disable some mediatekl custom warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_log_priv.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dinode.h"
32 #include "xfs_error.h"
33 #include "xfs_filestream.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_quota.h"
37 #include "xfs_trace.h"
38 #include "xfs_fsops.h"
39 #include "xfs_icache.h"
40
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43
44 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
45 struct xfs_perag *pag, struct xfs_inode *ip);
46
47 /*
48 * Allocate and initialise an xfs_inode.
49 */
50 STATIC struct xfs_inode *
51 xfs_inode_alloc(
52 struct xfs_mount *mp,
53 xfs_ino_t ino)
54 {
55 struct xfs_inode *ip;
56
57 /*
58 * if this didn't occur in transactions, we could use
59 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
60 * code up to do this anyway.
61 */
62 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
63 if (!ip)
64 return NULL;
65 if (inode_init_always(mp->m_super, VFS_I(ip))) {
66 kmem_zone_free(xfs_inode_zone, ip);
67 return NULL;
68 }
69
70 ASSERT(atomic_read(&ip->i_pincount) == 0);
71 ASSERT(!spin_is_locked(&ip->i_flags_lock));
72 ASSERT(!xfs_isiflocked(ip));
73 ASSERT(ip->i_ino == 0);
74
75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
76
77 /* initialise the xfs inode */
78 ip->i_ino = ino;
79 ip->i_mount = mp;
80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_afp = NULL;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 ip->i_flags = 0;
84 ip->i_delayed_blks = 0;
85 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
86
87 return ip;
88 }
89
90 STATIC void
91 xfs_inode_free_callback(
92 struct rcu_head *head)
93 {
94 struct inode *inode = container_of(head, struct inode, i_rcu);
95 struct xfs_inode *ip = XFS_I(inode);
96
97 kmem_zone_free(xfs_inode_zone, ip);
98 }
99
100 STATIC void
101 xfs_inode_free(
102 struct xfs_inode *ip)
103 {
104 switch (ip->i_d.di_mode & S_IFMT) {
105 case S_IFREG:
106 case S_IFDIR:
107 case S_IFLNK:
108 xfs_idestroy_fork(ip, XFS_DATA_FORK);
109 break;
110 }
111
112 if (ip->i_afp)
113 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
114
115 if (ip->i_itemp) {
116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
117 xfs_inode_item_destroy(ip);
118 ip->i_itemp = NULL;
119 }
120
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 ASSERT(!spin_is_locked(&ip->i_flags_lock));
124 ASSERT(!xfs_isiflocked(ip));
125
126 /*
127 * Because we use RCU freeing we need to ensure the inode always
128 * appears to be reclaimed with an invalid inode number when in the
129 * free state. The ip->i_flags_lock provides the barrier against lookup
130 * races.
131 */
132 spin_lock(&ip->i_flags_lock);
133 ip->i_flags = XFS_IRECLAIM;
134 ip->i_ino = 0;
135 spin_unlock(&ip->i_flags_lock);
136
137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138 }
139
140 /*
141 * Check the validity of the inode we just found it the cache
142 */
143 static int
144 xfs_iget_cache_hit(
145 struct xfs_perag *pag,
146 struct xfs_inode *ip,
147 xfs_ino_t ino,
148 int flags,
149 int lock_flags) __releases(RCU)
150 {
151 struct inode *inode = VFS_I(ip);
152 struct xfs_mount *mp = ip->i_mount;
153 int error;
154
155 /*
156 * check for re-use of an inode within an RCU grace period due to the
157 * radix tree nodes not being updated yet. We monitor for this by
158 * setting the inode number to zero before freeing the inode structure.
159 * If the inode has been reallocated and set up, then the inode number
160 * will not match, so check for that, too.
161 */
162 spin_lock(&ip->i_flags_lock);
163 if (ip->i_ino != ino) {
164 trace_xfs_iget_skip(ip);
165 XFS_STATS_INC(xs_ig_frecycle);
166 error = EAGAIN;
167 goto out_error;
168 }
169
170
171 /*
172 * If we are racing with another cache hit that is currently
173 * instantiating this inode or currently recycling it out of
174 * reclaimabe state, wait for the initialisation to complete
175 * before continuing.
176 *
177 * XXX(hch): eventually we should do something equivalent to
178 * wait_on_inode to wait for these flags to be cleared
179 * instead of polling for it.
180 */
181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
182 trace_xfs_iget_skip(ip);
183 XFS_STATS_INC(xs_ig_frecycle);
184 error = EAGAIN;
185 goto out_error;
186 }
187
188 /*
189 * If lookup is racing with unlink return an error immediately.
190 */
191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
192 error = ENOENT;
193 goto out_error;
194 }
195
196 /*
197 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 * Need to carefully get it back into useable state.
199 */
200 if (ip->i_flags & XFS_IRECLAIMABLE) {
201 trace_xfs_iget_reclaim(ip);
202
203 /*
204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 * from stomping over us while we recycle the inode. We can't
206 * clear the radix tree reclaimable tag yet as it requires
207 * pag_ici_lock to be held exclusive.
