() pmds. They may simply choose to
923 * split_huge_page() instead of handling it explicitly.
924 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
925 * @pte_hole: if set, called for each hole at all levels
926 * @hugetlb_entry: if set, called for each hugetlb entry
927 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
928 * is used.
929 *
930 * (see walk_page_range for more details)
931 */
932 struct mm_walk {
933 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
934 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
935 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
936 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
937 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
938 int (*hugetlb_entry)(pte_t *, unsigned long,
939 unsigned long, unsigned long, struct mm_walk *);
940 struct mm_struct *mm;
941 void *private;
942 };
943
944 int walk_page_range(unsigned long addr, unsigned long end,
945 struct mm_walk *walk);
946 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
947 unsigned long end, unsigned long floor, unsigned long ceiling);
948 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
949 struct vm_area_struct *vma);
950 void unmap_mapping_range(struct address_space *mapping,
951 loff_t const holebegin, loff_t const holelen, int even_cows);
952 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
953 unsigned long *pfn);
954 int follow_phys(struct vm_area_struct *vma, unsigned long address,
955 unsigned int flags, unsigned long *prot, resource_size_t *phys);
956 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
957 void *buf, int len, int write);
958
959 static inline void unmap_shared_mapping_range(struct address_space *mapping,
960 loff_t const holebegin, loff_t const holelen)
961 {
962 unmap_mapping_range(mapping, holebegin, holelen, 0);
963 }
964
965 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
966 extern void truncate_setsize(struct inode *inode, loff_t newsize);
967 extern int vmtruncate(struct inode *inode, loff_t offset);
968 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
969 int truncate_inode_page(struct address_space *mapping, struct page *page);
970 int generic_error_remove_page(struct address_space *mapping, struct page *page);
971 int invalidate_inode_page(struct page *page);
972
973 #ifdef CONFIG_MMU
974 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
975 unsigned long address, unsigned int flags);
976 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
977 unsigned long address, unsigned int fault_flags);
978 #else
979 static inline int handle_mm_fault(struct mm_struct *mm,
980 struct vm_area_struct *vma, unsigned long address,
981 unsigned int flags)
982 {
983 /* should never happen if there's no MMU */
984 BUG();
985 return VM_FAULT_SIGBUS;
986 }
987 static inline int fixup_user_fault(struct task_struct *tsk,
988 struct mm_struct *mm, unsigned long address,
989 unsigned int fault_flags)
990 {
991 /* should never happen if there's no MMU */
992 BUG();
993 return -EFAULT;
994 }
995 #endif
996
997 extern int make_pages_present(unsigned long addr, unsigned long end);
998 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
999 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1000 void *buf, int len, int write);
1001
1002 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1003 unsigned long start, int len, unsigned int foll_flags,
1004 struct page **pages, struct vm_area_struct **vmas,
1005 int *nonblocking);
1006 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1007 unsigned long start, int nr_pages, int write, int force,
1008 struct page **pages, struct vm_area_struct **vmas);
1009 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1010 struct page **pages);
1011 struct kvec;
1012 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1013 struct page **pages);
1014 int get_kernel_page(unsigned long start, int write, struct page **pages);
1015 struct page *get_dump_page(unsigned long addr);
1016
1017 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1018 extern void do_invalidatepage(struct page *page, unsigned long offset);
1019
1020 int __set_page_dirty_nobuffers(struct page *page);
1021 int __set_page_dirty_no_writeback(struct page *page);
1022 int redirty_page_for_writepage(struct writeback_control *wbc,
1023 struct page *page);
1024 void account_page_dirtied(struct page *page, struct address_space *mapping);
1025 void account_page_writeback(struct page *page);
1026 int set_page_dirty(struct page *page);
1027 int set_page_dirty_lock(struct page *page);
1028 int clear_page_dirty_for_io(struct page *page);
1029
1030 /* Is the vma a continuation of the stack vma above it? */
