disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_log_cil.c
1 /*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_alloc.h"
30 #include "xfs_extent_busy.h"
31 #include "xfs_discard.h"
32
33 /*
34 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
35 * recover, so we don't allow failure here. Also, we allocate in a context that
36 * we don't want to be issuing transactions from, so we need to tell the
37 * allocation code this as well.
38 *
39 * We don't reserve any space for the ticket - we are going to steal whatever
40 * space we require from transactions as they commit. To ensure we reserve all
41 * the space required, we need to set the current reservation of the ticket to
42 * zero so that we know to steal the initial transaction overhead from the
43 * first transaction commit.
44 */
45 static struct xlog_ticket *
46 xlog_cil_ticket_alloc(
47 struct xlog *log)
48 {
49 struct xlog_ticket *tic;
50
51 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
52 KM_SLEEP|KM_NOFS);
53 tic->t_trans_type = XFS_TRANS_CHECKPOINT;
54
55 /*
56 * set the current reservation to zero so we know to steal the basic
57 * transaction overhead reservation from the first transaction commit.
58 */
59 tic->t_curr_res = 0;
60 return tic;
61 }
62
63 /*
64 * After the first stage of log recovery is done, we know where the head and
65 * tail of the log are. We need this log initialisation done before we can
66 * initialise the first CIL checkpoint context.
67 *
68 * Here we allocate a log ticket to track space usage during a CIL push. This
69 * ticket is passed to xlog_write() directly so that we don't slowly leak log
70 * space by failing to account for space used by log headers and additional
71 * region headers for split regions.
72 */
73 void
74 xlog_cil_init_post_recovery(
75 struct xlog *log)
76 {
77 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 log->l_cilp->xc_ctx->sequence = 1;
79 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
80 log->l_curr_block);
81 }
82
83 /*
84 * Format log item into a flat buffers
85 *
86 * For delayed logging, we need to hold a formatted buffer containing all the
87 * changes on the log item. This enables us to relog the item in memory and
88 * write it out asynchronously without needing to relock the object that was
89 * modified at the time it gets written into the iclog.
90 *
91 * This function builds a vector for the changes in each log item in the
92 * transaction. It then works out the length of the buffer needed for each log
93 * item, allocates them and formats the vector for the item into the buffer.
94 * The buffer is then attached to the log item are then inserted into the
95 * Committed Item List for tracking until the next checkpoint is written out.
96 *
97 * We don't set up region headers during this process; we simply copy the
98 * regions into the flat buffer. We can do this because we still have to do a
99 * formatting step to write the regions into the iclog buffer. Writing the
100 * ophdrs during the iclog write means that we can support splitting large
101 * regions across iclog boundares without needing a change in the format of the
102 * item/region encapsulation.
103 *
104 * Hence what we need to do now is change the rewrite the vector array to point
105 * to the copied region inside the buffer we just allocated. This allows us to
106 * format the regions into the iclog as though they are being formatted
107 * directly out of the objects themselves.
108 */
109 static struct xfs_log_vec *
110 xlog_cil_prepare_log_vecs(
111 struct xfs_trans *tp)
112 {
113 struct xfs_log_item_desc *lidp;
114 struct xfs_log_vec *lv = NULL;
115 struct xfs_log_vec *ret_lv = NULL;
116
117
118 /* Bail out if we didn't find a log item. */
119 if (list_empty(&tp->t_items)) {
120 ASSERT(0);
121 return NULL;
122 }
123
124 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
125 struct xfs_log_vec *new_lv;
126 void *ptr;
127 int index;
128 int len = 0;
129 uint niovecs;
130
131 /* Skip items which aren't dirty in this transaction. */
132 if (!(lidp->lid_flags & XFS_LID_DIRTY))
133 continue;
134
135 /* Skip items that do not have any vectors for writing */
136 niovecs = IOP_SIZE(lidp->lid_item);
137 if (!niovecs)
138 continue;
139
140 new_lv = kmem_zalloc(sizeof(*new_lv) +
141 niovecs * sizeof(struct xfs_log_iovec),
142 KM_SLEEP|KM_NOFS);
143
144 /* The allocated iovec region lies beyond the log vector. */
145 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
146 new_lv->lv_niovecs = niovecs;
147 new_lv->lv_item = lidp->lid_item;
148
149 /* build the vector array and calculate it's length */
150 IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp);
151 for (index = 0; index < new_lv->lv_niovecs; index++)
152 len += new_lv->lv_iovecp[index].i_len;
153
154 new_lv->lv_buf_len = len;
155 new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len,
156 KM_SLEEP|KM_NOFS);
157 ptr = new_lv->lv_buf;
158
159 for (index = 0; index < new_lv->lv_niovecs; index++) {
160 struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index];
161
162 memcpy(ptr, vec->i_addr, vec->i_len);
163 vec->i_addr = ptr;
164 ptr += vec->i_len;
165 }
166 ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len);
167
168 if (!ret_lv)
169 ret_lv = new_lv;
170 else
171 lv->lv_next = new_lv;
172 lv = new_lv;
173 }
174
175 return ret_lv;
176 }
177
178 /*
179 * Prepare the log item for insertion into the CIL. Calculate the difference in
180 * log space and vectors it will consume, and if it is a new item pin it as
181 * well.
