Merge tag 'pci-v3.10-fixes-3' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_log_recover.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2_priv.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
56
57 STATIC int
58 xlog_find_zeroed(
59 struct xlog *,
60 xfs_daddr_t *);
61 STATIC int
62 xlog_clear_stale_blocks(
63 struct xlog *,
64 xfs_lsn_t);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_recover_check_summary(
68 struct xlog *);
69 #else
70 #define xlog_recover_check_summary(log)
71 #endif
72
73 /*
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
76 */
77 struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
82 };
83
84 /*
85 * Sector aligned buffer routines for buffer create/read/write/access
86 */
87
88 /*
89 * Verify the given count of basic blocks is valid number of blocks
90 * to specify for an operation involving the given XFS log buffer.
91 * Returns nonzero if the count is valid, 0 otherwise.
92 */
93
94 static inline int
95 xlog_buf_bbcount_valid(
96 struct xlog *log,
97 int bbcount)
98 {
99 return bbcount > 0 && bbcount <= log->l_logBBsize;
100 }
101
102 /*
103 * Allocate a buffer to hold log data. The buffer needs to be able
104 * to map to a range of nbblks basic blocks at any valid (basic
105 * block) offset within the log.
106 */
107 STATIC xfs_buf_t *
108 xlog_get_bp(
109 struct xlog *log,
110 int nbblks)
111 {
112 struct xfs_buf *bp;
113
114 if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 nbblks);
117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 return NULL;
119 }
120
121 /*
122 * We do log I/O in units of log sectors (a power-of-2
123 * multiple of the basic block size), so we round up the
124 * requested size to accommodate the basic blocks required
125 * for complete log sectors.
126 *
127 * In addition, the buffer may be used for a non-sector-
128 * aligned block offset, in which case an I/O of the
129 * requested size could extend beyond the end of the
130 * buffer. If the requested size is only 1 basic block it
131 * will never straddle a sector boundary, so this won't be
132 * an issue. Nor will this be a problem if the log I/O is
133 * done in basic blocks (sector size 1). But otherwise we
134 * extend the buffer by one extra log sector to ensure
135 * there's space to accommodate this possibility.
136 */
137 if (nbblks > 1 && log->l_sectBBsize > 1)
138 nbblks += log->l_sectBBsize;
139 nbblks = round_up(nbblks, log->l_sectBBsize);
140
141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 if (bp)
143 xfs_buf_unlock(bp);
144 return bp;
145 }
146
147 STATIC void
148 xlog_put_bp(
149 xfs_buf_t *bp)
150 {
151 xfs_buf_free(bp);
152 }
153
154 /*
155 * Return the address of the start of the given block number's data
156 * in a log buffer. The buffer covers a log sector-aligned region.
157 */
158 STATIC xfs_caddr_t
159 xlog_align(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 struct xfs_buf *bp)
164 {
165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
166
167 ASSERT(offset + nbblks <= bp->b_length);
168 return bp->b_addr + BBTOB(offset);
169 }
170
171
172 /*
173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
174 */
175 STATIC int
176 xlog_bread_noalign(
177 struct xlog *log,
178 xfs_daddr_t blk_no,
179 int nbblks,
180 struct xfs_buf *bp)
181 {
182 int error;
183
184 if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 nbblks);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 return EFSCORRUPTED;
189 }
190
191 blk_no = round_down(blk_no, log->l_sectBBsize);
192 nbblks = round_up(nbblks, log->l_sectBBsize);
193
194 ASSERT(nbblks > 0);
195 ASSERT(nbblks <= bp->b_length);
196
197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 XFS_BUF_READ(bp);
199 bp->b_io_length = nbblks;
200 bp->b_error = 0;
201
202 xfsbdstrat(log->l_mp, bp);
203 error = xfs_buf_iowait(bp);
204 if (error)
205 xfs_buf_ioerror_alert(bp, __func__);
206 return error;
207 }
208
209 STATIC int
210 xlog_bread(
211 struct xlog *log,
212 xfs_daddr_t blk_no,
213 int nbblks,
214 struct xfs_buf *bp,
215 xfs_caddr_t *offset)
216 {
217 int error;
218
219 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 if (error)
221 return error;
222
223 *offset = xlog_align(log, blk_no, nbblks, bp);
224 return 0;
225 }
226
227 /*
228 * Read at an offset into the buffer. Returns with the buffer in it's original
229 * state regardless of the result of the read.
230 */
231 STATIC int
232 xlog_bread_offset(
233 struct xlog *log,
234 xfs_daddr_t blk_no, /* block to read from */
235 int nbblks, /* blocks to read */
236 struct xfs_buf *bp,
237 xfs_caddr_t offset)
238 {
239 xfs_caddr_t orig_offset = bp->b_addr;
240 int orig_len = BBTOB(bp->b_length);
241 int error, error2;
242
243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
244 if (error)
245 return error;
246
247 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
248
249 /* must reset buffer pointer even on error */
250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
251 if (error)
252 return error;
253 return error2;
254 }
255
256 /*
257 * Write out the buffer at the given block for the given number of blocks.
258 * The buffer is kept locked across the write and is returned locked.
259 * This can only be used for synchronous log writes.
260 */
261 STATIC int
262 xlog_bwrite(
263 struct xlog *log,
264 xfs_daddr_t blk_no,
265 int nbblks,
266 struct xfs_buf *bp)
267 {
268 int error;
269
270 if (!xlog_buf_bbcount_valid(log, nbblks)) {
271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
272 nbblks);
273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
274 return EFSCORRUPTED;
275 }
276
277 blk_no = round_down(blk_no, log->l_sectBBsize);
278 nbblks = round_up(nbblks, log->l_sectBBsize);
279
280 ASSERT(nbblks > 0);
281 ASSERT(nbblks <= bp->b_length);
282
283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 XFS_BUF_ZEROFLAGS(bp);
285 xfs_buf_hold(bp);
286 xfs_buf_lock(bp);
287 bp->b_io_length = nbblks;
288 bp->b_error = 0;
289
290 error = xfs_bwrite(bp);
291 if (error)
292 xfs_buf_ioerror_alert(bp, __func__);
293 xfs_buf_relse(bp);
294 return error;
295 }
296
297 #ifdef DEBUG
298 /*
299 * dump debug superblock and log record information
300 */
301 STATIC void
302 xlog_header_check_dump(
303 xfs_mount_t *mp,
304 xlog_rec_header_t *head)
305 {
306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
310 }
311 #else
312 #define xlog_header_check_dump(mp, head)
313 #endif
314
315 /*
316 * check log record header for recovery
317 */
318 STATIC int
319 xlog_header_check_recover(
320 xfs_mount_t *mp,
321 xlog_rec_header_t *head)
322 {
323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
324
325 /*
326 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 * a dirty log created in IRIX.
329 */
330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
331 xfs_warn(mp,
332 "dirty log written in incompatible format - can't recover");
333 xlog_header_check_dump(mp, head);
334 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 XFS_ERRLEVEL_HIGH, mp);
336 return XFS_ERROR(EFSCORRUPTED);
337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
338 xfs_warn(mp,
339 "dirty log entry has mismatched uuid - can't recover");
340 xlog_header_check_dump(mp, head);
341 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 XFS_ERRLEVEL_HIGH, mp);
343 return XFS_ERROR(EFSCORRUPTED);
344 }
345 return 0;
346 }
347
348 /*
349 * read the head block of the log and check the header
350 */
351 STATIC int
352 xlog_header_check_mount(
353 xfs_mount_t *mp,
354 xlog_rec_header_t *head)
355 {
356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
357
358 if (uuid_is_nil(&head->h_fs_uuid)) {
359 /*
360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 * h_fs_uuid is nil, we assume this log was last mounted
362 * by IRIX and continue.
363 */
364 xfs_warn(mp, "nil uuid in log - IRIX style log");
365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
366 xfs_warn(mp, "log has mismatched uuid - can't recover");
367 xlog_header_check_dump(mp, head);
368 XFS_ERROR_REPORT("xlog_header_check_mount",
369 XFS_ERRLEVEL_HIGH, mp);
370 return XFS_ERROR(EFSCORRUPTED);
371 }
372 return 0;
373 }
374
375 STATIC void
376 xlog_recover_iodone(
377 struct xfs_buf *bp)
378 {
379 if (bp->b_error) {
380 /*
381 * We're not going to bother about retrying
382 * this during recovery. One strike!
383 */
384 xfs_buf_ioerror_alert(bp, __func__);
385 xfs_force_shutdown(bp->b_target->bt_mount,
386 SHUTDOWN_META_IO_ERROR);
387 }
388 bp->b_iodone = NULL;
389 xfs_buf_ioend(bp, 0);
390 }
391
392 /*
393 * This routine finds (to an approximation) the first block in the physical
394 * log which contains the given cycle. It uses a binary search algorithm.
395 * Note that the algorithm can not be perfect because the disk will not
396 * necessarily be perfect.
397 */
398 STATIC int
399 xlog_find_cycle_start(
400 struct xlog *log,
401 struct xfs_buf *bp,
402 xfs_daddr_t first_blk,
403 xfs_daddr_t *last_blk,
404 uint cycle)
405 {
406 xfs_caddr_t offset;
407 xfs_daddr_t mid_blk;
408 xfs_daddr_t end_blk;
409 uint mid_cycle;
410 int error;
411
412 end_blk = *last_blk;
413 mid_blk = BLK_AVG(first_blk, end_blk);
414 while (mid_blk != first_blk && mid_blk != end_blk) {
415 error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 if (error)
417 return error;
418 mid_cycle = xlog_get_cycle(offset);
419 if (mid_cycle == cycle)
420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
421 else
422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 mid_blk = BLK_AVG(first_blk, end_blk);
424 }
425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 (mid_blk == end_blk && mid_blk-1 == first_blk));
427
428 *last_blk = end_blk;
429
430 return 0;
431 }
432
433 /*
434 * Check that a range of blocks does not contain stop_on_cycle_no.
435 * Fill in *new_blk with the block offset where such a block is
436 * found, or with -1 (an invalid block number) if there is no such
437 * block in the range. The scan needs to occur from front to back
438 * and the pointer into the region must be updated since a later
439 * routine will need to perform another test.
440 */
441 STATIC int
442 xlog_find_verify_cycle(
443 struct xlog *log,
444 xfs_daddr_t start_blk,
445 int nbblks,
446 uint stop_on_cycle_no,
447 xfs_daddr_t *new_blk)
448 {
449 xfs_daddr_t i, j;
450 uint cycle;
451 xfs_buf_t *bp;
452 xfs_daddr_t bufblks;
453 xfs_caddr_t buf = NULL;
454 int error = 0;
455
456 /*
457 * Greedily allocate a buffer big enough to handle the full
458 * range of basic blocks we'll be examining. If that fails,
459 * try a smaller size. We need to be able to read at least
460 * a log sector, or we're out of luck.
461 */
462 bufblks = 1 << ffs(nbblks);
463 while (bufblks > log->l_logBBsize)
464 bufblks >>= 1;
465 while (!(bp = xlog_get_bp(log, bufblks))) {
466 bufblks >>= 1;
467 if (bufblks < log->l_sectBBsize)
468 return ENOMEM;
469 }
470
471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 int bcount;
473
474 bcount = min(bufblks, (start_blk + nbblks - i));
475
476 error = xlog_bread(log, i, bcount, bp, &buf);
477 if (error)
478 goto out;
479
480 for (j = 0; j < bcount; j++) {
481 cycle = xlog_get_cycle(buf);
482 if (cycle == stop_on_cycle_no) {
483 *new_blk = i+j;
484 goto out;
485 }
486
487 buf += BBSIZE;
488 }
489 }
490
491 *new_blk = -1;
492
493 out:
494 xlog_put_bp(bp);
495 return error;
496 }
497
498 /*
499 * Potentially backup over partial log record write.
500 *
501 * In the typical case, last_blk is the number of the block directly after
502 * a good log record. Therefore, we subtract one to get the block number
503 * of the last block in the given buffer. extra_bblks contains the number
504 * of blocks we would have read on a previous read. This happens when the
505 * last log record is split over the end of the physical log.
506 *
507 * extra_bblks is the number of blocks potentially verified on a previous
508 * call to this routine.
509 */
510 STATIC int
511 xlog_find_verify_log_record(
512 struct xlog *log,
513 xfs_daddr_t start_blk,
514 xfs_daddr_t *last_blk,
515 int extra_bblks)
516 {
517 xfs_daddr_t i;
518 xfs_buf_t *bp;
519 xfs_caddr_t offset = NULL;
520 xlog_rec_header_t *head = NULL;
521 int error = 0;
522 int smallmem = 0;
523 int num_blks = *last_blk - start_blk;
524 int xhdrs;
525
526 ASSERT(start_blk != 0 || *last_blk != start_blk);
527
528 if (!(bp = xlog_get_bp(log, num_blks))) {
529 if (!(bp = xlog_get_bp(log, 1)))
530 return ENOMEM;
531 smallmem = 1;
532 } else {
533 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 if (error)
535 goto out;
536 offset += ((num_blks - 1) << BBSHIFT);
537 }
538
539 for (i = (*last_blk) - 1; i >= 0; i--) {
540 if (i < start_blk) {
541 /* valid log record not found */
542 xfs_warn(log->l_mp,
543 "Log inconsistent (didn't find previous header)");
544 ASSERT(0);
545 error = XFS_ERROR(EIO);
546 goto out;
547 }
548
549 if (smallmem) {
550 error = xlog_bread(log, i, 1, bp, &offset);
551 if (error)
552 goto out;
553 }
554
555 head = (xlog_rec_header_t *)offset;
556
557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
558 break;
559
560 if (!smallmem)
561 offset -= BBSIZE;
562 }
563
564 /*
565 * We hit the beginning of the physical log & still no header. Return
566 * to caller. If caller can handle a return of -1, then this routine
567 * will be called again for the end of the physical log.
568 */
569 if (i == -1) {
570 error = -1;
571 goto out;
572 }
573
574 /*
575 * We have the final block of the good log (the first block
576 * of the log record _before_ the head. So we check the uuid.
577 */
578 if ((error = xlog_header_check_mount(log->l_mp, head)))
579 goto out;
580
581 /*
582 * We may have found a log record header before we expected one.
583 * last_blk will be the 1st block # with a given cycle #. We may end
584 * up reading an entire log record. In this case, we don't want to
585 * reset last_blk. Only when last_blk points in the middle of a log
586 * record do we update last_blk.
