xfs: simplify inode to transaction joining
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_inode_item.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35
36
37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
38
39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40 {
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
42 }
43
44
45 /*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52 STATIC uint
53 xfs_inode_item_size(
54 struct xfs_log_item *lip)
55 {
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
59
60 /*
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
63 */
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 }
79 break;
80
81 case XFS_DINODE_FMT_BTREE:
82 ASSERT(ip->i_df.if_ext_max ==
83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 iip->ili_format.ilf_fields &=
85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 XFS_ILOG_DEV | XFS_ILOG_UUID);
87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 (ip->i_df.if_broot_bytes > 0)) {
89 ASSERT(ip->i_df.if_broot != NULL);
90 nvecs++;
91 } else {
92 ASSERT(!(iip->ili_format.ilf_fields &
93 XFS_ILOG_DBROOT));
94 #ifdef XFS_TRANS_DEBUG
95 if (iip->ili_root_size > 0) {
96 ASSERT(iip->ili_root_size ==
97 ip->i_df.if_broot_bytes);
98 ASSERT(memcmp(iip->ili_orig_root,
99 ip->i_df.if_broot,
100 iip->ili_root_size) == 0);
101 } else {
102 ASSERT(ip->i_df.if_broot_bytes == 0);
103 }
104 #endif
105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106 }
107 break;
108
109 case XFS_DINODE_FMT_LOCAL:
110 iip->ili_format.ilf_fields &=
111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 XFS_ILOG_DEV | XFS_ILOG_UUID);
113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 (ip->i_df.if_bytes > 0)) {
115 ASSERT(ip->i_df.if_u1.if_data != NULL);
116 ASSERT(ip->i_d.di_size > 0);
117 nvecs++;
118 } else {
119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120 }
121 break;
122
123 case XFS_DINODE_FMT_DEV:
124 iip->ili_format.ilf_fields &=
125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 break;
128
129 case XFS_DINODE_FMT_UUID:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 break;
134
135 default:
136 ASSERT(0);
137 break;
138 }
139
140 /*
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
144 */
145 if (!XFS_IFORK_Q(ip)) {
146 iip->ili_format.ilf_fields &=
147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 return nvecs;
149 }
150
151 /*
152 * Log any necessary attribute data.
153 */
154 switch (ip->i_d.di_aformat) {
155 case XFS_DINODE_FMT_EXTENTS:
156 iip->ili_format.ilf_fields &=
157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 (ip->i_d.di_anextents > 0) &&
160 (ip->i_afp->if_bytes > 0)) {
161 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 nvecs++;
163 } else {
164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165 }
166 break;
167
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_format.ilf_fields &=
170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 (ip->i_afp->if_broot_bytes > 0)) {
173 ASSERT(ip->i_afp->if_broot != NULL);
174 nvecs++;
175 } else {
176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177 }
178 break;
179
180 case XFS_DINODE_FMT_LOCAL:
181 iip->ili_format.ilf_fields &=
182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 (ip->i_afp->if_bytes > 0)) {
185 ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 nvecs++;
187 } else {
188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189 }
190 break;
191
192 default:
193 ASSERT(0);
194 break;
195 }
196
197 return nvecs;
198 }
199
200 /*
201 * This is called to fill in the vector of log iovecs for the
202 * given inode log item. It fills the first item with an inode
203 * log format structure, the second with the on-disk inode structure,
204 * and a possible third and/or fourth with the inode data/extents/b-tree
205 * root and inode attributes data/extents/b-tree root.
206 */
207 STATIC void
208 xfs_inode_item_format(
209 struct xfs_log_item *lip,
210 struct xfs_log_iovec *vecp)
211 {
212 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
213 struct xfs_inode *ip = iip->ili_inode;
214 uint nvecs;
215 size_t data_bytes;
216 xfs_bmbt_rec_t *ext_buffer;
217 int nrecs;
218 xfs_mount_t *mp;
219
220 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
221 vecp->i_len = sizeof(xfs_inode_log_format_t);
222 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
223 vecp++;
224 nvecs = 1;
225
226 /*
227 * Make sure the linux inode is dirty. We do this before
228 * clearing i_update_core as the VFS will call back into
229 * XFS here and set i_update_core, so we need to dirty the
230 * inode first so that the ordering of i_update_core and
231 * unlogged modifications still works as described below.