182 */
183 STATIC void
184 xfs_cil_prepare_item(
185 struct xlog *log,
186 struct xfs_log_vec *lv,
187 int *len,
188 int *diff_iovecs)
189 {
190 struct xfs_log_vec *old = lv->lv_item->li_lv;
191
192 if (old) {
193 /* existing lv on log item, space used is a delta */
194 ASSERT(!list_empty(&lv->lv_item->li_cil));
195 ASSERT(old->lv_buf && old->lv_buf_len && old->lv_niovecs);
196
197 *len += lv->lv_buf_len - old->lv_buf_len;
198 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
199 kmem_free(old->lv_buf);
200 kmem_free(old);
201 } else {
202 /* new lv, must pin the log item */
203 ASSERT(!lv->lv_item->li_lv);
204 ASSERT(list_empty(&lv->lv_item->li_cil));
205
206 *len += lv->lv_buf_len;
207 *diff_iovecs += lv->lv_niovecs;
208 IOP_PIN(lv->lv_item);
209
210 }
211
212 /* attach new log vector to log item */
213 lv->lv_item->li_lv = lv;
214
215 /*
216 * If this is the first time the item is being committed to the
217 * CIL, store the sequence number on the log item so we can
218 * tell in future commits whether this is the first checkpoint
219 * the item is being committed into.
220 */
221 if (!lv->lv_item->li_seq)
222 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
223 }
224
225 /*
226 * Insert the log items into the CIL and calculate the difference in space
227 * consumed by the item. Add the space to the checkpoint ticket and calculate
228 * if the change requires additional log metadata. If it does, take that space
229 * as well. Remove the amount of space we added to the checkpoint ticket from
230 * the current transaction ticket so that the accounting works out correctly.
231 */
232 static void
233 xlog_cil_insert_items(
234 struct xlog *log,
235 struct xfs_log_vec *log_vector,
236 struct xlog_ticket *ticket)
237 {
238 struct xfs_cil *cil = log->l_cilp;
239 struct xfs_cil_ctx *ctx = cil->xc_ctx;
240 struct xfs_log_vec *lv;
241 int len = 0;
242 int diff_iovecs = 0;
243 int iclog_space;
244
245 ASSERT(log_vector);
246
247 /*
248 * Do all the accounting aggregation and switching of log vectors
249 * around in a separate loop to the insertion of items into the CIL.
250 * Then we can do a separate loop to update the CIL within a single
251 * lock/unlock pair. This reduces the number of round trips on the CIL
252 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
253 * hold time for the transaction commit.
254 *
255 * If this is the first time the item is being placed into the CIL in
256 * this context, pin it so it can't be written to disk until the CIL is
257 * flushed to the iclog and the iclog written to disk.
258 *
259 * We can do this safely because the context can't checkpoint until we
260 * are done so it doesn't matter exactly how we update the CIL.