587 */
588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
589 uint h_size = be32_to_cpu(head->h_size);
590
591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 xhdrs++;
594 } else {
595 xhdrs = 1;
596 }
597
598 if (*last_blk - i + extra_bblks !=
599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
600 *last_blk = i;
601
602 out:
603 xlog_put_bp(bp);
604 return error;
605 }
606
607 /*
608 * Head is defined to be the point of the log where the next log write
609 * write could go. This means that incomplete LR writes at the end are
610 * eliminated when calculating the head. We aren't guaranteed that previous
611 * LR have complete transactions. We only know that a cycle number of
612 * current cycle number -1 won't be present in the log if we start writing
613 * from our current block number.
614 *
615 * last_blk contains the block number of the first block with a given
616 * cycle number.
617 *
618 * Return: zero if normal, non-zero if error.
619 */
620 STATIC int
621 xlog_find_head(
622 struct xlog *log,
623 xfs_daddr_t *return_head_blk)
624 {
625 xfs_buf_t *bp;
626 xfs_caddr_t offset;
627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
628 int num_scan_bblks;
629 uint first_half_cycle, last_half_cycle;
630 uint stop_on_cycle;
631 int error, log_bbnum = log->l_logBBsize;
632
633 /* Is the end of the log device zeroed? */
634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 *return_head_blk = first_blk;
636
637 /* Is the whole lot zeroed? */
638 if (!first_blk) {
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
642 */
643 xfs_warn(log->l_mp, "totally zeroed log");
644 }
645
646 return 0;
647 } else if (error) {
648 xfs_warn(log->l_mp, "empty log check failed");
649 return error;
650 }
651
652 first_blk = 0; /* get cycle # of 1st block */
653 bp = xlog_get_bp(log, 1);
654 if (!bp)
655 return ENOMEM;
656
657 error = xlog_bread(log, 0, 1, bp, &offset);
658 if (error)
659 goto bp_err;
660
661 first_half_cycle = xlog_get_cycle(offset);
662
663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
664 error = xlog_bread(log, last_blk, 1, bp, &offset);
665 if (error)
666 goto bp_err;
667
668 last_half_cycle = xlog_get_cycle(offset);
669 ASSERT(last_half_cycle != 0);
670
671 /*
672 * If the 1st half cycle number is equal to the last half cycle number,
673 * then the entire log is stamped with the same cycle number. In this
674 * case, head_blk can't be set to zero (which makes sense). The below
675 * math doesn't work out properly with head_blk equal to zero. Instead,
676 * we set it to log_bbnum which is an invalid block number, but this
677 * value makes the math correct. If head_blk doesn't changed through
678 * all the tests below, *head_blk is set to zero at the very end rather
679 * than log_bbnum. In a sense, log_bbnum and zero are the same block
680 * in a circular file.
681 */
682 if (first_half_cycle == last_half_cycle) {
683 /*
684 * In this case we believe that the entire log should have
685 * cycle number last_half_cycle. We need to scan backwards
686 * from the end verifying that there are no holes still
687 * containing last_half_cycle - 1. If we find such a hole,
688 * then the start of that hole will be the new head. The
689 * simple case looks like
690 * x | x ... | x - 1 | x
691 * Another case that fits this picture would be
692 * x | x + 1 | x ... | x
693 * In this case the head really is somewhere at the end of the
694 * log, as one of the latest writes at the beginning was
695 * incomplete.
696 * One more case is
697 * x | x + 1 | x ... | x - 1 | x
698 * This is really the combination of the above two cases, and
699 * the head has to end up at the start of the x-1 hole at the
700 * end of the log.
701 *
702 * In the 256k log case, we will read from the beginning to the
703 * end of the log and search for cycle numbers equal to x-1.
704 * We don't worry about the x+1 blocks that we encounter,
705 * because we know that they cannot be the head since the log
706 * started with x.
707 */
708 head_blk = log_bbnum;
709 stop_on_cycle = last_half_cycle - 1;
710 } else {
711 /*
712 * In this case we want to find the first block with cycle
713 * number matching last_half_cycle. We expect the log to be
714 * some variation on
715 * x + 1 ... | x ... | x
716 * The first block with cycle number x (last_half_cycle) will
717 * be where the new head belongs. First we do a binary search
718 * for the first occurrence of last_half_cycle. The binary
719 * search may not be totally accurate, so then we scan back
720 * from there looking for occurrences of last_half_cycle before
721 * us. If that backwards scan wraps around the beginning of
722 * the log, then we look for occurrences of last_half_cycle - 1
723 * at the end of the log. The cases we're looking for look
724 * like
725 * v binary search stopped here
726 * x + 1 ... | x | x + 1 | x ... | x
727 * ^ but we want to locate this spot
728 * or
729 * <---------> less than scan distance
730 * x + 1 ... | x ... | x - 1 | x
731 * ^ we want to locate this spot
732 */
733 stop_on_cycle = last_half_cycle;
734 if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 &head_blk, last_half_cycle)))
736 goto bp_err;
737 }
738
739 /*
740 * Now validate the answer. Scan back some number of maximum possible
741 * blocks and make sure each one has the expected cycle number. The
742 * maximum is determined by the total possible amount of buffering
743 * in the in-core log. The following number can be made tighter if
744 * we actually look at the block size of the filesystem.
745 */
746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 if (head_blk >= num_scan_bblks) {
748 /*
749 * We are guaranteed that the entire check can be performed
750 * in one buffer.
751 */
752 start_blk = head_blk - num_scan_bblks;
753 if ((error = xlog_find_verify_cycle(log,
754 start_blk, num_scan_bblks,
755 stop_on_cycle, &new_blk)))
756 goto bp_err;
757 if (new_blk != -1)
758 head_blk = new_blk;
759 } else { /* need to read 2 parts of log */
760 /*
761 * We are going to scan backwards in the log in two parts.
762 * First we scan the physical end of the log. In this part
763 * of the log, we are looking for blocks with cycle number
764 * last_half_cycle - 1.
765 * If we find one, then we know that the log starts there, as
766 * we've found a hole that didn't get written in going around
767 * the end of the physical log. The simple case for this is
768 * x + 1 ... | x ... | x - 1 | x
769 * <---------> less than scan distance
770 * If all of the blocks at the end of the log have cycle number
771 * last_half_cycle, then we check the blocks at the start of
772 * the log looking for occurrences of last_half_cycle. If we
773 * find one, then our current estimate for the location of the
774 * first occurrence of last_half_cycle is wrong and we move
775 * back to the hole we've found. This case looks like
776 * x + 1 ... | x | x + 1 | x ...
777 * ^ binary search stopped here
778 * Another case we need to handle that only occurs in 256k
779 * logs is
780 * x + 1 ... | x ... | x+1 | x ...
781 * ^ binary search stops here
782 * In a 256k log, the scan at the end of the log will see the
783 * x + 1 blocks. We need to skip past those since that is
784 * certainly not the head of the log. By searching for
785 * last_half_cycle-1 we accomplish that.
786 */
787 ASSERT(head_blk <= INT_MAX &&
788 (xfs_daddr_t) num_scan_bblks >= head_blk);
789 start_blk = log_bbnum - (num_scan_bblks - head_blk);
790 if ((error = xlog_find_verify_cycle(log, start_blk,
791 num_scan_bblks - (int)head_blk,
792 (stop_on_cycle - 1), &new_blk)))
793 goto bp_err;
794 if (new_blk != -1) {
795 head_blk = new_blk;
796 goto validate_head;
797 }
798
799 /*
800 * Scan beginning of log now. The last part of the physical
801 * log is good. This scan needs to verify that it doesn't find
802 * the last_half_cycle.
803 */
804 start_blk = 0;
805 ASSERT(head_blk <= INT_MAX);
806 if ((error = xlog_find_verify_cycle(log,
807 start_blk, (int)head_blk,
808 stop_on_cycle, &new_blk)))
809 goto bp_err;
810 if (new_blk != -1)
811 head_blk = new_blk;
812 }
813
814 validate_head:
815 /*
816 * Now we need to make sure head_blk is not pointing to a block in
817 * the middle of a log record.
818 */
819 num_scan_bblks = XLOG_REC_SHIFT(log);
820 if (head_blk >= num_scan_bblks) {
821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
822
823 /* start ptr at last block ptr before head_blk */
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 error = XFS_ERROR(EIO);
827 goto bp_err;
828 } else if (error)
829 goto bp_err;
830 } else {
831 start_blk = 0;
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log, start_blk,
834 &head_blk, 0)) == -1) {
835 /* We hit the beginning of the log during our search */
836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
841 if ((error = xlog_find_verify_log_record(log,
842 start_blk, &new_blk,
843 (int)head_blk)) == -1) {
844 error = XFS_ERROR(EIO);
845 goto bp_err;
846 } else if (error)
847 goto bp_err;
848 if (new_blk != log_bbnum)
849 head_blk = new_blk;
850 } else if (error)
851 goto bp_err;
852 }
853
854 xlog_put_bp(bp);
855 if (head_blk == log_bbnum)
856 *return_head_blk = 0;
857 else
858 *return_head_blk = head_blk;
859 /*
860 * When returning here, we have a good block number. Bad block
861 * means that during a previous crash, we didn't have a clean break
862 * from cycle number N to cycle number N-1. In this case, we need
863 * to find the first block with cycle number N-1.
864 */
865 return 0;
866
867 bp_err:
868 xlog_put_bp(bp);
869
870 if (error)
871 xfs_warn(log->l_mp, "failed to find log head");
872 return error;
873 }
874
875 /*
876 * Find the sync block number or the tail of the log.
877 *
878 * This will be the block number of the last record to have its
879 * associated buffers synced to disk. Every log record header has
880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
881 * to get a sync block number. The only concern is to figure out which
882 * log record header to believe.
883 *
884 * The following algorithm uses the log record header with the largest
885 * lsn. The entire log record does not need to be valid. We only care
886 * that the header is valid.
887 *
888 * We could speed up search by using current head_blk buffer, but it is not
889 * available.
890 */
891 STATIC int
892 xlog_find_tail(
893 struct xlog *log,
894 xfs_daddr_t *head_blk,
895 xfs_daddr_t *tail_blk)
896 {
897 xlog_rec_header_t *rhead;
898 xlog_op_header_t *op_head;
899 xfs_caddr_t offset = NULL;
900 xfs_buf_t *bp;
901 int error, i, found;
902 xfs_daddr_t umount_data_blk;
903 xfs_daddr_t after_umount_blk;
904 xfs_lsn_t tail_lsn;
905 int hblks;
906
907 found = 0;
908
909 /*
910 * Find previous log record
911 */
912 if ((error = xlog_find_head(log, head_blk)))
913 return error;
914
915 bp = xlog_get_bp(log, 1);
916 if (!bp)
917 return ENOMEM;
918 if (*head_blk == 0) { /* special case */
919 error = xlog_bread(log, 0, 1, bp, &offset);
920 if (error)
921 goto done;
922
923 if (xlog_get_cycle(offset) == 0) {
924 *tail_blk = 0;
925 /* leave all other log inited values alone */
926 goto done;
927 }
928 }
929
930 /*
931 * Search backwards looking for log record header block
932 */
933 ASSERT(*head_blk < INT_MAX);
934 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
935 error = xlog_bread(log, i, 1, bp, &offset);
936 if (error)
937 goto done;
938
939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
940 found = 1;
941 break;
942 }
943 }
944 /*
945 * If we haven't found the log record header block, start looking
946 * again from the end of the physical log. XXXmiken: There should be
947 * a check here to make sure we didn't search more than N blocks in
948 * the previous code.
949 */
950 if (!found) {
951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
952 error = xlog_bread(log, i, 1, bp, &offset);
953 if (error)
954 goto done;
955
956 if (*(__be32 *)offset ==
957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
958 found = 2;
959 break;
960 }
961 }
962 }
963 if (!found) {
964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
965 ASSERT(0);
966 return XFS_ERROR(EIO);
967 }
968
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
972
973 /*
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
982 */
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
986 if (found == 2)
987 log->l_curr_cycle++;
988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
991 BBTOB(log->l_curr_block));
992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
993 BBTOB(log->l_curr_block));
994
995 /*
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1000 *
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1005 */
1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1009
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1017 }
1018 } else {
1019 hblks = 1;
1020 }
1021 after_umount_blk = (i + hblks + (int)
1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1024 if (*head_blk == after_umount_blk &&
1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
1029 goto done;
1030
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 /*
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1037 */
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1042 *tail_blk = after_umount_blk;
1043
1044 /*
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1049 */
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1051 }
1052 }
1053
1054 /*
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1059 *
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1062 *
1063 * Do this only if we are going to recover the filesystem
1064 *
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1069 *
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1072 */
1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1075
1076 done:
1077 xlog_put_bp(bp);
1078
1079 if (error)
1080 xfs_warn(log->l_mp, "failed to locate log tail");
1081 return error;
1082 }
1083
1084 /*
1085 * Is the log zeroed at all?
1086 *
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1090 *
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1094 *
1095 * Return:
1096 * 0 => the log is completely written to
1097 * -1 => use *blk_no as the first block of the log
1098 * >0 => error has occurred
1099 */
1100 STATIC int
1101 xlog_find_zeroed(
1102 struct xlog *log,
1103 xfs_daddr_t *blk_no)
1104 {
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1111
1112 *blk_no = 0;
1113
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
1117 return ENOMEM;
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1120 goto bp_err;
1121
1122 first_cycle = xlog_get_cycle(offset);
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
1126 return -1;
1127 }
1128
1129 /* check partially zeroed log */
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1132 goto bp_err;
1133
1134 last_cycle = xlog_get_cycle(offset);
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1139 /*
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1143 */
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
1146 return XFS_ERROR(EINVAL);
1147 }
1148
1149 /* we have a partially zeroed log */
1150 last_blk = log_bbnum-1;
1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1152 goto bp_err;
1153
1154 /*
1155 * Validate the answer. Because there is no way to guarantee that
1156 * the entire log is made up of log records which are the same size,
1157 * we scan over the defined maximum blocks. At this point, the maximum
1158 * is not chosen to mean anything special. XXXmiken
1159 */
1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1161 ASSERT(num_scan_bblks <= INT_MAX);
1162
1163 if (last_blk < num_scan_bblks)
1164 num_scan_bblks = last_blk;
1165 start_blk = last_blk - num_scan_bblks;
1166
1167 /*
1168 * We search for any instances of cycle number 0 that occur before
1169 * our current estimate of the head. What we're trying to detect is
1170 * 1 ... | 0 | 1 | 0...
1171 * ^ binary search ends here
1172 */
1173 if ((error = xlog_find_verify_cycle(log, start_blk,
1174 (int)num_scan_bblks, 0, &new_blk)))
1175 goto bp_err;
1176 if (new_blk != -1)
1177 last_blk = new_blk;
1178
1179 /*
1180 * Potentially backup over partial log record write. We don't need
1181 * to search the end of the log because we know it is zero.