208 */
209 ip->i_flags |= XFS_IRECLAIM;
210
211 spin_unlock(&ip->i_flags_lock);
212 rcu_read_unlock();
213
214 error = -inode_init_always(mp->m_super, inode);
215 if (error) {
216 /*
217 * Re-initializing the inode failed, and we are in deep
218 * trouble. Try to re-add it to the reclaim list.
219 */
220 rcu_read_lock();
221 spin_lock(&ip->i_flags_lock);
222
223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 trace_xfs_iget_reclaim_fail(ip);
226 goto out_error;
227 }
228
229 spin_lock(&pag->pag_ici_lock);
230 spin_lock(&ip->i_flags_lock);
231
232 /*
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
236 */
237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 ip->i_flags |= XFS_INEW;
239 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 inode->i_state = I_NEW;
241
242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
244
245 spin_unlock(&ip->i_flags_lock);
246 spin_unlock(&pag->pag_ici_lock);
247 } else {
248 /* If the VFS inode is being torn down, pause and try again. */
249 if (!igrab(inode)) {
250 trace_xfs_iget_skip(ip);
251 error = EAGAIN;
252 goto out_error;
253 }
254
255 /* We've got a live one. */
256 spin_unlock(&ip->i_flags_lock);
257 rcu_read_unlock();
258 trace_xfs_iget_hit(ip);
259 }
260
261 if (lock_flags != 0)
262 xfs_ilock(ip, lock_flags);
263
264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 XFS_STATS_INC(xs_ig_found);
266
267 return 0;
268
269 out_error:
270 spin_unlock(&ip->i_flags_lock);
271 rcu_read_unlock();
272 return error;
273 }
274
275
276 static int
277 xfs_iget_cache_miss(
278 struct xfs_mount *mp,
279 struct xfs_perag *pag,
280 xfs_trans_t *tp,
281 xfs_ino_t ino,
282 struct xfs_inode **ipp,
283 int flags,
284 int lock_flags)
285 {
286 struct xfs_inode *ip;
287 int error;
288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
289 int iflags;
290
291 ip = xfs_inode_alloc(mp, ino);
292 if (!ip)
293 return ENOMEM;
294
295 error = xfs_iread(mp, tp, ip, flags);
296 if (error)
297 goto out_destroy;
298
299 trace_xfs_iget_miss(ip);
300
301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 error = ENOENT;
303 goto out_destroy;
304 }
305
306 /*
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
311 */
312 if (radix_tree_preload(GFP_NOFS)) {
313 error = EAGAIN;
314 goto out_destroy;
315 }
316
317 /*
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
320 */
321 if (lock_flags) {
322 if (!xfs_ilock_nowait(ip, lock_flags))
323 BUG();
324 }
325
326 /*
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
333 * time.
334 */
335 iflags = XFS_INEW;
336 if (flags & XFS_IGET_DONTCACHE)
337 iflags |= XFS_IDONTCACHE;
338 ip->i_udquot = ip->i_gdquot = NULL;
339 xfs_iflags_set(ip, iflags);
340
341 /* insert the new inode */
342 spin_lock(&pag->pag_ici_lock);
343 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
344 if (unlikely(error)) {
345 WARN_ON(error != -EEXIST);
346 XFS_STATS_INC(xs_ig_dup);
347 error = EAGAIN;
348 goto out_preload_end;
349 }
350 spin_unlock(&pag->pag_ici_lock);
351 radix_tree_preload_end();
352
353 *ipp = ip;
354 return 0;
355
356 out_preload_end:
357 spin_unlock(&pag->pag_ici_lock);
358 radix_tree_preload_end();
359 if (lock_flags)
360 xfs_iunlock(ip, lock_flags);
361 out_destroy:
362 __destroy_inode(VFS_I(ip));
363 xfs_inode_free(ip);
364 return error;
365 }
366
367 /*
368 * Look up an inode by number in the given file system.
369 * The inode is looked up in the cache held in each AG.
370 * If the inode is found in the cache, initialise the vfs inode
371 * if necessary.
372 *
373 * If it is not in core, read it in from the file system's device,
374 * add it to the cache and initialise the vfs inode.
375 *
376 * The inode is locked according to the value of the lock_flags parameter.
377 * This flag parameter indicates how and if the inode's IO lock and inode lock
378 * should be taken.
379 *
380 * mp -- the mount point structure for the current file system. It points
381 * to the inode hash table.
382 * tp -- a pointer to the current transaction if there is one. This is
383 * simply passed through to the xfs_iread() call.
384 * ino -- the number of the inode desired. This is the unique identifier
385 * within the file system for the inode being requested.
386 * lock_flags -- flags indicating how to lock the inode. See the comment
387 * for xfs_ilock() for a list of valid values.
