drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_aops.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39
40 void
41 xfs_count_page_state(
42 struct page *page,
43 int *delalloc,
44 int *unwritten)
45 {
46 struct buffer_head *bh, *head;
47
48 *delalloc = *unwritten = 0;
49
50 bh = head = page_buffers(page);
51 do {
52 if (buffer_unwritten(bh))
53 (*unwritten) = 1;
54 else if (buffer_delay(bh))
55 (*delalloc) = 1;
56 } while ((bh = bh->b_this_page) != head);
57 }
58
59 STATIC struct block_device *
60 xfs_find_bdev_for_inode(
61 struct inode *inode)
62 {
63 struct xfs_inode *ip = XFS_I(inode);
64 struct xfs_mount *mp = ip->i_mount;
65
66 if (XFS_IS_REALTIME_INODE(ip))
67 return mp->m_rtdev_targp->bt_bdev;
68 else
69 return mp->m_ddev_targp->bt_bdev;
70 }
71
72 /*
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
77 */
78 STATIC void
79 xfs_destroy_ioend(
80 xfs_ioend_t *ioend)
81 {
82 struct buffer_head *bh, *next;
83
84 for (bh = ioend->io_buffer_head; bh; bh = next) {
85 next = bh->b_private;
86 bh->b_end_io(bh, !ioend->io_error);
87 }
88
89 if (ioend->io_iocb) {
90 inode_dio_done(ioend->io_inode);
91 if (ioend->io_isasync) {
92 aio_complete(ioend->io_iocb, ioend->io_error ?
93 ioend->io_error : ioend->io_result, 0);
94 }
95 }
96
97 mempool_free(ioend, xfs_ioend_pool);
98 }
99
100 /*
101 * Fast and loose check if this write could update the on-disk inode size.
102 */
103 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
104 {
105 return ioend->io_offset + ioend->io_size >
106 XFS_I(ioend->io_inode)->i_d.di_size;
107 }
108
109 STATIC int
110 xfs_setfilesize_trans_alloc(
111 struct xfs_ioend *ioend)
112 {
113 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
114 struct xfs_trans *tp;
115 int error;
116
117 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
118
119 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
120 if (error) {
121 xfs_trans_cancel(tp, 0);
122 return error;
123 }
124
125 ioend->io_append_trans = tp;
126
127 /*
128 * We may pass freeze protection with a transaction. So tell lockdep
129 * we released it.
130 */
131 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
132 1, _THIS_IP_);
133 /*
134 * We hand off the transaction to the completion thread now, so
135 * clear the flag here.
136 */
137 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
138 return 0;
139 }
140
141 /*
142 * Update on-disk file size now that data has been written to disk.
143 */
144 STATIC int
145 xfs_setfilesize(
146 struct xfs_ioend *ioend)
147 {
148 struct xfs_inode *ip = XFS_I(ioend->io_inode);
149 struct xfs_trans *tp = ioend->io_append_trans;
150 xfs_fsize_t isize;
151
152 /*
153 * The transaction may have been allocated in the I/O submission thread,
154 * thus we need to mark ourselves as beeing in a transaction manually.
155 * Similarly for freeze protection.
156 */
157 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
158 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
159 0, 1, _THIS_IP_);
160
161 /* we abort the update if there was an IO error */
162 if (ioend->io_error) {
163 xfs_trans_cancel(tp, 0);
164 return ioend->io_error;
165 }
166
167 xfs_ilock(ip, XFS_ILOCK_EXCL);
168 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
169 if (!isize) {
170 xfs_iunlock(ip, XFS_ILOCK_EXCL);
171 xfs_trans_cancel(tp, 0);
172 return 0;
173 }
174
175 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
176
177 ip->i_d.di_size = isize;
178 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
179 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
180
181 return xfs_trans_commit(tp, 0);
182 }
183
184 /*
185 * Schedule IO completion handling on the final put of an ioend.
186 *
187 * If there is no work to do we might as well call it a day and free the
188 * ioend right now.
189 */
190 STATIC void
191 xfs_finish_ioend(
192 struct xfs_ioend *ioend)
193 {
194 if (atomic_dec_and_test(&ioend->io_remaining)) {
195 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
196
197 if (ioend->io_type == XFS_IO_UNWRITTEN)
198 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
199 else if (ioend->io_append_trans ||
200 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
201 queue_work(mp->m_data_workqueue, &ioend->io_work);
202 else
203 xfs_destroy_ioend(ioend);
204 }
205 }
206
207 /*
208 * IO write completion.
209 */
210 STATIC void
211 xfs_end_io(
212 struct work_struct *work)
213 {
214 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
215 struct xfs_inode *ip = XFS_I(ioend->io_inode);
216 int error = 0;
217
218 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
219 ioend->io_error = -EIO;
220 goto done;
221 }
222
223 /*
224 * For unwritten extents we need to issue transactions to convert a
225 * range to normal written extens after the data I/O has finished.
226 * Detecting and handling completion IO errors is done individually
227 * for each case as different cleanup operations need to be performed
228 * on error.
229 */
230 if (ioend->io_type == XFS_IO_UNWRITTEN) {
231 if (ioend->io_error)
232 goto done;
233 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
234 ioend->io_size);
235 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
236 /*
237 * For direct I/O we do not know if we need to allocate blocks
238 * or not so we can't preallocate an append transaction as that
239 * results in nested reservations and log space deadlocks. Hence
240 * allocate the transaction here. While this is sub-optimal and
241 * can block IO completion for some time, we're stuck with doing
242 * it this way until we can pass the ioend to the direct IO
243 * allocation callbacks and avoid nesting that way.
244 */
245 error = xfs_setfilesize_trans_alloc(ioend);
246 if (error)
247 goto done;
248 error = xfs_setfilesize(ioend);
249 } else if (ioend->io_append_trans) {
250 error = xfs_setfilesize(ioend);
251 } else {
252 ASSERT(!xfs_ioend_is_append(ioend));
253 }
254
255 done:
256 if (error)
257 ioend->io_error = -error;
258 xfs_destroy_ioend(ioend);
259 }
260
261 /*
262 * Call IO completion handling in caller context on the final put of an ioend.
263 */
264 STATIC void
265 xfs_finish_ioend_sync(
266 struct xfs_ioend *ioend)
267 {
268 if (atomic_dec_and_test(&ioend->io_remaining))
269 xfs_end_io(&ioend->io_work);
270 }
271
272 /*
273 * Allocate and initialise an IO completion structure.