1182 */
1183 if ((error = xlog_find_verify_log_record(log, start_blk,
1184 &last_blk, 0)) == -1) {
1185 error = XFS_ERROR(EIO);
1186 goto bp_err;
1187 } else if (error)
1188 goto bp_err;
1189
1190 *blk_no = last_blk;
1191 bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
1195 return -1;
1196 }
1197
1198 /*
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1202 */
1203 STATIC void
1204 xlog_add_record(
1205 struct xlog *log,
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1211 {
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1213
1214 memset(buf, 0, BBSIZE);
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223 }
1224
1225 STATIC int
1226 xlog_write_log_records(
1227 struct xlog *log,
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1233 {
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
1237 int sectbb = log->l_sectBBsize;
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1242
1243 /*
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1248 */
1249 bufblks = 1 << ffs(blocks);
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
1254 if (bufblks < sectbb)
1255 return ENOMEM;
1256 }
1257
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1261 */
1262 balign = round_down(start_block, sectbb);
1263 if (balign != start_block) {
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1267
1268 j = start_block - balign;
1269 }
1270
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1273
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1276
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1280 */
1281 ealign = round_down(end_block, sectbb);
1282 if (j == 0 && (start_block + endcount > ealign)) {
1283 offset = bp->b_addr + BBTOB(ealign - start_block);
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
1286 if (error)
1287 break;
1288
1289 }
1290
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1296 }
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1302 }
1303
1304 out_put_bp:
1305 xlog_put_bp(bp);
1306 return error;
1307 }
1308
1309 /*
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1318 *
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1324 */
1325 STATIC int
1326 xlog_clear_stale_blocks(
1327 struct xlog *log,
1328 xfs_lsn_t tail_lsn)
1329 {
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1335
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1340
1341 /*
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1346 */
1347 if (head_cycle == tail_cycle) {
1348 /*
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1354 */
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
1358 return XFS_ERROR(EFSCORRUPTED);
1359 }
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1362 /*
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1366 */
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
1370 return XFS_ERROR(EFSCORRUPTED);
1371 }
1372 tail_distance = tail_block - head_block;
1373 }
1374
1375 /*
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1378 */
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1382 }
1383
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 /*
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1391 */
1392 max_distance = MIN(max_distance, tail_distance);
1393
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1395 /*
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1401 */
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1408 /*
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1414 */
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1419
1420 if (error)
1421 return error;
1422
1423 /*
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1430 */
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1436 }
1437
1438 return 0;
1439 }
1440
1441 /******************************************************************************
1442 *
1443 * Log recover routines
1444 *
1445 ******************************************************************************
1446 */
1447
1448 STATIC xlog_recover_t *
1449 xlog_recover_find_tid(
1450 struct hlist_head *head,
1451 xlog_tid_t tid)
1452 {
1453 xlog_recover_t *trans;
1454
1455 hlist_for_each_entry(trans, head, r_list) {
1456 if (trans->r_log_tid == tid)
1457 return trans;
1458 }
1459 return NULL;
1460 }
1461
1462 STATIC void
1463 xlog_recover_new_tid(
1464 struct hlist_head *head,
1465 xlog_tid_t tid,
1466 xfs_lsn_t lsn)
1467 {
1468 xlog_recover_t *trans;
1469
1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 trans->r_log_tid = tid;
1472 trans->r_lsn = lsn;
1473 INIT_LIST_HEAD(&trans->r_itemq);
1474
1475 INIT_HLIST_NODE(&trans->r_list);
1476 hlist_add_head(&trans->r_list, head);
1477 }
1478
1479 STATIC void
1480 xlog_recover_add_item(
1481 struct list_head *head)
1482 {
1483 xlog_recover_item_t *item;
1484
1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1486 INIT_LIST_HEAD(&item->ri_list);
1487 list_add_tail(&item->ri_list, head);
1488 }
1489
1490 STATIC int
1491 xlog_recover_add_to_cont_trans(
1492 struct xlog *log,
1493 struct xlog_recover *trans,
1494 xfs_caddr_t dp,
1495 int len)
1496 {
1497 xlog_recover_item_t *item;
1498 xfs_caddr_t ptr, old_ptr;
1499 int old_len;
1500
1501 if (list_empty(&trans->r_itemq)) {
1502 /* finish copying rest of trans header */
1503 xlog_recover_add_item(&trans->r_itemq);
1504 ptr = (xfs_caddr_t) &trans->r_theader +
1505 sizeof(xfs_trans_header_t) - len;
1506 memcpy(ptr, dp, len); /* d, s, l */
1507 return 0;
1508 }
1509 /* take the tail entry */
1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1511
1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1514
1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 item->ri_buf[item->ri_cnt-1].i_len += len;
1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1520 return 0;
1521 }
1522
1523 /*
1524 * The next region to add is the start of a new region. It could be
1525 * a whole region or it could be the first part of a new region. Because
1526 * of this, the assumption here is that the type and size fields of all
1527 * format structures fit into the first 32 bits of the structure.
1528 *
1529 * This works because all regions must be 32 bit aligned. Therefore, we
1530 * either have both fields or we have neither field. In the case we have
1531 * neither field, the data part of the region is zero length. We only have
1532 * a log_op_header and can throw away the header since a new one will appear
1533 * later. If we have at least 4 bytes, then we can determine how many regions
1534 * will appear in the current log item.
1535 */
1536 STATIC int
1537 xlog_recover_add_to_trans(
1538 struct xlog *log,
1539 struct xlog_recover *trans,
1540 xfs_caddr_t dp,
1541 int len)
1542 {
1543 xfs_inode_log_format_t *in_f; /* any will do */
1544 xlog_recover_item_t *item;
1545 xfs_caddr_t ptr;
1546
1547 if (!len)
1548 return 0;
1549 if (list_empty(&trans->r_itemq)) {
1550 /* we need to catch log corruptions here */
1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1552 xfs_warn(log->l_mp, "%s: bad header magic number",
1553 __func__);
1554 ASSERT(0);
1555 return XFS_ERROR(EIO);
1556 }
1557 if (len == sizeof(xfs_trans_header_t))
1558 xlog_recover_add_item(&trans->r_itemq);
1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 return 0;
1561 }
1562
1563 ptr = kmem_alloc(len, KM_SLEEP);
1564 memcpy(ptr, dp, len);
1565 in_f = (xfs_inode_log_format_t *)ptr;
1566
1567 /* take the tail entry */
1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 if (item->ri_total != 0 &&
1570 item->ri_total == item->ri_cnt) {
1571 /* tail item is in use, get a new one */
1572 xlog_recover_add_item(&trans->r_itemq);
1573 item = list_entry(trans->r_itemq.prev,
1574 xlog_recover_item_t, ri_list);
1575 }
1576
1577 if (item->ri_total == 0) { /* first region to be added */
1578 if (in_f->ilf_size == 0 ||
1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1580 xfs_warn(log->l_mp,
1581 "bad number of regions (%d) in inode log format",
1582 in_f->ilf_size);
1583 ASSERT(0);
1584 return XFS_ERROR(EIO);
1585 }
1586
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1591 }
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 return 0;
1599 }
1600
1601 /*
1602 * Sort the log items in the transaction.
1603 *
1604 * The ordering constraints are defined by the inode allocation and unlink
1605 * behaviour. The rules are:
1606 *
1607 * 1. Every item is only logged once in a given transaction. Hence it
1608 * represents the last logged state of the item. Hence ordering is
1609 * dependent on the order in which operations need to be performed so
1610 * required initial conditions are always met.
1611 *
1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1613 * there's nothing to replay from them so we can simply cull them
1614 * from the transaction. However, we can't do that until after we've
1615 * replayed all the other items because they may be dependent on the
1616 * cancelled buffer and replaying the cancelled buffer can remove it
1617 * form the cancelled buffer table. Hence they have tobe done last.
1618 *
1619 * 3. Inode allocation buffers must be replayed before inode items that
1620 * read the buffer and replay changes into it.
1621 *
1622 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1623 * This ensures that inodes are completely flushed to the inode buffer
1624 * in a "free" state before we remove the unlinked inode list pointer.
1625 *
1626 * Hence the ordering needs to be inode allocation buffers first, inode items
1627 * second, inode unlink buffers third and cancelled buffers last.
1628 *
1629 * But there's a problem with that - we can't tell an inode allocation buffer
1630 * apart from a regular buffer, so we can't separate them. We can, however,
1631 * tell an inode unlink buffer from the others, and so we can separate them out
1632 * from all the other buffers and move them to last.
1633 *
1634 * Hence, 4 lists, in order from head to tail:
1635 * - buffer_list for all buffers except cancelled/inode unlink buffers
1636 * - item_list for all non-buffer items
1637 * - inode_buffer_list for inode unlink buffers
1638 * - cancel_list for the cancelled buffers
1639 */
1640 STATIC int
1641 xlog_recover_reorder_trans(
1642 struct xlog *log,
1643 struct xlog_recover *trans,
1644 int pass)
1645 {
1646 xlog_recover_item_t *item, *n;
1647 LIST_HEAD(sort_list);
1648 LIST_HEAD(cancel_list);
1649 LIST_HEAD(buffer_list);
1650 LIST_HEAD(inode_buffer_list);
1651 LIST_HEAD(inode_list);
1652
1653 list_splice_init(&trans->r_itemq, &sort_list);
1654 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1655 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1656
1657 switch (ITEM_TYPE(item)) {
1658 case XFS_LI_BUF:
1659 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1660 trace_xfs_log_recover_item_reorder_head(log,
1661 trans, item, pass);
1662 list_move(&item->ri_list, &cancel_list);
1663 break;
1664 }
1665 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1666 list_move(&item->ri_list, &inode_buffer_list);
1667 break;
1668 }
1669 list_move_tail(&item->ri_list, &buffer_list);
1670 break;
1671 case XFS_LI_INODE:
1672 case XFS_LI_DQUOT:
1673 case XFS_LI_QUOTAOFF:
1674 case XFS_LI_EFD:
1675 case XFS_LI_EFI:
1676 trace_xfs_log_recover_item_reorder_tail(log,
1677 trans, item, pass);
1678 list_move_tail(&item->ri_list, &inode_list);
1679 break;
1680 default:
1681 xfs_warn(log->l_mp,
1682 "%s: unrecognized type of log operation",
1683 __func__);
1684 ASSERT(0);
1685 return XFS_ERROR(EIO);
1686 }
1687 }
1688 ASSERT(list_empty(&sort_list));
1689 if (!list_empty(&buffer_list))
1690 list_splice(&buffer_list, &trans->r_itemq);
1691 if (!list_empty(&inode_list))
1692 list_splice_tail(&inode_list, &trans->r_itemq);
1693 if (!list_empty(&inode_buffer_list))
1694 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1695 if (!list_empty(&cancel_list))
1696 list_splice_tail(&cancel_list, &trans->r_itemq);
1697 return 0;
1698 }
1699
1700 /*
1701 * Build up the table of buf cancel records so that we don't replay
1702 * cancelled data in the second pass. For buffer records that are
1703 * not cancel records, there is nothing to do here so we just return.
1704 *
1705 * If we get a cancel record which is already in the table, this indicates
1706 * that the buffer was cancelled multiple times. In order to ensure
1707 * that during pass 2 we keep the record in the table until we reach its
1708 * last occurrence in the log, we keep a reference count in the cancel
1709 * record in the table to tell us how many times we expect to see this
1710 * record during the second pass.
1711 */
1712 STATIC int
1713 xlog_recover_buffer_pass1(
1714 struct xlog *log,
1715 struct xlog_recover_item *item)
1716 {
1717 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1718 struct list_head *bucket;
1719 struct xfs_buf_cancel *bcp;
1720
1721 /*
1722 * If this isn't a cancel buffer item, then just return.
1723 */
1724 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1725 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1726 return 0;
1727 }
1728
1729 /*
1730 * Insert an xfs_buf_cancel record into the hash table of them.
1731 * If there is already an identical record, bump its reference count.
1732 */
1733 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1734 list_for_each_entry(bcp, bucket, bc_list) {
1735 if (bcp->bc_blkno == buf_f->blf_blkno &&
1736 bcp->bc_len == buf_f->blf_len) {
1737 bcp->bc_refcount++;
1738 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1739 return 0;
1740 }
1741 }
1742
1743 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1744 bcp->bc_blkno = buf_f->blf_blkno;
1745 bcp->bc_len = buf_f->blf_len;
1746 bcp->bc_refcount = 1;
1747 list_add_tail(&bcp->bc_list, bucket);
1748
1749 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1750 return 0;
1751 }
1752
1753 /*
1754 * Check to see whether the buffer being recovered has a corresponding
1755 * entry in the buffer cancel record table. If it does then return 1
1756 * so that it will be cancelled, otherwise return 0. If the buffer is
1757 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1758 * the refcount on the entry in the table and remove it from the table
1759 * if this is the last reference.
1760 *
1761 * We remove the cancel record from the table when we encounter its
1762 * last occurrence in the log so that if the same buffer is re-used
1763 * again after its last cancellation we actually replay the changes
1764 * made at that point.
1765 */
1766 STATIC int
1767 xlog_check_buffer_cancelled(
1768 struct xlog *log,
1769 xfs_daddr_t blkno,
1770 uint len,
1771 ushort flags)
1772 {
1773 struct list_head *bucket;
1774 struct xfs_buf_cancel *bcp;
1775
1776 if (log->l_buf_cancel_table == NULL) {
1777 /*
1778 * There is nothing in the table built in pass one,
1779 * so this buffer must not be cancelled.
1780 */
1781 ASSERT(!(flags & XFS_BLF_CANCEL));
1782 return 0;
1783 }
1784
1785 /*
1786 * Search for an entry in the cancel table that matches our buffer.
1787 */
1788 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1789 list_for_each_entry(bcp, bucket, bc_list) {
1790 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1791 goto found;
1792 }
1793
1794 /*
1795 * We didn't find a corresponding entry in the table, so return 0 so
1796 * that the buffer is NOT cancelled.
1797 */
1798 ASSERT(!(flags & XFS_BLF_CANCEL));
1799 return 0;
1800
1801 found:
1802 /*
1803 * We've go a match, so return 1 so that the recovery of this buffer
1804 * is cancelled. If this buffer is actually a buffer cancel log
1805 * item, then decrement the refcount on the one in the table and
1806 * remove it if this is the last reference.
1807 */
1808 if (flags & XFS_BLF_CANCEL) {
1809 if (--bcp->bc_refcount == 0) {
1810 list_del(&bcp->bc_list);
1811 kmem_free(bcp);
1812 }
1813 }
1814 return 1;
1815 }
1816
1817 /*
1818 * Perform recovery for a buffer full of inodes. In these buffers, the only
1819 * data which should be recovered is that which corresponds to the
1820 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1821 * data for the inodes is always logged through the inodes themselves rather
1822 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1823 *
1824 * The only time when buffers full of inodes are fully recovered is when the
1825 * buffer is full of newly allocated inodes. In this case the buffer will
1826 * not be marked as an inode buffer and so will be sent to
1827 * xlog_recover_do_reg_buffer() below during recovery.