388 */
389 int
390 xfs_iget(
391 xfs_mount_t *mp,
392 xfs_trans_t *tp,
393 xfs_ino_t ino,
394 uint flags,
395 uint lock_flags,
396 xfs_inode_t **ipp)
397 {
398 xfs_inode_t *ip;
399 int error;
400 xfs_perag_t *pag;
401 xfs_agino_t agino;
402
403 /*
404 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
405 * doesn't get freed while it's being referenced during a
406 * radix tree traversal here. It assumes this function
407 * aqcuires only the ILOCK (and therefore it has no need to
408 * involve the IOLOCK in this synchronization).
409 */
410 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
411
412 /* reject inode numbers outside existing AGs */
413 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
414 return EINVAL;
415
416 /* get the perag structure and ensure that it's inode capable */
417 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
418 agino = XFS_INO_TO_AGINO(mp, ino);
419
420 again:
421 error = 0;
422 rcu_read_lock();
423 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
424
425 if (ip) {
426 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
427 if (error)
428 goto out_error_or_again;
429 } else {
430 rcu_read_unlock();
431 XFS_STATS_INC(xs_ig_missed);
432
433 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
434 flags, lock_flags);
435 if (error)
436 goto out_error_or_again;
437 }
438 xfs_perag_put(pag);
439
440 *ipp = ip;
441
442 /*
443 * If we have a real type for an on-disk inode, we can set ops(&unlock)
444 * now. If it's a new inode being created, xfs_ialloc will handle it.
445 */
446 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
447 xfs_setup_inode(ip);
448 return 0;
449
450 out_error_or_again:
451 if (error == EAGAIN) {
452 delay(1);
453 goto again;
454 }
455 xfs_perag_put(pag);
456 return error;
457 }
458
459 /*
460 * The inode lookup is done in batches to keep the amount of lock traffic and
461 * radix tree lookups to a minimum. The batch size is a trade off between
462 * lookup reduction and stack usage. This is in the reclaim path, so we can't
463 * be too greedy.
464 */
465 #define XFS_LOOKUP_BATCH 32
466
467 STATIC int
468 xfs_inode_ag_walk_grab(
469 struct xfs_inode *ip)
470 {
471 struct inode *inode = VFS_I(ip);
472
473 ASSERT(rcu_read_lock_held());
474
475 /*
476 * check for stale RCU freed inode
477 *
478 * If the inode has been reallocated, it doesn't matter if it's not in
479 * the AG we are walking - we are walking for writeback, so if it
480 * passes all the "valid inode" checks and is dirty, then we'll write
481 * it back anyway. If it has been reallocated and still being
482 * initialised, the XFS_INEW check below will catch it.
483 */
484 spin_lock(&ip->i_flags_lock);
485 if (!ip->i_ino)
486 goto out_unlock_noent;
487
488 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
489 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
490 goto out_unlock_noent;
491 spin_unlock(&ip->i_flags_lock);
492
493 /* nothing to sync during shutdown */
494 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
495 return EFSCORRUPTED;
496
497 /* If we can't grab the inode, it must on it's way to reclaim. */
498 if (!igrab(inode))
499 return ENOENT;
500
501 if (is_bad_inode(inode)) {
502 IRELE(ip);
503 return ENOENT;
504 }
505
506 /* inode is valid */
507 return 0;
508
509 out_unlock_noent:
510 spin_unlock(&ip->i_flags_lock);
511 return ENOENT;
512 }
513
514 STATIC int
515 xfs_inode_ag_walk(
516 struct xfs_mount *mp,
517 struct xfs_perag *pag,
518 int (*execute)(struct xfs_inode *ip,
519 struct xfs_perag *pag, int flags,
520 void *args),
521 int flags,
522 void *args,
523 int tag)
524 {
525 uint32_t first_index;
526 int last_error = 0;
527 int skipped;
528 int done;
529 int nr_found;
530
531 restart:
532 done = 0;
533 skipped = 0;
534 first_index = 0;
535 nr_found = 0;
536 do {
537 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
538 int error = 0;
539 int i;
540
541 rcu_read_lock();
542
543 if (tag == -1)
544 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
545 (void **)batch, first_index,
546 XFS_LOOKUP_BATCH);
547 else
548 nr_found = radix_tree_gang_lookup_tag(
549 &pag->pag_ici_root,
550 (void **) batch, first_index,
551 XFS_LOOKUP_BATCH, tag);
552
553 if (!nr_found) {
554 rcu_read_unlock();
555 break;
556 }
557
558 /*
559 * Grab the inodes before we drop the lock. if we found
560 * nothing, nr == 0 and the loop will be skipped.
561 */
562 for (i = 0; i < nr_found; i++) {
563 struct xfs_inode *ip = batch[i];
564
565 if (done || xfs_inode_ag_walk_grab(ip))
566 batch[i] = NULL;
567
568 /*
569 * Update the index for the next lookup. Catch
570 * overflows into the next AG range which can occur if
571 * we have inodes in the last block of the AG and we
572 * are currently pointing to the last inode.