1031 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1032 {
1033 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1034 }
1035
1036 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1037 unsigned long addr)
1038 {
1039 return (vma->vm_flags & VM_GROWSDOWN) &&
1040 (vma->vm_start == addr) &&
1041 !vma_growsdown(vma->vm_prev, addr);
1042 }
1043
1044 /* Is the vma a continuation of the stack vma below it? */
1045 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1046 {
1047 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1048 }
1049
1050 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1051 unsigned long addr)
1052 {
1053 return (vma->vm_flags & VM_GROWSUP) &&
1054 (vma->vm_end == addr) &&
1055 !vma_growsup(vma->vm_next, addr);
1056 }
1057
1058 extern pid_t
1059 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1060
1061 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1062 unsigned long old_addr, struct vm_area_struct *new_vma,
1063 unsigned long new_addr, unsigned long len,
1064 bool need_rmap_locks);
1065 extern unsigned long do_mremap(unsigned long addr,
1066 unsigned long old_len, unsigned long new_len,
1067 unsigned long flags, unsigned long new_addr);
1068 extern int mprotect_fixup(struct vm_area_struct *vma,
1069 struct vm_area_struct **pprev, unsigned long start,
1070 unsigned long end, unsigned long newflags);
1071
1072 /*
1073 * doesn't attempt to fault and will return short.
1074 */
1075 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1076 struct page **pages);
1077 /*
1078 * per-process(per-mm_struct) statistics.
1079 */
1080 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1081 {
1082 long val = atomic_long_read(&mm->rss_stat.count[member]);
1083
1084 #ifdef SPLIT_RSS_COUNTING
1085 /*
1086 * counter is updated in asynchronous manner and may go to minus.
1087 * But it's never be expected number for users.
1088 */
1089 if (val < 0)
1090 val = 0;
1091 #endif
1092 return (unsigned long)val;
1093 }
1094
1095 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1096 {
1097 atomic_long_add(value, &mm->rss_stat.count[member]);
1098 }
1099
1100 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1101 {
1102 atomic_long_inc(&mm->rss_stat.count[member]);
1103 }
1104
1105 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1106 {
1107 atomic_long_dec(&mm->rss_stat.count[member]);
1108 }
1109
1110 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1111 {
1112 return get_mm_counter(mm, MM_FILEPAGES) +
1113 get_mm_counter(mm, MM_ANONPAGES);
1114 }
1115
1116 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1117 {
1118 return max(mm->hiwater_rss, get_mm_rss(mm));
1119 }
1120
1121 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1122 {
1123 return max(mm->hiwater_vm, mm->total_vm);
1124 }
1125
1126 static inline void update_hiwater_rss(struct mm_struct *mm)
1127 {
1128 unsigned long _rss = get_mm_rss(mm);
1129
1130 if ((mm)->hiwater_rss < _rss)
1131 (mm)->hiwater_rss = _rss;
1132 }
1133
1134 static inline void update_hiwater_vm(struct mm_struct *mm)
1135 {
1136 if (mm->hiwater_vm < mm->total_vm)
1137 mm->hiwater_vm = mm->total_vm;
1138 }
1139
1140 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1141 struct mm_struct *mm)
1142 {
1143 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1144
1145 if (*maxrss < hiwater_rss)
1146 *maxrss = hiwater_rss;
1147 }
1148
1149 #if defined(SPLIT_RSS_COUNTING)
1150 void sync_mm_rss(struct mm_struct *mm);
1151 #else
1152 static inline void sync_mm_rss(struct mm_struct *mm)
1153 {
1154 }
1155 #endif
1156
1157 int vma_wants_writenotify(struct vm_area_struct *vma);
1158
1159 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1160 spinlock_t **ptl);
1161 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1162 spinlock_t **ptl)
1163 {
1164 pte_t *ptep;
1165 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1166 return ptep;
1167 }
1168
1169 #ifdef __PAGETABLE_PUD_FOLDED
1170 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1171 unsigned long address)
1172 {
1173 return 0;
1174 }
1175 #else
1176 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1177 #endif
1178
1179 #ifdef __PAGETABLE_PMD_FOLDED
1180 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1181 unsigned long address)
1182 {
1183 return 0;
1184 }
1185 #else
1186 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1187 #endif
1188
1189 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1190 pmd_t *pmd, unsigned long address);
1191 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1192
1193 /*
1194 * The following ifdef needed to get the 4level-fixup.h header to work.
