FROMLIST: mm: mmap: Add new /proc tunable for mmap_base ASLR.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
44 extern const int mmap_rnd_bits_min;
45 extern const int mmap_rnd_bits_max;
46 extern int mmap_rnd_bits __read_mostly;
47 #endif
48 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
49 extern const int mmap_rnd_compat_bits_min;
50 extern const int mmap_rnd_compat_bits_max;
51 extern int mmap_rnd_compat_bits __read_mostly;
52 #endif
53
54 #include <asm/page.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57
58 extern unsigned long sysctl_user_reserve_kbytes;
59 extern unsigned long sysctl_admin_reserve_kbytes;
60
61 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
62
63 /* to align the pointer to the (next) page boundary */
64 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
65
66 /*
67 * Linux kernel virtual memory manager primitives.
68 * The idea being to have a "virtual" mm in the same way
69 * we have a virtual fs - giving a cleaner interface to the
70 * mm details, and allowing different kinds of memory mappings
71 * (from shared memory to executable loading to arbitrary
72 * mmap() functions).
73 */
74
75 extern struct kmem_cache *vm_area_cachep;
76
77 #ifndef CONFIG_MMU
78 extern struct rb_root nommu_region_tree;
79 extern struct rw_semaphore nommu_region_sem;
80
81 extern unsigned int kobjsize(const void *objp);
82 #endif
83
84 /*
85 * vm_flags in vm_area_struct, see mm_types.h.
86 */
87 #define VM_NONE 0x00000000
88
89 #define VM_READ 0x00000001 /* currently active flags */
90 #define VM_WRITE 0x00000002
91 #define VM_EXEC 0x00000004
92 #define VM_SHARED 0x00000008
93
94 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
95 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
96 #define VM_MAYWRITE 0x00000020
97 #define VM_MAYEXEC 0x00000040
98 #define VM_MAYSHARE 0x00000080
99
100 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
101 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
102 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
103
104 #define VM_LOCKED 0x00002000
105 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
106
107 /* Used by sys_madvise() */
108 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
109 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
110
111 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
112 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
113 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
114 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
115 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
116 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
117 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
118 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
119 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
120
121 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
122 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
123 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
124 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
125
126 #if defined(CONFIG_X86)
127 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
128 #elif defined(CONFIG_PPC)
129 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
130 #elif defined(CONFIG_PARISC)
131 # define VM_GROWSUP VM_ARCH_1
132 #elif defined(CONFIG_METAG)
133 # define VM_GROWSUP VM_ARCH_1
134 #elif defined(CONFIG_IA64)
135 # define VM_GROWSUP VM_ARCH_1
136 #elif !defined(CONFIG_MMU)
137 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
138 #endif
139
140 #ifndef VM_GROWSUP
141 # define VM_GROWSUP VM_NONE
142 #endif
143
144 /* Bits set in the VMA until the stack is in its final location */
145 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
146
147 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
148 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
149 #endif
150
151 #ifdef CONFIG_STACK_GROWSUP
152 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
153 #else
154 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
155 #endif
156
157 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
158 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
159 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
160 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
161 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
162
163 /*
164 * Special vmas that are non-mergable, non-mlock()able.
165 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
166 */
167 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
168
169 /*
170 * mapping from the currently active vm_flags protection bits (the
171 * low four bits) to a page protection mask..
172 */
173 extern pgprot_t protection_map[16];
174
175 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
176 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
177 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
178 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
179 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
180 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
181 #define FAULT_FLAG_TRIED 0x40 /* second try */
182 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
183
184 /*
185 * vm_fault is filled by the the pagefault handler and passed to the vma's
186 * ->fault function. The vma's ->fault is responsible for returning a bitmask
187 * of VM_FAULT_xxx flags that give details about how the fault was handled.
188 *
189 * pgoff should be used in favour of virtual_address, if possible. If pgoff
190 * is used, one may implement ->remap_pages to get nonlinear mapping support.
191 */
192 struct vm_fault {
193 unsigned int flags; /* FAULT_FLAG_xxx flags */
194 pgoff_t pgoff; /* Logical page offset based on vma */
195 void __user *virtual_address; /* Faulting virtual address */
196
197 struct page *page; /* ->fault handlers should return a
198 * page here, unless VM_FAULT_NOPAGE
199 * is set (which is also implied by
200 * VM_FAULT_ERROR).
201 */
202 };
203
204 /*
205 * These are the virtual MM functions - opening of an area, closing and
206 * unmapping it (needed to keep files on disk up-to-date etc), pointer
207 * to the functions called when a no-page or a wp-page exception occurs.
208 */
209 struct vm_operations_struct {
210 void (*open)(struct vm_area_struct * area);
211 void (*close)(struct vm_area_struct * area);
212 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
213
214 /* notification that a previously read-only page is about to become
215 * writable, if an error is returned it will cause a SIGBUS */
216 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
217
218 /* called by access_process_vm when get_user_pages() fails, typically
219 * for use by special VMAs that can switch between memory and hardware
220 */
221 int (*access)(struct vm_area_struct *vma, unsigned long addr,
222 void *buf, int len, int write);
223 #ifdef CONFIG_NUMA
224 /*
225 * set_policy() op must add a reference to any non-NULL @new mempolicy
226 * to hold the policy upon return. Caller should pass NULL @new to
227 * remove a policy and fall back to surrounding context--i.e. do not
228 * install a MPOL_DEFAULT policy, nor the task or system default
229 * mempolicy.
230 */
231 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
232
233 /*
234 * get_policy() op must add reference [mpol_get()] to any policy at
235 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
236 * in mm/mempolicy.c will do this automatically.
237 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
238 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
239 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
240 * must return NULL--i.e., do not "fallback" to task or system default
241 * policy.
242 */
243 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
244 unsigned long addr);
245 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
246 const nodemask_t *to, unsigned long flags);
247 #endif
248 /* called by sys_remap_file_pages() to populate non-linear mapping */
249 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
250 unsigned long size, pgoff_t pgoff);
251 };
252
253 struct mmu_gather;
254 struct inode;
255
256 #define page_private(page) ((page)->private)
257 #define set_page_private(page, v) ((page)->private = (v))
258
259 /* It's valid only if the page is free path or free_list */
260 static inline void set_freepage_migratetype(struct page *page, int migratetype)
261 {
262 page->index = migratetype;
263 }
264
265 /* It's valid only if the page is free path or free_list */
266 static inline int get_freepage_migratetype(struct page *page)
267 {
268 return page->index;
269 }
270
271 /*
272 * FIXME: take this include out, include page-flags.h in
273 * files which need it (119 of them)
274 */
275 #include <linux/page-flags.h>
276 #include <linux/huge_mm.h>
277
278 /*
279 * Methods to modify the page usage count.