1828 */
1829 STATIC int
1830 xlog_recover_do_inode_buffer(
1831 struct xfs_mount *mp,
1832 xlog_recover_item_t *item,
1833 struct xfs_buf *bp,
1834 xfs_buf_log_format_t *buf_f)
1835 {
1836 int i;
1837 int item_index = 0;
1838 int bit = 0;
1839 int nbits = 0;
1840 int reg_buf_offset = 0;
1841 int reg_buf_bytes = 0;
1842 int next_unlinked_offset;
1843 int inodes_per_buf;
1844 xfs_agino_t *logged_nextp;
1845 xfs_agino_t *buffer_nextp;
1846
1847 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1848 bp->b_ops = &xfs_inode_buf_ops;
1849
1850 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1851 for (i = 0; i < inodes_per_buf; i++) {
1852 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1853 offsetof(xfs_dinode_t, di_next_unlinked);
1854
1855 while (next_unlinked_offset >=
1856 (reg_buf_offset + reg_buf_bytes)) {
1857 /*
1858 * The next di_next_unlinked field is beyond
1859 * the current logged region. Find the next
1860 * logged region that contains or is beyond
1861 * the current di_next_unlinked field.
1862 */
1863 bit += nbits;
1864 bit = xfs_next_bit(buf_f->blf_data_map,
1865 buf_f->blf_map_size, bit);
1866
1867 /*
1868 * If there are no more logged regions in the
1869 * buffer, then we're done.
1870 */
1871 if (bit == -1)
1872 return 0;
1873
1874 nbits = xfs_contig_bits(buf_f->blf_data_map,
1875 buf_f->blf_map_size, bit);
1876 ASSERT(nbits > 0);
1877 reg_buf_offset = bit << XFS_BLF_SHIFT;
1878 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1879 item_index++;
1880 }
1881
1882 /*
1883 * If the current logged region starts after the current
1884 * di_next_unlinked field, then move on to the next
1885 * di_next_unlinked field.
1886 */
1887 if (next_unlinked_offset < reg_buf_offset)
1888 continue;
1889
1890 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1891 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1892 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1893 BBTOB(bp->b_io_length));
1894
1895 /*
1896 * The current logged region contains a copy of the
1897 * current di_next_unlinked field. Extract its value
1898 * and copy it to the buffer copy.
1899 */
1900 logged_nextp = item->ri_buf[item_index].i_addr +
1901 next_unlinked_offset - reg_buf_offset;
1902 if (unlikely(*logged_nextp == 0)) {
1903 xfs_alert(mp,
1904 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1905 "Trying to replay bad (0) inode di_next_unlinked field.",
1906 item, bp);
1907 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1908 XFS_ERRLEVEL_LOW, mp);
1909 return XFS_ERROR(EFSCORRUPTED);
1910 }
1911
1912 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1913 next_unlinked_offset);
1914 *buffer_nextp = *logged_nextp;
1915
1916 /*
1917 * If necessary, recalculate the CRC in the on-disk inode. We
1918 * have to leave the inode in a consistent state for whoever
1919 * reads it next....
1920 */
1921 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1922 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1923
1924 }
1925
1926 return 0;
1927 }
1928
1929 /*
1930 * Validate the recovered buffer is of the correct type and attach the
1931 * appropriate buffer operations to them for writeback. Magic numbers are in a
1932 * few places:
1933 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1934 * the first 32 bits of the buffer (most blocks),
1935 * inside a struct xfs_da_blkinfo at the start of the buffer.
1936 */
1937 static void
1938 xlog_recovery_validate_buf_type(
1939 struct xfs_mount *mp,
1940 struct xfs_buf *bp,
1941 xfs_buf_log_format_t *buf_f)
1942 {
1943 struct xfs_da_blkinfo *info = bp->b_addr;
1944 __uint32_t magic32;
1945 __uint16_t magic16;
1946 __uint16_t magicda;
1947
1948 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1949 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1950 magicda = be16_to_cpu(info->magic);
1951 switch (xfs_blft_from_flags(buf_f)) {
1952 case XFS_BLFT_BTREE_BUF:
1953 switch (magic32) {
1954 case XFS_ABTB_CRC_MAGIC:
1955 case XFS_ABTC_CRC_MAGIC:
1956 case XFS_ABTB_MAGIC:
1957 case XFS_ABTC_MAGIC:
1958 bp->b_ops = &xfs_allocbt_buf_ops;
1959 break;
1960 case XFS_IBT_CRC_MAGIC:
1961 case XFS_IBT_MAGIC:
1962 bp->b_ops = &xfs_inobt_buf_ops;
1963 break;
1964 case XFS_BMAP_CRC_MAGIC:
1965 case XFS_BMAP_MAGIC:
1966 bp->b_ops = &xfs_bmbt_buf_ops;
1967 break;
1968 default:
1969 xfs_warn(mp, "Bad btree block magic!");
1970 ASSERT(0);
1971 break;
1972 }
1973 break;
1974 case XFS_BLFT_AGF_BUF:
1975 if (magic32 != XFS_AGF_MAGIC) {
1976 xfs_warn(mp, "Bad AGF block magic!");
1977 ASSERT(0);
1978 break;
1979 }
1980 bp->b_ops = &xfs_agf_buf_ops;
1981 break;
1982 case XFS_BLFT_AGFL_BUF:
1983 if (!xfs_sb_version_hascrc(&mp->m_sb))
1984 break;
1985 if (magic32 != XFS_AGFL_MAGIC) {
1986 xfs_warn(mp, "Bad AGFL block magic!");
1987 ASSERT(0);
1988 break;
1989 }
1990 bp->b_ops = &xfs_agfl_buf_ops;
1991 break;
1992 case XFS_BLFT_AGI_BUF:
1993 if (magic32 != XFS_AGI_MAGIC) {
1994 xfs_warn(mp, "Bad AGI block magic!");
1995 ASSERT(0);
1996 break;
1997 }
1998 bp->b_ops = &xfs_agi_buf_ops;
1999 break;
2000 case XFS_BLFT_UDQUOT_BUF:
2001 case XFS_BLFT_PDQUOT_BUF:
2002 case XFS_BLFT_GDQUOT_BUF:
2003 #ifdef CONFIG_XFS_QUOTA
2004 if (magic16 != XFS_DQUOT_MAGIC) {
2005 xfs_warn(mp, "Bad DQUOT block magic!");
2006 ASSERT(0);
2007 break;
2008 }
2009 bp->b_ops = &xfs_dquot_buf_ops;
2010 #else
2011 xfs_alert(mp,
2012 "Trying to recover dquots without QUOTA support built in!");
2013 ASSERT(0);
2014 #endif
2015 break;
2016 case XFS_BLFT_DINO_BUF:
2017 /*
2018 * we get here with inode allocation buffers, not buffers that
2019 * track unlinked list changes.
2020 */
2021 if (magic16 != XFS_DINODE_MAGIC) {
2022 xfs_warn(mp, "Bad INODE block magic!");
2023 ASSERT(0);
2024 break;
2025 }
2026 bp->b_ops = &xfs_inode_buf_ops;
2027 break;
2028 case XFS_BLFT_SYMLINK_BUF:
2029 if (magic32 != XFS_SYMLINK_MAGIC) {
2030 xfs_warn(mp, "Bad symlink block magic!");
2031 ASSERT(0);
2032 break;
2033 }
2034 bp->b_ops = &xfs_symlink_buf_ops;
2035 break;
2036 case XFS_BLFT_DIR_BLOCK_BUF:
2037 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2038 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2039 xfs_warn(mp, "Bad dir block magic!");
2040 ASSERT(0);
2041 break;
2042 }
2043 bp->b_ops = &xfs_dir3_block_buf_ops;
2044 break;
2045 case XFS_BLFT_DIR_DATA_BUF:
2046 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2047 magic32 != XFS_DIR3_DATA_MAGIC) {
2048 xfs_warn(mp, "Bad dir data magic!");
2049 ASSERT(0);
2050 break;
2051 }
2052 bp->b_ops = &xfs_dir3_data_buf_ops;
2053 break;
2054 case XFS_BLFT_DIR_FREE_BUF:
2055 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2056 magic32 != XFS_DIR3_FREE_MAGIC) {
2057 xfs_warn(mp, "Bad dir3 free magic!");
2058 ASSERT(0);
2059 break;
2060 }
2061 bp->b_ops = &xfs_dir3_free_buf_ops;
2062 break;
2063 case XFS_BLFT_DIR_LEAF1_BUF:
2064 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2065 magicda != XFS_DIR3_LEAF1_MAGIC) {
2066 xfs_warn(mp, "Bad dir leaf1 magic!");
2067 ASSERT(0);
2068 break;
2069 }
2070 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2071 break;
2072 case XFS_BLFT_DIR_LEAFN_BUF:
2073 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2074 magicda != XFS_DIR3_LEAFN_MAGIC) {
2075 xfs_warn(mp, "Bad dir leafn magic!");
2076 ASSERT(0);
2077 break;
2078 }
2079 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2080 break;
2081 case XFS_BLFT_DA_NODE_BUF:
2082 if (magicda != XFS_DA_NODE_MAGIC &&
2083 magicda != XFS_DA3_NODE_MAGIC) {
2084 xfs_warn(mp, "Bad da node magic!");
2085 ASSERT(0);
2086 break;
2087 }
2088 bp->b_ops = &xfs_da3_node_buf_ops;
2089 break;
2090 case XFS_BLFT_ATTR_LEAF_BUF:
2091 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2092 magicda != XFS_ATTR3_LEAF_MAGIC) {
2093 xfs_warn(mp, "Bad attr leaf magic!");
2094 ASSERT(0);
2095 break;
2096 }
2097 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2098 break;
2099 case XFS_BLFT_ATTR_RMT_BUF:
2100 if (!xfs_sb_version_hascrc(&mp->m_sb))
2101 break;
2102 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2103 xfs_warn(mp, "Bad attr remote magic!");
2104 ASSERT(0);
2105 break;
2106 }
2107 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2108 break;
2109 case XFS_BLFT_SB_BUF:
2110 if (magic32 != XFS_SB_MAGIC) {
2111 xfs_warn(mp, "Bad SB block magic!");
2112 ASSERT(0);
2113 break;
2114 }
2115 bp->b_ops = &xfs_sb_buf_ops;
2116 break;
2117 default:
2118 xfs_warn(mp, "Unknown buffer type %d!",
2119 xfs_blft_from_flags(buf_f));
2120 break;
2121 }
2122 }
2123
2124 /*
2125 * Perform a 'normal' buffer recovery. Each logged region of the
2126 * buffer should be copied over the corresponding region in the
2127 * given buffer. The bitmap in the buf log format structure indicates
2128 * where to place the logged data.
2129 */
2130 STATIC void
2131 xlog_recover_do_reg_buffer(
2132 struct xfs_mount *mp,
2133 xlog_recover_item_t *item,
2134 struct xfs_buf *bp,
2135 xfs_buf_log_format_t *buf_f)
2136 {
2137 int i;
2138 int bit;
2139 int nbits;
2140 int error;
2141
2142 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2143
2144 bit = 0;
2145 i = 1; /* 0 is the buf format structure */
2146 while (1) {
2147 bit = xfs_next_bit(buf_f->blf_data_map,
2148 buf_f->blf_map_size, bit);
2149 if (bit == -1)
2150 break;
2151 nbits = xfs_contig_bits(buf_f->blf_data_map,
2152 buf_f->blf_map_size, bit);
2153 ASSERT(nbits > 0);
2154 ASSERT(item->ri_buf[i].i_addr != NULL);
2155 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2156 ASSERT(BBTOB(bp->b_io_length) >=
2157 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2158
2159 /*
2160 * The dirty regions logged in the buffer, even though
2161 * contiguous, may span multiple chunks. This is because the
2162 * dirty region may span a physical page boundary in a buffer
2163 * and hence be split into two separate vectors for writing into
2164 * the log. Hence we need to trim nbits back to the length of
2165 * the current region being copied out of the log.
2166 */
2167 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2168 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2169
2170 /*
2171 * Do a sanity check if this is a dquot buffer. Just checking
2172 * the first dquot in the buffer should do. XXXThis is
2173 * probably a good thing to do for other buf types also.
2174 */
2175 error = 0;
2176 if (buf_f->blf_flags &
2177 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2178 if (item->ri_buf[i].i_addr == NULL) {
2179 xfs_alert(mp,
2180 "XFS: NULL dquot in %s.", __func__);
2181 goto next;
2182 }
2183 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2184 xfs_alert(mp,
2185 "XFS: dquot too small (%d) in %s.",
2186 item->ri_buf[i].i_len, __func__);
2187 goto next;
2188 }
2189 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2190 -1, 0, XFS_QMOPT_DOWARN,
2191 "dquot_buf_recover");
2192 if (error)
2193 goto next;
2194 }
2195
2196 memcpy(xfs_buf_offset(bp,
2197 (uint)bit << XFS_BLF_SHIFT), /* dest */
2198 item->ri_buf[i].i_addr, /* source */
2199 nbits<<XFS_BLF_SHIFT); /* length */
2200 next:
2201 i++;
2202 bit += nbits;
2203 }
2204
2205 /* Shouldn't be any more regions */
2206 ASSERT(i == item->ri_total);
2207
2208 xlog_recovery_validate_buf_type(mp, bp, buf_f);
2209 }
2210
2211 /*
2212 * Do some primitive error checking on ondisk dquot data structures.
2213 */
2214 int
2215 xfs_qm_dqcheck(
2216 struct xfs_mount *mp,
2217 xfs_disk_dquot_t *ddq,
2218 xfs_dqid_t id,
2219 uint type, /* used only when IO_dorepair is true */
2220 uint flags,
2221 char *str)
2222 {
2223 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2224 int errs = 0;
2225
2226 /*
2227 * We can encounter an uninitialized dquot buffer for 2 reasons:
2228 * 1. If we crash while deleting the quotainode(s), and those blks got
2229 * used for user data. This is because we take the path of regular
2230 * file deletion; however, the size field of quotainodes is never
2231 * updated, so all the tricks that we play in itruncate_finish
2232 * don't quite matter.
2233 *
2234 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2235 * But the allocation will be replayed so we'll end up with an
2236 * uninitialized quota block.
2237 *
2238 * This is all fine; things are still consistent, and we haven't lost
2239 * any quota information. Just don't complain about bad dquot blks.