261 */
262 for (lv = log_vector; lv; lv = lv->lv_next)
263 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
264
265 /* account for space used by new iovec headers */
266 len += diff_iovecs * sizeof(xlog_op_header_t);
267
268 spin_lock(&cil->xc_cil_lock);
269
270 /* move the items to the tail of the CIL */
271 for (lv = log_vector; lv; lv = lv->lv_next)
272 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
273
274 ctx->nvecs += diff_iovecs;
275
276 /*
277 * Now transfer enough transaction reservation to the context ticket
278 * for the checkpoint. The context ticket is special - the unit
279 * reservation has to grow as well as the current reservation as we
280 * steal from tickets so we can correctly determine the space used
281 * during the transaction commit.
282 */
283 if (ctx->ticket->t_curr_res == 0) {
284 /* first commit in checkpoint, steal the header reservation */
285 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
286 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
287 ticket->t_curr_res -= ctx->ticket->t_unit_res;
288 }
289
290 /* do we need space for more log record headers? */
291 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
292 if (len > 0 && (ctx->space_used / iclog_space !=
293 (ctx->space_used + len) / iclog_space)) {
294 int hdrs;
295
296 hdrs = (len + iclog_space - 1) / iclog_space;
297 /* need to take into account split region headers, too */
298 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
299 ctx->ticket->t_unit_res += hdrs;
300 ctx->ticket->t_curr_res += hdrs;
301 ticket->t_curr_res -= hdrs;
302 ASSERT(ticket->t_curr_res >= len);
303 }
304 ticket->t_curr_res -= len;
305 ctx->space_used += len;
306
307 spin_unlock(&cil->xc_cil_lock);
308 }
309
310 static void
311 xlog_cil_free_logvec(
312 struct xfs_log_vec *log_vector)
313 {
314 struct xfs_log_vec *lv;
315
316 for (lv = log_vector; lv; ) {
317 struct xfs_log_vec *next = lv->lv_next;
318 kmem_free(lv->lv_buf);
319 kmem_free(lv);
320 lv = next;
321 }
322 }
323
324 /*
325 * Mark all items committed and clear busy extents. We free the log vector
326 * chains in a separate pass so that we unpin the log items as quickly as
327 * possible.
328 */
329 static void
330 xlog_cil_committed(
331 void *args,
332 int abort)
333 {
334 struct xfs_cil_ctx *ctx = args;
335 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
336
337 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
338 ctx->start_lsn, abort);
339
340 xfs_extent_busy_sort(&ctx->busy_extents);
341 xfs_extent_busy_clear(mp, &ctx->busy_extents,
342 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
343
344 spin_lock(&ctx->cil->xc_cil_lock);
345 list_del(&ctx->committing);
346 spin_unlock(&ctx->cil->xc_cil_lock);
347
348 xlog_cil_free_logvec(ctx->lv_chain);
349
350 if (!list_empty(&ctx->busy_extents)) {
351 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
352
353 xfs_discard_extents(mp, &ctx->busy_extents);
354 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
355 }
356
357 kmem_free(ctx);
358 }
359
360 /*
361 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
362 * is a background flush and so we can chose to ignore it. Otherwise, if the
363 * current sequence is the same as @push_seq we need to do a flush. If
364 * @push_seq is less than the current sequence, then it has already been
365 * flushed and we don't need to do anything - the caller will wait for it to
366 * complete if necessary.
367 *
368 * @push_seq is a value rather than a flag because that allows us to do an
369 * unlocked check of the sequence number for a match. Hence we can allows log
370 * forces to run racily and not issue pushes for the same sequence twice. If we
371 * get a race between multiple pushes for the same sequence they will block on
372 * the first one and then abort, hence avoiding needless pushes.