280 *
281 * What counts for a page usage:
282 * - cache mapping (page->mapping)
283 * - private data (page->private)
284 * - page mapped in a task's page tables, each mapping
285 * is counted separately
286 *
287 * Also, many kernel routines increase the page count before a critical
288 * routine so they can be sure the page doesn't go away from under them.
289 */
290
291 /*
292 * Drop a ref, return true if the refcount fell to zero (the page has no users)
293 */
294 static inline int put_page_testzero(struct page *page)
295 {
296 VM_BUG_ON(atomic_read(&page->_count) == 0);
297 return atomic_dec_and_test(&page->_count);
298 }
299
300 /*
301 * Try to grab a ref unless the page has a refcount of zero, return false if
302 * that is the case.
303 */
304 static inline int get_page_unless_zero(struct page *page)
305 {
306 return atomic_inc_not_zero(&page->_count);
307 }
308
309 extern int page_is_ram(unsigned long pfn);
310
311 /* Support for virtually mapped pages */
312 struct page *vmalloc_to_page(const void *addr);
313 unsigned long vmalloc_to_pfn(const void *addr);
314
315 /*
316 * Determine if an address is within the vmalloc range
317 *
318 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
319 * is no special casing required.
320 */
321 static inline int is_vmalloc_addr(const void *x)
322 {
323 #ifdef CONFIG_MMU
324 unsigned long addr = (unsigned long)x;
325
326 return addr >= VMALLOC_START && addr < VMALLOC_END;
327 #else
328 return 0;
329 #endif
330 }
331 #ifdef CONFIG_MMU
332 extern int is_vmalloc_or_module_addr(const void *x);
333 #else
334 static inline int is_vmalloc_or_module_addr(const void *x)
335 {
336 return 0;
337 }
338 #endif
339
340 extern void kvfree(const void *addr);
341
342 static inline void compound_lock(struct page *page)
343 {
344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
345 VM_BUG_ON(PageSlab(page));
346 bit_spin_lock(PG_compound_lock, &page->flags);
347 #endif
348 }
349
350 static inline void compound_unlock(struct page *page)
351 {
352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
353 VM_BUG_ON(PageSlab(page));
354 bit_spin_unlock(PG_compound_lock, &page->flags);
355 #endif
356 }
357
358 static inline unsigned long compound_lock_irqsave(struct page *page)
359 {
360 unsigned long uninitialized_var(flags);
361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
362 local_irq_save(flags);
363 compound_lock(page);
364 #endif
365 return flags;
366 }
367
368 static inline void compound_unlock_irqrestore(struct page *page,
369 unsigned long flags)
370 {
371 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
372 compound_unlock(page);
373 local_irq_restore(flags);
374 #endif
375 }
376
377 static inline struct page *compound_head(struct page *page)
378 {
379 if (unlikely(PageTail(page))) {
380 struct page *head = page->first_page;
381
382 /*
383 * page->first_page may be a dangling pointer to an old
384 * compound page, so recheck that it is still a tail
385 * page before returning.
386 */
387 smp_rmb();
388 if (likely(PageTail(page)))
389 return head;
390 }
391 return page;
392 }
393
394 /*
395 * The atomic page->_mapcount, starts from -1: so that transitions
396 * both from it and to it can be tracked, using atomic_inc_and_test
397 * and atomic_add_negative(-1).
398 */
399 static inline void page_mapcount_reset(struct page *page)
400 {
401 atomic_set(&(page)->_mapcount, -1);
402 }
403
404 static inline int page_mapcount(struct page *page)
405 {
406 return atomic_read(&(page)->_mapcount) + 1;
407 }
408
409 static inline int page_count(struct page *page)
410 {
411 return atomic_read(&compound_head(page)->_count);
412 }
413
414 static inline void get_huge_page_tail(struct page *page)
415 {
416 /*
417 * __split_huge_page_refcount() cannot run
418 * from under us.
419 */
420 VM_BUG_ON(page_mapcount(page) < 0);
421 VM_BUG_ON(atomic_read(&page->_count) != 0);
422 atomic_inc(&page->_mapcount);
423 }
424
425 extern bool __get_page_tail(struct page *page);
426
427 static inline void get_page(struct page *page)
428 {
429 if (unlikely(PageTail(page)))
430 if (likely(__get_page_tail(page)))
431 return;
432 /*
433 * Getting a normal page or the head of a compound page
434 * requires to already have an elevated page->_count.
435 */
436 VM_BUG_ON(atomic_read(&page->_count) <= 0);
437 atomic_inc(&page->_count);
438 }
439
440 static inline struct page *virt_to_head_page(const void *x)
441 {
442 struct page *page = virt_to_page(x);
443 return compound_head(page);
444 }
445
446 /*
447 * Setup the page count before being freed into the page allocator for
448 * the first time (boot or memory hotplug)
449 */
450 static inline void init_page_count(struct page *page)
451 {
452 atomic_set(&page->_count, 1);
453 }
454
455 /*
456 * PageBuddy() indicate that the page is free and in the buddy system
457 * (see mm/page_alloc.c).
458 *
459 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
460 * -2 so that an underflow of the page_mapcount() won't be mistaken
461 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
462 * efficiently by most CPU architectures.
463 */
464 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
465
466 static inline int PageBuddy(struct page *page)
467 {
468 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
469 }
470
471 static inline void __SetPageBuddy(struct page *page)
472 {
473 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
474 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
475 }
476
477 static inline void __ClearPageBuddy(struct page *page)
478 {
479 VM_BUG_ON(!PageBuddy(page));
480 atomic_set(&page->_mapcount, -1);
481 }
482
483 void put_page(struct page *page);
484 void put_pages_list(struct list_head *pages);
485
486 void split_page(struct page *page, unsigned int order);
487 int split_free_page(struct page *page);
488
489 /*
490 * Compound pages have a destructor function. Provide a
491 * prototype for that function and accessor functions.
492 * These are _only_ valid on the head of a PG_compound page.
493 */
494 typedef void compound_page_dtor(struct page *);
495
496 static inline void set_compound_page_dtor(struct page *page,
497 compound_page_dtor *dtor)
498 {
499 page[1].lru.next = (void *)dtor;
500 }
501
502 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
503 {
504 return (compound_page_dtor *)page[1].lru.next;
505 }
506
507 static inline int compound_order(struct page *page)
508 {
509 if (!PageHead(page))
510 return 0;
511 return (unsigned long)page[1].lru.prev;
512 }
513
514 static inline int compound_trans_order(struct page *page)
515 {
516 int order;
517 unsigned long flags;
518
519 if (!PageHead(page))
520 return 0;
521
522 flags = compound_lock_irqsave(page);
523 order = compound_order(page);
524 compound_unlock_irqrestore(page, flags);
525 return order;
526 }
527
528 static inline void set_compound_order(struct page *page, unsigned long order)
529 {
530 page[1].lru.prev = (void *)order;
531 }
532
533 #ifdef CONFIG_MMU
534 /*
535 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
536 * servicing faults for write access. In the normal case, do always want
537 * pte_mkwrite. But get_user_pages can cause write faults for mappings
538 * that do not have writing enabled, when used by access_process_vm.