1195 * Remove it when 4level-fixup.h has been removed.
1196 */
1197 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1198 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1199 {
1200 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1201 NULL: pud_offset(pgd, address);
1202 }
1203
1204 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1205 {
1206 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1207 NULL: pmd_offset(pud, address);
1208 }
1209 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1210
1211 #if USE_SPLIT_PTLOCKS
1212 /*
1213 * We tuck a spinlock to guard each pagetable page into its struct page,
1214 * at page->private, with BUILD_BUG_ON to make sure that this will not
1215 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1216 * When freeing, reset page->mapping so free_pages_check won't complain.
1217 */
1218 #define __pte_lockptr(page) &((page)->ptl)
1219 #define pte_lock_init(_page) do { \
1220 spin_lock_init(__pte_lockptr(_page)); \
1221 } while (0)
1222 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1223 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1224 #else /* !USE_SPLIT_PTLOCKS */
1225 /*
1226 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1227 */
1228 #define pte_lock_init(page) do {} while (0)
1229 #define pte_lock_deinit(page) do {} while (0)
1230 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1231 #endif /* USE_SPLIT_PTLOCKS */
1232
1233 static inline void pgtable_page_ctor(struct page *page)
1234 {
1235 pte_lock_init(page);
1236 inc_zone_page_state(page, NR_PAGETABLE);
1237 }
1238
1239 static inline void pgtable_page_dtor(struct page *page)
1240 {
1241 pte_lock_deinit(page);
1242 dec_zone_page_state(page, NR_PAGETABLE);
1243 }
1244
1245 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1246 ({ \
1247 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1248 pte_t *__pte = pte_offset_map(pmd, address); \
1249 *(ptlp) = __ptl; \
1250 spin_lock(__ptl); \
1251 __pte; \
1252 })
1253
1254 #define pte_unmap_unlock(pte, ptl) do { \
1255 spin_unlock(ptl); \
1256 pte_unmap(pte); \
1257 } while (0)
1258
1259 #define pte_alloc_map(mm, vma, pmd, address) \
1260 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1261 pmd, address))? \
1262 NULL: pte_offset_map(pmd, address))
1263
1264 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1265 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1266 pmd, address))? \
1267 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1268
1269 #define pte_alloc_kernel(pmd, address) \
1270 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1271 NULL: pte_offset_kernel(pmd, address))
1272
1273 extern void free_area_init(unsigned long * zones_size);
1274 extern void free_area_init_node(int nid, unsigned long * zones_size,
1275 unsigned long zone_start_pfn, unsigned long *zholes_size);
1276 extern void free_initmem(void);
1277
1278 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1279 /*
1280 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1281 * zones, allocate the backing mem_map and account for memory holes in a more
1282 * architecture independent manner. This is a substitute for creating the
1283 * zone_sizes[] and zholes_size[] arrays and passing them to
1284 * free_area_init_node()
1285 *
1286 * An architecture is expected to register range of page frames backed by
1287 * physical memory with memblock_add[_node]() before calling
1288 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1289 * usage, an architecture is expected to do something like
1290 *
1291 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1292 * max_highmem_pfn};
1293 * for_each_valid_physical_page_range()
1294 * memblock_add_node(base, size, nid)
1295 * free_area_init_nodes(max_zone_pfns);
1296 *
1297 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1298 * registered physical page range. Similarly
1299 * sparse_memory_present_with_active_regions() calls memory_present() for
1300 * each range when SPARSEMEM is enabled.