274 * We need to track unwritten extent write completion here initially.
275 * We'll need to extend this for updating the ondisk inode size later
276 * (vs. incore size).
277 */
278 STATIC xfs_ioend_t *
279 xfs_alloc_ioend(
280 struct inode *inode,
281 unsigned int type)
282 {
283 xfs_ioend_t *ioend;
284
285 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286
287 /*
288 * Set the count to 1 initially, which will prevent an I/O
289 * completion callback from happening before we have started
290 * all the I/O from calling the completion routine too early.
291 */
292 atomic_set(&ioend->io_remaining, 1);
293 ioend->io_isasync = 0;
294 ioend->io_isdirect = 0;
295 ioend->io_error = 0;
296 ioend->io_list = NULL;
297 ioend->io_type = type;
298 ioend->io_inode = inode;
299 ioend->io_buffer_head = NULL;
300 ioend->io_buffer_tail = NULL;
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
303 ioend->io_iocb = NULL;
304 ioend->io_result = 0;
305 ioend->io_append_trans = NULL;
306
307 INIT_WORK(&ioend->io_work, xfs_end_io);
308 return ioend;
309 }
310
311 STATIC int
312 xfs_map_blocks(
313 struct inode *inode,
314 loff_t offset,
315 struct xfs_bmbt_irec *imap,
316 int type,
317 int nonblocking)
318 {
319 struct xfs_inode *ip = XFS_I(inode);
320 struct xfs_mount *mp = ip->i_mount;
321 ssize_t count = 1 << inode->i_blkbits;
322 xfs_fileoff_t offset_fsb, end_fsb;
323 int error = 0;
324 int bmapi_flags = XFS_BMAPI_ENTIRE;
325 int nimaps = 1;
326
327 if (XFS_FORCED_SHUTDOWN(mp))
328 return -XFS_ERROR(EIO);
329
330 if (type == XFS_IO_UNWRITTEN)
331 bmapi_flags |= XFS_BMAPI_IGSTATE;
332
333 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 if (nonblocking)
335 return -XFS_ERROR(EAGAIN);
336 xfs_ilock(ip, XFS_ILOCK_SHARED);
337 }
338
339 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 (ip->i_df.if_flags & XFS_IFEXTENTS));
341 ASSERT(offset <= mp->m_super->s_maxbytes);
342
343 if (offset + count > mp->m_super->s_maxbytes)
344 count = mp->m_super->s_maxbytes - offset;
345 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 offset_fsb = XFS_B_TO_FSBT(mp, offset);
347 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
348 imap, &nimaps, bmapi_flags);
349 xfs_iunlock(ip, XFS_ILOCK_SHARED);
350
351 if (error)
352 return -XFS_ERROR(error);
353
354 if (type == XFS_IO_DELALLOC &&
355 (!nimaps || isnullstartblock(imap->br_startblock))) {
356 error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 if (!error)
358 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
359 return -XFS_ERROR(error);
360 }
361
362 #ifdef DEBUG
363 if (type == XFS_IO_UNWRITTEN) {
364 ASSERT(nimaps);
365 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 }
368 #endif
369 if (nimaps)
370 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 return 0;
372 }
373
374 STATIC int
375 xfs_imap_valid(
376 struct inode *inode,
377 struct xfs_bmbt_irec *imap,
378 xfs_off_t offset)
379 {
380 offset >>= inode->i_blkbits;
381
382 return offset >= imap->br_startoff &&
383 offset < imap->br_startoff + imap->br_blockcount;
384 }
385
386 /*
387 * BIO completion handler for buffered IO.
388 */
389 STATIC void
390 xfs_end_bio(
391 struct bio *bio,
392 int error)
393 {
394 xfs_ioend_t *ioend = bio->bi_private;
395
396 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
397 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
398
399 /* Toss bio and pass work off to an xfsdatad thread */
400 bio->bi_private = NULL;
401 bio->bi_end_io = NULL;
402 bio_put(bio);
403
404 xfs_finish_ioend(ioend);
405 }
406
407 STATIC void
408 xfs_submit_ioend_bio(
409 struct writeback_control *wbc,
410 xfs_ioend_t *ioend,
411 struct bio *bio)
412 {
413 atomic_inc(&ioend->io_remaining);
414 bio->bi_private = ioend;
415 bio->bi_end_io = xfs_end_bio;
416 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
417 }
418
419 STATIC struct bio *
420 xfs_alloc_ioend_bio(
421 struct buffer_head *bh)
422 {
423 int nvecs = bio_get_nr_vecs(bh->b_bdev);
424 struct bio *bio = bio_alloc(GFP_NOIO, nvecs);
425
426 ASSERT(bio->bi_private == NULL);
427 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 bio->bi_bdev = bh->b_bdev;
429 return bio;
430 }
431
432 STATIC void
433 xfs_start_buffer_writeback(
434 struct buffer_head *bh)
435 {
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
440
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
444 }
445
446 STATIC void
447 xfs_start_page_writeback(
448 struct page *page,
449 int clear_dirty,
450 int buffers)
451 {
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
454 if (clear_dirty)
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
457 unlock_page(page);
458 /* If no buffers on the page are to be written, finish it here */
459 if (!buffers)
460 end_page_writeback(page);
461 }
462
463 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464 {
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466 }
467
468 /*
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
471 *
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
477 *
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
481 *
482 * The fix is two passes across the ioend list - one to start writeback on the
483 * buffer_heads, and then submit them for I/O on the second pass.
484 *
485 * If @fail is non-zero, it means that we have a situation where some part of
486 * the submission process has failed after we have marked paged for writeback
487 * and unlocked them. In this situation, we need to fail the ioend chain rather
488 * than submit it to IO. This typically only happens on a filesystem shutdown.
489 */
490 STATIC void
491 xfs_submit_ioend(
492 struct writeback_control *wbc,
493 xfs_ioend_t *ioend,
494 int fail)
495 {
496 xfs_ioend_t *head = ioend;
497 xfs_ioend_t *next;
498 struct buffer_head *bh;
499 struct bio *bio;
500 sector_t lastblock = 0;
501
502 /* Pass 1 - start writeback */
503 do {
504 next = ioend->io_list;
505 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
506 xfs_start_buffer_writeback(bh);
507 } while ((ioend = next) != NULL);
508
509 /* Pass 2 - submit I/O */
510 ioend = head;
511 do {
512 next = ioend->io_list;
513 bio = NULL;
514
515 /*
516 * If we are failing the IO now, just mark the ioend with an
517 * error and finish it. This will run IO completion immediately
518 * as there is only one reference to the ioend at this point in
519 * time.