373 */
374 STATIC int
375 xlog_cil_push(
376 struct xlog *log)
377 {
378 struct xfs_cil *cil = log->l_cilp;
379 struct xfs_log_vec *lv;
380 struct xfs_cil_ctx *ctx;
381 struct xfs_cil_ctx *new_ctx;
382 struct xlog_in_core *commit_iclog;
383 struct xlog_ticket *tic;
384 int num_lv;
385 int num_iovecs;
386 int len;
387 int error = 0;
388 struct xfs_trans_header thdr;
389 struct xfs_log_iovec lhdr;
390 struct xfs_log_vec lvhdr = { NULL };
391 xfs_lsn_t commit_lsn;
392 xfs_lsn_t push_seq;
393
394 if (!cil)
395 return 0;
396
397 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
398 new_ctx->ticket = xlog_cil_ticket_alloc(log);
399
400 down_write(&cil->xc_ctx_lock);
401 ctx = cil->xc_ctx;
402
403 spin_lock(&cil->xc_cil_lock);
404 push_seq = cil->xc_push_seq;
405 ASSERT(push_seq <= ctx->sequence);
406
407 /*
408 * Check if we've anything to push. If there is nothing, then we don't
409 * move on to a new sequence number and so we have to be able to push
410 * this sequence again later.
411 */
412 if (list_empty(&cil->xc_cil)) {
413 cil->xc_push_seq = 0;
414 spin_unlock(&cil->xc_cil_lock);
415 goto out_skip;
416 }
417 spin_unlock(&cil->xc_cil_lock);
418
419
420 /* check for a previously pushed seqeunce */
421 if (push_seq < cil->xc_ctx->sequence)
422 goto out_skip;
423
424 /*
425 * pull all the log vectors off the items in the CIL, and
426 * remove the items from the CIL. We don't need the CIL lock
427 * here because it's only needed on the transaction commit
428 * side which is currently locked out by the flush lock.
429 */
430 lv = NULL;
431 num_lv = 0;
432 num_iovecs = 0;
433 len = 0;
434 while (!list_empty(&cil->xc_cil)) {
435 struct xfs_log_item *item;
436 int i;
437
438 item = list_first_entry(&cil->xc_cil,
439 struct xfs_log_item, li_cil);
440 list_del_init(&item->li_cil);
441 if (!ctx->lv_chain)
442 ctx->lv_chain = item->li_lv;
443 else
444 lv->lv_next = item->li_lv;
445 lv = item->li_lv;
446 item->li_lv = NULL;
447
448 num_lv++;
449 num_iovecs += lv->lv_niovecs;
450 for (i = 0; i < lv->lv_niovecs; i++)
451 len += lv->lv_iovecp[i].i_len;
452 }
453
454 /*
455 * initialise the new context and attach it to the CIL. Then attach
456 * the current context to the CIL committing lsit so it can be found
457 * during log forces to extract the commit lsn of the sequence that
458 * needs to be forced.
459 */
460 INIT_LIST_HEAD(&new_ctx->committing);
461 INIT_LIST_HEAD(&new_ctx->busy_extents);
462 new_ctx->sequence = ctx->sequence + 1;
463 new_ctx->cil = cil;
464 cil->xc_ctx = new_ctx;
465
466 /*
467 * mirror the new sequence into the cil structure so that we can do
468 * unlocked checks against the current sequence in log forces without
469 * risking deferencing a freed context pointer.
470 */
471 cil->xc_current_sequence = new_ctx->sequence;
472
473 /*
474 * The switch is now done, so we can drop the context lock and move out
475 * of a shared context. We can't just go straight to the commit record,
476 * though - we need to synchronise with previous and future commits so
477 * that the commit records are correctly ordered in the log to ensure
478 * that we process items during log IO completion in the correct order.
479 *
480 * For example, if we get an EFI in one checkpoint and the EFD in the
481 * next (e.g. due to log forces), we do not want the checkpoint with
482 * the EFD to be committed before the checkpoint with the EFI. Hence
483 * we must strictly order the commit records of the checkpoints so
484 * that: a) the checkpoint callbacks are attached to the iclogs in the
485 * correct order; and b) the checkpoints are replayed in correct order
486 * in log recovery.
487 *
488 * Hence we need to add this context to the committing context list so
489 * that higher sequences will wait for us to write out a commit record
490 * before they do.
491 */
492 spin_lock(&cil->xc_cil_lock);
493 list_add(&ctx->committing, &cil->xc_committing);
494 spin_unlock(&cil->xc_cil_lock);
495 up_write(&cil->xc_ctx_lock);
496
497 /*
498 * Build a checkpoint transaction header and write it to the log to
499 * begin the transaction. We need to account for the space used by the
500 * transaction header here as it is not accounted for in xlog_write().
