nlm: Ensure callback code also checks that the files match
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / clocksource.h
1 /* linux/include/linux/clocksource.h
2 *
3 * This file contains the structure definitions for clocksources.
4 *
5 * If you are not a clocksource, or timekeeping code, you should
6 * not be including this file!
7 */
8 #ifndef _LINUX_CLOCKSOURCE_H
9 #define _LINUX_CLOCKSOURCE_H
10
11 #include <linux/types.h>
12 #include <linux/timex.h>
13 #include <linux/time.h>
14 #include <linux/list.h>
15 #include <linux/cache.h>
16 #include <linux/timer.h>
17 #include <linux/init.h>
18 #include <asm/div64.h>
19 #include <asm/io.h>
20
21 /* clocksource cycle base type */
22 typedef u64 cycle_t;
23 struct clocksource;
24
25 #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
26 #include <asm/clocksource.h>
27 #endif
28
29 /**
30 * struct cyclecounter - hardware abstraction for a free running counter
31 * Provides completely state-free accessors to the underlying hardware.
32 * Depending on which hardware it reads, the cycle counter may wrap
33 * around quickly. Locking rules (if necessary) have to be defined
34 * by the implementor and user of specific instances of this API.
35 *
36 * @read: returns the current cycle value
37 * @mask: bitmask for two's complement
38 * subtraction of non 64 bit counters,
39 * see CLOCKSOURCE_MASK() helper macro
40 * @mult: cycle to nanosecond multiplier
41 * @shift: cycle to nanosecond divisor (power of two)
42 */
43 struct cyclecounter {
44 cycle_t (*read)(const struct cyclecounter *cc);
45 cycle_t mask;
46 u32 mult;
47 u32 shift;
48 };
49
50 /**
51 * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
52 * Contains the state needed by timecounter_read() to detect
53 * cycle counter wrap around. Initialize with
54 * timecounter_init(). Also used to convert cycle counts into the
55 * corresponding nanosecond counts with timecounter_cyc2time(). Users
56 * of this code are responsible for initializing the underlying
57 * cycle counter hardware, locking issues and reading the time
58 * more often than the cycle counter wraps around. The nanosecond
59 * counter will only wrap around after ~585 years.
60 *
61 * @cc: the cycle counter used by this instance
62 * @cycle_last: most recent cycle counter value seen by
63 * timecounter_read()
64 * @nsec: continuously increasing count
65 */
66 struct timecounter {
67 const struct cyclecounter *cc;
68 cycle_t cycle_last;
69 u64 nsec;
70 };
71
72 /**
73 * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
74 * @cc: Pointer to cycle counter.
75 * @cycles: Cycles
76 *
77 * XXX - This could use some mult_lxl_ll() asm optimization. Same code
78 * as in cyc2ns, but with unsigned result.
79 */
80 static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
81 cycle_t cycles)
82 {
83 u64 ret = (u64)cycles;
84 ret = (ret * cc->mult) >> cc->shift;
85 return ret;
86 }
87
88 /**
89 * timecounter_init - initialize a time counter
90 * @tc: Pointer to time counter which is to be initialized/reset
91 * @cc: A cycle counter, ready to be used.
92 * @start_tstamp: Arbitrary initial time stamp.
93 *
94 * After this call the current cycle register (roughly) corresponds to
95 * the initial time stamp. Every call to timecounter_read() increments
96 * the time stamp counter by the number of elapsed nanoseconds.
97 */
98 extern void timecounter_init(struct timecounter *tc,
99 const struct cyclecounter *cc,
100 u64 start_tstamp);
101
102 /**
103 * timecounter_read - return nanoseconds elapsed since timecounter_init()
104 * plus the initial time stamp
105 * @tc: Pointer to time counter.
106 *
107 * In other words, keeps track of time since the same epoch as
108 * the function which generated the initial time stamp.
109 */
110 extern u64 timecounter_read(struct timecounter *tc);
111
112 /**
113 * timecounter_cyc2time - convert a cycle counter to same
114 * time base as values returned by
115 * timecounter_read()
116 * @tc: Pointer to time counter.
117 * @cycle_tstamp: a value returned by tc->cc->read()
118 *
119 * Cycle counts that are converted correctly as long as they
120 * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
121 * with "max cycle count" == cs->mask+1.