520 */
521 if (fail) {
522 ioend->io_error = -fail;
523 xfs_finish_ioend(ioend);
524 continue;
525 }
526
527 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
528
529 if (!bio) {
530 retry:
531 bio = xfs_alloc_ioend_bio(bh);
532 } else if (bh->b_blocknr != lastblock + 1) {
533 xfs_submit_ioend_bio(wbc, ioend, bio);
534 goto retry;
535 }
536
537 if (bio_add_buffer(bio, bh) != bh->b_size) {
538 xfs_submit_ioend_bio(wbc, ioend, bio);
539 goto retry;
540 }
541
542 lastblock = bh->b_blocknr;
543 }
544 if (bio)
545 xfs_submit_ioend_bio(wbc, ioend, bio);
546 xfs_finish_ioend(ioend);
547 } while ((ioend = next) != NULL);
548 }
549
550 /*
551 * Cancel submission of all buffer_heads so far in this endio.
552 * Toss the endio too. Only ever called for the initial page
553 * in a writepage request, so only ever one page.
554 */
555 STATIC void
556 xfs_cancel_ioend(
557 xfs_ioend_t *ioend)
558 {
559 xfs_ioend_t *next;
560 struct buffer_head *bh, *next_bh;
561
562 do {
563 next = ioend->io_list;
564 bh = ioend->io_buffer_head;
565 do {
566 next_bh = bh->b_private;
567 clear_buffer_async_write(bh);
568 unlock_buffer(bh);
569 } while ((bh = next_bh) != NULL);
570
571 mempool_free(ioend, xfs_ioend_pool);
572 } while ((ioend = next) != NULL);
573 }
574
575 /*
576 * Test to see if we've been building up a completion structure for
577 * earlier buffers -- if so, we try to append to this ioend if we
578 * can, otherwise we finish off any current ioend and start another.
579 * Return true if we've finished the given ioend.
580 */
581 STATIC void
582 xfs_add_to_ioend(
583 struct inode *inode,
584 struct buffer_head *bh,
585 xfs_off_t offset,
586 unsigned int type,
587 xfs_ioend_t **result,
588 int need_ioend)
589 {
590 xfs_ioend_t *ioend = *result;
591
592 if (!ioend || need_ioend || type != ioend->io_type) {
593 xfs_ioend_t *previous = *result;
594
595 ioend = xfs_alloc_ioend(inode, type);
596 ioend->io_offset = offset;
597 ioend->io_buffer_head = bh;
598 ioend->io_buffer_tail = bh;
599 if (previous)
600 previous->io_list = ioend;
601 *result = ioend;
602 } else {
603 ioend->io_buffer_tail->b_private = bh;
604 ioend->io_buffer_tail = bh;
605 }
606
607 bh->b_private = NULL;
608 ioend->io_size += bh->b_size;
609 }
610
611 STATIC void
612 xfs_map_buffer(
613 struct inode *inode,
614 struct buffer_head *bh,
615 struct xfs_bmbt_irec *imap,
616 xfs_off_t offset)
617 {
618 sector_t bn;
619 struct xfs_mount *m = XFS_I(inode)->i_mount;
620 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
621 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
622
623 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
625
626 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
627 ((offset - iomap_offset) >> inode->i_blkbits);
628
629 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
630
631 bh->b_blocknr = bn;
632 set_buffer_mapped(bh);
633 }
634
635 STATIC void
636 xfs_map_at_offset(
637 struct inode *inode,
638 struct buffer_head *bh,
639 struct xfs_bmbt_irec *imap,
640 xfs_off_t offset)
641 {
642 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
643 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
644
645 xfs_map_buffer(inode, bh, imap, offset);
646 set_buffer_mapped(bh);
647 clear_buffer_delay(bh);
648 clear_buffer_unwritten(bh);
649 }
650
651 /*
652 * Test if a given page is suitable for writing as part of an unwritten
653 * or delayed allocate extent.
654 */
655 STATIC int
656 xfs_check_page_type(
657 struct page *page,
658 unsigned int type)
659 {
660 if (PageWriteback(page))
661 return 0;
662
663 if (page->mapping && page_has_buffers(page)) {
664 struct buffer_head *bh, *head;
665 int acceptable = 0;
666
667 bh = head = page_buffers(page);
668 do {
669 if (buffer_unwritten(bh))
670 acceptable += (type == XFS_IO_UNWRITTEN);
671 else if (buffer_delay(bh))
672 acceptable += (type == XFS_IO_DELALLOC);
673 else if (buffer_dirty(bh) && buffer_mapped(bh))
674 acceptable += (type == XFS_IO_OVERWRITE);
675 else
676 break;
677 } while ((bh = bh->b_this_page) != head);
678
679 if (acceptable)
680 return 1;
681 }
682
683 return 0;
684 }
685
686 /*
687 * Allocate & map buffers for page given the extent map. Write it out.
688 * except for the original page of a writepage, this is called on
689 * delalloc/unwritten pages only, for the original page it is possible
690 * that the page has no mapping at all.
691 */
692 STATIC int
693 xfs_convert_page(
694 struct inode *inode,
695 struct page *page,
696 loff_t tindex,
697 struct xfs_bmbt_irec *imap,
698 xfs_ioend_t **ioendp,
699 struct writeback_control *wbc)
700 {
701 struct buffer_head *bh, *head;
702 xfs_off_t end_offset;
703 unsigned long p_offset;
704 unsigned int type;
705 int len, page_dirty;
706 int count = 0, done = 0, uptodate = 1;
707 xfs_off_t offset = page_offset(page);
708
709 if (page->index != tindex)
710 goto fail;
711 if (!trylock_page(page))
712 goto fail;
713 if (PageWriteback(page))
714 goto fail_unlock_page;
715 if (page->mapping != inode->i_mapping)
716 goto fail_unlock_page;
717 if (!xfs_check_page_type(page, (*ioendp)->io_type))
718 goto fail_unlock_page;
719
720 /*
721 * page_dirty is initially a count of buffers on the page before
722 * EOF and is decremented as we move each into a cleanable state.
723 *
724 * Derivation:
725 *
726 * End offset is the highest offset that this page should represent.