2240 */
2241 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2242 if (flags & XFS_QMOPT_DOWARN)
2243 xfs_alert(mp,
2244 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2245 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2246 errs++;
2247 }
2248 if (ddq->d_version != XFS_DQUOT_VERSION) {
2249 if (flags & XFS_QMOPT_DOWARN)
2250 xfs_alert(mp,
2251 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2252 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2253 errs++;
2254 }
2255
2256 if (ddq->d_flags != XFS_DQ_USER &&
2257 ddq->d_flags != XFS_DQ_PROJ &&
2258 ddq->d_flags != XFS_DQ_GROUP) {
2259 if (flags & XFS_QMOPT_DOWARN)
2260 xfs_alert(mp,
2261 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2262 str, id, ddq->d_flags);
2263 errs++;
2264 }
2265
2266 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2267 if (flags & XFS_QMOPT_DOWARN)
2268 xfs_alert(mp,
2269 "%s : ondisk-dquot 0x%p, ID mismatch: "
2270 "0x%x expected, found id 0x%x",
2271 str, ddq, id, be32_to_cpu(ddq->d_id));
2272 errs++;
2273 }
2274
2275 if (!errs && ddq->d_id) {
2276 if (ddq->d_blk_softlimit &&
2277 be64_to_cpu(ddq->d_bcount) >
2278 be64_to_cpu(ddq->d_blk_softlimit)) {
2279 if (!ddq->d_btimer) {
2280 if (flags & XFS_QMOPT_DOWARN)
2281 xfs_alert(mp,
2282 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2283 str, (int)be32_to_cpu(ddq->d_id), ddq);
2284 errs++;
2285 }
2286 }
2287 if (ddq->d_ino_softlimit &&
2288 be64_to_cpu(ddq->d_icount) >
2289 be64_to_cpu(ddq->d_ino_softlimit)) {
2290 if (!ddq->d_itimer) {
2291 if (flags & XFS_QMOPT_DOWARN)
2292 xfs_alert(mp,
2293 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2294 str, (int)be32_to_cpu(ddq->d_id), ddq);
2295 errs++;
2296 }
2297 }
2298 if (ddq->d_rtb_softlimit &&
2299 be64_to_cpu(ddq->d_rtbcount) >
2300 be64_to_cpu(ddq->d_rtb_softlimit)) {
2301 if (!ddq->d_rtbtimer) {
2302 if (flags & XFS_QMOPT_DOWARN)
2303 xfs_alert(mp,
2304 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2305 str, (int)be32_to_cpu(ddq->d_id), ddq);
2306 errs++;
2307 }
2308 }
2309 }
2310
2311 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2312 return errs;
2313
2314 if (flags & XFS_QMOPT_DOWARN)
2315 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2316
2317 /*
2318 * Typically, a repair is only requested by quotacheck.
2319 */
2320 ASSERT(id != -1);
2321 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2322 memset(d, 0, sizeof(xfs_dqblk_t));
2323
2324 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2325 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2326 d->dd_diskdq.d_flags = type;
2327 d->dd_diskdq.d_id = cpu_to_be32(id);
2328
2329 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2330 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2331 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2332 XFS_DQUOT_CRC_OFF);
2333 }
2334
2335 return errs;
2336 }
2337
2338 /*
2339 * Perform a dquot buffer recovery.
2340 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2341 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2342 * Else, treat it as a regular buffer and do recovery.
2343 */
2344 STATIC void
2345 xlog_recover_do_dquot_buffer(
2346 struct xfs_mount *mp,
2347 struct xlog *log,
2348 struct xlog_recover_item *item,
2349 struct xfs_buf *bp,
2350 struct xfs_buf_log_format *buf_f)
2351 {
2352 uint type;
2353
2354 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2355
2356 /*
2357 * Filesystems are required to send in quota flags at mount time.
2358 */
2359 if (mp->m_qflags == 0) {
2360 return;
2361 }
2362
2363 type = 0;
2364 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2365 type |= XFS_DQ_USER;
2366 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2367 type |= XFS_DQ_PROJ;
2368 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2369 type |= XFS_DQ_GROUP;
2370 /*
2371 * This type of quotas was turned off, so ignore this buffer
2372 */
2373 if (log->l_quotaoffs_flag & type)
2374 return;
2375
2376 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2377 }
2378
2379 /*
2380 * This routine replays a modification made to a buffer at runtime.
2381 * There are actually two types of buffer, regular and inode, which
2382 * are handled differently. Inode buffers are handled differently
2383 * in that we only recover a specific set of data from them, namely
2384 * the inode di_next_unlinked fields. This is because all other inode
2385 * data is actually logged via inode records and any data we replay
2386 * here which overlaps that may be stale.
2387 *
2388 * When meta-data buffers are freed at run time we log a buffer item
2389 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2390 * of the buffer in the log should not be replayed at recovery time.
2391 * This is so that if the blocks covered by the buffer are reused for
2392 * file data before we crash we don't end up replaying old, freed
2393 * meta-data into a user's file.
2394 *
2395 * To handle the cancellation of buffer log items, we make two passes
2396 * over the log during recovery. During the first we build a table of
2397 * those buffers which have been cancelled, and during the second we
2398 * only replay those buffers which do not have corresponding cancel
2399 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2400 * for more details on the implementation of the table of cancel records.
2401 */
2402 STATIC int
2403 xlog_recover_buffer_pass2(
2404 struct xlog *log,
2405 struct list_head *buffer_list,
2406 struct xlog_recover_item *item)
2407 {
2408 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2409 xfs_mount_t *mp = log->l_mp;
2410 xfs_buf_t *bp;
2411 int error;
2412 uint buf_flags;
2413
2414 /*
2415 * In this pass we only want to recover all the buffers which have
2416 * not been cancelled and are not cancellation buffers themselves.
2417 */
2418 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2419 buf_f->blf_len, buf_f->blf_flags)) {
2420 trace_xfs_log_recover_buf_cancel(log, buf_f);
2421 return 0;
2422 }
2423
2424 trace_xfs_log_recover_buf_recover(log, buf_f);
2425
2426 buf_flags = 0;
2427 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2428 buf_flags |= XBF_UNMAPPED;
2429
2430 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2431 buf_flags, NULL);
2432 if (!bp)
2433 return XFS_ERROR(ENOMEM);
2434 error = bp->b_error;
2435 if (error) {
2436 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2437 xfs_buf_relse(bp);
2438 return error;
2439 }
2440
2441 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2442 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2443 } else if (buf_f->blf_flags &
2444 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2445 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2446 } else {
2447 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2448 }
2449 if (error)
2450 return XFS_ERROR(error);
2451
2452 /*
2453 * Perform delayed write on the buffer. Asynchronous writes will be
2454 * slower when taking into account all the buffers to be flushed.
2455 *
2456 * Also make sure that only inode buffers with good sizes stay in
2457 * the buffer cache. The kernel moves inodes in buffers of 1 block
2458 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2459 * buffers in the log can be a different size if the log was generated
2460 * by an older kernel using unclustered inode buffers or a newer kernel
2461 * running with a different inode cluster size. Regardless, if the
2462 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2463 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2464 * the buffer out of the buffer cache so that the buffer won't
2465 * overlap with future reads of those inodes.
2466 */
2467 if (XFS_DINODE_MAGIC ==
2468 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2469 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2470 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2471 xfs_buf_stale(bp);
2472 error = xfs_bwrite(bp);
2473 } else {
2474 ASSERT(bp->b_target->bt_mount == mp);
2475 bp->b_iodone = xlog_recover_iodone;
2476 xfs_buf_delwri_queue(bp, buffer_list);
2477 }
2478
2479 xfs_buf_relse(bp);
2480 return error;
2481 }
2482
2483 STATIC int
2484 xlog_recover_inode_pass2(
2485 struct xlog *log,
2486 struct list_head *buffer_list,
2487 struct xlog_recover_item *item)
2488 {
2489 xfs_inode_log_format_t *in_f;
2490 xfs_mount_t *mp = log->l_mp;
2491 xfs_buf_t *bp;
2492 xfs_dinode_t *dip;
2493 int len;
2494 xfs_caddr_t src;
2495 xfs_caddr_t dest;
2496 int error;
2497 int attr_index;
2498 uint fields;
2499 xfs_icdinode_t *dicp;
2500 uint isize;
2501 int need_free = 0;
2502
2503 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2504 in_f = item->ri_buf[0].i_addr;
2505 } else {
2506 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2507 need_free = 1;
2508 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2509 if (error)
2510 goto error;
2511 }
2512
2513 /*
2514 * Inode buffers can be freed, look out for it,
2515 * and do not replay the inode.
2516 */
2517 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2518 in_f->ilf_len, 0)) {
2519 error = 0;
2520 trace_xfs_log_recover_inode_cancel(log, in_f);
2521 goto error;
2522 }
2523 trace_xfs_log_recover_inode_recover(log, in_f);
2524
2525 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2526 &xfs_inode_buf_ops);
2527 if (!bp) {
2528 error = ENOMEM;
2529 goto error;
2530 }
2531 error = bp->b_error;
2532 if (error) {
2533 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2534 xfs_buf_relse(bp);
2535 goto error;
2536 }
2537 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2538 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2539
2540 /*
2541 * Make sure the place we're flushing out to really looks
2542 * like an inode!
2543 */
2544 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2545 xfs_buf_relse(bp);
2546 xfs_alert(mp,
2547 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2548 __func__, dip, bp, in_f->ilf_ino);
2549 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2550 XFS_ERRLEVEL_LOW, mp);
2551 error = EFSCORRUPTED;
2552 goto error;
2553 }
2554 dicp = item->ri_buf[1].i_addr;
2555 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2556 xfs_buf_relse(bp);
2557 xfs_alert(mp,
2558 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2559 __func__, item, in_f->ilf_ino);
2560 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2561 XFS_ERRLEVEL_LOW, mp);
2562 error = EFSCORRUPTED;
2563 goto error;
2564 }
2565
2566 /* Skip replay when the on disk inode is newer than the log one */
2567 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2568 /*
2569 * Deal with the wrap case, DI_MAX_FLUSH is less
2570 * than smaller numbers
2571 */
2572 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2573 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2574 /* do nothing */
2575 } else {
2576 xfs_buf_relse(bp);
2577 trace_xfs_log_recover_inode_skip(log, in_f);
2578 error = 0;
2579 goto error;
2580 }
2581 }
2582 /* Take the opportunity to reset the flush iteration count */
2583 dicp->di_flushiter = 0;
2584
2585 if (unlikely(S_ISREG(dicp->di_mode))) {
2586 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2587 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2588 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2589 XFS_ERRLEVEL_LOW, mp, dicp);
2590 xfs_buf_relse(bp);
2591 xfs_alert(mp,
2592 "%s: Bad regular inode log record, rec ptr 0x%p, "
2593 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2594 __func__, item, dip, bp, in_f->ilf_ino);
2595 error = EFSCORRUPTED;
2596 goto error;
2597 }
2598 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2599 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2600 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2601 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2602 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2603 XFS_ERRLEVEL_LOW, mp, dicp);
2604 xfs_buf_relse(bp);
2605 xfs_alert(mp,
2606 "%s: Bad dir inode log record, rec ptr 0x%p, "
2607 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2608 __func__, item, dip, bp, in_f->ilf_ino);
2609 error = EFSCORRUPTED;
2610 goto error;
2611 }
2612 }
2613 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2614 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2615 XFS_ERRLEVEL_LOW, mp, dicp);
2616 xfs_buf_relse(bp);
2617 xfs_alert(mp,
2618 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2619 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2620 __func__, item, dip, bp, in_f->ilf_ino,
2621 dicp->di_nextents + dicp->di_anextents,
2622 dicp->di_nblocks);
2623 error = EFSCORRUPTED;
2624 goto error;
2625 }
2626 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2627 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2628 XFS_ERRLEVEL_LOW, mp, dicp);
2629 xfs_buf_relse(bp);
2630 xfs_alert(mp,
2631 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2632 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2633 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2634 error = EFSCORRUPTED;
2635 goto error;
2636 }
2637 isize = xfs_icdinode_size(dicp->di_version);
2638 if (unlikely(item->ri_buf[1].i_len > isize)) {
2639 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2640 XFS_ERRLEVEL_LOW, mp, dicp);
2641 xfs_buf_relse(bp);
2642 xfs_alert(mp,
2643 "%s: Bad inode log record length %d, rec ptr 0x%p",
2644 __func__, item->ri_buf[1].i_len, item);
2645 error = EFSCORRUPTED;
2646 goto error;
2647 }
2648
2649 /* The core is in in-core format */
2650 xfs_dinode_to_disk(dip, dicp);
2651
2652 /* the rest is in on-disk format */
2653 if (item->ri_buf[1].i_len > isize) {
2654 memcpy((char *)dip + isize,
2655 item->ri_buf[1].i_addr + isize,
2656 item->ri_buf[1].i_len - isize);
2657 }
2658
2659 fields = in_f->ilf_fields;
2660 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2661 case XFS_ILOG_DEV:
2662 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2663 break;
2664 case XFS_ILOG_UUID:
2665 memcpy(XFS_DFORK_DPTR(dip),
2666 &in_f->ilf_u.ilfu_uuid,
2667 sizeof(uuid_t));
2668 break;
2669 }
2670
2671 if (in_f->ilf_size == 2)
2672 goto write_inode_buffer;
2673 len = item->ri_buf[2].i_len;
2674 src = item->ri_buf[2].i_addr;
2675 ASSERT(in_f->ilf_size <= 4);
2676 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2677 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2678 (len == in_f->ilf_dsize));
2679
2680 switch (fields & XFS_ILOG_DFORK) {
2681 case XFS_ILOG_DDATA:
2682 case XFS_ILOG_DEXT:
2683 memcpy(XFS_DFORK_DPTR(dip), src, len);
2684 break;
2685
2686 case XFS_ILOG_DBROOT:
2687 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2688 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2689 XFS_DFORK_DSIZE(dip, mp));
2690 break;
2691
2692 default:
2693 /*
2694 * There are no data fork flags set.
2695 */
2696 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2697 break;
2698 }
2699
2700 /*
2701 * If we logged any attribute data, recover it. There may or
2702 * may not have been any other non-core data logged in this
2703 * transaction.