122 *
123 * This allows conversion of cycle counter values which were generated
124 * in the past.
125 */
126 extern u64 timecounter_cyc2time(struct timecounter *tc,
127 cycle_t cycle_tstamp);
128
129 /**
130 * struct clocksource - hardware abstraction for a free running counter
131 * Provides mostly state-free accessors to the underlying hardware.
132 * This is the structure used for system time.
133 *
134 * @name: ptr to clocksource name
135 * @list: list head for registration
136 * @rating: rating value for selection (higher is better)
137 * To avoid rating inflation the following
138 * list should give you a guide as to how
139 * to assign your clocksource a rating
140 * 1-99: Unfit for real use
141 * Only available for bootup and testing purposes.
142 * 100-199: Base level usability.
143 * Functional for real use, but not desired.
144 * 200-299: Good.
145 * A correct and usable clocksource.
146 * 300-399: Desired.
147 * A reasonably fast and accurate clocksource.
148 * 400-499: Perfect
149 * The ideal clocksource. A must-use where
150 * available.
151 * @read: returns a cycle value, passes clocksource as argument
152 * @enable: optional function to enable the clocksource
153 * @disable: optional function to disable the clocksource
154 * @mask: bitmask for two's complement
155 * subtraction of non 64 bit counters
156 * @mult: cycle to nanosecond multiplier
157 * @shift: cycle to nanosecond divisor (power of two)
158 * @max_idle_ns: max idle time permitted by the clocksource (nsecs)
159 * @maxadj: maximum adjustment value to mult (~11%)
160 * @flags: flags describing special properties
161 * @archdata: arch-specific data
162 * @suspend: suspend function for the clocksource, if necessary
163 * @resume: resume function for the clocksource, if necessary
164 * @cycle_last: most recent cycle counter value seen by ::read()
165 */
166 struct clocksource {
167 /*
168 * Hotpath data, fits in a single cache line when the
169 * clocksource itself is cacheline aligned.
170 */
171 cycle_t (*read)(struct clocksource *cs);
172 cycle_t cycle_last;
173 cycle_t mask;
174 u32 mult;
175 u32 shift;
176 u64 max_idle_ns;
177 u32 maxadj;
178 #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
179 struct arch_clocksource_data archdata;
180 #endif
181
182 const char *name;
183 struct list_head list;
184 int rating;
185 int (*enable)(struct clocksource *cs);
186 void (*disable)(struct clocksource *cs);
187 unsigned long flags;
188 void (*suspend)(struct clocksource *cs);
189 void (*resume)(struct clocksource *cs);
190
191 /* private: */
192 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
193 /* Watchdog related data, used by the framework */
194 struct list_head wd_list;
195 cycle_t cs_last;
196 cycle_t wd_last;
197 #endif
198 } ____cacheline_aligned;
199
200 /*
201 * Clock source flags bits::
202 */
203 #define CLOCK_SOURCE_IS_CONTINUOUS 0x01
204 #define CLOCK_SOURCE_MUST_VERIFY 0x02
205
206 #define CLOCK_SOURCE_WATCHDOG 0x10
207 #define CLOCK_SOURCE_VALID_FOR_HRES 0x20
208 #define CLOCK_SOURCE_UNSTABLE 0x40
209 #define CLOCK_SOURCE_SUSPEND_NONSTOP 0x80
210
211 /* simplify initialization of mask field */
212 #define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)
213
214 /**
215 * clocksource_khz2mult - calculates mult from khz and shift
216 * @khz: Clocksource frequency in KHz
217 * @shift_constant: Clocksource shift factor
218 *
219 * Helper functions that converts a khz counter frequency to a timsource
220 * multiplier, given the clocksource shift value
221 */
222 static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
223 {
224 /* khz = cyc/(Million ns)
225 * mult/2^shift = ns/cyc
226 * mult = ns/cyc * 2^shift
227 * mult = 1Million/khz * 2^shift
228 * mult = 1000000 * 2^shift / khz
229 * mult = (1000000<<shift) / khz
230 */
231 u64 tmp = ((u64)1000000) << shift_constant;
232
233 tmp += khz/2; /* round for do_div */
234 do_div(tmp, khz);
235
236 return (u32)tmp;
237 }
238
239 /**
240 * clocksource_hz2mult - calculates mult from hz and shift
241 * @hz: Clocksource frequency in Hz
242 * @shift_constant: Clocksource shift factor
243 *
244 * Helper functions that converts a hz counter
245 * frequency to a timsource multiplier, given the
246 * clocksource shift value
247 */
248 static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
249 {
250 /* hz = cyc/(Billion ns)
251 * mult/2^shift = ns/cyc
252 * mult = ns/cyc * 2^shift
253 * mult = 1Billion/hz * 2^shift
254 * mult = 1000000000 * 2^shift / hz
255 * mult = (1000000000<<shift) / hz
256 */
257 u64 tmp = ((u64)1000000000) << shift_constant;
258
259 tmp += hz/2; /* round for do_div */
260 do_div(tmp, hz);
261
262 return (u32)tmp;
263 }
264
265 /**
266 * clocksource_cyc2ns - converts clocksource cycles to nanoseconds
267 * @cycles: cycles
268 * @mult: cycle to nanosecond multiplier
269 * @shift: cycle to nanosecond divisor (power of two)
270 *
271 * Converts cycles to nanoseconds, using the given mult and shift.