501 *
502 * The LSN we need to pass to the log items on transaction commit is
503 * the LSN reported by the first log vector write. If we use the commit
504 * record lsn then we can move the tail beyond the grant write head.
505 */
506 tic = ctx->ticket;
507 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
508 thdr.th_type = XFS_TRANS_CHECKPOINT;
509 thdr.th_tid = tic->t_tid;
510 thdr.th_num_items = num_iovecs;
511 lhdr.i_addr = &thdr;
512 lhdr.i_len = sizeof(xfs_trans_header_t);
513 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
514 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
515
516 lvhdr.lv_niovecs = 1;
517 lvhdr.lv_iovecp = &lhdr;
518 lvhdr.lv_next = ctx->lv_chain;
519
520 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
521 if (error)
522 goto out_abort_free_ticket;
523
524 /*
525 * now that we've written the checkpoint into the log, strictly
526 * order the commit records so replay will get them in the right order.
527 */
528 restart:
529 spin_lock(&cil->xc_cil_lock);
530 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
531 /*
532 * Higher sequences will wait for this one so skip them.
533 * Don't wait for own own sequence, either.
534 */
535 if (new_ctx->sequence >= ctx->sequence)
536 continue;
537 if (!new_ctx->commit_lsn) {
538 /*
539 * It is still being pushed! Wait for the push to
540 * complete, then start again from the beginning.
541 */
542 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
543 goto restart;
544 }
545 }
546 spin_unlock(&cil->xc_cil_lock);
547
548 /* xfs_log_done always frees the ticket on error. */
549 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
550 if (commit_lsn == -1)
551 goto out_abort;
552
553 /* attach all the transactions w/ busy extents to iclog */
554 ctx->log_cb.cb_func = xlog_cil_committed;
555 ctx->log_cb.cb_arg = ctx;
556 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
557 if (error)
558 goto out_abort;
559
560 /*
561 * now the checkpoint commit is complete and we've attached the
562 * callbacks to the iclog we can assign the commit LSN to the context
563 * and wake up anyone who is waiting for the commit to complete.
564 */
565 spin_lock(&cil->xc_cil_lock);
566 ctx->commit_lsn = commit_lsn;
567 wake_up_all(&cil->xc_commit_wait);
568 spin_unlock(&cil->xc_cil_lock);
569
570 /* release the hounds! */
571 return xfs_log_release_iclog(log->l_mp, commit_iclog);
572
573 out_skip:
574 up_write(&cil->xc_ctx_lock);
575 xfs_log_ticket_put(new_ctx->ticket);
576 kmem_free(new_ctx);
577 return 0;
578
579 out_abort_free_ticket:
580 xfs_log_ticket_put(tic);
581 out_abort:
582 xlog_cil_committed(ctx, XFS_LI_ABORTED);
583 return XFS_ERROR(EIO);
584 }
585
586 static void
587 xlog_cil_push_work(
588 struct work_struct *work)
589 {
590 struct xfs_cil *cil = container_of(work, struct xfs_cil,
591 xc_push_work);
592 xlog_cil_push(cil->xc_log);
593 }
594
595 /*
596 * We need to push CIL every so often so we don't cache more than we can fit in
597 * the log. The limit really is that a checkpoint can't be more than half the
598 * log (the current checkpoint is not allowed to overwrite the previous
599 * checkpoint), but commit latency and memory usage limit this to a smaller
600 * size.
601 */
602 static void
603 xlog_cil_push_background(
604 struct xlog *log)
605 {
606 struct xfs_cil *cil = log->l_cilp;
607
608 /*
609 * The cil won't be empty because we are called while holding the
610 * context lock so whatever we added to the CIL will still be there
611 */
612 ASSERT(!list_empty(&cil->xc_cil));
613
614 /*
615 * don't do a background push if we haven't used up all the
616 * space available yet.