539 */
540 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
541 {
542 if (likely(vma->vm_flags & VM_WRITE))
543 pte = pte_mkwrite(pte);
544 return pte;
545 }
546 #endif
547
548 /*
549 * Multiple processes may "see" the same page. E.g. for untouched
550 * mappings of /dev/null, all processes see the same page full of
551 * zeroes, and text pages of executables and shared libraries have
552 * only one copy in memory, at most, normally.
553 *
554 * For the non-reserved pages, page_count(page) denotes a reference count.
555 * page_count() == 0 means the page is free. page->lru is then used for
556 * freelist management in the buddy allocator.
557 * page_count() > 0 means the page has been allocated.
558 *
559 * Pages are allocated by the slab allocator in order to provide memory
560 * to kmalloc and kmem_cache_alloc. In this case, the management of the
561 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
562 * unless a particular usage is carefully commented. (the responsibility of
563 * freeing the kmalloc memory is the caller's, of course).
564 *
565 * A page may be used by anyone else who does a __get_free_page().
566 * In this case, page_count still tracks the references, and should only
567 * be used through the normal accessor functions. The top bits of page->flags
568 * and page->virtual store page management information, but all other fields
569 * are unused and could be used privately, carefully. The management of this
570 * page is the responsibility of the one who allocated it, and those who have
571 * subsequently been given references to it.
572 *
573 * The other pages (we may call them "pagecache pages") are completely
574 * managed by the Linux memory manager: I/O, buffers, swapping etc.
575 * The following discussion applies only to them.
576 *
577 * A pagecache page contains an opaque `private' member, which belongs to the
578 * page's address_space. Usually, this is the address of a circular list of
579 * the page's disk buffers. PG_private must be set to tell the VM to call
580 * into the filesystem to release these pages.
581 *
582 * A page may belong to an inode's memory mapping. In this case, page->mapping
583 * is the pointer to the inode, and page->index is the file offset of the page,
584 * in units of PAGE_CACHE_SIZE.
585 *
586 * If pagecache pages are not associated with an inode, they are said to be
587 * anonymous pages. These may become associated with the swapcache, and in that
588 * case PG_swapcache is set, and page->private is an offset into the swapcache.
589 *
590 * In either case (swapcache or inode backed), the pagecache itself holds one
591 * reference to the page. Setting PG_private should also increment the
592 * refcount. The each user mapping also has a reference to the page.
593 *
594 * The pagecache pages are stored in a per-mapping radix tree, which is
595 * rooted at mapping->page_tree, and indexed by offset.
596 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
597 * lists, we instead now tag pages as dirty/writeback in the radix tree.
598 *
599 * All pagecache pages may be subject to I/O:
600 * - inode pages may need to be read from disk,
601 * - inode pages which have been modified and are MAP_SHARED may need
602 * to be written back to the inode on disk,
603 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
604 * modified may need to be swapped out to swap space and (later) to be read
605 * back into memory.
606 */
607
608 /*
609 * The zone field is never updated after free_area_init_core()
610 * sets it, so none of the operations on it need to be atomic.
611 */
612
613 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
614 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
615 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
616 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
617 #define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH)
618
619 /*
620 * Define the bit shifts to access each section. For non-existent
621 * sections we define the shift as 0; that plus a 0 mask ensures
622 * the compiler will optimise away reference to them.
623 */
624 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
625 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
626 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
627 #define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
628
629 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
630 #ifdef NODE_NOT_IN_PAGE_FLAGS
631 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
632 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
633 SECTIONS_PGOFF : ZONES_PGOFF)
634 #else
635 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
636 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
637 NODES_PGOFF : ZONES_PGOFF)
638 #endif
639
640 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
641
642 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
643 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
644 #endif
645
646 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
647 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
648 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
649 #define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1)
650 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
651
652 static inline enum zone_type page_zonenum(const struct page *page)
653 {
654 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
655 }
656
657 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
658 #define SECTION_IN_PAGE_FLAGS
659 #endif
660
661 /*
662 * The identification function is only used by the buddy allocator for
663 * determining if two pages could be buddies. We are not really
664 * identifying a zone since we could be using a the section number
665 * id if we have not node id available in page flags.
666 * We guarantee only that it will return the same value for two
667 * combinable pages in a zone.