727 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
728 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
729 * hence give us the correct page_dirty count. On any other page,
730 * it will be zero and in that case we need page_dirty to be the
731 * count of buffers on the page.
732 */
733 end_offset = min_t(unsigned long long,
734 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
735 i_size_read(inode));
736
737 /*
738 * If the current map does not span the entire page we are about to try
739 * to write, then give up. The only way we can write a page that spans
740 * multiple mappings in a single writeback iteration is via the
741 * xfs_vm_writepage() function. Data integrity writeback requires the
742 * entire page to be written in a single attempt, otherwise the part of
743 * the page we don't write here doesn't get written as part of the data
744 * integrity sync.
745 *
746 * For normal writeback, we also don't attempt to write partial pages
747 * here as it simply means that write_cache_pages() will see it under
748 * writeback and ignore the page until some point in the future, at
749 * which time this will be the only page in the file that needs
750 * writeback. Hence for more optimal IO patterns, we should always
751 * avoid partial page writeback due to multiple mappings on a page here.
752 */
753 if (!xfs_imap_valid(inode, imap, end_offset))
754 goto fail_unlock_page;
755
756 len = 1 << inode->i_blkbits;
757 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
758 PAGE_CACHE_SIZE);
759 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
760 page_dirty = p_offset / len;
761
762 bh = head = page_buffers(page);
763 do {
764 if (offset >= end_offset)
765 break;
766 if (!buffer_uptodate(bh))
767 uptodate = 0;
768 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
769 done = 1;
770 continue;
771 }
772
773 if (buffer_unwritten(bh) || buffer_delay(bh) ||
774 buffer_mapped(bh)) {
775 if (buffer_unwritten(bh))
776 type = XFS_IO_UNWRITTEN;
777 else if (buffer_delay(bh))
778 type = XFS_IO_DELALLOC;
779 else
780 type = XFS_IO_OVERWRITE;
781
782 if (!xfs_imap_valid(inode, imap, offset)) {
783 done = 1;
784 continue;
785 }
786
787 lock_buffer(bh);
788 if (type != XFS_IO_OVERWRITE)
789 xfs_map_at_offset(inode, bh, imap, offset);
790 xfs_add_to_ioend(inode, bh, offset, type,
791 ioendp, done);
792
793 page_dirty--;
794 count++;
795 } else {
796 done = 1;
797 }
798 } while (offset += len, (bh = bh->b_this_page) != head);
799
800 if (uptodate && bh == head)
801 SetPageUptodate(page);
802
803 if (count) {
804 if (--wbc->nr_to_write <= 0 &&
805 wbc->sync_mode == WB_SYNC_NONE)
806 done = 1;
807 }
808 xfs_start_page_writeback(page, !page_dirty, count);
809
810 return done;
811 fail_unlock_page:
812 unlock_page(page);
813 fail:
814 return 1;
815 }
816
817 /*
818 * Convert & write out a cluster of pages in the same extent as defined
819 * by mp and following the start page.
820 */
821 STATIC void
822 xfs_cluster_write(
823 struct inode *inode,
824 pgoff_t tindex,
825 struct xfs_bmbt_irec *imap,
826 xfs_ioend_t **ioendp,
827 struct writeback_control *wbc,
828 pgoff_t tlast)
829 {
830 struct pagevec pvec;
831 int done = 0, i;
832
833 pagevec_init(&pvec, 0);
834 while (!done && tindex <= tlast) {
835 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
836
837 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
838 break;
839
840 for (i = 0; i < pagevec_count(&pvec); i++) {
841 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
842 imap, ioendp, wbc);
843 if (done)
844 break;
845 }
846
847 pagevec_release(&pvec);
848 cond_resched();
849 }
850 }
851
852 STATIC void
853 xfs_vm_invalidatepage(
854 struct page *page,
855 unsigned long offset)
856 {
857 trace_xfs_invalidatepage(page->mapping->host, page, offset);
858 block_invalidatepage(page, offset);
859 }
860
861 /*
862 * If the page has delalloc buffers on it, we need to punch them out before we
863 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
864 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
865 * is done on that same region - the delalloc extent is returned when none is
866 * supposed to be there.
867 *
868 * We prevent this by truncating away the delalloc regions on the page before
869 * invalidating it. Because they are delalloc, we can do this without needing a
870 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
871 * truncation without a transaction as there is no space left for block
872 * reservation (typically why we see a ENOSPC in writeback).
873 *
874 * This is not a performance critical path, so for now just do the punching a
875 * buffer head at a time.
876 */
877 STATIC void
878 xfs_aops_discard_page(
879 struct page *page)
880 {
881 struct inode *inode = page->mapping->host;
882 struct xfs_inode *ip = XFS_I(inode);
883 struct buffer_head *bh, *head;
884 loff_t offset = page_offset(page);
885
886 if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
887 goto out_invalidate;
888
889 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
890 goto out_invalidate;
891
892 xfs_alert(ip->i_mount,
893 "page discard on page %p, inode 0x%llx, offset %llu.",
894 page, ip->i_ino, offset);
895
896 xfs_ilock(ip, XFS_ILOCK_EXCL);
897 bh = head = page_buffers(page);
898 do {
899 int error;
900 xfs_fileoff_t start_fsb;
901
902 if (!buffer_delay(bh))
903 goto next_buffer;
904
905 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
906 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
907 if (error) {
908 /* something screwed, just bail */
909 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
910 xfs_alert(ip->i_mount,
911 "page discard unable to remove delalloc mapping.");
912 }
913 break;
914 }
915 next_buffer:
916 offset += 1 << inode->i_blkbits;
917
918 } while ((bh = bh->b_this_page) != head);
919
920 xfs_iunlock(ip, XFS_ILOCK_EXCL);
921 out_invalidate:
922 xfs_vm_invalidatepage(page, 0);
923 return;
924 }
925
926 /*
927 * Write out a dirty page.
928 *
929 * For delalloc space on the page we need to allocate space and flush it.
930 * For unwritten space on the page we need to start the conversion to
931 * regular allocated space.
932 * For any other dirty buffer heads on the page we should flush them.