2704 */
2705 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2706 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2707 attr_index = 3;
2708 } else {
2709 attr_index = 2;
2710 }
2711 len = item->ri_buf[attr_index].i_len;
2712 src = item->ri_buf[attr_index].i_addr;
2713 ASSERT(len == in_f->ilf_asize);
2714
2715 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2716 case XFS_ILOG_ADATA:
2717 case XFS_ILOG_AEXT:
2718 dest = XFS_DFORK_APTR(dip);
2719 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2720 memcpy(dest, src, len);
2721 break;
2722
2723 case XFS_ILOG_ABROOT:
2724 dest = XFS_DFORK_APTR(dip);
2725 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2726 len, (xfs_bmdr_block_t*)dest,
2727 XFS_DFORK_ASIZE(dip, mp));
2728 break;
2729
2730 default:
2731 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2732 ASSERT(0);
2733 xfs_buf_relse(bp);
2734 error = EIO;
2735 goto error;
2736 }
2737 }
2738
2739 write_inode_buffer:
2740 /* re-generate the checksum. */
2741 xfs_dinode_calc_crc(log->l_mp, dip);
2742
2743 ASSERT(bp->b_target->bt_mount == mp);
2744 bp->b_iodone = xlog_recover_iodone;
2745 xfs_buf_delwri_queue(bp, buffer_list);
2746 xfs_buf_relse(bp);
2747 error:
2748 if (need_free)
2749 kmem_free(in_f);
2750 return XFS_ERROR(error);
2751 }
2752
2753 /*
2754 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2755 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2756 * of that type.
2757 */
2758 STATIC int
2759 xlog_recover_quotaoff_pass1(
2760 struct xlog *log,
2761 struct xlog_recover_item *item)
2762 {
2763 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2764 ASSERT(qoff_f);
2765
2766 /*
2767 * The logitem format's flag tells us if this was user quotaoff,
2768 * group/project quotaoff or both.
2769 */
2770 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2771 log->l_quotaoffs_flag |= XFS_DQ_USER;
2772 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2773 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2774 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2775 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2776
2777 return (0);
2778 }
2779
2780 /*
2781 * Recover a dquot record
2782 */
2783 STATIC int
2784 xlog_recover_dquot_pass2(
2785 struct xlog *log,
2786 struct list_head *buffer_list,
2787 struct xlog_recover_item *item)
2788 {
2789 xfs_mount_t *mp = log->l_mp;
2790 xfs_buf_t *bp;
2791 struct xfs_disk_dquot *ddq, *recddq;
2792 int error;
2793 xfs_dq_logformat_t *dq_f;
2794 uint type;
2795
2796
2797 /*
2798 * Filesystems are required to send in quota flags at mount time.
2799 */
2800 if (mp->m_qflags == 0)
2801 return (0);
2802
2803 recddq = item->ri_buf[1].i_addr;
2804 if (recddq == NULL) {
2805 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2806 return XFS_ERROR(EIO);
2807 }
2808 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2809 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2810 item->ri_buf[1].i_len, __func__);
2811 return XFS_ERROR(EIO);
2812 }
2813
2814 /*
2815 * This type of quotas was turned off, so ignore this record.
2816 */
2817 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2818 ASSERT(type);
2819 if (log->l_quotaoffs_flag & type)
2820 return (0);
2821
2822 /*
2823 * At this point we know that quota was _not_ turned off.
2824 * Since the mount flags are not indicating to us otherwise, this
2825 * must mean that quota is on, and the dquot needs to be replayed.
2826 * Remember that we may not have fully recovered the superblock yet,
2827 * so we can't do the usual trick of looking at the SB quota bits.
2828 *
2829 * The other possibility, of course, is that the quota subsystem was
2830 * removed since the last mount - ENOSYS.
2831 */
2832 dq_f = item->ri_buf[0].i_addr;
2833 ASSERT(dq_f);
2834 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2835 "xlog_recover_dquot_pass2 (log copy)");
2836 if (error)
2837 return XFS_ERROR(EIO);
2838 ASSERT(dq_f->qlf_len == 1);
2839
2840 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2841 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2842 NULL);
2843 if (error)
2844 return error;
2845
2846 ASSERT(bp);
2847 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2848
2849 /*
2850 * At least the magic num portion should be on disk because this
2851 * was among a chunk of dquots created earlier, and we did some
2852 * minimal initialization then.
2853 */
2854 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2855 "xlog_recover_dquot_pass2");
2856 if (error) {
2857 xfs_buf_relse(bp);
2858 return XFS_ERROR(EIO);
2859 }
2860
2861 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2862 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2863 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2864 XFS_DQUOT_CRC_OFF);
2865 }
2866
2867 ASSERT(dq_f->qlf_size == 2);
2868 ASSERT(bp->b_target->bt_mount == mp);
2869 bp->b_iodone = xlog_recover_iodone;
2870 xfs_buf_delwri_queue(bp, buffer_list);
2871 xfs_buf_relse(bp);
2872
2873 return (0);
2874 }
2875
2876 /*
2877 * This routine is called to create an in-core extent free intent
2878 * item from the efi format structure which was logged on disk.
2879 * It allocates an in-core efi, copies the extents from the format
2880 * structure into it, and adds the efi to the AIL with the given
2881 * LSN.
2882 */
2883 STATIC int
2884 xlog_recover_efi_pass2(
2885 struct xlog *log,
2886 struct xlog_recover_item *item,
2887 xfs_lsn_t lsn)
2888 {
2889 int error;
2890 xfs_mount_t *mp = log->l_mp;
2891 xfs_efi_log_item_t *efip;
2892 xfs_efi_log_format_t *efi_formatp;
2893
2894 efi_formatp = item->ri_buf[0].i_addr;
2895
2896 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2897 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2898 &(efip->efi_format)))) {
2899 xfs_efi_item_free(efip);
2900 return error;
2901 }
2902 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2903
2904 spin_lock(&log->l_ailp->xa_lock);
2905 /*
2906 * xfs_trans_ail_update() drops the AIL lock.
2907 */
2908 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2909 return 0;
2910 }
2911
2912
2913 /*
2914 * This routine is called when an efd format structure is found in
2915 * a committed transaction in the log. It's purpose is to cancel
2916 * the corresponding efi if it was still in the log. To do this
2917 * it searches the AIL for the efi with an id equal to that in the
2918 * efd format structure. If we find it, we remove the efi from the
2919 * AIL and free it.
2920 */
2921 STATIC int
2922 xlog_recover_efd_pass2(
2923 struct xlog *log,
2924 struct xlog_recover_item *item)
2925 {
2926 xfs_efd_log_format_t *efd_formatp;
2927 xfs_efi_log_item_t *efip = NULL;
2928 xfs_log_item_t *lip;
2929 __uint64_t efi_id;
2930 struct xfs_ail_cursor cur;
2931 struct xfs_ail *ailp = log->l_ailp;
2932
2933 efd_formatp = item->ri_buf[0].i_addr;
2934 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2935 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2936 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2937 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2938 efi_id = efd_formatp->efd_efi_id;
2939
2940 /*
2941 * Search for the efi with the id in the efd format structure
2942 * in the AIL.
2943 */
2944 spin_lock(&ailp->xa_lock);
2945 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2946 while (lip != NULL) {
2947 if (lip->li_type == XFS_LI_EFI) {
2948 efip = (xfs_efi_log_item_t *)lip;
2949 if (efip->efi_format.efi_id == efi_id) {
2950 /*
2951 * xfs_trans_ail_delete() drops the
2952 * AIL lock.
2953 */
2954 xfs_trans_ail_delete(ailp, lip,
2955 SHUTDOWN_CORRUPT_INCORE);
2956 xfs_efi_item_free(efip);
2957 spin_lock(&ailp->xa_lock);
2958 break;
2959 }
2960 }
2961 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2962 }
2963 xfs_trans_ail_cursor_done(ailp, &cur);
2964 spin_unlock(&ailp->xa_lock);
2965
2966 return 0;
2967 }
2968
2969 /*
2970 * Free up any resources allocated by the transaction
2971 *
2972 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2973 */
2974 STATIC void
2975 xlog_recover_free_trans(
2976 struct xlog_recover *trans)
2977 {
2978 xlog_recover_item_t *item, *n;
2979 int i;
2980
2981 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2982 /* Free the regions in the item. */
2983 list_del(&item->ri_list);
2984 for (i = 0; i < item->ri_cnt; i++)
2985 kmem_free(item->ri_buf[i].i_addr);
2986 /* Free the item itself */
2987 kmem_free(item->ri_buf);
2988 kmem_free(item);
2989 }
2990 /* Free the transaction recover structure */
2991 kmem_free(trans);
2992 }
2993
2994 STATIC int
2995 xlog_recover_commit_pass1(
2996 struct xlog *log,
2997 struct xlog_recover *trans,
2998 struct xlog_recover_item *item)
2999 {
3000 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3001
3002 switch (ITEM_TYPE(item)) {
3003 case XFS_LI_BUF:
3004 return xlog_recover_buffer_pass1(log, item);
3005 case XFS_LI_QUOTAOFF:
3006 return xlog_recover_quotaoff_pass1(log, item);
3007 case XFS_LI_INODE:
3008 case XFS_LI_EFI:
3009 case XFS_LI_EFD:
3010 case XFS_LI_DQUOT:
3011 /* nothing to do in pass 1 */
3012 return 0;
3013 default:
3014 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3015 __func__, ITEM_TYPE(item));
3016 ASSERT(0);
3017 return XFS_ERROR(EIO);
3018 }
3019 }
3020
3021 STATIC int
3022 xlog_recover_commit_pass2(
3023 struct xlog *log,
3024 struct xlog_recover *trans,
3025 struct list_head *buffer_list,
3026 struct xlog_recover_item *item)
3027 {
3028 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3029
3030 switch (ITEM_TYPE(item)) {
3031 case XFS_LI_BUF:
3032 return xlog_recover_buffer_pass2(log, buffer_list, item);
3033 case XFS_LI_INODE:
3034 return xlog_recover_inode_pass2(log, buffer_list, item);
3035 case XFS_LI_EFI:
3036 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3037 case XFS_LI_EFD:
3038 return xlog_recover_efd_pass2(log, item);
3039 case XFS_LI_DQUOT:
3040 return xlog_recover_dquot_pass2(log, buffer_list, item);
3041 case XFS_LI_QUOTAOFF:
3042 /* nothing to do in pass2 */
3043 return 0;
3044 default:
3045 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3046 __func__, ITEM_TYPE(item));
3047 ASSERT(0);
3048 return XFS_ERROR(EIO);
3049 }
3050 }
3051
3052 /*
3053 * Perform the transaction.
3054 *
3055 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3056 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3057 */
3058 STATIC int
3059 xlog_recover_commit_trans(
3060 struct xlog *log,
3061 struct xlog_recover *trans,
3062 int pass)
3063 {
3064 int error = 0, error2;
3065 xlog_recover_item_t *item;
3066 LIST_HEAD (buffer_list);
3067
3068 hlist_del(&trans->r_list);
3069
3070 error = xlog_recover_reorder_trans(log, trans, pass);
3071 if (error)
3072 return error;
3073
3074 list_for_each_entry(item, &trans->r_itemq, ri_list) {
3075 switch (pass) {
3076 case XLOG_RECOVER_PASS1:
3077 error = xlog_recover_commit_pass1(log, trans, item);
3078 break;
3079 case XLOG_RECOVER_PASS2:
3080 error = xlog_recover_commit_pass2(log, trans,
3081 &buffer_list, item);
3082 break;
3083 default:
3084 ASSERT(0);
3085 }
3086
3087 if (error)
3088 goto out;
3089 }
3090
3091 xlog_recover_free_trans(trans);
3092
3093 out:
3094 error2 = xfs_buf_delwri_submit(&buffer_list);
3095 return error ? error : error2;
3096 }
3097
3098 STATIC int
3099 xlog_recover_unmount_trans(
3100 struct xlog *log,
3101 struct xlog_recover *trans)
3102 {
3103 /* Do nothing now */
3104 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3105 return 0;
3106 }
3107
3108 /*
3109 * There are two valid states of the r_state field. 0 indicates that the
3110 * transaction structure is in a normal state. We have either seen the
3111 * start of the transaction or the last operation we added was not a partial
3112 * operation. If the last operation we added to the transaction was a
3113 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3114 *
3115 * NOTE: skip LRs with 0 data length.
3116 */
3117 STATIC int
3118 xlog_recover_process_data(
3119 struct xlog *log,
3120 struct hlist_head rhash[],
3121 struct xlog_rec_header *rhead,
3122 xfs_caddr_t dp,
3123 int pass)
3124 {
3125 xfs_caddr_t lp;
3126 int num_logops;
3127 xlog_op_header_t *ohead;
3128 xlog_recover_t *trans;
3129 xlog_tid_t tid;
3130 int error;
3131 unsigned long hash;
3132 uint flags;
3133
3134 lp = dp + be32_to_cpu(rhead->h_len);
3135 num_logops = be32_to_cpu(rhead->h_num_logops);
3136
3137 /* check the log format matches our own - else we can't recover */
3138 if (xlog_header_check_recover(log->l_mp, rhead))
3139 return (XFS_ERROR(EIO));
3140
3141 while ((dp < lp) && num_logops) {
3142 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3143 ohead = (xlog_op_header_t *)dp;
3144 dp += sizeof(xlog_op_header_t);
3145 if (ohead->oh_clientid != XFS_TRANSACTION &&
3146 ohead->oh_clientid != XFS_LOG) {
3147 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3148 __func__, ohead->oh_clientid);
3149 ASSERT(0);
3150 return (XFS_ERROR(EIO));
3151 }
3152 tid = be32_to_cpu(ohead->oh_tid);
3153 hash = XLOG_RHASH(tid);
3154 trans = xlog_recover_find_tid(&rhash[hash], tid);
3155 if (trans == NULL) { /* not found; add new tid */
3156 if (ohead->oh_flags & XLOG_START_TRANS)
3157 xlog_recover_new_tid(&rhash[hash], tid,
3158 be64_to_cpu(rhead->h_lsn));
3159 } else {
3160 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3161 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3162 __func__, be32_to_cpu(ohead->oh_len));
3163 WARN_ON(1);
3164 return (XFS_ERROR(EIO));
3165 }
3166 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3167 if (flags & XLOG_WAS_CONT_TRANS)
3168 flags &= ~XLOG_CONTINUE_TRANS;
3169 switch (flags) {
3170 case XLOG_COMMIT_TRANS:
3171 error = xlog_recover_commit_trans(log,
3172 trans, pass);
3173 break;
3174 case XLOG_UNMOUNT_TRANS:
3175 error = xlog_recover_unmount_trans(log, trans);
3176 break;
3177 case XLOG_WAS_CONT_TRANS:
3178 error = xlog_recover_add_to_cont_trans(log,
3179 trans, dp,
3180 be32_to_cpu(ohead->oh_len));
3181 break;
3182 case XLOG_START_TRANS:
3183 xfs_warn(log->l_mp, "%s: bad transaction",
3184 __func__);
3185 ASSERT(0);
3186 error = XFS_ERROR(EIO);
3187 break;
3188 case 0:
3189 case XLOG_CONTINUE_TRANS:
3190 error = xlog_recover_add_to_trans(log, trans,
3191 dp, be32_to_cpu(ohead->oh_len));
3192 break;
3193 default:
3194 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3195 __func__, flags);
3196 ASSERT(0);
3197 error = XFS_ERROR(EIO);
3198 break;
3199 }
3200 if (error)
3201 return error;
3202 }
3203 dp += be32_to_cpu(ohead->oh_len);
3204 num_logops--;
3205 }
3206 return 0;
3207 }
3208
3209 /*
3210 * Process an extent free intent item that was recovered from
3211 * the log. We need to free the extents that it describes.