668 */
669 static inline int page_zone_id(struct page *page)
670 {
671 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
672 }
673
674 static inline int zone_to_nid(struct zone *zone)
675 {
676 #ifdef CONFIG_NUMA
677 return zone->node;
678 #else
679 return 0;
680 #endif
681 }
682
683 #ifdef NODE_NOT_IN_PAGE_FLAGS
684 extern int page_to_nid(const struct page *page);
685 #else
686 static inline int page_to_nid(const struct page *page)
687 {
688 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
689 }
690 #endif
691
692 #ifdef CONFIG_NUMA_BALANCING
693 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
694 static inline int page_nid_xchg_last(struct page *page, int nid)
695 {
696 return xchg(&page->_last_nid, nid);
697 }
698
699 static inline int page_nid_last(struct page *page)
700 {
701 return page->_last_nid;
702 }
703 static inline void page_nid_reset_last(struct page *page)
704 {
705 page->_last_nid = -1;
706 }
707 #else
708 static inline int page_nid_last(struct page *page)
709 {
710 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
711 }
712
713 extern int page_nid_xchg_last(struct page *page, int nid);
714
715 static inline void page_nid_reset_last(struct page *page)
716 {
717 int nid = (1 << LAST_NID_SHIFT) - 1;
718
719 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
720 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
721 }
722 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
723 #else
724 static inline int page_nid_xchg_last(struct page *page, int nid)
725 {
726 return page_to_nid(page);
727 }
728
729 static inline int page_nid_last(struct page *page)
730 {
731 return page_to_nid(page);
732 }
733
734 static inline void page_nid_reset_last(struct page *page)
735 {
736 }
737 #endif
738
739 static inline struct zone *page_zone(const struct page *page)
740 {
741 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
742 }
743
744 #ifdef SECTION_IN_PAGE_FLAGS
745 static inline void set_page_section(struct page *page, unsigned long section)
746 {
747 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
748 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
749 }
750
751 static inline unsigned long page_to_section(const struct page *page)
752 {
753 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
754 }
755 #endif
756
757 static inline void set_page_zone(struct page *page, enum zone_type zone)
758 {
759 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
760 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
761 }
762
763 static inline void set_page_node(struct page *page, unsigned long node)
764 {
765 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
766 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
767 }
768
769 static inline void set_page_links(struct page *page, enum zone_type zone,
770 unsigned long node, unsigned long pfn)
771 {
772 set_page_zone(page, zone);
773 set_page_node(page, node);
774 #ifdef SECTION_IN_PAGE_FLAGS
775 set_page_section(page, pfn_to_section_nr(pfn));
776 #endif
777 }
778
779 /*
780 * Some inline functions in vmstat.h depend on page_zone()
781 */
782 #include <linux/vmstat.h>
783
784 static __always_inline void *lowmem_page_address(const struct page *page)
785 {
786 return __va(PFN_PHYS(page_to_pfn(page)));
787 }
788
789 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
790 #define HASHED_PAGE_VIRTUAL
791 #endif
792
793 #if defined(WANT_PAGE_VIRTUAL)
794 static inline void *page_address(const struct page *page)
795 {
796 return page->virtual;
797 }
798 static inline void set_page_address(struct page *page, void *address)
799 {
800 page->virtual = address;
801 }
802 #define page_address_init() do { } while(0)
803 #endif
804
805 #if defined(HASHED_PAGE_VIRTUAL)
806 void *page_address(const struct page *page);
807 void set_page_address(struct page *page, void *virtual);
808 void page_address_init(void);
809 #endif
810
811 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
812 #define page_address(page) lowmem_page_address(page)
813 #define set_page_address(page, address) do { } while(0)
814 #define page_address_init() do { } while(0)
815 #endif
816
817 /*
818 * On an anonymous page mapped into a user virtual memory area,
819 * page->mapping points to its anon_vma, not to a struct address_space;
820 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
821 *
822 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
823 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
824 * and then page->mapping points, not to an anon_vma, but to a private
825 * structure which KSM associates with that merged page. See ksm.h.
826 *
827 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
828 *
829 * Please note that, confusingly, "page_mapping" refers to the inode
830 * address_space which maps the page from disk; whereas "page_mapped"
831 * refers to user virtual address space into which the page is mapped.
832 */
833 #define PAGE_MAPPING_ANON 1
834 #define PAGE_MAPPING_KSM 2
835 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
836
837 extern struct address_space *page_mapping(struct page *page);
838
839 /* Neutral page->mapping pointer to address_space or anon_vma or other */
840 static inline void *page_rmapping(struct page *page)
841 {
842 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
843 }
844
845 extern struct address_space *__page_file_mapping(struct page *);
846
847 static inline
848 struct address_space *page_file_mapping(struct page *page)
849 {
850 if (unlikely(PageSwapCache(page)))
851 return __page_file_mapping(page);
852
853 return page->mapping;
854 }
855
856 static inline int PageAnon(struct page *page)
857 {
858 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
859 }
860
861 /*
862 * Return the pagecache index of the passed page. Regular pagecache pages
863 * use ->index whereas swapcache pages use ->private
864 */
865 static inline pgoff_t page_index(struct page *page)
866 {
867 if (unlikely(PageSwapCache(page)))
868 return page_private(page);
869 return page->index;
870 }
871
872 extern pgoff_t __page_file_index(struct page *page);
873
874 /*
875 * Return the file index of the page. Regular pagecache pages use ->index
876 * whereas swapcache pages use swp_offset(->private)
877 */
878 static inline pgoff_t page_file_index(struct page *page)
879 {
880 if (unlikely(PageSwapCache(page)))
881 return __page_file_index(page);
882
883 return page->index;
884 }
885
886 /*
887 * Return true if this page is mapped into pagetables.
888 */
889 static inline int page_mapped(struct page *page)
890 {
891 return atomic_read(&(page)->_mapcount) >= 0;
892 }
893
894 /*
895 * Different kinds of faults, as returned by handle_mm_fault().
896 * Used to decide whether a process gets delivered SIGBUS or
897 * just gets major/minor fault counters bumped up.
898 */
899
900 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
901
902 #define VM_FAULT_OOM 0x0001
903 #define VM_FAULT_SIGBUS 0x0002
904 #define VM_FAULT_MAJOR 0x0004
905 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
906 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
907 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
908 #define VM_FAULT_SIGSEGV 0x0040
909
910 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
911 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
912 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
913
914 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
915
916 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
917 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)
918
919 /* Encode hstate index for a hwpoisoned large page */
920 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
921 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
922
923 /*
924 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
925 */
926 extern void pagefault_out_of_memory(void);
927
928 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
929
930 /*
931 * Flags passed to show_mem() and show_free_areas() to suppress output in
932 * various contexts.
933 */
934 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
935 #define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
936
937 extern void show_free_areas(unsigned int flags);
938 extern bool skip_free_areas_node(unsigned int flags, int nid);
939
940 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
941 int shmem_zero_setup(struct vm_area_struct *);
942
943 extern int can_do_mlock(void);
944 extern int user_shm_lock(size_t, struct user_struct *);
945 extern void user_shm_unlock(size_t, struct user_struct *);
946
947 /*
948 * Parameter block passed down to zap_pte_range in exceptional cases.
949 */
950 struct zap_details {
951 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
952 struct address_space *check_mapping; /* Check page->mapping if set */
953 pgoff_t first_index; /* Lowest page->index to unmap */
954 pgoff_t last_index; /* Highest page->index to unmap */
955 };
956
957 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
958 pte_t pte);
959
960 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
961 unsigned long size);
962 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
963 unsigned long size, struct zap_details *);
964 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
965 unsigned long start, unsigned long end);
966
967 /**
968 * mm_walk - callbacks for walk_page_range
969 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
970 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
971 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
972 * this handler is required to be able to handle
973 * pmd_trans_huge() pmds. They may simply choose to
974 * split_huge_page() instead of handling it explicitly.
975 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
976 * @pte_hole: if set, called for each hole at all levels
977 * @hugetlb_entry: if set, called for each hugetlb entry
978 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
979 * is used.
