Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-um / pgtable.h
1 /*
2 * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10
11 #include "linux/sched.h"
12 #include "linux/linkage.h"
13 #include "asm/processor.h"
14 #include "asm/page.h"
15 #include "asm/fixmap.h"
16
17 #define _PAGE_PRESENT 0x001
18 #define _PAGE_NEWPAGE 0x002
19 #define _PAGE_NEWPROT 0x004
20 #define _PAGE_FILE 0x008 /* set:pagecache unset:swap */
21 #define _PAGE_PROTNONE 0x010 /* If not present */
22 #define _PAGE_RW 0x020
23 #define _PAGE_USER 0x040
24 #define _PAGE_ACCESSED 0x080
25 #define _PAGE_DIRTY 0x100
26
27 #ifdef CONFIG_3_LEVEL_PGTABLES
28 #include "asm/pgtable-3level.h"
29 #else
30 #include "asm/pgtable-2level.h"
31 #endif
32
33 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
34
35 extern void *um_virt_to_phys(struct task_struct *task, unsigned long virt,
36 pte_t *pte_out);
37
38 /* zero page used for uninitialized stuff */
39 extern unsigned long *empty_zero_page;
40
41 #define pgtable_cache_init() do ; while (0)
42
43 /*
44 * pgd entries used up by user/kernel:
45 */
46
47 #define USER_PGD_PTRS (TASK_SIZE >> PGDIR_SHIFT)
48 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
49
50 #ifndef __ASSEMBLY__
51 /* Just any arbitrary offset to the start of the vmalloc VM area: the
52 * current 8MB value just means that there will be a 8MB "hole" after the
53 * physical memory until the kernel virtual memory starts. That means that
54 * any out-of-bounds memory accesses will hopefully be caught.
55 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
56 * area for the same reason. ;)
57 */
58
59 extern unsigned long end_iomem;
60
61 #define VMALLOC_OFFSET (__va_space)
62 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
63
64 #ifdef CONFIG_HIGHMEM
65 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
66 #else
67 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
68 #endif
69
70 #define REGION_SHIFT (sizeof(pte_t) * 8 - 4)
71 #define REGION_MASK (((unsigned long) 0xf) << REGION_SHIFT)
72
73 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
74 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
75 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
76
77 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
78 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
79 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
80 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
81 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
82 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
83
84 /*
85 * The i386 can't do page protection for execute, and considers that the same are read.
86 * Also, write permissions imply read permissions. This is the closest we can get..
87 */
88 #define __P000 PAGE_NONE
89 #define __P001 PAGE_READONLY
90 #define __P010 PAGE_COPY
91 #define __P011 PAGE_COPY
92 #define __P100 PAGE_READONLY
93 #define __P101 PAGE_READONLY
94 #define __P110 PAGE_COPY
95 #define __P111 PAGE_COPY
96
97 #define __S000 PAGE_NONE
98 #define __S001 PAGE_READONLY
99 #define __S010 PAGE_SHARED
100 #define __S011 PAGE_SHARED
101 #define __S100 PAGE_READONLY
102 #define __S101 PAGE_READONLY
103 #define __S110 PAGE_SHARED
104 #define __S111 PAGE_SHARED
105
106 /*
107 * Define this if things work differently on an i386 and an i486:
108 * it will (on an i486) warn about kernel memory accesses that are
109 * done without a 'verify_area(VERIFY_WRITE,..)'
110 */
111 #undef TEST_VERIFY_AREA
112
113 /* page table for 0-4MB for everybody */
114 extern unsigned long pg0[1024];
115
116 /*
117 * BAD_PAGETABLE is used when we need a bogus page-table, while
118 * BAD_PAGE is used for a bogus page.
119 *
120 * ZERO_PAGE is a global shared page that is always zero: used
121 * for zero-mapped memory areas etc..
122 */
123 extern pte_t __bad_page(void);
124 extern pte_t * __bad_pagetable(void);
125
126 #define BAD_PAGETABLE __bad_pagetable()
127 #define BAD_PAGE __bad_page()
128
129 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
130
131 /* number of bits that fit into a memory pointer */
132 #define BITS_PER_PTR (8*sizeof(unsigned long))
133
134 /* to align the pointer to a pointer address */
135 #define PTR_MASK (~(sizeof(void*)-1))
136
137 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
138 /* 64-bit machines, beware! SRB. */
139 #define SIZEOF_PTR_LOG2 3
140
141 /* to find an entry in a page-table */
142 #define PAGE_PTR(address) \
143 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
144
145 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
146
147 #define pmd_none(x) (!(pmd_val(x) & ~_PAGE_NEWPAGE))
148 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
149 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
150 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
151
152 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
153 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
154
155 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
156 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
157
158 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
159
160 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
161
162 #define pte_address(x) (__va(pte_val(x) & PAGE_MASK))
163 #define mk_phys(a, r) ((a) + (((unsigned long) r) << REGION_SHIFT))
164 #define phys_addr(p) ((p) & ~REGION_MASK)
165
166 /*
167 * The following only work if pte_present() is true.
168 * Undefined behaviour if not..
169 */
170 static inline int pte_user(pte_t pte)
171 {
172 return((pte_get_bits(pte, _PAGE_USER)) &&
173 !(pte_get_bits(pte, _PAGE_PROTNONE)));
174 }
175
176 static inline int pte_read(pte_t pte)
177 {
178 return((pte_get_bits(pte, _PAGE_USER)) &&
179 !(pte_get_bits(pte, _PAGE_PROTNONE)));
180 }
181
182 static inline int pte_exec(pte_t pte){
183 return((pte_get_bits(pte, _PAGE_USER)) &&
184 !(pte_get_bits(pte, _PAGE_PROTNONE)));
185 }
186
187 static inline int pte_write(pte_t pte)
188 {
189 return((pte_get_bits(pte, _PAGE_RW)) &&
190 !(pte_get_bits(pte, _PAGE_PROTNONE)));
191 }
192
193 /*
194 * The following only works if pte_present() is not true.