933 */
934 STATIC int
935 xfs_vm_writepage(
936 struct page *page,
937 struct writeback_control *wbc)
938 {
939 struct inode *inode = page->mapping->host;
940 struct buffer_head *bh, *head;
941 struct xfs_bmbt_irec imap;
942 xfs_ioend_t *ioend = NULL, *iohead = NULL;
943 loff_t offset;
944 unsigned int type;
945 __uint64_t end_offset;
946 pgoff_t end_index, last_index;
947 ssize_t len;
948 int err, imap_valid = 0, uptodate = 1;
949 int count = 0;
950 int nonblocking = 0;
951
952 trace_xfs_writepage(inode, page, 0);
953
954 ASSERT(page_has_buffers(page));
955
956 /*
957 * Refuse to write the page out if we are called from reclaim context.
958 *
959 * This avoids stack overflows when called from deeply used stacks in
960 * random callers for direct reclaim or memcg reclaim. We explicitly
961 * allow reclaim from kswapd as the stack usage there is relatively low.
962 *
963 * This should never happen except in the case of a VM regression so
964 * warn about it.
965 */
966 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
967 PF_MEMALLOC))
968 goto redirty;
969
970 /*
971 * Given that we do not allow direct reclaim to call us, we should
972 * never be called while in a filesystem transaction.
973 */
974 if (WARN_ON(current->flags & PF_FSTRANS))
975 goto redirty;
976
977 /* Is this page beyond the end of the file? */
978 offset = i_size_read(inode);
979 end_index = offset >> PAGE_CACHE_SHIFT;
980 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
981 if (page->index >= end_index) {
982 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
983
984 /*
985 * Skip the page if it is fully outside i_size, e.g. due to a
986 * truncate operation that is in progress. We must redirty the
987 * page so that reclaim stops reclaiming it. Otherwise
988 * xfs_vm_releasepage() is called on it and gets confused.
989 */
990 if (page->index >= end_index + 1 || offset_into_page == 0)
991 goto redirty;
992
993 /*
994 * The page straddles i_size. It must be zeroed out on each
995 * and every writepage invocation because it may be mmapped.
996 * "A file is mapped in multiples of the page size. For a file
997 * that is not a multiple of the page size, the remaining
998 * memory is zeroed when mapped, and writes to that region are
999 * not written out to the file."
1000 */
1001 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1002 }
1003
1004 end_offset = min_t(unsigned long long,
1005 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
1006 offset);
1007 len = 1 << inode->i_blkbits;
1008
1009 bh = head = page_buffers(page);
1010 offset = page_offset(page);
1011 type = XFS_IO_OVERWRITE;
1012
1013 if (wbc->sync_mode == WB_SYNC_NONE)
1014 nonblocking = 1;
1015
1016 do {
1017 int new_ioend = 0;
1018
1019 if (offset >= end_offset)
1020 break;
1021 if (!buffer_uptodate(bh))
1022 uptodate = 0;
1023
1024 /*
1025 * set_page_dirty dirties all buffers in a page, independent
1026 * of their state. The dirty state however is entirely
1027 * meaningless for holes (!mapped && uptodate), so skip
1028 * buffers covering holes here.
1029 */
1030 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1031 imap_valid = 0;
1032 continue;
1033 }
1034
1035 if (buffer_unwritten(bh)) {
1036 if (type != XFS_IO_UNWRITTEN) {
1037 type = XFS_IO_UNWRITTEN;
1038 imap_valid = 0;
1039 }
1040 } else if (buffer_delay(bh)) {
1041 if (type != XFS_IO_DELALLOC) {
1042 type = XFS_IO_DELALLOC;
1043 imap_valid = 0;
1044 }
1045 } else if (buffer_uptodate(bh)) {
1046 if (type != XFS_IO_OVERWRITE) {
1047 type = XFS_IO_OVERWRITE;
1048 imap_valid = 0;
1049 }
1050 } else {
1051 if (PageUptodate(page))
1052 ASSERT(buffer_mapped(bh));
1053 /*
1054 * This buffer is not uptodate and will not be
1055 * written to disk. Ensure that we will put any
1056 * subsequent writeable buffers into a new
1057 * ioend.
1058 */
1059 imap_valid = 0;
1060 continue;
1061 }
1062
1063 if (imap_valid)
1064 imap_valid = xfs_imap_valid(inode, &imap, offset);
1065 if (!imap_valid) {
1066 /*
1067 * If we didn't have a valid mapping then we need to
1068 * put the new mapping into a separate ioend structure.
1069 * This ensures non-contiguous extents always have
1070 * separate ioends, which is particularly important
1071 * for unwritten extent conversion at I/O completion
1072 * time.
1073 */
1074 new_ioend = 1;
1075 err = xfs_map_blocks(inode, offset, &imap, type,
1076 nonblocking);
1077 if (err)
1078 goto error;
1079 imap_valid = xfs_imap_valid(inode, &imap, offset);
1080 }
1081 if (imap_valid) {
1082 lock_buffer(bh);
1083 if (type != XFS_IO_OVERWRITE)
1084 xfs_map_at_offset(inode, bh, &imap, offset);
1085 xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1086 new_ioend);
1087 count++;
1088 }
1089
1090 if (!iohead)
1091 iohead = ioend;
1092
1093 } while (offset += len, ((bh = bh->b_this_page) != head));
1094
1095 if (uptodate && bh == head)
1096 SetPageUptodate(page);
1097
1098 xfs_start_page_writeback(page, 1, count);
1099
1100 /* if there is no IO to be submitted for this page, we are done */
1101 if (!ioend)
1102 return 0;
1103
1104 ASSERT(iohead);
1105
1106 /*
1107 * Any errors from this point onwards need tobe reported through the IO
1108 * completion path as we have marked the initial page as under writeback
1109 * and unlocked it.
1110 */
1111 if (imap_valid) {
1112 xfs_off_t end_index;
1113
1114 end_index = imap.br_startoff + imap.br_blockcount;
1115
1116 /* to bytes */
1117 end_index <<= inode->i_blkbits;
1118
1119 /* to pages */
1120 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1121
1122 /* check against file size */
1123 if (end_index > last_index)
1124 end_index = last_index;
1125
1126 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1127 wbc, end_index);
1128 }
1129
1130
1131 /*
1132 * Reserve log space if we might write beyond the on-disk inode size.