3212 */
3213 STATIC int
3214 xlog_recover_process_efi(
3215 xfs_mount_t *mp,
3216 xfs_efi_log_item_t *efip)
3217 {
3218 xfs_efd_log_item_t *efdp;
3219 xfs_trans_t *tp;
3220 int i;
3221 int error = 0;
3222 xfs_extent_t *extp;
3223 xfs_fsblock_t startblock_fsb;
3224
3225 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3226
3227 /*
3228 * First check the validity of the extents described by the
3229 * EFI. If any are bad, then assume that all are bad and
3230 * just toss the EFI.
3231 */
3232 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3233 extp = &(efip->efi_format.efi_extents[i]);
3234 startblock_fsb = XFS_BB_TO_FSB(mp,
3235 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3236 if ((startblock_fsb == 0) ||
3237 (extp->ext_len == 0) ||
3238 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3239 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3240 /*
3241 * This will pull the EFI from the AIL and
3242 * free the memory associated with it.
3243 */
3244 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3245 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3246 return XFS_ERROR(EIO);
3247 }
3248 }
3249
3250 tp = xfs_trans_alloc(mp, 0);
3251 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3252 if (error)
3253 goto abort_error;
3254 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3255
3256 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3257 extp = &(efip->efi_format.efi_extents[i]);
3258 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3259 if (error)
3260 goto abort_error;
3261 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3262 extp->ext_len);
3263 }
3264
3265 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3266 error = xfs_trans_commit(tp, 0);
3267 return error;
3268
3269 abort_error:
3270 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3271 return error;
3272 }
3273
3274 /*
3275 * When this is called, all of the EFIs which did not have
3276 * corresponding EFDs should be in the AIL. What we do now
3277 * is free the extents associated with each one.
3278 *
3279 * Since we process the EFIs in normal transactions, they
3280 * will be removed at some point after the commit. This prevents
3281 * us from just walking down the list processing each one.
3282 * We'll use a flag in the EFI to skip those that we've already
3283 * processed and use the AIL iteration mechanism's generation
3284 * count to try to speed this up at least a bit.
3285 *
3286 * When we start, we know that the EFIs are the only things in
3287 * the AIL. As we process them, however, other items are added
3288 * to the AIL. Since everything added to the AIL must come after
3289 * everything already in the AIL, we stop processing as soon as
3290 * we see something other than an EFI in the AIL.
3291 */
3292 STATIC int
3293 xlog_recover_process_efis(
3294 struct xlog *log)
3295 {
3296 xfs_log_item_t *lip;
3297 xfs_efi_log_item_t *efip;
3298 int error = 0;
3299 struct xfs_ail_cursor cur;
3300 struct xfs_ail *ailp;
3301
3302 ailp = log->l_ailp;
3303 spin_lock(&ailp->xa_lock);
3304 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3305 while (lip != NULL) {
3306 /*
3307 * We're done when we see something other than an EFI.
3308 * There should be no EFIs left in the AIL now.
3309 */
3310 if (lip->li_type != XFS_LI_EFI) {
3311 #ifdef DEBUG
3312 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3313 ASSERT(lip->li_type != XFS_LI_EFI);
3314 #endif
3315 break;
3316 }
3317
3318 /*
3319 * Skip EFIs that we've already processed.
3320 */
3321 efip = (xfs_efi_log_item_t *)lip;
3322 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3323 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3324 continue;
3325 }
3326
3327 spin_unlock(&ailp->xa_lock);
3328 error = xlog_recover_process_efi(log->l_mp, efip);
3329 spin_lock(&ailp->xa_lock);
3330 if (error)
3331 goto out;
3332 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3333 }
3334 out:
3335 xfs_trans_ail_cursor_done(ailp, &cur);
3336 spin_unlock(&ailp->xa_lock);
3337 return error;
3338 }
3339
3340 /*
3341 * This routine performs a transaction to null out a bad inode pointer
3342 * in an agi unlinked inode hash bucket.
3343 */
3344 STATIC void
3345 xlog_recover_clear_agi_bucket(
3346 xfs_mount_t *mp,
3347 xfs_agnumber_t agno,
3348 int bucket)
3349 {
3350 xfs_trans_t *tp;
3351 xfs_agi_t *agi;
3352 xfs_buf_t *agibp;
3353 int offset;
3354 int error;
3355
3356 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3357 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3358 0, 0, 0);
3359 if (error)
3360 goto out_abort;
3361
3362 error = xfs_read_agi(mp, tp, agno, &agibp);
3363 if (error)
3364 goto out_abort;
3365
3366 agi = XFS_BUF_TO_AGI(agibp);
3367 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3368 offset = offsetof(xfs_agi_t, agi_unlinked) +
3369 (sizeof(xfs_agino_t) * bucket);
3370 xfs_trans_log_buf(tp, agibp, offset,
3371 (offset + sizeof(xfs_agino_t) - 1));
3372
3373 error = xfs_trans_commit(tp, 0);
3374 if (error)
3375 goto out_error;
3376 return;
3377
3378 out_abort:
3379 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3380 out_error:
3381 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3382 return;
3383 }
3384
3385 STATIC xfs_agino_t
3386 xlog_recover_process_one_iunlink(
3387 struct xfs_mount *mp,
3388 xfs_agnumber_t agno,
3389 xfs_agino_t agino,
3390 int bucket)
3391 {
3392 struct xfs_buf *ibp;
3393 struct xfs_dinode *dip;
3394 struct xfs_inode *ip;
3395 xfs_ino_t ino;
3396 int error;
3397
3398 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3399 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3400 if (error)
3401 goto fail;
3402
3403 /*
3404 * Get the on disk inode to find the next inode in the bucket.
3405 */
3406 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3407 if (error)
3408 goto fail_iput;
3409
3410 ASSERT(ip->i_d.di_nlink == 0);
3411 ASSERT(ip->i_d.di_mode != 0);
3412
3413 /* setup for the next pass */
3414 agino = be32_to_cpu(dip->di_next_unlinked);
3415 xfs_buf_relse(ibp);
3416
3417 /*
3418 * Prevent any DMAPI event from being sent when the reference on
3419 * the inode is dropped.
3420 */
3421 ip->i_d.di_dmevmask = 0;
3422
3423 IRELE(ip);
3424 return agino;
3425
3426 fail_iput:
3427 IRELE(ip);
3428 fail:
3429 /*
3430 * We can't read in the inode this bucket points to, or this inode
3431 * is messed up. Just ditch this bucket of inodes. We will lose
3432 * some inodes and space, but at least we won't hang.
3433 *
3434 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3435 * clear the inode pointer in the bucket.
3436 */
3437 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3438 return NULLAGINO;
3439 }
3440
3441 /*
3442 * xlog_iunlink_recover
3443 *
3444 * This is called during recovery to process any inodes which
3445 * we unlinked but not freed when the system crashed. These
3446 * inodes will be on the lists in the AGI blocks. What we do
3447 * here is scan all the AGIs and fully truncate and free any
3448 * inodes found on the lists. Each inode is removed from the
3449 * lists when it has been fully truncated and is freed. The
3450 * freeing of the inode and its removal from the list must be
3451 * atomic.
3452 */
3453 STATIC void
3454 xlog_recover_process_iunlinks(
3455 struct xlog *log)
3456 {
3457 xfs_mount_t *mp;
3458 xfs_agnumber_t agno;
3459 xfs_agi_t *agi;
3460 xfs_buf_t *agibp;
3461 xfs_agino_t agino;
3462 int bucket;
3463 int error;
3464 uint mp_dmevmask;
3465
3466 mp = log->l_mp;
3467
3468 /*
3469 * Prevent any DMAPI event from being sent while in this function.
3470 */
3471 mp_dmevmask = mp->m_dmevmask;
3472 mp->m_dmevmask = 0;
3473
3474 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3475 /*
3476 * Find the agi for this ag.
3477 */
3478 error = xfs_read_agi(mp, NULL, agno, &agibp);
3479 if (error) {
3480 /*
3481 * AGI is b0rked. Don't process it.
3482 *
3483 * We should probably mark the filesystem as corrupt
3484 * after we've recovered all the ag's we can....
3485 */
3486 continue;
3487 }
3488 /*
3489 * Unlock the buffer so that it can be acquired in the normal
3490 * course of the transaction to truncate and free each inode.
3491 * Because we are not racing with anyone else here for the AGI
3492 * buffer, we don't even need to hold it locked to read the
3493 * initial unlinked bucket entries out of the buffer. We keep
3494 * buffer reference though, so that it stays pinned in memory
3495 * while we need the buffer.
3496 */
3497 agi = XFS_BUF_TO_AGI(agibp);
3498 xfs_buf_unlock(agibp);
3499
3500 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3501 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3502 while (agino != NULLAGINO) {
3503 agino = xlog_recover_process_one_iunlink(mp,
3504 agno, agino, bucket);
3505 }
3506 }
3507 xfs_buf_rele(agibp);
3508 }
3509
3510 mp->m_dmevmask = mp_dmevmask;
3511 }
3512
3513 /*
3514 * Upack the log buffer data and crc check it. If the check fails, issue a
3515 * warning if and only if the CRC in the header is non-zero. This makes the
3516 * check an advisory warning, and the zero CRC check will prevent failure
3517 * warnings from being emitted when upgrading the kernel from one that does not
3518 * add CRCs by default.
3519 *
3520 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3521 * corruption failure
3522 */
3523 STATIC int
3524 xlog_unpack_data_crc(
3525 struct xlog_rec_header *rhead,
3526 xfs_caddr_t dp,
3527 struct xlog *log)
3528 {
3529 __le32 crc;
3530
3531 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3532 if (crc != rhead->h_crc) {
3533 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3534 xfs_alert(log->l_mp,
3535 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3536 le32_to_cpu(rhead->h_crc),
3537 le32_to_cpu(crc));
3538 xfs_hex_dump(dp, 32);
3539 }
3540
3541 /*
3542 * If we've detected a log record corruption, then we can't
3543 * recover past this point. Abort recovery if we are enforcing
3544 * CRC protection by punting an error back up the stack.
3545 */
3546 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3547 return EFSCORRUPTED;
3548 }
3549
3550 return 0;
3551 }
3552
3553 STATIC int
3554 xlog_unpack_data(
3555 struct xlog_rec_header *rhead,
3556 xfs_caddr_t dp,
3557 struct xlog *log)
3558 {
3559 int i, j, k;
3560 int error;
3561
3562 error = xlog_unpack_data_crc(rhead, dp, log);
3563 if (error)
3564 return error;
3565
3566 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3567 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3568 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3569 dp += BBSIZE;
3570 }
3571
3572 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3573 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3574 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3575 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3576 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3577 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3578 dp += BBSIZE;
3579 }
3580 }
3581
3582 return 0;
3583 }
3584
3585 STATIC int
3586 xlog_valid_rec_header(
3587 struct xlog *log,
3588 struct xlog_rec_header *rhead,
3589 xfs_daddr_t blkno)
3590 {
3591 int hlen;
3592
3593 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3594 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3595 XFS_ERRLEVEL_LOW, log->l_mp);
3596 return XFS_ERROR(EFSCORRUPTED);
3597 }
3598 if (unlikely(
3599 (!rhead->h_version ||
3600 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3601 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3602 __func__, be32_to_cpu(rhead->h_version));
3603 return XFS_ERROR(EIO);
3604 }
3605
3606 /* LR body must have data or it wouldn't have been written */
3607 hlen = be32_to_cpu(rhead->h_len);
3608 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3609 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3610 XFS_ERRLEVEL_LOW, log->l_mp);
3611 return XFS_ERROR(EFSCORRUPTED);
3612 }
3613 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3614 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3615 XFS_ERRLEVEL_LOW, log->l_mp);
3616 return XFS_ERROR(EFSCORRUPTED);
3617 }
3618 return 0;
3619 }
3620
3621 /*
3622 * Read the log from tail to head and process the log records found.
3623 * Handle the two cases where the tail and head are in the same cycle
3624 * and where the active portion of the log wraps around the end of
3625 * the physical log separately. The pass parameter is passed through
3626 * to the routines called to process the data and is not looked at
3627 * here.
3628 */
3629 STATIC int
3630 xlog_do_recovery_pass(
3631 struct xlog *log,
3632 xfs_daddr_t head_blk,
3633 xfs_daddr_t tail_blk,
3634 int pass)
3635 {
3636 xlog_rec_header_t *rhead;
3637 xfs_daddr_t blk_no;
3638 xfs_caddr_t offset;
3639 xfs_buf_t *hbp, *dbp;
3640 int error = 0, h_size;
3641 int bblks, split_bblks;
3642 int hblks, split_hblks, wrapped_hblks;
3643 struct hlist_head rhash[XLOG_RHASH_SIZE];
3644
3645 ASSERT(head_blk != tail_blk);
3646
3647 /*
3648 * Read the header of the tail block and get the iclog buffer size from
3649 * h_size. Use this to tell how many sectors make up the log header.
3650 */
3651 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3652 /*
3653 * When using variable length iclogs, read first sector of
3654 * iclog header and extract the header size from it. Get a
3655 * new hbp that is the correct size.
3656 */
3657 hbp = xlog_get_bp(log, 1);
3658 if (!hbp)
3659 return ENOMEM;
3660
3661 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3662 if (error)
3663 goto bread_err1;
3664
3665 rhead = (xlog_rec_header_t *)offset;
3666 error = xlog_valid_rec_header(log, rhead, tail_blk);
3667 if (error)
3668 goto bread_err1;
3669 h_size = be32_to_cpu(rhead->h_size);
3670 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3671 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3672 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3673 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3674 hblks++;
3675 xlog_put_bp(hbp);
3676 hbp = xlog_get_bp(log, hblks);
3677 } else {
3678 hblks = 1;
3679 }
3680 } else {
3681 ASSERT(log->l_sectBBsize == 1);
3682 hblks = 1;
3683 hbp = xlog_get_bp(log, 1);
3684 h_size = XLOG_BIG_RECORD_BSIZE;
3685 }
3686
3687 if (!hbp)
3688 return ENOMEM;
3689 dbp = xlog_get_bp(log, BTOBB(h_size));
3690 if (!dbp) {
3691 xlog_put_bp(hbp);
3692 return ENOMEM;
3693 }
3694
3695 memset(rhash, 0, sizeof(rhash));
3696 if (tail_blk <= head_blk) {
3697 for (blk_no = tail_blk; blk_no < head_blk; ) {
3698 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3699 if (error)
3700 goto bread_err2;
3701
3702 rhead = (xlog_rec_header_t *)offset;
3703 error = xlog_valid_rec_header(log, rhead, blk_no);
3704 if (error)
3705 goto bread_err2;
3706
3707 /* blocks in data section */
3708 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3709 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3710 &offset);
3711 if (error)
3712 goto bread_err2;
3713
3714 error = xlog_unpack_data(rhead, offset, log);
3715 if (error)
3716 goto bread_err2;
3717
3718 error = xlog_recover_process_data(log,
3719 rhash, rhead, offset, pass);
3720 if (error)
3721 goto bread_err2;
3722 blk_no += bblks + hblks;
3723 }
3724 } else {
3725 /*
3726 * Perform recovery around the end of the physical log.