573 *
574 * Because we may see inodes that are from the wrong AG
575 * due to RCU freeing and reallocation, only update the
576 * index if it lies in this AG. It was a race that lead
577 * us to see this inode, so another lookup from the
578 * same index will not find it again.
579 */
580 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
581 continue;
582 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
583 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
584 done = 1;
585 }
586
587 /* unlock now we've grabbed the inodes. */
588 rcu_read_unlock();
589
590 for (i = 0; i < nr_found; i++) {
591 if (!batch[i])
592 continue;
593 error = execute(batch[i], pag, flags, args);
594 IRELE(batch[i]);
595 if (error == EAGAIN) {
596 skipped++;
597 continue;
598 }
599 if (error && last_error != EFSCORRUPTED)
600 last_error = error;
601 }
602
603 /* bail out if the filesystem is corrupted. */
604 if (error == EFSCORRUPTED)
605 break;
606
607 cond_resched();
608
609 } while (nr_found && !done);
610
611 if (skipped) {
612 delay(1);
613 goto restart;
614 }
615 return last_error;
616 }
617
618 /*
619 * Background scanning to trim post-EOF preallocated space. This is queued
620 * based on the 'background_prealloc_discard_period' tunable (5m by default).
621 */
622 STATIC void
623 xfs_queue_eofblocks(
624 struct xfs_mount *mp)
625 {
626 rcu_read_lock();
627 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
628 queue_delayed_work(mp->m_eofblocks_workqueue,
629 &mp->m_eofblocks_work,
630 msecs_to_jiffies(xfs_eofb_secs * 1000));
631 rcu_read_unlock();
632 }
633
634 void
635 xfs_eofblocks_worker(
636 struct work_struct *work)
637 {
638 struct xfs_mount *mp = container_of(to_delayed_work(work),
639 struct xfs_mount, m_eofblocks_work);
640 xfs_icache_free_eofblocks(mp, NULL);
641 xfs_queue_eofblocks(mp);
642 }
643
644 int
645 xfs_inode_ag_iterator(
646 struct xfs_mount *mp,
647 int (*execute)(struct xfs_inode *ip,
648 struct xfs_perag *pag, int flags,
649 void *args),
650 int flags,
651 void *args)
652 {
653 struct xfs_perag *pag;
654 int error = 0;
655 int last_error = 0;
656 xfs_agnumber_t ag;
657
658 ag = 0;
659 while ((pag = xfs_perag_get(mp, ag))) {
660 ag = pag->pag_agno + 1;
661 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
662 xfs_perag_put(pag);
663 if (error) {
664 last_error = error;
665 if (error == EFSCORRUPTED)
666 break;
667 }
668 }
669 return XFS_ERROR(last_error);
670 }
671
672 int
673 xfs_inode_ag_iterator_tag(
674 struct xfs_mount *mp,
675 int (*execute)(struct xfs_inode *ip,
676 struct xfs_perag *pag, int flags,
677 void *args),
678 int flags,
679 void *args,
680 int tag)
681 {
682 struct xfs_perag *pag;
683 int error = 0;
684 int last_error = 0;
685 xfs_agnumber_t ag;
686
687 ag = 0;
688 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
689 ag = pag->pag_agno + 1;
690 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
691 xfs_perag_put(pag);
692 if (error) {
693 last_error = error;
694 if (error == EFSCORRUPTED)
695 break;
696 }
697 }
698 return XFS_ERROR(last_error);
699 }
700
701 /*
702 * Queue a new inode reclaim pass if there are reclaimable inodes and there
703 * isn't a reclaim pass already in progress. By default it runs every 5s based
704 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
705 * tunable, but that can be done if this method proves to be ineffective or too
706 * aggressive.
707 */
708 static void
709 xfs_reclaim_work_queue(
710 struct xfs_mount *mp)
711 {
712
713 rcu_read_lock();
714 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
715 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
716 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
717 }
718 rcu_read_unlock();
719 }
720
721 /*
722 * This is a fast pass over the inode cache to try to get reclaim moving on as
723 * many inodes as possible in a short period of time. It kicks itself every few
724 * seconds, as well as being kicked by the inode cache shrinker when memory
725 * goes low. It scans as quickly as possible avoiding locked inodes or those
726 * already being flushed, and once done schedules a future pass.