195 */
196 static inline int pte_file(pte_t pte)
197 {
198 return pte_get_bits(pte, _PAGE_FILE);
199 }
200
201 static inline int pte_dirty(pte_t pte)
202 {
203 return pte_get_bits(pte, _PAGE_DIRTY);
204 }
205
206 static inline int pte_young(pte_t pte)
207 {
208 return pte_get_bits(pte, _PAGE_ACCESSED);
209 }
210
211 static inline int pte_newpage(pte_t pte)
212 {
213 return pte_get_bits(pte, _PAGE_NEWPAGE);
214 }
215
216 static inline int pte_newprot(pte_t pte)
217 {
218 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
219 }
220
221 static inline pte_t pte_rdprotect(pte_t pte)
222 {
223 pte_clear_bits(pte, _PAGE_USER);
224 return(pte_mknewprot(pte));
225 }
226
227 static inline pte_t pte_exprotect(pte_t pte)
228 {
229 pte_clear_bits(pte, _PAGE_USER);
230 return(pte_mknewprot(pte));
231 }
232
233 static inline pte_t pte_mkclean(pte_t pte)
234 {
235 pte_clear_bits(pte, _PAGE_DIRTY);
236 return(pte);
237 }
238
239 static inline pte_t pte_mkold(pte_t pte)
240 {
241 pte_clear_bits(pte, _PAGE_ACCESSED);
242 return(pte);
243 }
244
245 static inline pte_t pte_wrprotect(pte_t pte)
246 {
247 pte_clear_bits(pte, _PAGE_RW);
248 return(pte_mknewprot(pte));
249 }
250
251 static inline pte_t pte_mkread(pte_t pte)
252 {
253 pte_set_bits(pte, _PAGE_RW);
254 return(pte_mknewprot(pte));
255 }
256
257 static inline pte_t pte_mkexec(pte_t pte)
258 {
259 pte_set_bits(pte, _PAGE_USER);
260 return(pte_mknewprot(pte));
261 }
262
263 static inline pte_t pte_mkdirty(pte_t pte)
264 {
265 pte_set_bits(pte, _PAGE_DIRTY);
266 return(pte);
267 }
268
269 static inline pte_t pte_mkyoung(pte_t pte)
270 {
271 pte_set_bits(pte, _PAGE_ACCESSED);
272 return(pte);
273 }
274
275 static inline pte_t pte_mkwrite(pte_t pte)
276 {
277 pte_set_bits(pte, _PAGE_RW);
278 return(pte_mknewprot(pte));
279 }
280
281 static inline pte_t pte_mkuptodate(pte_t pte)
282 {
283 pte_clear_bits(pte, _PAGE_NEWPAGE);
284 if(pte_present(pte))
285 pte_clear_bits(pte, _PAGE_NEWPROT);
286 return(pte);
287 }
288
289 extern phys_t page_to_phys(struct page *page);
290
291 /*
292 * Conversion functions: convert a page and protection to a page entry,
293 * and a page entry and page directory to the page they refer to.
294 */
295
296 extern pte_t mk_pte(struct page *page, pgprot_t pgprot);
297
298 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
299 {
300 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
301 if(pte_present(pte)) pte = pte_mknewpage(pte_mknewprot(pte));
302 return pte;
303 }
304
305 #define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
306
307 /*
308 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
309 *
310 * this macro returns the index of the entry in the pgd page which would
311 * control the given virtual address
312 */
313 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
314
315 #define pgd_index_k(addr) pgd_index(addr)
316
317 /*
318 * pgd_offset() returns a (pgd_t *)
319 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
320 */
321 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
322
323 /*
324 * a shortcut which implies the use of the kernel's pgd, instead
325 * of a process's
326 */
327 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
328
329 /*
330 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
331 *
332 * this macro returns the index of the entry in the pmd page which would
333 * control the given virtual address
334 */
335 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
336
337 /*
338 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
339 *
340 * this macro returns the index of the entry in the pte page which would
341 * control the given virtual address
342 */
343 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
344 #define pte_offset_kernel(dir, address) \
345 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
346 #define pte_offset_map(dir, address) \
347 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
348 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
349 #define pte_unmap(pte) do { } while (0)
350 #define pte_unmap_nested(pte) do { } while (0)
351
352 #define update_mmu_cache(vma,address,pte) do ; while (0)
353
354 /* Encode and de-code a swap entry */
355 #define __swp_type(x) (((x).val >> 4) & 0x3f)
356 #define __swp_offset(x) ((x).val >> 11)
357
358 #define __swp_entry(type, offset) \
359 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
360 #define __pte_to_swp_entry(pte) \
361 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
362 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
363
364 #define kern_addr_valid(addr) (1)
365
366 #include <asm-generic/pgtable.h>
367
368 #include <asm-generic/pgtable-nopud.h>
369
370 #endif
371 #endif
372
373 extern struct page *phys_to_page(const unsigned long phys);
374 extern struct page *__virt_to_page(const unsigned long virt);
375 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
376
377 /*
378 * Overrides for Emacs so that we follow Linus's tabbing style.
379 * Emacs will notice this stuff at the end of the file and automatically
380 * adjust the settings for this buffer only. This must remain at the end
381 * of the file.
382 * ---------------------------------------------------------------------------
383 * Local variables:
384 * c-file-style: "linux"
385 * End:
386 */