3727 * When the head is not on the same cycle number as the tail,
3728 * we can't do a sequential recovery as above.
3729 */
3730 blk_no = tail_blk;
3731 while (blk_no < log->l_logBBsize) {
3732 /*
3733 * Check for header wrapping around physical end-of-log
3734 */
3735 offset = hbp->b_addr;
3736 split_hblks = 0;
3737 wrapped_hblks = 0;
3738 if (blk_no + hblks <= log->l_logBBsize) {
3739 /* Read header in one read */
3740 error = xlog_bread(log, blk_no, hblks, hbp,
3741 &offset);
3742 if (error)
3743 goto bread_err2;
3744 } else {
3745 /* This LR is split across physical log end */
3746 if (blk_no != log->l_logBBsize) {
3747 /* some data before physical log end */
3748 ASSERT(blk_no <= INT_MAX);
3749 split_hblks = log->l_logBBsize - (int)blk_no;
3750 ASSERT(split_hblks > 0);
3751 error = xlog_bread(log, blk_no,
3752 split_hblks, hbp,
3753 &offset);
3754 if (error)
3755 goto bread_err2;
3756 }
3757
3758 /*
3759 * Note: this black magic still works with
3760 * large sector sizes (non-512) only because:
3761 * - we increased the buffer size originally
3762 * by 1 sector giving us enough extra space
3763 * for the second read;
3764 * - the log start is guaranteed to be sector
3765 * aligned;
3766 * - we read the log end (LR header start)
3767 * _first_, then the log start (LR header end)
3768 * - order is important.
3769 */
3770 wrapped_hblks = hblks - split_hblks;
3771 error = xlog_bread_offset(log, 0,
3772 wrapped_hblks, hbp,
3773 offset + BBTOB(split_hblks));
3774 if (error)
3775 goto bread_err2;
3776 }
3777 rhead = (xlog_rec_header_t *)offset;
3778 error = xlog_valid_rec_header(log, rhead,
3779 split_hblks ? blk_no : 0);
3780 if (error)
3781 goto bread_err2;
3782
3783 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3784 blk_no += hblks;
3785
3786 /* Read in data for log record */
3787 if (blk_no + bblks <= log->l_logBBsize) {
3788 error = xlog_bread(log, blk_no, bblks, dbp,
3789 &offset);
3790 if (error)
3791 goto bread_err2;
3792 } else {
3793 /* This log record is split across the
3794 * physical end of log */
3795 offset = dbp->b_addr;
3796 split_bblks = 0;
3797 if (blk_no != log->l_logBBsize) {
3798 /* some data is before the physical
3799 * end of log */
3800 ASSERT(!wrapped_hblks);
3801 ASSERT(blk_no <= INT_MAX);
3802 split_bblks =
3803 log->l_logBBsize - (int)blk_no;
3804 ASSERT(split_bblks > 0);
3805 error = xlog_bread(log, blk_no,
3806 split_bblks, dbp,
3807 &offset);
3808 if (error)
3809 goto bread_err2;
3810 }
3811
3812 /*
3813 * Note: this black magic still works with
3814 * large sector sizes (non-512) only because:
3815 * - we increased the buffer size originally
3816 * by 1 sector giving us enough extra space
3817 * for the second read;
3818 * - the log start is guaranteed to be sector
3819 * aligned;
3820 * - we read the log end (LR header start)
3821 * _first_, then the log start (LR header end)
3822 * - order is important.
3823 */
3824 error = xlog_bread_offset(log, 0,
3825 bblks - split_bblks, dbp,
3826 offset + BBTOB(split_bblks));
3827 if (error)
3828 goto bread_err2;
3829 }
3830
3831 error = xlog_unpack_data(rhead, offset, log);
3832 if (error)
3833 goto bread_err2;
3834
3835 error = xlog_recover_process_data(log, rhash,
3836 rhead, offset, pass);
3837 if (error)
3838 goto bread_err2;
3839 blk_no += bblks;
3840 }
3841
3842 ASSERT(blk_no >= log->l_logBBsize);
3843 blk_no -= log->l_logBBsize;
3844
3845 /* read first part of physical log */
3846 while (blk_no < head_blk) {
3847 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3848 if (error)
3849 goto bread_err2;
3850
3851 rhead = (xlog_rec_header_t *)offset;
3852 error = xlog_valid_rec_header(log, rhead, blk_no);
3853 if (error)
3854 goto bread_err2;
3855
3856 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3857 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3858 &offset);
3859 if (error)
3860 goto bread_err2;
3861
3862 error = xlog_unpack_data(rhead, offset, log);
3863 if (error)
3864 goto bread_err2;
3865
3866 error = xlog_recover_process_data(log, rhash,
3867 rhead, offset, pass);
3868 if (error)
3869 goto bread_err2;
3870 blk_no += bblks + hblks;
3871 }
3872 }
3873
3874 bread_err2:
3875 xlog_put_bp(dbp);
3876 bread_err1:
3877 xlog_put_bp(hbp);
3878 return error;
3879 }
3880
3881 /*
3882 * Do the recovery of the log. We actually do this in two phases.
3883 * The two passes are necessary in order to implement the function
3884 * of cancelling a record written into the log. The first pass
3885 * determines those things which have been cancelled, and the
3886 * second pass replays log items normally except for those which
3887 * have been cancelled. The handling of the replay and cancellations
3888 * takes place in the log item type specific routines.
3889 *
3890 * The table of items which have cancel records in the log is allocated
3891 * and freed at this level, since only here do we know when all of
3892 * the log recovery has been completed.
3893 */
3894 STATIC int
3895 xlog_do_log_recovery(
3896 struct xlog *log,
3897 xfs_daddr_t head_blk,
3898 xfs_daddr_t tail_blk)
3899 {
3900 int error, i;
3901
3902 ASSERT(head_blk != tail_blk);
3903
3904 /*
3905 * First do a pass to find all of the cancelled buf log items.
3906 * Store them in the buf_cancel_table for use in the second pass.
3907 */
3908 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3909 sizeof(struct list_head),
3910 KM_SLEEP);
3911 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3912 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3913
3914 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3915 XLOG_RECOVER_PASS1);
3916 if (error != 0) {
3917 kmem_free(log->l_buf_cancel_table);
3918 log->l_buf_cancel_table = NULL;
3919 return error;
3920 }
3921 /*
3922 * Then do a second pass to actually recover the items in the log.
3923 * When it is complete free the table of buf cancel items.
3924 */
3925 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3926 XLOG_RECOVER_PASS2);
3927 #ifdef DEBUG
3928 if (!error) {
3929 int i;
3930
3931 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3932 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3933 }
3934 #endif /* DEBUG */
3935
3936 kmem_free(log->l_buf_cancel_table);
3937 log->l_buf_cancel_table = NULL;
3938
3939 return error;
3940 }
3941
3942 /*
3943 * Do the actual recovery
3944 */
3945 STATIC int
3946 xlog_do_recover(
3947 struct xlog *log,
3948 xfs_daddr_t head_blk,
3949 xfs_daddr_t tail_blk)
3950 {
3951 int error;
3952 xfs_buf_t *bp;
3953 xfs_sb_t *sbp;
3954
3955 /*
3956 * First replay the images in the log.
3957 */
3958 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3959 if (error)
3960 return error;
3961
3962 /*
3963 * If IO errors happened during recovery, bail out.
3964 */
3965 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3966 return (EIO);
3967 }
3968
3969 /*
3970 * We now update the tail_lsn since much of the recovery has completed
3971 * and there may be space available to use. If there were no extent
3972 * or iunlinks, we can free up the entire log and set the tail_lsn to
3973 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3974 * lsn of the last known good LR on disk. If there are extent frees
3975 * or iunlinks they will have some entries in the AIL; so we look at
3976 * the AIL to determine how to set the tail_lsn.
3977 */
3978 xlog_assign_tail_lsn(log->l_mp);
3979
3980 /*
3981 * Now that we've finished replaying all buffer and inode
3982 * updates, re-read in the superblock and reverify it.
3983 */
3984 bp = xfs_getsb(log->l_mp, 0);
3985 XFS_BUF_UNDONE(bp);
3986 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3987 XFS_BUF_READ(bp);
3988 XFS_BUF_UNASYNC(bp);
3989 bp->b_ops = &xfs_sb_buf_ops;
3990 xfsbdstrat(log->l_mp, bp);
3991 error = xfs_buf_iowait(bp);
3992 if (error) {
3993 xfs_buf_ioerror_alert(bp, __func__);
3994 ASSERT(0);
3995 xfs_buf_relse(bp);
3996 return error;
3997 }
3998
3999 /* Convert superblock from on-disk format */
4000 sbp = &log->l_mp->m_sb;
4001 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
4002 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
4003 ASSERT(xfs_sb_good_version(sbp));
4004 xfs_buf_relse(bp);
4005
4006 /* We've re-read the superblock so re-initialize per-cpu counters */
4007 xfs_icsb_reinit_counters(log->l_mp);
4008
4009 xlog_recover_check_summary(log);
4010
4011 /* Normal transactions can now occur */
4012 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4013 return 0;
4014 }
4015
4016 /*
4017 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4018 *
4019 * Return error or zero.
4020 */
4021 int
4022 xlog_recover(
4023 struct xlog *log)
4024 {
4025 xfs_daddr_t head_blk, tail_blk;
4026 int error;
4027
4028 /* find the tail of the log */
4029 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
4030 return error;
4031
4032 if (tail_blk != head_blk) {
4033 /* There used to be a comment here:
4034 *
4035 * disallow recovery on read-only mounts. note -- mount
4036 * checks for ENOSPC and turns it into an intelligent
4037 * error message.
4038 * ...but this is no longer true. Now, unless you specify
4039 * NORECOVERY (in which case this function would never be
4040 * called), we just go ahead and recover. We do this all
4041 * under the vfs layer, so we can get away with it unless
4042 * the device itself is read-only, in which case we fail.
4043 */
4044 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
4045 return error;
4046 }
4047
4048 /*
4049 * Version 5 superblock log feature mask validation. We know the
4050 * log is dirty so check if there are any unknown log features
4051 * in what we need to recover. If there are unknown features
4052 * (e.g. unsupported transactions, then simply reject the
4053 * attempt at recovery before touching anything.
4054 */
4055 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4056 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4057 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4058 xfs_warn(log->l_mp,
4059 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4060 "The log can not be fully and/or safely recovered by this kernel.\n"
4061 "Please recover the log on a kernel that supports the unknown features.",
4062 (log->l_mp->m_sb.sb_features_log_incompat &
4063 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4064 return EINVAL;
4065 }
4066
4067 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4068 log->l_mp->m_logname ? log->l_mp->m_logname
4069 : "internal");
4070
4071 error = xlog_do_recover(log, head_blk, tail_blk);
4072 log->l_flags |= XLOG_RECOVERY_NEEDED;
4073 }
4074 return error;
4075 }
4076
4077 /*
4078 * In the first part of recovery we replay inodes and buffers and build
4079 * up the list of extent free items which need to be processed. Here
4080 * we process the extent free items and clean up the on disk unlinked
4081 * inode lists. This is separated from the first part of recovery so
4082 * that the root and real-time bitmap inodes can be read in from disk in
4083 * between the two stages. This is necessary so that we can free space
4084 * in the real-time portion of the file system.
4085 */
4086 int
4087 xlog_recover_finish(
4088 struct xlog *log)
4089 {
4090 /*
4091 * Now we're ready to do the transactions needed for the
4092 * rest of recovery. Start with completing all the extent
4093 * free intent records and then process the unlinked inode
4094 * lists. At this point, we essentially run in normal mode
4095 * except that we're still performing recovery actions
4096 * rather than accepting new requests.
4097 */
4098 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
4099 int error;
4100 error = xlog_recover_process_efis(log);
4101 if (error) {
4102 xfs_alert(log->l_mp, "Failed to recover EFIs");
4103 return error;
4104 }
4105 /*
4106 * Sync the log to get all the EFIs out of the AIL.
4107 * This isn't absolutely necessary, but it helps in
4108 * case the unlink transactions would have problems
4109 * pushing the EFIs out of the way.
4110 */
4111 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
4112
4113 xlog_recover_process_iunlinks(log);
4114
4115 xlog_recover_check_summary(log);
4116
4117 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4118 log->l_mp->m_logname ? log->l_mp->m_logname
4119 : "internal");
4120 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4121 } else {
4122 xfs_info(log->l_mp, "Ending clean mount");
4123 }
4124 return 0;
4125 }
4126
4127
4128 #if defined(DEBUG)
4129 /*
4130 * Read all of the agf and agi counters and check that they
4131 * are consistent with the superblock counters.
4132 */
4133 void
4134 xlog_recover_check_summary(
4135 struct xlog *log)
4136 {
4137 xfs_mount_t *mp;
4138 xfs_agf_t *agfp;
4139 xfs_buf_t *agfbp;
4140 xfs_buf_t *agibp;
4141 xfs_agnumber_t agno;
4142 __uint64_t freeblks;
4143 __uint64_t itotal;
4144 __uint64_t ifree;
4145 int error;
4146
4147 mp = log->l_mp;
4148
4149 freeblks = 0LL;
4150 itotal = 0LL;
4151 ifree = 0LL;
4152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4153 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4154 if (error) {
4155 xfs_alert(mp, "%s agf read failed agno %d error %d",
4156 __func__, agno, error);
4157 } else {
4158 agfp = XFS_BUF_TO_AGF(agfbp);
4159 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4160 be32_to_cpu(agfp->agf_flcount);
4161 xfs_buf_relse(agfbp);
4162 }
4163
4164 error = xfs_read_agi(mp, NULL, agno, &agibp);
4165 if (error) {
4166 xfs_alert(mp, "%s agi read failed agno %d error %d",
4167 __func__, agno, error);
4168 } else {
4169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4170
4171 itotal += be32_to_cpu(agi->agi_count);
4172 ifree += be32_to_cpu(agi->agi_freecount);
4173 xfs_buf_relse(agibp);
4174 }
4175 }
4176 }
4177 #endif /* DEBUG */