727 */
728 void
729 xfs_reclaim_worker(
730 struct work_struct *work)
731 {
732 struct xfs_mount *mp = container_of(to_delayed_work(work),
733 struct xfs_mount, m_reclaim_work);
734
735 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
736 xfs_reclaim_work_queue(mp);
737 }
738
739 static void
740 __xfs_inode_set_reclaim_tag(
741 struct xfs_perag *pag,
742 struct xfs_inode *ip)
743 {
744 radix_tree_tag_set(&pag->pag_ici_root,
745 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
746 XFS_ICI_RECLAIM_TAG);
747
748 if (!pag->pag_ici_reclaimable) {
749 /* propagate the reclaim tag up into the perag radix tree */
750 spin_lock(&ip->i_mount->m_perag_lock);
751 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
752 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
753 XFS_ICI_RECLAIM_TAG);
754 spin_unlock(&ip->i_mount->m_perag_lock);
755
756 /* schedule periodic background inode reclaim */
757 xfs_reclaim_work_queue(ip->i_mount);
758
759 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
760 -1, _RET_IP_);
761 }
762 pag->pag_ici_reclaimable++;
763 }
764
765 /*
766 * We set the inode flag atomically with the radix tree tag.
767 * Once we get tag lookups on the radix tree, this inode flag
768 * can go away.
769 */
770 void
771 xfs_inode_set_reclaim_tag(
772 xfs_inode_t *ip)
773 {
774 struct xfs_mount *mp = ip->i_mount;
775 struct xfs_perag *pag;
776
777 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
778 spin_lock(&pag->pag_ici_lock);
779 spin_lock(&ip->i_flags_lock);
780 __xfs_inode_set_reclaim_tag(pag, ip);
781 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
782 spin_unlock(&ip->i_flags_lock);
783 spin_unlock(&pag->pag_ici_lock);
784 xfs_perag_put(pag);
785 }
786
787 STATIC void
788 __xfs_inode_clear_reclaim(
789 xfs_perag_t *pag,
790 xfs_inode_t *ip)
791 {
792 pag->pag_ici_reclaimable--;
793 if (!pag->pag_ici_reclaimable) {
794 /* clear the reclaim tag from the perag radix tree */
795 spin_lock(&ip->i_mount->m_perag_lock);
796 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
797 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
798 XFS_ICI_RECLAIM_TAG);
799 spin_unlock(&ip->i_mount->m_perag_lock);
800 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
801 -1, _RET_IP_);
802 }
803 }
804
805 STATIC void
806 __xfs_inode_clear_reclaim_tag(
807 xfs_mount_t *mp,
808 xfs_perag_t *pag,
809 xfs_inode_t *ip)
810 {
811 radix_tree_tag_clear(&pag->pag_ici_root,
812 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
813 __xfs_inode_clear_reclaim(pag, ip);
814 }
815
816 /*
817 * Grab the inode for reclaim exclusively.
818 * Return 0 if we grabbed it, non-zero otherwise.
819 */
820 STATIC int
821 xfs_reclaim_inode_grab(
822 struct xfs_inode *ip,
823 int flags)
824 {
825 ASSERT(rcu_read_lock_held());
826
827 /* quick check for stale RCU freed inode */
828 if (!ip->i_ino)
829 return 1;
830
831 /*
832 * If we are asked for non-blocking operation, do unlocked checks to
833 * see if the inode already is being flushed or in reclaim to avoid
834 * lock traffic.
835 */
836 if ((flags & SYNC_TRYLOCK) &&
837 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
838 return 1;
839
840 /*
841 * The radix tree lock here protects a thread in xfs_iget from racing
842 * with us starting reclaim on the inode. Once we have the
843 * XFS_IRECLAIM flag set it will not touch us.
844 *
845 * Due to RCU lookup, we may find inodes that have been freed and only
846 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
847 * aren't candidates for reclaim at all, so we must check the
848 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
849 */
850 spin_lock(&ip->i_flags_lock);
851 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
852 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
853 /* not a reclaim candidate. */
854 spin_unlock(&ip->i_flags_lock);
855 return 1;
856 }
857 __xfs_iflags_set(ip, XFS_IRECLAIM);
858 spin_unlock(&ip->i_flags_lock);
859 return 0;
860 }
861
862 /*
863 * Inodes in different states need to be treated differently. The following
864 * table lists the inode states and the reclaim actions necessary:
865 *
866 * inode state iflush ret required action
867 * --------------- ---------- ---------------
868 * bad - reclaim
869 * shutdown EIO unpin and reclaim
870 * clean, unpinned 0 reclaim
871 * stale, unpinned 0 reclaim
872 * clean, pinned(*) 0 requeue
873 * stale, pinned EAGAIN requeue
874 * dirty, async - requeue
875 * dirty, sync 0 reclaim
876 *
877 * (*) dgc: I don't think the clean, pinned state is possible but it gets
878 * handled anyway given the order of checks implemented.
879 *
880 * Also, because we get the flush lock first, we know that any inode that has
881 * been flushed delwri has had the flush completed by the time we check that
882 * the inode is clean.
883 *
884 * Note that because the inode is flushed delayed write by AIL pushing, the
885 * flush lock may already be held here and waiting on it can result in very
886 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
887 * the caller should push the AIL first before trying to reclaim inodes to
888 * minimise the amount of time spent waiting. For background relaim, we only
889 * bother to reclaim clean inodes anyway.