980 *
981 * (see walk_page_range for more details)
982 */
983 struct mm_walk {
984 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
985 unsigned long next, struct mm_walk *walk);
986 int (*pud_entry)(pud_t *pud, unsigned long addr,
987 unsigned long next, struct mm_walk *walk);
988 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
989 unsigned long next, struct mm_walk *walk);
990 int (*pte_entry)(pte_t *pte, unsigned long addr,
991 unsigned long next, struct mm_walk *walk);
992 int (*pte_hole)(unsigned long addr, unsigned long next,
993 struct mm_walk *walk);
994 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
995 unsigned long addr, unsigned long next,
996 struct mm_walk *walk);
997 struct mm_struct *mm;
998 void *private;
999 };
1000
1001 int walk_page_range(unsigned long addr, unsigned long end,
1002 struct mm_walk *walk);
1003 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1004 unsigned long end, unsigned long floor, unsigned long ceiling);
1005 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1006 struct vm_area_struct *vma);
1007 void unmap_mapping_range(struct address_space *mapping,
1008 loff_t const holebegin, loff_t const holelen, int even_cows);
1009 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1010 unsigned long *pfn);
1011 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1012 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1013 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1014 void *buf, int len, int write);
1015
1016 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1017 loff_t const holebegin, loff_t const holelen)
1018 {
1019 unmap_mapping_range(mapping, holebegin, holelen, 0);
1020 }
1021
1022 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1023 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1024 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1025 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1026 int truncate_inode_page(struct address_space *mapping, struct page *page);
1027 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1028 int invalidate_inode_page(struct page *page);
1029
1030 #ifdef CONFIG_MMU
1031 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1032 unsigned long address, unsigned int flags);
1033 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1034 unsigned long address, unsigned int fault_flags);
1035 #else
1036 static inline int handle_mm_fault(struct mm_struct *mm,
1037 struct vm_area_struct *vma, unsigned long address,
1038 unsigned int flags)
1039 {
1040 /* should never happen if there's no MMU */
1041 BUG();
1042 return VM_FAULT_SIGBUS;
1043 }
1044 static inline int fixup_user_fault(struct task_struct *tsk,
1045 struct mm_struct *mm, unsigned long address,
1046 unsigned int fault_flags)
1047 {
1048 /* should never happen if there's no MMU */
1049 BUG();
1050 return -EFAULT;
1051 }
1052 #endif
1053
1054 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1055 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1056 void *buf, int len, int write);
1057
1058 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1059 unsigned long start, unsigned long nr_pages,
1060 unsigned int foll_flags, struct page **pages,
1061 struct vm_area_struct **vmas, int *nonblocking);
1062 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1063 unsigned long start, unsigned long nr_pages,
1064 int write, int force, struct page **pages,
1065 struct vm_area_struct **vmas);
1066 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1067 struct page **pages);
1068 struct kvec;
1069 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1070 struct page **pages);
1071 int get_kernel_page(unsigned long start, int write, struct page **pages);
1072 struct page *get_dump_page(unsigned long addr);
1073
1074 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1075 extern void do_invalidatepage(struct page *page, unsigned long offset);
1076
1077 int __set_page_dirty_nobuffers(struct page *page);
1078 int __set_page_dirty_no_writeback(struct page *page);
1079 int redirty_page_for_writepage(struct writeback_control *wbc,
1080 struct page *page);
1081 void account_page_dirtied(struct page *page, struct address_space *mapping);
1082 void account_page_writeback(struct page *page);
1083 int set_page_dirty(struct page *page);
1084 int set_page_dirty_lock(struct page *page);
1085 int clear_page_dirty_for_io(struct page *page);
1086
1087 extern pid_t
1088 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1089
1090 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1091 unsigned long old_addr, struct vm_area_struct *new_vma,
1092 unsigned long new_addr, unsigned long len,
1093 bool need_rmap_locks);
1094 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1095 unsigned long end, pgprot_t newprot,
1096 int dirty_accountable, int prot_numa);
1097 extern int mprotect_fixup(struct vm_area_struct *vma,
1098 struct vm_area_struct **pprev, unsigned long start,
1099 unsigned long end, unsigned long newflags);
1100
1101 /*
1102 * doesn't attempt to fault and will return short.
1103 */
1104 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1105 struct page **pages);
1106 /*
1107 * per-process(per-mm_struct) statistics.
1108 */
1109 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1110 {
1111 long val = atomic_long_read(&mm->rss_stat.count[member]);
1112
1113 #ifdef SPLIT_RSS_COUNTING
1114 /*
1115 * counter is updated in asynchronous manner and may go to minus.
1116 * But it's never be expected number for users.
1117 */
1118 if (val < 0)
1119 val = 0;
1120 #endif
1121 return (unsigned long)val;
1122 }
1123
1124 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1125 {
1126 atomic_long_add(value, &mm->rss_stat.count[member]);
1127 }
1128
1129 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1130 {
1131 atomic_long_inc(&mm->rss_stat.count[member]);
1132 }
1133
1134 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1135 {
1136 atomic_long_dec(&mm->rss_stat.count[member]);
1137 }
1138
1139 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1140 {
1141 return get_mm_counter(mm, MM_FILEPAGES) +
1142 get_mm_counter(mm, MM_ANONPAGES);
1143 }
1144
1145 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1146 {
1147 return max(mm->hiwater_rss, get_mm_rss(mm));
1148 }
1149
1150 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1151 {
1152 return max(mm->hiwater_vm, mm->total_vm);
1153 }
1154
1155 static inline void update_hiwater_rss(struct mm_struct *mm)
1156 {
1157 unsigned long _rss = get_mm_rss(mm);
1158
1159 if ((mm)->hiwater_rss < _rss)
1160 (mm)->hiwater_rss = _rss;
1161 }
1162
1163 static inline void update_hiwater_vm(struct mm_struct *mm)
1164 {
1165 if (mm->hiwater_vm < mm->total_vm)
1166 mm->hiwater_vm = mm->total_vm;
1167 }
1168
1169 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1170 struct mm_struct *mm)
1171 {
1172 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1173
1174 if (*maxrss < hiwater_rss)
1175 *maxrss = hiwater_rss;
1176 }
1177
1178 #if defined(SPLIT_RSS_COUNTING)
1179 void sync_mm_rss(struct mm_struct *mm);
1180 #else
1181 static inline void sync_mm_rss(struct mm_struct *mm)
1182 {
1183 }
1184 #endif
1185
1186 int vma_wants_writenotify(struct vm_area_struct *vma);
1187
1188 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1189 spinlock_t **ptl);
1190 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1191 spinlock_t **ptl)
1192 {
1193 pte_t *ptep;
1194 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1195 return ptep;
1196 }
1197
1198 #ifdef __PAGETABLE_PUD_FOLDED
1199 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1200 unsigned long address)
1201 {
1202 return 0;
1203 }
1204 #else
1205 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1206 #endif
1207
1208 #ifdef __PAGETABLE_PMD_FOLDED
1209 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1210 unsigned long address)
1211 {
1212 return 0;
1213 }
1214 #else
1215 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1216 #endif
1217
1218 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1219 pmd_t *pmd, unsigned long address);
1220 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1221
1222 /*
1223 * The following ifdef needed to get the 4level-fixup.h header to work.