232 */
233 xfs_mark_inode_dirty_sync(ip);
234
235 /*
236 * Clear i_update_core if the timestamps (or any other
237 * non-transactional modification) need flushing/logging
238 * and we're about to log them with the rest of the core.
239 *
240 * This is the same logic as xfs_iflush() but this code can't
241 * run at the same time as xfs_iflush because we're in commit
242 * processing here and so we have the inode lock held in
243 * exclusive mode. Although it doesn't really matter
244 * for the timestamps if both routines were to grab the
245 * timestamps or not. That would be ok.
246 *
247 * We clear i_update_core before copying out the data.
248 * This is for coordination with our timestamp updates
249 * that don't hold the inode lock. They will always
250 * update the timestamps BEFORE setting i_update_core,
251 * so if we clear i_update_core after they set it we
252 * are guaranteed to see their updates to the timestamps
253 * either here. Likewise, if they set it after we clear it
254 * here, we'll see it either on the next commit of this
255 * inode or the next time the inode gets flushed via
256 * xfs_iflush(). This depends on strongly ordered memory
257 * semantics, but we have that. We use the SYNCHRONIZE
258 * macro to make sure that the compiler does not reorder
259 * the i_update_core access below the data copy below.
260 */
261 if (ip->i_update_core) {
262 ip->i_update_core = 0;
263 SYNCHRONIZE();
264 }
265
266 /*
267 * Make sure to get the latest timestamps from the Linux inode.
268 */
269 xfs_synchronize_times(ip);
270
271 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
272 vecp->i_len = sizeof(struct xfs_icdinode);
273 vecp->i_type = XLOG_REG_TYPE_ICORE;
274 vecp++;
275 nvecs++;
276 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
277
278 /*
279 * If this is really an old format inode, then we need to
280 * log it as such. This means that we have to copy the link
281 * count from the new field to the old. We don't have to worry
282 * about the new fields, because nothing trusts them as long as
283 * the old inode version number is there. If the superblock already
284 * has a new version number, then we don't bother converting back.
285 */
286 mp = ip->i_mount;
287 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
288 if (ip->i_d.di_version == 1) {
289 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
290 /*
291 * Convert it back.
292 */
293 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
294 ip->i_d.di_onlink = ip->i_d.di_nlink;
295 } else {
296 /*
297 * The superblock version has already been bumped,
298 * so just make the conversion to the new inode
299 * format permanent.
300 */
301 ip->i_d.di_version = 2;
302 ip->i_d.di_onlink = 0;
303 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
304 }
305 }
306
307 switch (ip->i_d.di_format) {
308 case XFS_DINODE_FMT_EXTENTS:
309 ASSERT(!(iip->ili_format.ilf_fields &
310 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
311 XFS_ILOG_DEV | XFS_ILOG_UUID)));
312 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
313 ASSERT(ip->i_df.if_bytes > 0);
314 ASSERT(ip->i_df.if_u1.if_extents != NULL);
315 ASSERT(ip->i_d.di_nextents > 0);
316 ASSERT(iip->ili_extents_buf == NULL);
317 nrecs = ip->i_df.if_bytes /
318 (uint)sizeof(xfs_bmbt_rec_t);
319 ASSERT(nrecs > 0);
320 #ifdef XFS_NATIVE_HOST
321 if (nrecs == ip->i_d.di_nextents) {
322 /*
323 * There are no delayed allocation
324 * extents, so just point to the
325 * real extents array.
326 */
327 vecp->i_addr =
328 (char *)(ip->i_df.if_u1.if_extents);
329 vecp->i_len = ip->i_df.if_bytes;
330 vecp->i_type = XLOG_REG_TYPE_IEXT;
331 } else
332 #endif
333 {
334 /*
335 * There are delayed allocation extents
336 * in the inode, or we need to convert
337 * the extents to on disk format.
338 * Use xfs_iextents_copy()
339 * to copy only the real extents into
340 * a separate buffer. We'll free the
341 * buffer in the unlock routine.