617 */
618 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
619 return;
620
621 spin_lock(&cil->xc_cil_lock);
622 if (cil->xc_push_seq < cil->xc_current_sequence) {
623 cil->xc_push_seq = cil->xc_current_sequence;
624 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
625 }
626 spin_unlock(&cil->xc_cil_lock);
627
628 }
629
630 static void
631 xlog_cil_push_foreground(
632 struct xlog *log,
633 xfs_lsn_t push_seq)
634 {
635 struct xfs_cil *cil = log->l_cilp;
636
637 if (!cil)
638 return;
639
640 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
641
642 /* start on any pending background push to minimise wait time on it */
643 flush_work(&cil->xc_push_work);
644
645 /*
646 * If the CIL is empty or we've already pushed the sequence then
647 * there's no work we need to do.
648 */
649 spin_lock(&cil->xc_cil_lock);
650 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
651 spin_unlock(&cil->xc_cil_lock);
652 return;
653 }
654
655 cil->xc_push_seq = push_seq;
656 spin_unlock(&cil->xc_cil_lock);
657
658 /* do the push now */
659 xlog_cil_push(log);
660 }
661
662 /*
663 * Commit a transaction with the given vector to the Committed Item List.
664 *
665 * To do this, we need to format the item, pin it in memory if required and
666 * account for the space used by the transaction. Once we have done that we
667 * need to release the unused reservation for the transaction, attach the
668 * transaction to the checkpoint context so we carry the busy extents through
669 * to checkpoint completion, and then unlock all the items in the transaction.
670 *
671 * Called with the context lock already held in read mode to lock out
672 * background commit, returns without it held once background commits are
673 * allowed again.
674 */
675 int
676 xfs_log_commit_cil(
677 struct xfs_mount *mp,
678 struct xfs_trans *tp,
679 xfs_lsn_t *commit_lsn,
680 int flags)
681 {
682 struct xlog *log = mp->m_log;
683 int log_flags = 0;
684 struct xfs_log_vec *log_vector;
685
686 if (flags & XFS_TRANS_RELEASE_LOG_RES)
687 log_flags = XFS_LOG_REL_PERM_RESERV;
688
689 /*
690 * Do all the hard work of formatting items (including memory
691 * allocation) outside the CIL context lock. This prevents stalling CIL
692 * pushes when we are low on memory and a transaction commit spends a
693 * lot of time in memory reclaim.
694 */
695 log_vector = xlog_cil_prepare_log_vecs(tp);
696 if (!log_vector)
697 return ENOMEM;
698
699 /* lock out background commit */
700 down_read(&log->l_cilp->xc_ctx_lock);
701 if (commit_lsn)
702 *commit_lsn = log->l_cilp->xc_ctx->sequence;
703
704 xlog_cil_insert_items(log, log_vector, tp->t_ticket);
705
706 /* check we didn't blow the reservation */
707 if (tp->t_ticket->t_curr_res < 0)
708 xlog_print_tic_res(log->l_mp, tp->t_ticket);
709
710 /* attach the transaction to the CIL if it has any busy extents */
711 if (!list_empty(&tp->t_busy)) {
712 spin_lock(&log->l_cilp->xc_cil_lock);
713 list_splice_init(&tp->t_busy,
714 &log->l_cilp->xc_ctx->busy_extents);
715 spin_unlock(&log->l_cilp->xc_cil_lock);
716 }
717
718 tp->t_commit_lsn = *commit_lsn;
719 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
720 xfs_trans_unreserve_and_mod_sb(tp);
721
722 /*
723 * Once all the items of the transaction have been copied to the CIL,
724 * the items can be unlocked and freed.
725 *
726 * This needs to be done before we drop the CIL context lock because we
727 * have to update state in the log items and unlock them before they go
728 * to disk. If we don't, then the CIL checkpoint can race with us and
729 * we can run checkpoint completion before we've updated and unlocked
730 * the log items. This affects (at least) processing of stale buffers,
731 * inodes and EFIs.
732 */
733 xfs_trans_free_items(tp, *commit_lsn, 0);
734
735 xlog_cil_push_background(log);
736
737 up_read(&log->l_cilp->xc_ctx_lock);
738 return 0;
739 }
740
741 /*
742 * Conditionally push the CIL based on the sequence passed in.