1224 * Remove it when 4level-fixup.h has been removed.
1225 */
1226 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1227 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1228 {
1229 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1230 NULL: pud_offset(pgd, address);
1231 }
1232
1233 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1234 {
1235 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1236 NULL: pmd_offset(pud, address);
1237 }
1238 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1239
1240 #if USE_SPLIT_PTLOCKS
1241 /*
1242 * We tuck a spinlock to guard each pagetable page into its struct page,
1243 * at page->private, with BUILD_BUG_ON to make sure that this will not
1244 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1245 * When freeing, reset page->mapping so free_pages_check won't complain.
1246 */
1247 #define __pte_lockptr(page) &((page)->ptl)
1248 #define pte_lock_init(_page) do { \
1249 spin_lock_init(__pte_lockptr(_page)); \
1250 } while (0)
1251 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1252 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1253 #else /* !USE_SPLIT_PTLOCKS */
1254 /*
1255 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1256 */
1257 #define pte_lock_init(page) do {} while (0)
1258 #define pte_lock_deinit(page) do {} while (0)
1259 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1260 #endif /* USE_SPLIT_PTLOCKS */
1261
1262 static inline void pgtable_page_ctor(struct page *page)
1263 {
1264 pte_lock_init(page);
1265 inc_zone_page_state(page, NR_PAGETABLE);
1266 }
1267
1268 static inline void pgtable_page_dtor(struct page *page)
1269 {
1270 pte_lock_deinit(page);
1271 dec_zone_page_state(page, NR_PAGETABLE);
1272 }
1273
1274 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1275 ({ \
1276 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1277 pte_t *__pte = pte_offset_map(pmd, address); \
1278 *(ptlp) = __ptl; \
1279 spin_lock(__ptl); \
1280 __pte; \
1281 })
1282
1283 #define pte_unmap_unlock(pte, ptl) do { \
1284 spin_unlock(ptl); \
1285 pte_unmap(pte); \
1286 } while (0)
1287
1288 #define pte_alloc_map(mm, vma, pmd, address) \
1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1290 pmd, address))? \
1291 NULL: pte_offset_map(pmd, address))
1292
1293 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1294 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1295 pmd, address))? \
1296 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1297
1298 #define pte_alloc_kernel(pmd, address) \
1299 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1300 NULL: pte_offset_kernel(pmd, address))
1301
1302 extern void free_area_init(unsigned long * zones_size);
1303 extern void free_area_init_node(int nid, unsigned long * zones_size,
1304 unsigned long zone_start_pfn, unsigned long *zholes_size);
1305 extern void free_initmem(void);
1306
1307 /*
1308 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1309 * into the buddy system. The freed pages will be poisoned with pattern
1310 * "poison" if it's non-zero.
1311 * Return pages freed into the buddy system.
1312 */
1313 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1314 int poison, char *s);
1315 #ifdef CONFIG_HIGHMEM
1316 /*
1317 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1318 * and totalram_pages.
1319 */
1320 extern void free_highmem_page(struct page *page);
1321 #endif
1322
1323 static inline void adjust_managed_page_count(struct page *page, long count)
1324 {
1325 totalram_pages += count;
1326 }
1327
1328 /* Free the reserved page into the buddy system, so it gets managed. */
1329 static inline void __free_reserved_page(struct page *page)
1330 {
1331 ClearPageReserved(page);
1332 init_page_count(page);
1333 __free_page(page);
1334 }
1335
1336 static inline void free_reserved_page(struct page *page)
1337 {
1338 __free_reserved_page(page);
1339 adjust_managed_page_count(page, 1);
1340 }
1341
1342 static inline void mark_page_reserved(struct page *page)
1343 {
1344 SetPageReserved(page);
1345 adjust_managed_page_count(page, -1);
1346 }
1347
1348 /*
1349 * Default method to free all the __init memory into the buddy system.
1350 * The freed pages will be poisoned with pattern "poison" if it is
1351 * non-zero. Return pages freed into the buddy system.
1352 */
1353 static inline unsigned long free_initmem_default(int poison)
1354 {
1355 extern char __init_begin[], __init_end[];
1356
1357 return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1358 ((unsigned long)&__init_end) & PAGE_MASK,
1359 poison, "unused kernel");
1360 }
1361
1362 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1363 /*
1364 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1365 * zones, allocate the backing mem_map and account for memory holes in a more
1366 * architecture independent manner. This is a substitute for creating the
1367 * zone_sizes[] and zholes_size[] arrays and passing them to
1368 * free_area_init_node()
1369 *
1370 * An architecture is expected to register range of page frames backed by
1371 * physical memory with memblock_add[_node]() before calling
1372 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1373 * usage, an architecture is expected to do something like
1374 *
1375 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1376 * max_highmem_pfn};
1377 * for_each_valid_physical_page_range()
1378 * memblock_add_node(base, size, nid)
1379 * free_area_init_nodes(max_zone_pfns);
1380 *
1381 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1382 * registered physical page range. Similarly
1383 * sparse_memory_present_with_active_regions() calls memory_present() for
1384 * each range when SPARSEMEM is enabled.