1301 *
1302 * See mm/page_alloc.c for more information on each function exposed by
1303 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1304 */
1305 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1306 unsigned long node_map_pfn_alignment(void);
1307 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1308 unsigned long end_pfn);
1309 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1310 unsigned long end_pfn);
1311 extern void get_pfn_range_for_nid(unsigned int nid,
1312 unsigned long *start_pfn, unsigned long *end_pfn);
1313 extern unsigned long find_min_pfn_with_active_regions(void);
1314 extern void free_bootmem_with_active_regions(int nid,
1315 unsigned long max_low_pfn);
1316 extern void sparse_memory_present_with_active_regions(int nid);
1317
1318 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1319
1320 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1321 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1322 static inline int __early_pfn_to_nid(unsigned long pfn)
1323 {
1324 return 0;
1325 }
1326 #else
1327 /* please see mm/page_alloc.c */
1328 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1329 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1330 /* there is a per-arch backend function. */
1331 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1332 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1333 #endif
1334
1335 extern void set_dma_reserve(unsigned long new_dma_reserve);
1336 extern void memmap_init_zone(unsigned long, int, unsigned long,
1337 unsigned long, enum memmap_context);
1338 extern void setup_per_zone_wmarks(void);
1339 extern int __meminit init_per_zone_wmark_min(void);
1340 extern void mem_init(void);
1341 extern void __init mmap_init(void);
1342 extern void show_mem(unsigned int flags);
1343 extern void si_meminfo(struct sysinfo * val);
1344 extern void si_meminfo_node(struct sysinfo *val, int nid);
1345 extern int after_bootmem;
1346
1347 extern __printf(3, 4)
1348 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1349
1350 extern void setup_per_cpu_pageset(void);
1351
1352 extern void zone_pcp_update(struct zone *zone);
1353 extern void zone_pcp_reset(struct zone *zone);
1354
1355 /* nommu.c */
1356 extern atomic_long_t mmap_pages_allocated;
1357 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1358
1359 /* interval_tree.c */
1360 void vma_interval_tree_insert(struct vm_area_struct *node,
1361 struct rb_root *root);
1362 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1363 struct vm_area_struct *prev,
1364 struct rb_root *root);
1365 void vma_interval_tree_remove(struct vm_area_struct *node,
1366 struct rb_root *root);
1367 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1368 unsigned long start, unsigned long last);
1369 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1370 unsigned long start, unsigned long last);
1371
1372 #define vma_interval_tree_foreach(vma, root, start, last) \
1373 for (vma = vma_interval_tree_iter_first(root, start, last); \
1374 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1375
1376 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1377 struct list_head *list)
1378 {
1379 list_add_tail(&vma->shared.nonlinear, list);
1380 }
1381
1382 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1383 struct rb_root *root);
1384 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1385 struct rb_root *root);
1386 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1387 struct rb_root *root, unsigned long start, unsigned long last);
1388 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1389 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1390 #ifdef CONFIG_DEBUG_VM_RB
1391 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1392 #endif
1393
1394 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1395 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1396 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1397
1398 /* mmap.c */
1399 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1400 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1401 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1402 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1403 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1404 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1405 struct mempolicy *);
1406 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1407 extern int split_vma(struct mm_struct *,
1408 struct vm_area_struct *, unsigned long addr, int new_below);
1409 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1410 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1411 struct rb_node **, struct rb_node *);
1412 extern void unlink_file_vma(struct vm_area_struct *);
1413 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1414 unsigned long addr, unsigned long len, pgoff_t pgoff,