342 */
343 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
344 KM_SLEEP);
345 iip->ili_extents_buf = ext_buffer;
346 vecp->i_addr = (xfs_caddr_t)ext_buffer;
347 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
348 XFS_DATA_FORK);
349 vecp->i_type = XLOG_REG_TYPE_IEXT;
350 }
351 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
352 iip->ili_format.ilf_dsize = vecp->i_len;
353 vecp++;
354 nvecs++;
355 }
356 break;
357
358 case XFS_DINODE_FMT_BTREE:
359 ASSERT(!(iip->ili_format.ilf_fields &
360 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
361 XFS_ILOG_DEV | XFS_ILOG_UUID)));
362 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
363 ASSERT(ip->i_df.if_broot_bytes > 0);
364 ASSERT(ip->i_df.if_broot != NULL);
365 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
366 vecp->i_len = ip->i_df.if_broot_bytes;
367 vecp->i_type = XLOG_REG_TYPE_IBROOT;
368 vecp++;
369 nvecs++;
370 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
371 }
372 break;
373
374 case XFS_DINODE_FMT_LOCAL:
375 ASSERT(!(iip->ili_format.ilf_fields &
376 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
377 XFS_ILOG_DEV | XFS_ILOG_UUID)));
378 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
379 ASSERT(ip->i_df.if_bytes > 0);
380 ASSERT(ip->i_df.if_u1.if_data != NULL);
381 ASSERT(ip->i_d.di_size > 0);
382
383 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
384 /*
385 * Round i_bytes up to a word boundary.
386 * The underlying memory is guaranteed to
387 * to be there by xfs_idata_realloc().
388 */
389 data_bytes = roundup(ip->i_df.if_bytes, 4);
390 ASSERT((ip->i_df.if_real_bytes == 0) ||
391 (ip->i_df.if_real_bytes == data_bytes));
392 vecp->i_len = (int)data_bytes;
393 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
394 vecp++;
395 nvecs++;
396 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
397 }
398 break;
399
400 case XFS_DINODE_FMT_DEV:
401 ASSERT(!(iip->ili_format.ilf_fields &
402 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
403 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
404 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
405 iip->ili_format.ilf_u.ilfu_rdev =
406 ip->i_df.if_u2.if_rdev;
407 }
408 break;
409
410 case XFS_DINODE_FMT_UUID:
411 ASSERT(!(iip->ili_format.ilf_fields &
412 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
413 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
414 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
415 iip->ili_format.ilf_u.ilfu_uuid =
416 ip->i_df.if_u2.if_uuid;
417 }
418 break;
419
420 default:
421 ASSERT(0);
422 break;
423 }
424
425 /*
426 * If there are no attributes associated with the file,
427 * then we're done.
428 * Assert that no attribute-related log flags are set.
429 */
430 if (!XFS_IFORK_Q(ip)) {
431 ASSERT(nvecs == lip->li_desc->lid_size);
432 iip->ili_format.ilf_size = nvecs;
433 ASSERT(!(iip->ili_format.ilf_fields &
434 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
435 return;
436 }
437
438 switch (ip->i_d.di_aformat) {
439 case XFS_DINODE_FMT_EXTENTS:
440 ASSERT(!(iip->ili_format.ilf_fields &
441 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
442 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
443 ASSERT(ip->i_afp->if_bytes > 0);
444 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
445 ASSERT(ip->i_d.di_anextents > 0);
446 #ifdef DEBUG
447 nrecs = ip->i_afp->if_bytes /
448 (uint)sizeof(xfs_bmbt_rec_t);
449 #endif
450 ASSERT(nrecs > 0);
451 ASSERT(nrecs == ip->i_d.di_anextents);
452 #ifdef XFS_NATIVE_HOST
453 /*
454 * There are not delayed allocation extents
455 * for attributes, so just point at the array.