890 *
891 * Hence the order of actions after gaining the locks should be:
892 * bad => reclaim
893 * shutdown => unpin and reclaim
894 * pinned, async => requeue
895 * pinned, sync => unpin
896 * stale => reclaim
897 * clean => reclaim
898 * dirty, async => requeue
899 * dirty, sync => flush, wait and reclaim
900 */
901 STATIC int
902 xfs_reclaim_inode(
903 struct xfs_inode *ip,
904 struct xfs_perag *pag,
905 int sync_mode)
906 {
907 struct xfs_buf *bp = NULL;
908 int error;
909
910 restart:
911 error = 0;
912 xfs_ilock(ip, XFS_ILOCK_EXCL);
913 if (!xfs_iflock_nowait(ip)) {
914 if (!(sync_mode & SYNC_WAIT))
915 goto out;
916 xfs_iflock(ip);
917 }
918
919 if (is_bad_inode(VFS_I(ip)))
920 goto reclaim;
921 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
922 xfs_iunpin_wait(ip);
923 xfs_iflush_abort(ip, false);
924 goto reclaim;
925 }
926 if (xfs_ipincount(ip)) {
927 if (!(sync_mode & SYNC_WAIT))
928 goto out_ifunlock;
929 xfs_iunpin_wait(ip);
930 }
931 if (xfs_iflags_test(ip, XFS_ISTALE))
932 goto reclaim;
933 if (xfs_inode_clean(ip))
934 goto reclaim;
935
936 /*
937 * Never flush out dirty data during non-blocking reclaim, as it would
938 * just contend with AIL pushing trying to do the same job.
939 */
940 if (!(sync_mode & SYNC_WAIT))
941 goto out_ifunlock;
942
943 /*
944 * Now we have an inode that needs flushing.
945 *
946 * Note that xfs_iflush will never block on the inode buffer lock, as
947 * xfs_ifree_cluster() can lock the inode buffer before it locks the
948 * ip->i_lock, and we are doing the exact opposite here. As a result,
949 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
950 * result in an ABBA deadlock with xfs_ifree_cluster().
951 *
952 * As xfs_ifree_cluser() must gather all inodes that are active in the
953 * cache to mark them stale, if we hit this case we don't actually want
954 * to do IO here - we want the inode marked stale so we can simply
955 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
956 * inode, back off and try again. Hopefully the next pass through will
957 * see the stale flag set on the inode.
958 */
959 error = xfs_iflush(ip, &bp);
960 if (error == EAGAIN) {
961 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962 /* backoff longer than in xfs_ifree_cluster */
963 delay(2);
964 goto restart;
965 }
966
967 if (!error) {
968 error = xfs_bwrite(bp);
969 xfs_buf_relse(bp);
970 }
971
972 xfs_iflock(ip);
973 reclaim:
974 xfs_ifunlock(ip);
975 xfs_iunlock(ip, XFS_ILOCK_EXCL);
976
977 XFS_STATS_INC(xs_ig_reclaims);
978 /*
979 * Remove the inode from the per-AG radix tree.
980 *
981 * Because radix_tree_delete won't complain even if the item was never
982 * added to the tree assert that it's been there before to catch
983 * problems with the inode life time early on.
984 */
985 spin_lock(&pag->pag_ici_lock);
986 if (!radix_tree_delete(&pag->pag_ici_root,
987 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
988 ASSERT(0);
989 __xfs_inode_clear_reclaim(pag, ip);
990 spin_unlock(&pag->pag_ici_lock);
991
992 /*
993 * Here we do an (almost) spurious inode lock in order to coordinate
994 * with inode cache radix tree lookups. This is because the lookup
995 * can reference the inodes in the cache without taking references.
996 *
997 * We make that OK here by ensuring that we wait until the inode is
998 * unlocked after the lookup before we go ahead and free it.
999 */
1000 xfs_ilock(ip, XFS_ILOCK_EXCL);
1001 xfs_qm_dqdetach(ip);
1002 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1003
1004 xfs_inode_free(ip);
1005 return error;
1006
1007 out_ifunlock:
1008 xfs_ifunlock(ip);
1009 out:
1010 xfs_iflags_clear(ip, XFS_IRECLAIM);
1011 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1012 /*
1013 * We could return EAGAIN here to make reclaim rescan the inode tree in
1014 * a short while. However, this just burns CPU time scanning the tree
1015 * waiting for IO to complete and the reclaim work never goes back to
1016 * the idle state. Instead, return 0 to let the next scheduled
1017 * background reclaim attempt to reclaim the inode again.
1018 */
1019 return 0;
1020 }
1021
1022 /*
1023 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1024 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1025 * then a shut down during filesystem unmount reclaim walk leak all the
1026 * unreclaimed inodes.