1385 *
1386 * See mm/page_alloc.c for more information on each function exposed by
1387 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1388 */
1389 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1390 unsigned long node_map_pfn_alignment(void);
1391 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1392 unsigned long end_pfn);
1393 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1394 unsigned long end_pfn);
1395 extern void get_pfn_range_for_nid(unsigned int nid,
1396 unsigned long *start_pfn, unsigned long *end_pfn);
1397 extern unsigned long find_min_pfn_with_active_regions(void);
1398 extern void free_bootmem_with_active_regions(int nid,
1399 unsigned long max_low_pfn);
1400 extern void sparse_memory_present_with_active_regions(int nid);
1401
1402 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1403
1404 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1405 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1406 static inline int __early_pfn_to_nid(unsigned long pfn)
1407 {
1408 return 0;
1409 }
1410 #else
1411 /* please see mm/page_alloc.c */
1412 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1413 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1414 /* there is a per-arch backend function. */
1415 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1416 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1417 #endif
1418
1419 extern void set_dma_reserve(unsigned long new_dma_reserve);
1420 extern void memmap_init_zone(unsigned long, int, unsigned long,
1421 unsigned long, enum memmap_context);
1422 extern void setup_per_zone_wmarks(void);
1423 extern int __meminit init_per_zone_wmark_min(void);
1424 extern void mem_init(void);
1425 extern void __init mmap_init(void);
1426 extern void show_mem(unsigned int flags);
1427 extern void si_meminfo(struct sysinfo * val);
1428 extern void si_meminfo_node(struct sysinfo *val, int nid);
1429
1430 extern __printf(3, 4)
1431 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1432
1433 extern void setup_per_cpu_pageset(void);
1434
1435 extern void zone_pcp_update(struct zone *zone);
1436 extern void zone_pcp_reset(struct zone *zone);
1437
1438 /* page_alloc.c */
1439 extern int min_free_kbytes;
1440
1441 /* nommu.c */
1442 extern atomic_long_t mmap_pages_allocated;
1443 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1444
1445 /* interval_tree.c */
1446 void vma_interval_tree_insert(struct vm_area_struct *node,
1447 struct rb_root *root);
1448 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1449 struct vm_area_struct *prev,
1450 struct rb_root *root);
1451 void vma_interval_tree_remove(struct vm_area_struct *node,
1452 struct rb_root *root);
1453 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1454 unsigned long start, unsigned long last);
1455 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1456 unsigned long start, unsigned long last);
1457
1458 #define vma_interval_tree_foreach(vma, root, start, last) \
1459 for (vma = vma_interval_tree_iter_first(root, start, last); \
1460 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1461
1462 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1463 struct list_head *list)
1464 {
1465 list_add_tail(&vma->shared.nonlinear, list);
1466 }
1467
1468 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1469 struct rb_root *root);
1470 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1471 struct rb_root *root);
1472 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1473 struct rb_root *root, unsigned long start, unsigned long last);
1474 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1475 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1476 #ifdef CONFIG_DEBUG_VM_RB
1477 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1478 #endif
1479
1480 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1481 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1482 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1483
1484 /* mmap.c */
1485 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1486 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1487 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1488 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1489 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1490 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1491 struct mempolicy *, const char __user *);
1492 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1493 extern int split_vma(struct mm_struct *,
1494 struct vm_area_struct *, unsigned long addr, int new_below);
1495 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1496 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1497 struct rb_node **, struct rb_node *);
1498 extern void unlink_file_vma(struct vm_area_struct *);
1499 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1500 unsigned long addr, unsigned long len, pgoff_t pgoff,
1501 bool *need_rmap_locks);
1502 extern void exit_mmap(struct mm_struct *);
1503
1504 extern int mm_take_all_locks(struct mm_struct *mm);
1505 extern void mm_drop_all_locks(struct mm_struct *mm);
1506
1507 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1508 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1509
1510 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1511 extern int install_special_mapping(struct mm_struct *mm,
1512 unsigned long addr, unsigned long len,
1513 unsigned long flags, struct page **pages);
1514
1515 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1516
1517 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1518 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1519 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1520 unsigned long len, unsigned long prot, unsigned long flags,
1521 unsigned long pgoff, unsigned long *populate);
1522 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1523
1524 #ifdef CONFIG_MMU
1525 extern int __mm_populate(unsigned long addr, unsigned long len,
1526 int ignore_errors);
1527 static inline void mm_populate(unsigned long addr, unsigned long len)
1528 {
1529 /* Ignore errors */
1530 (void) __mm_populate(addr, len, 1);
1531 }
1532 #else
1533 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1534 #endif
1535
1536 /* These take the mm semaphore themselves */
1537 extern unsigned long vm_brk(unsigned long, unsigned long);
1538 extern int vm_munmap(unsigned long, size_t);
1539 extern unsigned long vm_mmap(struct file *, unsigned long,
1540 unsigned long, unsigned long,
1541 unsigned long, unsigned long);
1542
1543 struct vm_unmapped_area_info {
1544 #define VM_UNMAPPED_AREA_TOPDOWN 1
1545 unsigned long flags;
1546 unsigned long length;
1547 unsigned long low_limit;
1548 unsigned long high_limit;
1549 unsigned long align_mask;
1550 unsigned long align_offset;
1551 };
1552
1553 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1554 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1555
1556 /*
1557 * Search for an unmapped address range.
1558 *
1559 * We are looking for a range that:
1560 * - does not intersect with any VMA;
1561 * - is contained within the [low_limit, high_limit) interval;
1562 * - is at least the desired size.
1563 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1564 */
1565 static inline unsigned long
1566 vm_unmapped_area(struct vm_unmapped_area_info *info)
1567 {
1568 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1569 return unmapped_area(info);
1570 else
1571 return unmapped_area_topdown(info);
1572 }
1573
1574 /* truncate.c */
1575 extern void truncate_inode_pages(struct address_space *, loff_t);
1576 extern void truncate_inode_pages_range(struct address_space *,
1577 loff_t lstart, loff_t lend);
1578
1579 /* generic vm_area_ops exported for stackable file systems */
1580 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1581 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1582
1583 /* mm/page-writeback.c */
1584 int write_one_page(struct page *page, int wait);
1585 void task_dirty_inc(struct task_struct *tsk);
1586
1587 /* readahead.c */
1588 #define VM_MAX_READAHEAD 128 /* kbytes */
1589 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1590
1591 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1592 pgoff_t offset, unsigned long nr_to_read);
1593
1594 void page_cache_sync_readahead(struct address_space *mapping,
1595 struct file_ra_state *ra,
1596 struct file *filp,
1597 pgoff_t offset,
1598 unsigned long size);
1599
1600 void page_cache_async_readahead(struct address_space *mapping,
1601 struct file_ra_state *ra,
1602 struct file *filp,
1603 struct page *pg,
1604 pgoff_t offset,
1605 unsigned long size);
1606
1607 unsigned long max_sane_readahead(unsigned long nr);
1608 unsigned long ra_submit(struct file_ra_state *ra,
1609 struct address_space *mapping,
1610 struct file *filp);