1133 */
1134 err = 0;
1135 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1136 err = xfs_setfilesize_trans_alloc(ioend);
1137
1138 xfs_submit_ioend(wbc, iohead, err);
1139
1140 return 0;
1141
1142 error:
1143 if (iohead)
1144 xfs_cancel_ioend(iohead);
1145
1146 if (err == -EAGAIN)
1147 goto redirty;
1148
1149 xfs_aops_discard_page(page);
1150 ClearPageUptodate(page);
1151 unlock_page(page);
1152 return err;
1153
1154 redirty:
1155 redirty_page_for_writepage(wbc, page);
1156 unlock_page(page);
1157 return 0;
1158 }
1159
1160 STATIC int
1161 xfs_vm_writepages(
1162 struct address_space *mapping,
1163 struct writeback_control *wbc)
1164 {
1165 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1166 return generic_writepages(mapping, wbc);
1167 }
1168
1169 /*
1170 * Called to move a page into cleanable state - and from there
1171 * to be released. The page should already be clean. We always
1172 * have buffer heads in this call.
1173 *
1174 * Returns 1 if the page is ok to release, 0 otherwise.
1175 */
1176 STATIC int
1177 xfs_vm_releasepage(
1178 struct page *page,
1179 gfp_t gfp_mask)
1180 {
1181 int delalloc, unwritten;
1182
1183 trace_xfs_releasepage(page->mapping->host, page, 0);
1184
1185 xfs_count_page_state(page, &delalloc, &unwritten);
1186
1187 if (WARN_ON(delalloc))
1188 return 0;
1189 if (WARN_ON(unwritten))
1190 return 0;
1191
1192 return try_to_free_buffers(page);
1193 }
1194
1195 STATIC int
1196 __xfs_get_blocks(
1197 struct inode *inode,
1198 sector_t iblock,
1199 struct buffer_head *bh_result,
1200 int create,
1201 int direct)
1202 {
1203 struct xfs_inode *ip = XFS_I(inode);
1204 struct xfs_mount *mp = ip->i_mount;
1205 xfs_fileoff_t offset_fsb, end_fsb;
1206 int error = 0;
1207 int lockmode = 0;
1208 struct xfs_bmbt_irec imap;
1209 int nimaps = 1;
1210 xfs_off_t offset;
1211 ssize_t size;
1212 int new = 0;
1213
1214 if (XFS_FORCED_SHUTDOWN(mp))
1215 return -XFS_ERROR(EIO);
1216
1217 offset = (xfs_off_t)iblock << inode->i_blkbits;
1218 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1219 size = bh_result->b_size;
1220
1221 if (!create && direct && offset >= i_size_read(inode))
1222 return 0;
1223
1224 /*
1225 * Direct I/O is usually done on preallocated files, so try getting
1226 * a block mapping without an exclusive lock first. For buffered
1227 * writes we already have the exclusive iolock anyway, so avoiding
1228 * a lock roundtrip here by taking the ilock exclusive from the
1229 * beginning is a useful micro optimization.
1230 */
1231 if (create && !direct) {
1232 lockmode = XFS_ILOCK_EXCL;
1233 xfs_ilock(ip, lockmode);
1234 } else {
1235 lockmode = xfs_ilock_map_shared(ip);
1236 }
1237
1238 ASSERT(offset <= mp->m_super->s_maxbytes);
1239 if (offset + size > mp->m_super->s_maxbytes)
1240 size = mp->m_super->s_maxbytes - offset;
1241 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1242 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1243
1244 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1245 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1246 if (error)
1247 goto out_unlock;
1248
1249 if (create &&
1250 (!nimaps ||
1251 (imap.br_startblock == HOLESTARTBLOCK ||
1252 imap.br_startblock == DELAYSTARTBLOCK))) {
1253 if (direct || xfs_get_extsz_hint(ip)) {
1254 /*
1255 * Drop the ilock in preparation for starting the block
1256 * allocation transaction. It will be retaken
1257 * exclusively inside xfs_iomap_write_direct for the
1258 * actual allocation.
1259 */
1260 xfs_iunlock(ip, lockmode);
1261 error = xfs_iomap_write_direct(ip, offset, size,
1262 &imap, nimaps);
1263 if (error)
1264 return -error;
1265 new = 1;
1266 } else {
1267 /*
1268 * Delalloc reservations do not require a transaction,
1269 * we can go on without dropping the lock here. If we
1270 * are allocating a new delalloc block, make sure that
1271 * we set the new flag so that we mark the buffer new so
1272 * that we know that it is newly allocated if the write
1273 * fails.
1274 */
1275 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1276 new = 1;
1277 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1278 if (error)
1279 goto out_unlock;
1280
1281 xfs_iunlock(ip, lockmode);
1282 }
1283
1284 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1285 } else if (nimaps) {
1286 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1287 xfs_iunlock(ip, lockmode);
1288 } else {
1289 trace_xfs_get_blocks_notfound(ip, offset, size);
1290 goto out_unlock;
1291 }
1292
1293 if (imap.br_startblock != HOLESTARTBLOCK &&
1294 imap.br_startblock != DELAYSTARTBLOCK) {
1295 /*
1296 * For unwritten extents do not report a disk address on
1297 * the read case (treat as if we're reading into a hole).
1298 */
1299 if (create || !ISUNWRITTEN(&imap))
1300 xfs_map_buffer(inode, bh_result, &imap, offset);
1301 if (create && ISUNWRITTEN(&imap)) {
1302 if (direct)
1303 bh_result->b_private = inode;
1304 set_buffer_unwritten(bh_result);
1305 }
1306 }
1307
1308 /*
1309 * If this is a realtime file, data may be on a different device.
1310 * to that pointed to from the buffer_head b_bdev currently.
1311 */
1312 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1313
1314 /*
1315 * If we previously allocated a block out beyond eof and we are now
1316 * coming back to use it then we will need to flag it as new even if it
1317 * has a disk address.
1318 *
1319 * With sub-block writes into unwritten extents we also need to mark
1320 * the buffer as new so that the unwritten parts of the buffer gets
1321 * correctly zeroed.
1322 */
1323 if (create &&
1324 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1325 (offset >= i_size_read(inode)) ||
1326 (new || ISUNWRITTEN(&imap))))
1327 set_buffer_new(bh_result);
1328
1329 if (imap.br_startblock == DELAYSTARTBLOCK) {
1330 BUG_ON(direct);
1331 if (create) {
1332 set_buffer_uptodate(bh_result);
1333 set_buffer_mapped(bh_result);
1334 set_buffer_delay(bh_result);
1335 }
1336 }
1337
1338 /*
1339 * If this is O_DIRECT or the mpage code calling tell them how large
1340 * the mapping is, so that we can avoid repeated get_blocks calls.