1027 */
1028 STATIC int
1029 xfs_reclaim_inodes_ag(
1030 struct xfs_mount *mp,
1031 int flags,
1032 int *nr_to_scan)
1033 {
1034 struct xfs_perag *pag;
1035 int error = 0;
1036 int last_error = 0;
1037 xfs_agnumber_t ag;
1038 int trylock = flags & SYNC_TRYLOCK;
1039 int skipped;
1040
1041 restart:
1042 ag = 0;
1043 skipped = 0;
1044 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1045 unsigned long first_index = 0;
1046 int done = 0;
1047 int nr_found = 0;
1048
1049 ag = pag->pag_agno + 1;
1050
1051 if (trylock) {
1052 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1053 skipped++;
1054 xfs_perag_put(pag);
1055 continue;
1056 }
1057 first_index = pag->pag_ici_reclaim_cursor;
1058 } else
1059 mutex_lock(&pag->pag_ici_reclaim_lock);
1060
1061 do {
1062 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1063 int i;
1064
1065 rcu_read_lock();
1066 nr_found = radix_tree_gang_lookup_tag(
1067 &pag->pag_ici_root,
1068 (void **)batch, first_index,
1069 XFS_LOOKUP_BATCH,
1070 XFS_ICI_RECLAIM_TAG);
1071 if (!nr_found) {
1072 done = 1;
1073 rcu_read_unlock();
1074 break;
1075 }
1076
1077 /*
1078 * Grab the inodes before we drop the lock. if we found
1079 * nothing, nr == 0 and the loop will be skipped.
1080 */
1081 for (i = 0; i < nr_found; i++) {
1082 struct xfs_inode *ip = batch[i];
1083
1084 if (done || xfs_reclaim_inode_grab(ip, flags))
1085 batch[i] = NULL;
1086
1087 /*
1088 * Update the index for the next lookup. Catch
1089 * overflows into the next AG range which can
1090 * occur if we have inodes in the last block of
1091 * the AG and we are currently pointing to the
1092 * last inode.
1093 *
1094 * Because we may see inodes that are from the
1095 * wrong AG due to RCU freeing and
1096 * reallocation, only update the index if it
1097 * lies in this AG. It was a race that lead us
1098 * to see this inode, so another lookup from
1099 * the same index will not find it again.
1100 */
1101 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1102 pag->pag_agno)
1103 continue;
1104 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1105 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1106 done = 1;
1107 }
1108
1109 /* unlock now we've grabbed the inodes. */
1110 rcu_read_unlock();
1111
1112 for (i = 0; i < nr_found; i++) {
1113 if (!batch[i])
1114 continue;
1115 error = xfs_reclaim_inode(batch[i], pag, flags);
1116 if (error && last_error != EFSCORRUPTED)
1117 last_error = error;
1118 }
1119
1120 *nr_to_scan -= XFS_LOOKUP_BATCH;
1121
1122 cond_resched();
1123
1124 } while (nr_found && !done && *nr_to_scan > 0);
1125
1126 if (trylock && !done)
1127 pag->pag_ici_reclaim_cursor = first_index;
1128 else
1129 pag->pag_ici_reclaim_cursor = 0;
1130 mutex_unlock(&pag->pag_ici_reclaim_lock);
1131 xfs_perag_put(pag);
1132 }
1133
1134 /*
1135 * if we skipped any AG, and we still have scan count remaining, do
1136 * another pass this time using blocking reclaim semantics (i.e
1137 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1138 * ensure that when we get more reclaimers than AGs we block rather
1139 * than spin trying to execute reclaim.
1140 */
1141 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1142 trylock = 0;
1143 goto restart;
1144 }
1145 return XFS_ERROR(last_error);
1146 }
1147
1148 int
1149 xfs_reclaim_inodes(
1150 xfs_mount_t *mp,
1151 int mode)
1152 {
1153 int nr_to_scan = INT_MAX;
1154
1155 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1156 }
1157
1158 /*
1159 * Scan a certain number of inodes for reclaim.
1160 *
1161 * When called we make sure that there is a background (fast) inode reclaim in
1162 * progress, while we will throttle the speed of reclaim via doing synchronous
1163 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1164 * them to be cleaned, which we hope will not be very long due to the
1165 * background walker having already kicked the IO off on those dirty inodes.
1166 */
1167 void
1168 xfs_reclaim_inodes_nr(
1169 struct xfs_mount *mp,
1170 int nr_to_scan)
1171 {
1172 /* kick background reclaimer and push the AIL */
1173 xfs_reclaim_work_queue(mp);
1174 xfs_ail_push_all(mp->m_ail);
1175
1176 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1177 }
1178
1179 /*
1180 * Return the number of reclaimable inodes in the filesystem for
1181 * the shrinker to determine how much to reclaim.