456 */
457 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
458 vecp->i_len = ip->i_afp->if_bytes;
459 #else
460 ASSERT(iip->ili_aextents_buf == NULL);
461 /*
462 * Need to endian flip before logging
463 */
464 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
465 KM_SLEEP);
466 iip->ili_aextents_buf = ext_buffer;
467 vecp->i_addr = (xfs_caddr_t)ext_buffer;
468 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
469 XFS_ATTR_FORK);
470 #endif
471 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
472 iip->ili_format.ilf_asize = vecp->i_len;
473 vecp++;
474 nvecs++;
475 }
476 break;
477
478 case XFS_DINODE_FMT_BTREE:
479 ASSERT(!(iip->ili_format.ilf_fields &
480 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
481 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
482 ASSERT(ip->i_afp->if_broot_bytes > 0);
483 ASSERT(ip->i_afp->if_broot != NULL);
484 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
485 vecp->i_len = ip->i_afp->if_broot_bytes;
486 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
487 vecp++;
488 nvecs++;
489 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
490 }
491 break;
492
493 case XFS_DINODE_FMT_LOCAL:
494 ASSERT(!(iip->ili_format.ilf_fields &
495 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
496 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
497 ASSERT(ip->i_afp->if_bytes > 0);
498 ASSERT(ip->i_afp->if_u1.if_data != NULL);
499
500 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
501 /*
502 * Round i_bytes up to a word boundary.
503 * The underlying memory is guaranteed to
504 * to be there by xfs_idata_realloc().
505 */
506 data_bytes = roundup(ip->i_afp->if_bytes, 4);
507 ASSERT((ip->i_afp->if_real_bytes == 0) ||
508 (ip->i_afp->if_real_bytes == data_bytes));
509 vecp->i_len = (int)data_bytes;
510 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
511 vecp++;
512 nvecs++;
513 iip->ili_format.ilf_asize = (unsigned)data_bytes;
514 }
515 break;
516
517 default:
518 ASSERT(0);
519 break;
520 }
521
522 ASSERT(nvecs == lip->li_desc->lid_size);
523 iip->ili_format.ilf_size = nvecs;
524 }
525
526
527 /*
528 * This is called to pin the inode associated with the inode log
529 * item in memory so it cannot be written out.
530 */
531 STATIC void
532 xfs_inode_item_pin(
533 struct xfs_log_item *lip)
534 {
535 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
536
537 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
538
539 trace_xfs_inode_pin(ip, _RET_IP_);
540 atomic_inc(&ip->i_pincount);
541 }
542
543
544 /*
545 * This is called to unpin the inode associated with the inode log
546 * item which was previously pinned with a call to xfs_inode_item_pin().
547 *
548 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
549 */
550 STATIC void
551 xfs_inode_item_unpin(
552 struct xfs_log_item *lip,
553 int remove)
554 {
555 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
556
557 trace_xfs_inode_unpin(ip, _RET_IP_);
558 ASSERT(atomic_read(&ip->i_pincount) > 0);
559 if (atomic_dec_and_test(&ip->i_pincount))
560 wake_up(&ip->i_ipin_wait);
561 }
562
563 /*
564 * This is called to attempt to lock the inode associated with this
565 * inode log item, in preparation for the push routine which does the actual
566 * iflush. Don't sleep on the inode lock or the flush lock.
567 *
568 * If the flush lock is already held, indicating that the inode has
569 * been or is in the process of being flushed, then (ideally) we'd like to
570 * see if the inode's buffer is still incore, and if so give it a nudge.
571 * We delay doing so until the pushbuf routine, though, to avoid holding
572 * the AIL lock across a call to the blackhole which is the buffer cache.
573 * Also we don't want to sleep in any device strategy routines, which can happen
574 * if we do the subsequent bawrite in here.
575 */
576 STATIC uint
577 xfs_inode_item_trylock(
578 struct xfs_log_item *lip)
579 {
580 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
581 struct xfs_inode *ip = iip->ili_inode;
582
583 if (xfs_ipincount(ip) > 0)
584 return XFS_ITEM_PINNED;
585
586 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
587 return XFS_ITEM_LOCKED;
588
589 if (!xfs_iflock_nowait(ip)) {
590 /*
591 * inode has already been flushed to the backing buffer,
592 * leave it locked in shared mode, pushbuf routine will
593 * unlock it.
594 */
595 return XFS_ITEM_PUSHBUF;
596 }
597
598 /* Stale items should force out the iclog */
599 if (ip->i_flags & XFS_ISTALE) {
600 xfs_ifunlock(ip);
601 /*
602 * we hold the AIL lock - notify the unlock routine of this
603 * so it doesn't try to get the lock again.