1341 */
1342 if (direct || size > (1 << inode->i_blkbits)) {
1343 xfs_off_t mapping_size;
1344
1345 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1346 mapping_size <<= inode->i_blkbits;
1347
1348 ASSERT(mapping_size > 0);
1349 if (mapping_size > size)
1350 mapping_size = size;
1351 if (mapping_size > LONG_MAX)
1352 mapping_size = LONG_MAX;
1353
1354 bh_result->b_size = mapping_size;
1355 }
1356
1357 return 0;
1358
1359 out_unlock:
1360 xfs_iunlock(ip, lockmode);
1361 return -error;
1362 }
1363
1364 int
1365 xfs_get_blocks(
1366 struct inode *inode,
1367 sector_t iblock,
1368 struct buffer_head *bh_result,
1369 int create)
1370 {
1371 return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1372 }
1373
1374 STATIC int
1375 xfs_get_blocks_direct(
1376 struct inode *inode,
1377 sector_t iblock,
1378 struct buffer_head *bh_result,
1379 int create)
1380 {
1381 return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1382 }
1383
1384 /*
1385 * Complete a direct I/O write request.
1386 *
1387 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1388 * need to issue a transaction to convert the range from unwritten to written
1389 * extents. In case this is regular synchronous I/O we just call xfs_end_io
1390 * to do this and we are done. But in case this was a successful AIO
1391 * request this handler is called from interrupt context, from which we
1392 * can't start transactions. In that case offload the I/O completion to
1393 * the workqueues we also use for buffered I/O completion.
1394 */
1395 STATIC void
1396 xfs_end_io_direct_write(
1397 struct kiocb *iocb,
1398 loff_t offset,
1399 ssize_t size,
1400 void *private,
1401 int ret,
1402 bool is_async)
1403 {
1404 struct xfs_ioend *ioend = iocb->private;
1405
1406 /*
1407 * While the generic direct I/O code updates the inode size, it does
1408 * so only after the end_io handler is called, which means our
1409 * end_io handler thinks the on-disk size is outside the in-core
1410 * size. To prevent this just update it a little bit earlier here.
1411 */
1412 if (offset + size > i_size_read(ioend->io_inode))
1413 i_size_write(ioend->io_inode, offset + size);
1414
1415 /*
1416 * blockdev_direct_IO can return an error even after the I/O
1417 * completion handler was called. Thus we need to protect
1418 * against double-freeing.
1419 */
1420 iocb->private = NULL;
1421
1422 ioend->io_offset = offset;
1423 ioend->io_size = size;
1424 ioend->io_iocb = iocb;
1425 ioend->io_result = ret;
1426 if (private && size > 0)
1427 ioend->io_type = XFS_IO_UNWRITTEN;
1428
1429 if (is_async) {
1430 ioend->io_isasync = 1;
1431 xfs_finish_ioend(ioend);
1432 } else {
1433 xfs_finish_ioend_sync(ioend);
1434 }
1435 }
1436
1437 STATIC ssize_t
1438 xfs_vm_direct_IO(
1439 int rw,
1440 struct kiocb *iocb,
1441 const struct iovec *iov,
1442 loff_t offset,
1443 unsigned long nr_segs)
1444 {
1445 struct inode *inode = iocb->ki_filp->f_mapping->host;
1446 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
1447 struct xfs_ioend *ioend = NULL;
1448 ssize_t ret;
1449
1450 if (rw & WRITE) {
1451 size_t size = iov_length(iov, nr_segs);
1452
1453 /*
1454 * We cannot preallocate a size update transaction here as we
1455 * don't know whether allocation is necessary or not. Hence we
1456 * can only tell IO completion that one is necessary if we are
1457 * not doing unwritten extent conversion.
1458 */
1459 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1460 if (offset + size > XFS_I(inode)->i_d.di_size)
1461 ioend->io_isdirect = 1;
1462
1463 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1464 offset, nr_segs,
1465 xfs_get_blocks_direct,
1466 xfs_end_io_direct_write, NULL, 0);
1467 if (ret != -EIOCBQUEUED && iocb->private)
1468 goto out_destroy_ioend;
1469 } else {
1470 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1471 offset, nr_segs,
1472 xfs_get_blocks_direct,
1473 NULL, NULL, 0);
1474 }
1475
1476 return ret;
1477
1478 out_destroy_ioend:
1479 xfs_destroy_ioend(ioend);
1480 return ret;
1481 }
1482
1483 /*
1484 * Punch out the delalloc blocks we have already allocated.
1485 *
1486 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1487 * as the page is still locked at this point.
1488 */
1489 STATIC void
1490 xfs_vm_kill_delalloc_range(
1491 struct inode *inode,
1492 loff_t start,
1493 loff_t end)
1494 {
1495 struct xfs_inode *ip = XFS_I(inode);
1496 xfs_fileoff_t start_fsb;
1497 xfs_fileoff_t end_fsb;
1498 int error;
1499
1500 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1501 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1502 if (end_fsb <= start_fsb)
1503 return;
1504
1505 xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1507 end_fsb - start_fsb);
1508 if (error) {
1509 /* something screwed, just bail */
1510 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1511 xfs_alert(ip->i_mount,
1512 "xfs_vm_write_failed: unable to clean up ino %lld",
1513 ip->i_ino);
1514 }
1515 }
1516 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1517 }
1518
1519 STATIC void
1520 xfs_vm_write_failed(
1521 struct inode *inode,
1522 struct page *page,
1523 loff_t pos,
1524 unsigned len)
1525 {
1526 loff_t block_offset = pos & PAGE_MASK;
1527 loff_t block_start;
1528 loff_t block_end;
1529 loff_t from = pos & (PAGE_CACHE_SIZE - 1);
1530 loff_t to = from + len;
1531 struct buffer_head *bh, *head;
1532
1533 ASSERT(block_offset + from == pos);
1534
1535 head = page_buffers(page);
1536 block_start = 0;
1537 for (bh = head; bh != head || !block_start;
1538 bh = bh->b_this_page, block_start = block_end,
1539 block_offset += bh->b_size) {
1540 block_end = block_start + bh->b_size;
1541
1542 /* skip buffers before the write */
1543 if (block_end <= from)
1544 continue;
1545
1546 /* if the buffer is after the write, we're done */
1547 if (block_start >= to)
1548 break;
1549
1550 if (!buffer_delay(bh))
1551 continue;
1552
1553 if (!buffer_new(bh) && block_offset < i_size_read(inode))
1554 continue;
1555
1556 xfs_vm_kill_delalloc_range(inode, block_offset,
1557 block_offset + bh->b_size);
1558 }
1559
1560 }
1561
1562 /*
1563 * This used to call block_write_begin(), but it unlocks and releases the page
1564 * on error, and we need that page to be able to punch stale delalloc blocks out
1565 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1566 * the appropriate point.