1415 bool *need_rmap_locks);
1416 extern void exit_mmap(struct mm_struct *);
1417
1418 extern int mm_take_all_locks(struct mm_struct *mm);
1419 extern void mm_drop_all_locks(struct mm_struct *mm);
1420
1421 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1422 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1423
1424 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1425 extern int install_special_mapping(struct mm_struct *mm,
1426 unsigned long addr, unsigned long len,
1427 unsigned long flags, struct page **pages);
1428
1429 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1430
1431 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1432 unsigned long len, unsigned long flags,
1433 vm_flags_t vm_flags, unsigned long pgoff);
1434 extern unsigned long do_mmap_pgoff(struct file *, unsigned long,
1435 unsigned long, unsigned long,
1436 unsigned long, unsigned long);
1437 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1438
1439 /* These take the mm semaphore themselves */
1440 extern unsigned long vm_brk(unsigned long, unsigned long);
1441 extern int vm_munmap(unsigned long, size_t);
1442 extern unsigned long vm_mmap(struct file *, unsigned long,
1443 unsigned long, unsigned long,
1444 unsigned long, unsigned long);
1445
1446 /* truncate.c */
1447 extern void truncate_inode_pages(struct address_space *, loff_t);
1448 extern void truncate_inode_pages_range(struct address_space *,
1449 loff_t lstart, loff_t lend);
1450
1451 /* generic vm_area_ops exported for stackable file systems */
1452 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1453 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1454
1455 /* mm/page-writeback.c */
1456 int write_one_page(struct page *page, int wait);
1457 void task_dirty_inc(struct task_struct *tsk);
1458
1459 /* readahead.c */
1460 #define VM_MAX_READAHEAD 128 /* kbytes */
1461 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1462
1463 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1464 pgoff_t offset, unsigned long nr_to_read);
1465
1466 void page_cache_sync_readahead(struct address_space *mapping,
1467 struct file_ra_state *ra,
1468 struct file *filp,
1469 pgoff_t offset,
1470 unsigned long size);
1471
1472 void page_cache_async_readahead(struct address_space *mapping,
1473 struct file_ra_state *ra,
1474 struct file *filp,
1475 struct page *pg,
1476 pgoff_t offset,
1477 unsigned long size);
1478
1479 unsigned long max_sane_readahead(unsigned long nr);
1480 unsigned long ra_submit(struct file_ra_state *ra,
1481 struct address_space *mapping,
1482 struct file *filp);
1483
1484 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1485 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1486
1487 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1488 extern int expand_downwards(struct vm_area_struct *vma,
1489 unsigned long address);
1490 #if VM_GROWSUP
1491 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1492 #else
1493 #define expand_upwards(vma, address) do { } while (0)
1494 #endif
1495
1496 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1497 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1498 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1499 struct vm_area_struct **pprev);
1500
1501 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1502 NULL if none. Assume start_addr < end_addr. */
1503 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1504 {
1505 struct vm_area_struct * vma = find_vma(mm,start_addr);
1506
1507 if (vma && end_addr <= vma->vm_start)
1508 vma = NULL;
1509 return vma;
1510 }
1511
1512 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1513 {
1514 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1515 }
1516
1517 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1518 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1519 unsigned long vm_start, unsigned long vm_end)
1520 {
1521 struct vm_area_struct *vma = find_vma(mm, vm_start);
1522
1523 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1524 vma = NULL;
1525
1526 return vma;
1527 }
1528
1529 #ifdef CONFIG_MMU
1530 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1531 #else
1532 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1533 {
1534 return __pgprot(0);
1535 }
1536 #endif
1537
1538 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1539 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1540 unsigned long pfn, unsigned long size, pgprot_t);
1541 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1542 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1543 unsigned long pfn);
1544 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1545 unsigned long pfn);
1546
1547 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1548 unsigned int foll_flags);
1549 #define FOLL_WRITE 0x01 /* check pte is writable */