272 *
273 * XXX - This could use some mult_lxl_ll() asm optimization
274 */
275 static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
276 {
277 return ((u64) cycles * mult) >> shift;
278 }
279
280
281 extern int clocksource_register(struct clocksource*);
282 extern void clocksource_unregister(struct clocksource*);
283 extern void clocksource_touch_watchdog(void);
284 extern struct clocksource* clocksource_get_next(void);
285 extern void clocksource_change_rating(struct clocksource *cs, int rating);
286 extern void clocksource_suspend(void);
287 extern void clocksource_resume(void);
288 extern struct clocksource * __init clocksource_default_clock(void);
289 extern void clocksource_mark_unstable(struct clocksource *cs);
290
291 extern void
292 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
293
294 /*
295 * Don't call __clocksource_register_scale directly, use
296 * clocksource_register_hz/khz
297 */
298 extern int
299 __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
300 extern void
301 __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq);
302
303 static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
304 {
305 return __clocksource_register_scale(cs, 1, hz);
306 }
307
308 static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
309 {
310 return __clocksource_register_scale(cs, 1000, khz);
311 }
312
313 static inline void __clocksource_updatefreq_hz(struct clocksource *cs, u32 hz)
314 {
315 __clocksource_updatefreq_scale(cs, 1, hz);
316 }
317
318 static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
319 {
320 __clocksource_updatefreq_scale(cs, 1000, khz);
321 }
322
323
324 extern void timekeeping_notify(struct clocksource *clock);
325
326 extern cycle_t clocksource_mmio_readl_up(struct clocksource *);
327 extern cycle_t clocksource_mmio_readl_down(struct clocksource *);
328 extern cycle_t clocksource_mmio_readw_up(struct clocksource *);
329 extern cycle_t clocksource_mmio_readw_down(struct clocksource *);
330
331 extern int clocksource_mmio_init(void __iomem *, const char *,
332 unsigned long, int, unsigned, cycle_t (*)(struct clocksource *));
333
334 extern int clocksource_i8253_init(void);
335
336 struct device_node;
337 typedef void(*clocksource_of_init_fn)(struct device_node *);
338 #ifdef CONFIG_CLKSRC_OF
339 extern void clocksource_of_init(void);
340
341 #define CLOCKSOURCE_OF_DECLARE(name, compat, fn) \
342 static const struct of_device_id __clksrc_of_table_##name \
343 __used __section(__clksrc_of_table) \
344 = { .compatible = compat, \
345 .data = (fn == (clocksource_of_init_fn)NULL) ? fn : fn }
346 #else
347 static inline void clocksource_of_init(void) {}
348 #define CLOCKSOURCE_OF_DECLARE(name, compat, fn) \
349 static const struct of_device_id __clksrc_of_table_##name \
350 __attribute__((unused)) \
351 = { .compatible = compat, \
352 .data = (fn == (clocksource_of_init_fn)NULL) ? fn : fn }
353 #endif
354
355 #endif /* _LINUX_CLOCKSOURCE_H */