1567 */
1568 STATIC int
1569 xfs_vm_write_begin(
1570 struct file *file,
1571 struct address_space *mapping,
1572 loff_t pos,
1573 unsigned len,
1574 unsigned flags,
1575 struct page **pagep,
1576 void **fsdata)
1577 {
1578 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1579 struct page *page;
1580 int status;
1581
1582 ASSERT(len <= PAGE_CACHE_SIZE);
1583
1584 page = grab_cache_page_write_begin(mapping, index,
1585 flags | AOP_FLAG_NOFS);
1586 if (!page)
1587 return -ENOMEM;
1588
1589 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1590 if (unlikely(status)) {
1591 struct inode *inode = mapping->host;
1592
1593 xfs_vm_write_failed(inode, page, pos, len);
1594 unlock_page(page);
1595
1596 if (pos + len > i_size_read(inode))
1597 truncate_pagecache(inode, pos + len, i_size_read(inode));
1598
1599 page_cache_release(page);
1600 page = NULL;
1601 }
1602
1603 *pagep = page;
1604 return status;
1605 }
1606
1607 /*
1608 * On failure, we only need to kill delalloc blocks beyond EOF because they
1609 * will never be written. For blocks within EOF, generic_write_end() zeros them
1610 * so they are safe to leave alone and be written with all the other valid data.
1611 */
1612 STATIC int
1613 xfs_vm_write_end(
1614 struct file *file,
1615 struct address_space *mapping,
1616 loff_t pos,
1617 unsigned len,
1618 unsigned copied,
1619 struct page *page,
1620 void *fsdata)
1621 {
1622 int ret;
1623
1624 ASSERT(len <= PAGE_CACHE_SIZE);
1625
1626 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1627 if (unlikely(ret < len)) {
1628 struct inode *inode = mapping->host;
1629 size_t isize = i_size_read(inode);
1630 loff_t to = pos + len;
1631
1632 if (to > isize) {
1633 truncate_pagecache(inode, to, isize);
1634 xfs_vm_kill_delalloc_range(inode, isize, to);
1635 }
1636 }
1637 return ret;
1638 }
1639
1640 STATIC sector_t
1641 xfs_vm_bmap(
1642 struct address_space *mapping,
1643 sector_t block)
1644 {
1645 struct inode *inode = (struct inode *)mapping->host;
1646 struct xfs_inode *ip = XFS_I(inode);
1647
1648 trace_xfs_vm_bmap(XFS_I(inode));
1649 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1650 filemap_write_and_wait(mapping);
1651 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1652 return generic_block_bmap(mapping, block, xfs_get_blocks);
1653 }
1654
1655 STATIC int
1656 xfs_vm_readpage(
1657 struct file *unused,
1658 struct page *page)
1659 {
1660 return mpage_readpage(page, xfs_get_blocks);
1661 }
1662
1663 STATIC int
1664 xfs_vm_readpages(
1665 struct file *unused,
1666 struct address_space *mapping,
1667 struct list_head *pages,
1668 unsigned nr_pages)
1669 {
1670 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1671 }
1672
1673 /*
1674 * This is basically a copy of __set_page_dirty_buffers() with one
1675 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1676 * dirty, we'll never be able to clean them because we don't write buffers
1677 * beyond EOF, and that means we can't invalidate pages that span EOF
1678 * that have been marked dirty. Further, the dirty state can leak into
1679 * the file interior if the file is extended, resulting in all sorts of
1680 * bad things happening as the state does not match the underlying data.
1681 *
1682 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1683 * this only exist because of bufferheads and how the generic code manages them.
1684 */
1685 STATIC int
1686 xfs_vm_set_page_dirty(
1687 struct page *page)
1688 {
1689 struct address_space *mapping = page->mapping;
1690 struct inode *inode = mapping->host;
1691 loff_t end_offset;
1692 loff_t offset;
1693 int newly_dirty;
1694
1695 if (unlikely(!mapping))
1696 return !TestSetPageDirty(page);
1697
1698 end_offset = i_size_read(inode);
1699 offset = page_offset(page);
1700
1701 spin_lock(&mapping->private_lock);
1702 if (page_has_buffers(page)) {
1703 struct buffer_head *head = page_buffers(page);
1704 struct buffer_head *bh = head;
1705
1706 do {
1707 if (offset < end_offset)
1708 set_buffer_dirty(bh);
1709 bh = bh->b_this_page;
1710 offset += 1 << inode->i_blkbits;
1711 } while (bh != head);
1712 }
1713 newly_dirty = !TestSetPageDirty(page);
1714 spin_unlock(&mapping->private_lock);
1715
1716 if (newly_dirty) {
1717 /* sigh - __set_page_dirty() is static, so copy it here, too */
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&mapping->tree_lock, flags);
1721 if (page->mapping) { /* Race with truncate? */
1722 WARN_ON_ONCE(!PageUptodate(page));
1723 account_page_dirtied(page, mapping);
1724 radix_tree_tag_set(&mapping->page_tree,
1725 page_index(page), PAGECACHE_TAG_DIRTY);
1726 }
1727 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1728 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1729 }
1730 return newly_dirty;
1731 }
1732
1733 const struct address_space_operations xfs_address_space_operations = {
1734 .readpage = xfs_vm_readpage,
1735 .readpages = xfs_vm_readpages,
1736 .writepage = xfs_vm_writepage,
1737 .writepages = xfs_vm_writepages,
1738 .set_page_dirty = xfs_vm_set_page_dirty,
1739 .releasepage = xfs_vm_releasepage,
1740 .invalidatepage = xfs_vm_invalidatepage,
1741 .write_begin = xfs_vm_write_begin,
1742 .write_end = xfs_vm_write_end,
1743 .bmap = xfs_vm_bmap,
1744 .direct_IO = xfs_vm_direct_IO,
1745 .migratepage = buffer_migrate_page,
1746 .is_partially_uptodate = block_is_partially_uptodate,
1747 .error_remove_page = generic_error_remove_page,
1748 };