1550 #define FOLL_TOUCH 0x02 /* mark page accessed */
1551 #define FOLL_GET 0x04 /* do get_page on page */
1552 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1553 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1554 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1555 * and return without waiting upon it */
1556 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1557 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1558 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1559
1560 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1561 void *data);
1562 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1563 unsigned long size, pte_fn_t fn, void *data);
1564
1565 #ifdef CONFIG_PROC_FS
1566 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1567 #else
1568 static inline void vm_stat_account(struct mm_struct *mm,
1569 unsigned long flags, struct file *file, long pages)
1570 {
1571 mm->total_vm += pages;
1572 }
1573 #endif /* CONFIG_PROC_FS */
1574
1575 #ifdef CONFIG_DEBUG_PAGEALLOC
1576 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1577 #ifdef CONFIG_HIBERNATION
1578 extern bool kernel_page_present(struct page *page);
1579 #endif /* CONFIG_HIBERNATION */
1580 #else
1581 static inline void
1582 kernel_map_pages(struct page *page, int numpages, int enable) {}
1583 #ifdef CONFIG_HIBERNATION
1584 static inline bool kernel_page_present(struct page *page) { return true; }
1585 #endif /* CONFIG_HIBERNATION */
1586 #endif
1587
1588 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1589 #ifdef __HAVE_ARCH_GATE_AREA
1590 int in_gate_area_no_mm(unsigned long addr);
1591 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1592 #else
1593 int in_gate_area_no_mm(unsigned long addr);
1594 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1595 #endif /* __HAVE_ARCH_GATE_AREA */
1596
1597 int drop_caches_sysctl_handler(struct ctl_table *, int,
1598 void __user *, size_t *, loff_t *);
1599 unsigned long shrink_slab(struct shrink_control *shrink,
1600 unsigned long nr_pages_scanned,
1601 unsigned long lru_pages);
1602
1603 #ifndef CONFIG_MMU
1604 #define randomize_va_space 0
1605 #else
1606 extern int randomize_va_space;
1607 #endif
1608
1609 const char * arch_vma_name(struct vm_area_struct *vma);
1610 void print_vma_addr(char *prefix, unsigned long rip);
1611
1612 void sparse_mem_maps_populate_node(struct page **map_map,
1613 unsigned long pnum_begin,
1614 unsigned long pnum_end,
1615 unsigned long map_count,
1616 int nodeid);
1617
1618 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1619 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1620 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1621 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1622 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1623 void *vmemmap_alloc_block(unsigned long size, int node);
1624 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1625 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1626 int vmemmap_populate_basepages(struct page *start_page,
1627 unsigned long pages, int node);
1628 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1629 void vmemmap_populate_print_last(void);
1630
1631
1632 enum mf_flags {
1633 MF_COUNT_INCREASED = 1 << 0,
1634 MF_ACTION_REQUIRED = 1 << 1,
1635 MF_MUST_KILL = 1 << 2,
1636 };
1637 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1638 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1639 extern int unpoison_memory(unsigned long pfn);
1640 extern int sysctl_memory_failure_early_kill;
1641 extern int sysctl_memory_failure_recovery;
1642 extern void shake_page(struct page *p, int access);
1643 extern atomic_long_t mce_bad_pages;
1644 extern int soft_offline_page(struct page *page, int flags);
1645
1646 extern void dump_page(struct page *page);
1647
1648 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1649 extern void clear_huge_page(struct page *page,
1650 unsigned long addr,
1651 unsigned int pages_per_huge_page);
1652 extern void copy_user_huge_page(struct page *dst, struct page *src,
1653 unsigned long addr, struct vm_area_struct *vma,
1654 unsigned int pages_per_huge_page);
1655 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1656
1657 #ifdef CONFIG_DEBUG_PAGEALLOC
1658 extern unsigned int _debug_guardpage_minorder;
1659
1660 static inline unsigned int debug_guardpage_minorder(void)
1661 {
1662 return _debug_guardpage_minorder;
1663 }
1664
1665 static inline bool page_is_guard(struct page *page)
1666 {
1667 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1668 }
1669 #else
1670 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1671 static inline bool page_is_guard(struct page *page) { return false; }
1672 #endif /* CONFIG_DEBUG_PAGEALLOC */
1673
1674 #endif /* __KERNEL__ */
1675 #endif /* _LINUX_MM_H */