743 *
744 * We only need to push if we haven't already pushed the sequence
745 * number given. Hence the only time we will trigger a push here is
746 * if the push sequence is the same as the current context.
747 *
748 * We return the current commit lsn to allow the callers to determine if a
749 * iclog flush is necessary following this call.
750 */
751 xfs_lsn_t
752 xlog_cil_force_lsn(
753 struct xlog *log,
754 xfs_lsn_t sequence)
755 {
756 struct xfs_cil *cil = log->l_cilp;
757 struct xfs_cil_ctx *ctx;
758 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
759
760 ASSERT(sequence <= cil->xc_current_sequence);
761
762 /*
763 * check to see if we need to force out the current context.
764 * xlog_cil_push() handles racing pushes for the same sequence,
765 * so no need to deal with it here.
766 */
767 xlog_cil_push_foreground(log, sequence);
768
769 /*
770 * See if we can find a previous sequence still committing.
771 * We need to wait for all previous sequence commits to complete
772 * before allowing the force of push_seq to go ahead. Hence block
773 * on commits for those as well.
774 */
775 restart:
776 spin_lock(&cil->xc_cil_lock);
777 list_for_each_entry(ctx, &cil->xc_committing, committing) {
778 if (ctx->sequence > sequence)
779 continue;
780 if (!ctx->commit_lsn) {
781 /*
782 * It is still being pushed! Wait for the push to
783 * complete, then start again from the beginning.
784 */
785 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
786 goto restart;
787 }
788 if (ctx->sequence != sequence)
789 continue;
790 /* found it! */
791 commit_lsn = ctx->commit_lsn;
792 }
793 spin_unlock(&cil->xc_cil_lock);
794 return commit_lsn;
795 }
796
797 /*
798 * Check if the current log item was first committed in this sequence.
799 * We can't rely on just the log item being in the CIL, we have to check
800 * the recorded commit sequence number.
801 *
802 * Note: for this to be used in a non-racy manner, it has to be called with
803 * CIL flushing locked out. As a result, it should only be used during the
804 * transaction commit process when deciding what to format into the item.
805 */
806 bool
807 xfs_log_item_in_current_chkpt(
808 struct xfs_log_item *lip)
809 {
810 struct xfs_cil_ctx *ctx;
811
812 if (list_empty(&lip->li_cil))
813 return false;
814
815 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
816
817 /*
818 * li_seq is written on the first commit of a log item to record the
819 * first checkpoint it is written to. Hence if it is different to the
820 * current sequence, we're in a new checkpoint.
821 */
822 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
823 return false;
824 return true;
825 }
826
827 /*
828 * Perform initial CIL structure initialisation.
829 */
830 int
831 xlog_cil_init(
832 struct xlog *log)
833 {
834 struct xfs_cil *cil;
835 struct xfs_cil_ctx *ctx;
836
837 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
838 if (!cil)
839 return ENOMEM;
840
841 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
842 if (!ctx) {
843 kmem_free(cil);
844 return ENOMEM;
845 }
846
847 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
848 INIT_LIST_HEAD(&cil->xc_cil);
849 INIT_LIST_HEAD(&cil->xc_committing);
850 spin_lock_init(&cil->xc_cil_lock);
851 init_rwsem(&cil->xc_ctx_lock);
852 init_waitqueue_head(&cil->xc_commit_wait);
853
854 INIT_LIST_HEAD(&ctx->committing);
855 INIT_LIST_HEAD(&ctx->busy_extents);
856 ctx->sequence = 1;
857 ctx->cil = cil;
858 cil->xc_ctx = ctx;
859 cil->xc_current_sequence = ctx->sequence;
860
861 cil->xc_log = log;
862 log->l_cilp = cil;
863 return 0;
864 }
865
866 void
867 xlog_cil_destroy(
868 struct xlog *log)
869 {
870 if (log->l_cilp->xc_ctx) {
871 if (log->l_cilp->xc_ctx->ticket)
872 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
873 kmem_free(log->l_cilp->xc_ctx);
874 }
875
876 ASSERT(list_empty(&log->l_cilp->xc_cil));
877 kmem_free(log->l_cilp);
878 }
879