604 */
605 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
606 return XFS_ITEM_PINNED;
607 }
608
609 #ifdef DEBUG
610 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
611 ASSERT(iip->ili_format.ilf_fields != 0);
612 ASSERT(iip->ili_logged == 0);
613 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
614 }
615 #endif
616 return XFS_ITEM_SUCCESS;
617 }
618
619 /*
620 * Unlock the inode associated with the inode log item.
621 * Clear the fields of the inode and inode log item that
622 * are specific to the current transaction. If the
623 * hold flags is set, do not unlock the inode.
624 */
625 STATIC void
626 xfs_inode_item_unlock(
627 struct xfs_log_item *lip)
628 {
629 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
630 struct xfs_inode *ip = iip->ili_inode;
631 unsigned short lock_flags;
632
633 ASSERT(iip->ili_inode->i_itemp != NULL);
634 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
635
636 /*
637 * Clear the transaction pointer in the inode.
638 */
639 ip->i_transp = NULL;
640
641 /*
642 * If the inode needed a separate buffer with which to log
643 * its extents, then free it now.
644 */
645 if (iip->ili_extents_buf != NULL) {
646 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
647 ASSERT(ip->i_d.di_nextents > 0);
648 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
649 ASSERT(ip->i_df.if_bytes > 0);
650 kmem_free(iip->ili_extents_buf);
651 iip->ili_extents_buf = NULL;
652 }
653 if (iip->ili_aextents_buf != NULL) {
654 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
655 ASSERT(ip->i_d.di_anextents > 0);
656 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
657 ASSERT(ip->i_afp->if_bytes > 0);
658 kmem_free(iip->ili_aextents_buf);
659 iip->ili_aextents_buf = NULL;
660 }
661
662 lock_flags = iip->ili_lock_flags;
663 iip->ili_lock_flags = 0;
664 if (lock_flags)
665 xfs_iput(iip->ili_inode, lock_flags);
666 }
667
668 /*
669 * This is called to find out where the oldest active copy of the
670 * inode log item in the on disk log resides now that the last log
671 * write of it completed at the given lsn. Since we always re-log
672 * all dirty data in an inode, the latest copy in the on disk log
673 * is the only one that matters. Therefore, simply return the
674 * given lsn.
675 */
676 STATIC xfs_lsn_t
677 xfs_inode_item_committed(
678 struct xfs_log_item *lip,
679 xfs_lsn_t lsn)
680 {
681 return lsn;
682 }
683
684 /*
685 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
686 * failed to get the inode flush lock but did get the inode locked SHARED.
687 * Here we're trying to see if the inode buffer is incore, and if so whether it's
688 * marked delayed write. If that's the case, we'll promote it and that will
689 * allow the caller to write the buffer by triggering the xfsbufd to run.
690 */
691 STATIC void
692 xfs_inode_item_pushbuf(
693 struct xfs_log_item *lip)
694 {
695 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
696 struct xfs_inode *ip = iip->ili_inode;
697 struct xfs_buf *bp;
698
699 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
700
701 /*
702 * If a flush is not in progress anymore, chances are that the
703 * inode was taken off the AIL. So, just get out.
704 */
705 if (completion_done(&ip->i_flush) ||
706 !(lip->li_flags & XFS_LI_IN_AIL)) {
707 xfs_iunlock(ip, XFS_ILOCK_SHARED);
708 return;
709 }
710
711 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
712 iip->ili_format.ilf_len, XBF_TRYLOCK);
713
714 xfs_iunlock(ip, XFS_ILOCK_SHARED);
715 if (!bp)
716 return;
717 if (XFS_BUF_ISDELAYWRITE(bp))
718 xfs_buf_delwri_promote(bp);
719 xfs_buf_relse(bp);
720 }
721
722 /*
723 * This is called to asynchronously write the inode associated with this
724 * inode log item out to disk. The inode will already have been locked by
725 * a successful call to xfs_inode_item_trylock().
