Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemoen...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-x86 / spinlock.h
1 #ifndef _X86_SPINLOCK_H_
2 #define _X86_SPINLOCK_H_
3
4 #include <asm/atomic.h>
5 #include <asm/rwlock.h>
6 #include <asm/page.h>
7 #include <asm/processor.h>
8 #include <linux/compiler.h>
9
10 /*
11 * Your basic SMP spinlocks, allowing only a single CPU anywhere
12 *
13 * Simple spin lock operations. There are two variants, one clears IRQ's
14 * on the local processor, one does not.
15 *
16 * These are fair FIFO ticket locks, which are currently limited to 256
17 * CPUs.
18 *
19 * (the type definitions are in asm/spinlock_types.h)
20 */
21
22 #ifdef CONFIG_X86_32
23 typedef char _slock_t;
24 # define LOCK_INS_DEC "decb"
25 # define LOCK_INS_XCH "xchgb"
26 # define LOCK_INS_MOV "movb"
27 # define LOCK_INS_CMP "cmpb"
28 # define LOCK_PTR_REG "a"
29 #else
30 typedef int _slock_t;
31 # define LOCK_INS_DEC "decl"
32 # define LOCK_INS_XCH "xchgl"
33 # define LOCK_INS_MOV "movl"
34 # define LOCK_INS_CMP "cmpl"
35 # define LOCK_PTR_REG "D"
36 #endif
37
38 #if defined(CONFIG_X86_32) && \
39 (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
40 /*
41 * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
42 * (PPro errata 66, 92)
43 */
44 # define UNLOCK_LOCK_PREFIX LOCK_PREFIX
45 #else
46 # define UNLOCK_LOCK_PREFIX
47 #endif
48
49 /*
50 * Ticket locks are conceptually two parts, one indicating the current head of
51 * the queue, and the other indicating the current tail. The lock is acquired
52 * by atomically noting the tail and incrementing it by one (thus adding
53 * ourself to the queue and noting our position), then waiting until the head
54 * becomes equal to the the initial value of the tail.
55 *
56 * We use an xadd covering *both* parts of the lock, to increment the tail and
57 * also load the position of the head, which takes care of memory ordering
58 * issues and should be optimal for the uncontended case. Note the tail must be
59 * in the high part, because a wide xadd increment of the low part would carry
60 * up and contaminate the high part.
61 *
62 * With fewer than 2^8 possible CPUs, we can use x86's partial registers to
63 * save some instructions and make the code more elegant. There really isn't
64 * much between them in performance though, especially as locks are out of line.
65 */
66 #if (NR_CPUS < 256)
67 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
68 {
69 int tmp = *(volatile signed int *)(&(lock)->slock);
70
71 return (((tmp >> 8) & 0xff) != (tmp & 0xff));
72 }
73
74 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
75 {
76 int tmp = *(volatile signed int *)(&(lock)->slock);
77
78 return (((tmp >> 8) & 0xff) - (tmp & 0xff)) > 1;
79 }
80
81 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
82 {
83 short inc = 0x0100;
84
85 asm volatile (
86 LOCK_PREFIX "xaddw %w0, %1\n"
87 "1:\t"
88 "cmpb %h0, %b0\n\t"
89 "je 2f\n\t"
90 "rep ; nop\n\t"
91 "movb %1, %b0\n\t"
92 /* don't need lfence here, because loads are in-order */
93 "jmp 1b\n"
94 "2:"
95 : "+Q" (inc), "+m" (lock->slock)
96 :
97 : "memory", "cc");
98 }
99
100 #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock)
101
102 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
103 {
104 int tmp;
105 short new;
106
107 asm volatile("movw %2,%w0\n\t"
108 "cmpb %h0,%b0\n\t"
109 "jne 1f\n\t"
110 "movw %w0,%w1\n\t"
111 "incb %h1\n\t"
112 "lock ; cmpxchgw %w1,%2\n\t"
113 "1:"
114 "sete %b1\n\t"
115 "movzbl %b1,%0\n\t"
116 : "=&a" (tmp), "=Q" (new), "+m" (lock->slock)
117 :
118 : "memory", "cc");
119
120 return tmp;
121 }
122
123 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
124 {
125 asm volatile(UNLOCK_LOCK_PREFIX "incb %0"
126 : "+m" (lock->slock)
127 :
128 : "memory", "cc");
129 }
130 #else
131 static inline int __raw_spin_is_locked(raw_spinlock_t *lock)
132 {
133 int tmp = *(volatile signed int *)(&(lock)->slock);
134