1182 */
1183 int
1184 xfs_reclaim_inodes_count(
1185 struct xfs_mount *mp)
1186 {
1187 struct xfs_perag *pag;
1188 xfs_agnumber_t ag = 0;
1189 int reclaimable = 0;
1190
1191 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1192 ag = pag->pag_agno + 1;
1193 reclaimable += pag->pag_ici_reclaimable;
1194 xfs_perag_put(pag);
1195 }
1196 return reclaimable;
1197 }
1198
1199 STATIC int
1200 xfs_inode_match_id(
1201 struct xfs_inode *ip,
1202 struct xfs_eofblocks *eofb)
1203 {
1204 if (eofb->eof_flags & XFS_EOF_FLAGS_UID &&
1205 ip->i_d.di_uid != eofb->eof_uid)
1206 return 0;
1207
1208 if (eofb->eof_flags & XFS_EOF_FLAGS_GID &&
1209 ip->i_d.di_gid != eofb->eof_gid)
1210 return 0;
1211
1212 if (eofb->eof_flags & XFS_EOF_FLAGS_PRID &&
1213 xfs_get_projid(ip) != eofb->eof_prid)
1214 return 0;
1215
1216 return 1;
1217 }
1218
1219 STATIC int
1220 xfs_inode_free_eofblocks(
1221 struct xfs_inode *ip,
1222 struct xfs_perag *pag,
1223 int flags,
1224 void *args)
1225 {
1226 int ret;
1227 struct xfs_eofblocks *eofb = args;
1228
1229 if (!xfs_can_free_eofblocks(ip, false)) {
1230 /* inode could be preallocated or append-only */
1231 trace_xfs_inode_free_eofblocks_invalid(ip);
1232 xfs_inode_clear_eofblocks_tag(ip);
1233 return 0;
1234 }
1235
1236 /*
1237 * If the mapping is dirty the operation can block and wait for some
1238 * time. Unless we are waiting, skip it.
1239 */
1240 if (!(flags & SYNC_WAIT) &&
1241 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1242 return 0;
1243
1244 if (eofb) {
1245 if (!xfs_inode_match_id(ip, eofb))
1246 return 0;
1247
1248 /* skip the inode if the file size is too small */
1249 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1250 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1251 return 0;
1252 }
1253
1254 ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1255
1256 /* don't revisit the inode if we're not waiting */
1257 if (ret == EAGAIN && !(flags & SYNC_WAIT))
1258 ret = 0;
1259
1260 return ret;
1261 }
1262
1263 int
1264 xfs_icache_free_eofblocks(
1265 struct xfs_mount *mp,
1266 struct xfs_eofblocks *eofb)
1267 {
1268 int flags = SYNC_TRYLOCK;
1269
1270 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1271 flags = SYNC_WAIT;
1272
1273 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1274 eofb, XFS_ICI_EOFBLOCKS_TAG);
1275 }
1276
1277 void
1278 xfs_inode_set_eofblocks_tag(
1279 xfs_inode_t *ip)
1280 {
1281 struct xfs_mount *mp = ip->i_mount;
1282 struct xfs_perag *pag;
1283 int tagged;
1284
1285 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1286 spin_lock(&pag->pag_ici_lock);
1287 trace_xfs_inode_set_eofblocks_tag(ip);
1288
1289 tagged = radix_tree_tagged(&pag->pag_ici_root,
1290 XFS_ICI_EOFBLOCKS_TAG);
1291 radix_tree_tag_set(&pag->pag_ici_root,
1292 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1293 XFS_ICI_EOFBLOCKS_TAG);
1294 if (!tagged) {
1295 /* propagate the eofblocks tag up into the perag radix tree */
1296 spin_lock(&ip->i_mount->m_perag_lock);
1297 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1298 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1299 XFS_ICI_EOFBLOCKS_TAG);
1300 spin_unlock(&ip->i_mount->m_perag_lock);
1301
1302 /* kick off background trimming */
1303 xfs_queue_eofblocks(ip->i_mount);
1304
1305 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1306 -1, _RET_IP_);
1307 }
1308
1309 spin_unlock(&pag->pag_ici_lock);
1310 xfs_perag_put(pag);
1311 }
1312
1313 void
1314 xfs_inode_clear_eofblocks_tag(
1315 xfs_inode_t *ip)
1316 {
1317 struct xfs_mount *mp = ip->i_mount;
1318 struct xfs_perag *pag;
1319
1320 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1321 spin_lock(&pag->pag_ici_lock);
1322 trace_xfs_inode_clear_eofblocks_tag(ip);
1323
1324 radix_tree_tag_clear(&pag->pag_ici_root,
1325 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1326 XFS_ICI_EOFBLOCKS_TAG);
1327 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1328 /* clear the eofblocks tag from the perag radix tree */
1329 spin_lock(&ip->i_mount->m_perag_lock);
1330 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1331 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1332 XFS_ICI_EOFBLOCKS_TAG);
1333 spin_unlock(&ip->i_mount->m_perag_lock);
1334 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1335 -1, _RET_IP_);
1336 }
1337
1338 spin_unlock(&pag->pag_ici_lock);
1339 xfs_perag_put(pag);
1340 }
1341