726 */
727 STATIC void
728 xfs_inode_item_push(
729 struct xfs_log_item *lip)
730 {
731 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
732 struct xfs_inode *ip = iip->ili_inode;
733
734 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
735 ASSERT(!completion_done(&ip->i_flush));
736
737 /*
738 * Since we were able to lock the inode's flush lock and
739 * we found it on the AIL, the inode must be dirty. This
740 * is because the inode is removed from the AIL while still
741 * holding the flush lock in xfs_iflush_done(). Thus, if
742 * we found it in the AIL and were able to obtain the flush
743 * lock without sleeping, then there must not have been
744 * anyone in the process of flushing the inode.
745 */
746 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
747 iip->ili_format.ilf_fields != 0);
748
749 /*
750 * Push the inode to it's backing buffer. This will not remove the
751 * inode from the AIL - a further push will be required to trigger a
752 * buffer push. However, this allows all the dirty inodes to be pushed
753 * to the buffer before it is pushed to disk. THe buffer IO completion
754 * will pull th einode from the AIL, mark it clean and unlock the flush
755 * lock.
756 */
757 (void) xfs_iflush(ip, 0);
758 xfs_iunlock(ip, XFS_ILOCK_SHARED);
759 }
760
761 /*
762 * XXX rcc - this one really has to do something. Probably needs
763 * to stamp in a new field in the incore inode.
764 */
765 STATIC void
766 xfs_inode_item_committing(
767 struct xfs_log_item *lip,
768 xfs_lsn_t lsn)
769 {
770 INODE_ITEM(lip)->ili_last_lsn = lsn;
771 }
772
773 /*
774 * This is the ops vector shared by all buf log items.
775 */
776 static struct xfs_item_ops xfs_inode_item_ops = {
777 .iop_size = xfs_inode_item_size,
778 .iop_format = xfs_inode_item_format,
779 .iop_pin = xfs_inode_item_pin,
780 .iop_unpin = xfs_inode_item_unpin,
781 .iop_trylock = xfs_inode_item_trylock,
782 .iop_unlock = xfs_inode_item_unlock,
783 .iop_committed = xfs_inode_item_committed,
784 .iop_push = xfs_inode_item_push,
785 .iop_pushbuf = xfs_inode_item_pushbuf,
786 .iop_committing = xfs_inode_item_committing
787 };
788
789
790 /*
791 * Initialize the inode log item for a newly allocated (in-core) inode.
792 */
793 void
794 xfs_inode_item_init(
795 struct xfs_inode *ip,
796 struct xfs_mount *mp)
797 {
798 struct xfs_inode_log_item *iip;
799
800 ASSERT(ip->i_itemp == NULL);
801 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
802
803 iip->ili_inode = ip;
804 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
805 &xfs_inode_item_ops);
806 iip->ili_format.ilf_type = XFS_LI_INODE;
807 iip->ili_format.ilf_ino = ip->i_ino;
808 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
809 iip->ili_format.ilf_len = ip->i_imap.im_len;
810 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
811 }
812
813 /*
814 * Free the inode log item and any memory hanging off of it.
815 */
816 void
817 xfs_inode_item_destroy(
818 xfs_inode_t *ip)
819 {
820 #ifdef XFS_TRANS_DEBUG
821 if (ip->i_itemp->ili_root_size != 0) {
822 kmem_free(ip->i_itemp->ili_orig_root);
823 }
824 #endif
825 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
826 }
827
828
829 /*
830 * This is the inode flushing I/O completion routine. It is called
831 * from interrupt level when the buffer containing the inode is
832 * flushed to disk. It is responsible for removing the inode item
833 * from the AIL if it has not been re-logged, and unlocking the inode's
834 * flush lock.
835 */
836 void
837 xfs_iflush_done(
838 struct xfs_buf *bp,
839 struct xfs_log_item *lip)
840 {
841 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
842 xfs_inode_t *ip = iip->ili_inode;
843 struct xfs_ail *ailp = lip->li_ailp;
844
845 /*
846 * We only want to pull the item from the AIL if it is
847 * actually there and its location in the log has not
848 * changed since we started the flush. Thus, we only bother
849 * if the ili_logged flag is set and the inode's lsn has not
850 * changed. First we check the lsn outside
851 * the lock since it's cheaper, and then we recheck while
852 * holding the lock before removing the inode from the AIL.