135 return (((tmp >> 16) & 0xffff) != (tmp & 0xffff));
136 }
137
138 static inline int __raw_spin_is_contended(raw_spinlock_t *lock)
139 {
140 int tmp = *(volatile signed int *)(&(lock)->slock);
141
142 return (((tmp >> 16) & 0xffff) - (tmp & 0xffff)) > 1;
143 }
144
145 static __always_inline void __raw_spin_lock(raw_spinlock_t *lock)
146 {
147 int inc = 0x00010000;
148 int tmp;
149
150 asm volatile("lock ; xaddl %0, %1\n"
151 "movzwl %w0, %2\n\t"
152 "shrl $16, %0\n\t"
153 "1:\t"
154 "cmpl %0, %2\n\t"
155 "je 2f\n\t"
156 "rep ; nop\n\t"
157 "movzwl %1, %2\n\t"
158 /* don't need lfence here, because loads are in-order */
159 "jmp 1b\n"
160 "2:"
161 : "+Q" (inc), "+m" (lock->slock), "=r" (tmp)
162 :
163 : "memory", "cc");
164 }
165
166 #define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock)
167
168 static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock)
169 {
170 int tmp;
171 int new;
172
173 asm volatile("movl %2,%0\n\t"
174 "movl %0,%1\n\t"
175 "roll $16, %0\n\t"
176 "cmpl %0,%1\n\t"
177 "jne 1f\n\t"
178 "addl $0x00010000, %1\n\t"
179 "lock ; cmpxchgl %1,%2\n\t"
180 "1:"
181 "sete %b1\n\t"
182 "movzbl %b1,%0\n\t"
183 : "=&a" (tmp), "=r" (new), "+m" (lock->slock)
184 :
185 : "memory", "cc");
186
187 return tmp;
188 }
189
190 static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock)
191 {
192 asm volatile(UNLOCK_LOCK_PREFIX "incw %0"
193 : "+m" (lock->slock)
194 :
195 : "memory", "cc");
196 }
197 #endif
198
199 static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock)
200 {
201 while (__raw_spin_is_locked(lock))
202 cpu_relax();
203 }
204
205 /*
206 * Read-write spinlocks, allowing multiple readers
207 * but only one writer.
208 *
209 * NOTE! it is quite common to have readers in interrupts
210 * but no interrupt writers. For those circumstances we
211 * can "mix" irq-safe locks - any writer needs to get a
212 * irq-safe write-lock, but readers can get non-irqsafe
213 * read-locks.
214 *
215 * On x86, we implement read-write locks as a 32-bit counter
216 * with the high bit (sign) being the "contended" bit.
217 */
218
219 /**
220 * read_can_lock - would read_trylock() succeed?
221 * @lock: the rwlock in question.
222 */
223 static inline int __raw_read_can_lock(raw_rwlock_t *lock)
224 {
225 return (int)(lock)->lock > 0;
226 }
227
228 /**
229 * write_can_lock - would write_trylock() succeed?
230 * @lock: the rwlock in question.
231 */
232 static inline int __raw_write_can_lock(raw_rwlock_t *lock)
233 {
234 return (lock)->lock == RW_LOCK_BIAS;
235 }
236
237 static inline void __raw_read_lock(raw_rwlock_t *rw)
238 {
239 asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t"
240 "jns 1f\n"
241 "call __read_lock_failed\n\t"
242 "1:\n"
243 ::LOCK_PTR_REG (rw) : "memory");
244 }
245
246 static inline void __raw_write_lock(raw_rwlock_t *rw)
247 {
248 asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t"
249 "jz 1f\n"
250 "call __write_lock_failed\n\t"
251 "1:\n"
252 ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory");
253 }
254
255 static inline int __raw_read_trylock(raw_rwlock_t *lock)
256 {
257 atomic_t *count = (atomic_t *)lock;
258
259 atomic_dec(count);
260 if (atomic_read(count) >= 0)
261 return 1;
262 atomic_inc(count);
263 return 0;
264 }
265
266 static inline int __raw_write_trylock(raw_rwlock_t *lock)
267 {
268 atomic_t *count = (atomic_t *)lock;
269
270 if (atomic_sub_and_test(RW_LOCK_BIAS, count))
271 return 1;
272 atomic_add(RW_LOCK_BIAS, count);
273 return 0;
274 }
275
276 static inline void __raw_read_unlock(raw_rwlock_t *rw)
277 {
278 asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory");
279 }
280
281 static inline void __raw_write_unlock(raw_rwlock_t *rw)
282 {
283 asm volatile(LOCK_PREFIX "addl %1, %0"
284 : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory");
285 }
286
287 #define _raw_spin_relax(lock) cpu_relax()
288 #define _raw_read_relax(lock) cpu_relax()
289 #define _raw_write_relax(lock) cpu_relax()
290
291 #endif