1611
1612 extern unsigned long stack_guard_gap;
1613 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1614 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1615
1616 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1617 extern int expand_downwards(struct vm_area_struct *vma,
1618 unsigned long address);
1619 #if VM_GROWSUP
1620 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1621 #else
1622 #define expand_upwards(vma, address) (0)
1623 #endif
1624
1625 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1626 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1627 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1628 struct vm_area_struct **pprev);
1629
1630 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1631 NULL if none. Assume start_addr < end_addr. */
1632 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1633 {
1634 struct vm_area_struct * vma = find_vma(mm,start_addr);
1635
1636 if (vma && end_addr <= vma->vm_start)
1637 vma = NULL;
1638 return vma;
1639 }
1640
1641 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
1642 {
1643 unsigned long vm_start = vma->vm_start;
1644
1645 if (vma->vm_flags & VM_GROWSDOWN) {
1646 vm_start -= stack_guard_gap;
1647 if (vm_start > vma->vm_start)
1648 vm_start = 0;
1649 }
1650 return vm_start;
1651 }
1652
1653 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
1654 {
1655 unsigned long vm_end = vma->vm_end;
1656
1657 if (vma->vm_flags & VM_GROWSUP) {
1658 vm_end += stack_guard_gap;
1659 if (vm_end < vma->vm_end)
1660 vm_end = -PAGE_SIZE;
1661 }
1662 return vm_end;
1663 }
1664
1665 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1666 {
1667 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1668 }
1669
1670 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1671 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1672 unsigned long vm_start, unsigned long vm_end)
1673 {
1674 struct vm_area_struct *vma = find_vma(mm, vm_start);
1675
1676 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1677 vma = NULL;
1678
1679 return vma;
1680 }
1681
1682 #ifdef CONFIG_MMU
1683 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1684 #else
1685 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1686 {
1687 return __pgprot(0);
1688 }
1689 #endif
1690
1691 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1692 unsigned long change_prot_numa(struct vm_area_struct *vma,
1693 unsigned long start, unsigned long end);
1694 #endif
1695
1696 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1697 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1698 unsigned long pfn, unsigned long size, pgprot_t);
1699 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1700 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701 unsigned long pfn);
1702 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1703 unsigned long pfn);
1704 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1705
1706
1707 struct page *follow_page_mask(struct vm_area_struct *vma,
1708 unsigned long address, unsigned int foll_flags,
1709 unsigned int *page_mask);
1710
1711 static inline struct page *follow_page(struct vm_area_struct *vma,
1712 unsigned long address, unsigned int foll_flags)
1713 {
1714 unsigned int unused_page_mask;
1715 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1716 }
1717
1718 #define FOLL_WRITE 0x01 /* check pte is writable */
1719 #define FOLL_TOUCH 0x02 /* mark page accessed */
1720 #define FOLL_GET 0x04 /* do get_page on page */
1721 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1722 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1723 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1724 * and return without waiting upon it */
1725 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1726 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1727 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1728 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
1729 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1730 #define FOLL_COW 0x4000 /* internal GUP flag */
1731
1732 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1733 void *data);
1734 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1735 unsigned long size, pte_fn_t fn, void *data);
1736
1737 #ifdef CONFIG_PROC_FS
1738 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1739 #else
1740 static inline void vm_stat_account(struct mm_struct *mm,
1741 unsigned long flags, struct file *file, long pages)
1742 {
1743 mm->total_vm += pages;
1744 }
1745 #endif /* CONFIG_PROC_FS */
1746
1747 #ifdef CONFIG_DEBUG_PAGEALLOC
1748 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1749 #ifdef CONFIG_HIBERNATION
1750 extern bool kernel_page_present(struct page *page);
1751 #endif /* CONFIG_HIBERNATION */
1752 #else
1753 static inline void
1754 kernel_map_pages(struct page *page, int numpages, int enable) {}
1755 #ifdef CONFIG_HIBERNATION
1756 static inline bool kernel_page_present(struct page *page) { return true; }
1757 #endif /* CONFIG_HIBERNATION */
1758 #endif
1759
1760 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1761 #ifdef __HAVE_ARCH_GATE_AREA
1762 int in_gate_area_no_mm(unsigned long addr);
1763 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1764 #else
1765 int in_gate_area_no_mm(unsigned long addr);
1766 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1767 #endif /* __HAVE_ARCH_GATE_AREA */
1768
1769 #ifdef CONFIG_SYSCTL
1770 extern int sysctl_drop_caches;
1771 int drop_caches_sysctl_handler(struct ctl_table *, int,
1772 void __user *, size_t *, loff_t *);
1773 #endif
1774
1775 unsigned long shrink_slab(struct shrink_control *shrink,
1776 unsigned long nr_pages_scanned,
1777 unsigned long lru_pages);
1778 void drop_pagecache(void);
1779
1780 #ifndef CONFIG_MMU
1781 #define randomize_va_space 0
1782 #else
1783 extern int randomize_va_space;
1784 #endif
1785
1786 const char * arch_vma_name(struct vm_area_struct *vma);
1787 void print_vma_addr(char *prefix, unsigned long rip);
1788
1789 void sparse_mem_maps_populate_node(struct page **map_map,
1790 unsigned long pnum_begin,
1791 unsigned long pnum_end,
1792 unsigned long map_count,
1793 int nodeid);
1794
1795 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1796 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1797 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1798 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1799 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1800 void *vmemmap_alloc_block(unsigned long size, int node);
1801 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1802 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1803 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1804 int node);
1805 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1806 void vmemmap_populate_print_last(void);
1807 #ifdef CONFIG_MEMORY_HOTPLUG
1808 void vmemmap_free(unsigned long start, unsigned long end);
1809 #endif
1810 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1811 unsigned long size);
1812
1813 enum mf_flags {
1814 MF_COUNT_INCREASED = 1 << 0,
1815 MF_ACTION_REQUIRED = 1 << 1,
1816 MF_MUST_KILL = 1 << 2,
1817 };
1818 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1819 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1820 extern int unpoison_memory(unsigned long pfn);
1821 extern int sysctl_memory_failure_early_kill;
1822 extern int sysctl_memory_failure_recovery;
1823 extern void shake_page(struct page *p, int access);
1824 extern atomic_long_t num_poisoned_pages;
1825 extern int soft_offline_page(struct page *page, int flags);
1826
1827 extern void dump_page(struct page *page);
1828
1829 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1830 extern void clear_huge_page(struct page *page,
1831 unsigned long addr,
1832 unsigned int pages_per_huge_page);
1833 extern void copy_user_huge_page(struct page *dst, struct page *src,
1834 unsigned long addr, struct vm_area_struct *vma,
1835 unsigned int pages_per_huge_page);
1836 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1837
1838 #ifdef CONFIG_DEBUG_PAGEALLOC
1839 extern unsigned int _debug_guardpage_minorder;
1840
1841 static inline unsigned int debug_guardpage_minorder(void)
1842 {
1843 return _debug_guardpage_minorder;
1844 }
1845
1846 static inline bool page_is_guard(struct page *page)
1847 {
1848 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1849 }
1850 #else
1851 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1852 static inline bool page_is_guard(struct page *page) { return false; }
1853 #endif /* CONFIG_DEBUG_PAGEALLOC */
1854
1855 #if MAX_NUMNODES > 1
1856 void __init setup_nr_node_ids(void);
1857 #else
1858 static inline void setup_nr_node_ids(void) {}
1859 #endif
1860
1861 #endif /* __KERNEL__ */
1862 #endif /* _LINUX_MM_H */