853 */
854 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) {
855 spin_lock(&ailp->xa_lock);
856 if (lip->li_lsn == iip->ili_flush_lsn) {
857 /* xfs_trans_ail_delete() drops the AIL lock. */
858 xfs_trans_ail_delete(ailp, lip);
859 } else {
860 spin_unlock(&ailp->xa_lock);
861 }
862 }
863
864 iip->ili_logged = 0;
865
866 /*
867 * Clear the ili_last_fields bits now that we know that the
868 * data corresponding to them is safely on disk.
869 */
870 iip->ili_last_fields = 0;
871
872 /*
873 * Release the inode's flush lock since we're done with it.
874 */
875 xfs_ifunlock(ip);
876 }
877
878 /*
879 * This is the inode flushing abort routine. It is called
880 * from xfs_iflush when the filesystem is shutting down to clean
881 * up the inode state.
882 * It is responsible for removing the inode item
883 * from the AIL if it has not been re-logged, and unlocking the inode's
884 * flush lock.
885 */
886 void
887 xfs_iflush_abort(
888 xfs_inode_t *ip)
889 {
890 xfs_inode_log_item_t *iip = ip->i_itemp;
891 xfs_mount_t *mp;
892
893 iip = ip->i_itemp;
894 mp = ip->i_mount;
895 if (iip) {
896 struct xfs_ail *ailp = iip->ili_item.li_ailp;
897 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
898 spin_lock(&ailp->xa_lock);
899 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
900 /* xfs_trans_ail_delete() drops the AIL lock. */
901 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
902 } else
903 spin_unlock(&ailp->xa_lock);
904 }
905 iip->ili_logged = 0;
906 /*
907 * Clear the ili_last_fields bits now that we know that the
908 * data corresponding to them is safely on disk.
909 */
910 iip->ili_last_fields = 0;
911 /*
912 * Clear the inode logging fields so no more flushes are
913 * attempted.
914 */
915 iip->ili_format.ilf_fields = 0;
916 }
917 /*
918 * Release the inode's flush lock since we're done with it.
919 */
920 xfs_ifunlock(ip);
921 }
922
923 void
924 xfs_istale_done(
925 struct xfs_buf *bp,
926 struct xfs_log_item *lip)
927 {
928 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
929 }
930
931 /*
932 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
933 * (which can have different field alignments) to the native version
934 */
935 int
936 xfs_inode_item_format_convert(
937 xfs_log_iovec_t *buf,
938 xfs_inode_log_format_t *in_f)
939 {
940 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
941 xfs_inode_log_format_32_t *in_f32;
942
943 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
944 in_f->ilf_type = in_f32->ilf_type;
945 in_f->ilf_size = in_f32->ilf_size;
946 in_f->ilf_fields = in_f32->ilf_fields;
947 in_f->ilf_asize = in_f32->ilf_asize;
948 in_f->ilf_dsize = in_f32->ilf_dsize;
949 in_f->ilf_ino = in_f32->ilf_ino;
950 /* copy biggest field of ilf_u */
951 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
952 in_f32->ilf_u.ilfu_uuid.__u_bits,
953 sizeof(uuid_t));
954 in_f->ilf_blkno = in_f32->ilf_blkno;
955 in_f->ilf_len = in_f32->ilf_len;
956 in_f->ilf_boffset = in_f32->ilf_boffset;
957 return 0;
958 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
959 xfs_inode_log_format_64_t *in_f64;
960
961 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
962 in_f->ilf_type = in_f64->ilf_type;
963 in_f->ilf_size = in_f64->ilf_size;
964 in_f->ilf_fields = in_f64->ilf_fields;
965 in_f->ilf_asize = in_f64->ilf_asize;
966 in_f->ilf_dsize = in_f64->ilf_dsize;
967 in_f->ilf_ino = in_f64->ilf_ino;
968 /* copy biggest field of ilf_u */
969 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
970 in_f64->ilf_u.ilfu_uuid.__u_bits,
971 sizeof(uuid_t));
972 in_f->ilf_blkno = in_f64->ilf_blkno;
973 in_f->ilf_len = in_f64->ilf_len;
974 in_f->ilf_boffset = in_f64->ilf_boffset;
975 return 0;
976 }
977 return EFSCORRUPTED;
978 }