xfs: simplify inode to transaction joining
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_sync.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40
41
42 STATIC xfs_inode_t *
43 xfs_inode_ag_lookup(
44 struct xfs_mount *mp,
45 struct xfs_perag *pag,
46 uint32_t *first_index,
47 int tag)
48 {
49 int nr_found;
50 struct xfs_inode *ip;
51
52 /*
53 * use a gang lookup to find the next inode in the tree
54 * as the tree is sparse and a gang lookup walks to find
55 * the number of objects requested.
56 */
57 if (tag == XFS_ICI_NO_TAG) {
58 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
59 (void **)&ip, *first_index, 1);
60 } else {
61 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
62 (void **)&ip, *first_index, 1, tag);
63 }
64 if (!nr_found)
65 return NULL;
66
67 /*
68 * Update the index for the next lookup. Catch overflows
69 * into the next AG range which can occur if we have inodes
70 * in the last block of the AG and we are currently
71 * pointing to the last inode.
72 */
73 *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
74 if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
75 return NULL;
76 return ip;
77 }
78
79 STATIC int
80 xfs_inode_ag_walk(
81 struct xfs_mount *mp,
82 struct xfs_perag *pag,
83 int (*execute)(struct xfs_inode *ip,
84 struct xfs_perag *pag, int flags),
85 int flags,
86 int tag,
87 int exclusive,
88 int *nr_to_scan)
89 {
90 uint32_t first_index;
91 int last_error = 0;
92 int skipped;
93
94 restart:
95 skipped = 0;
96 first_index = 0;
97 do {
98 int error = 0;
99 xfs_inode_t *ip;
100
101 if (exclusive)
102 write_lock(&pag->pag_ici_lock);
103 else
104 read_lock(&pag->pag_ici_lock);
105 ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
106 if (!ip) {
107 if (exclusive)
108 write_unlock(&pag->pag_ici_lock);
109 else
110 read_unlock(&pag->pag_ici_lock);
111 break;
112 }
113
114 /* execute releases pag->pag_ici_lock */
115 error = execute(ip, pag, flags);
116 if (error == EAGAIN) {
117 skipped++;
118 continue;
119 }
120 if (error)
121 last_error = error;
122
123 /* bail out if the filesystem is corrupted. */
124 if (error == EFSCORRUPTED)
125 break;
126
127 } while ((*nr_to_scan)--);
128
129 if (skipped) {
130 delay(1);
131 goto restart;
132 }
133 return last_error;
134 }
135
136 /*
137 * Select the next per-ag structure to iterate during the walk. The reclaim
138 * walk is optimised only to walk AGs with reclaimable inodes in them.
139 */
140 static struct xfs_perag *
141 xfs_inode_ag_iter_next_pag(
142 struct xfs_mount *mp,
143 xfs_agnumber_t *first,
144 int tag)
145 {
146 struct xfs_perag *pag = NULL;
147
148 if (tag == XFS_ICI_RECLAIM_TAG) {
149 int found;
150 int ref;
151
152 spin_lock(&mp->m_perag_lock);
153 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
154 (void **)&pag, *first, 1, tag);
155 if (found <= 0) {
156 spin_unlock(&mp->m_perag_lock);
157 return NULL;
158 }
159 *first = pag->pag_agno + 1;
160 /* open coded pag reference increment */
161 ref = atomic_inc_return(&pag->pag_ref);
162 spin_unlock(&mp->m_perag_lock);
163 trace_xfs_perag_get_reclaim(mp, pag->pag_agno, ref, _RET_IP_);
164 } else {
165 pag = xfs_perag_get(mp, *first);
166 (*first)++;
167 }
168 return pag;
169 }
170
171 int
172 xfs_inode_ag_iterator(
173 struct xfs_mount *mp,
174 int (*execute)(struct xfs_inode *ip,
175 struct xfs_perag *pag, int flags),
176 int flags,
177 int tag,
178 int exclusive,
179 int *nr_to_scan)
180 {
181 struct xfs_perag *pag;
182 int error = 0;
183 int last_error = 0;
184 xfs_agnumber_t ag;
185 int nr;
186
187 nr = nr_to_scan ? *nr_to_scan : INT_MAX;
188 ag = 0;
189 while ((pag = xfs_inode_ag_iter_next_pag(mp, &ag, tag))) {
190 error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
191 exclusive, &nr);
192 xfs_perag_put(pag);
193 if (error) {
194 last_error = error;
195 if (error == EFSCORRUPTED)
196 break;
197 }
198 if (nr <= 0)
199 break;
200 }
201 if (nr_to_scan)
202 *nr_to_scan = nr;
203 return XFS_ERROR(last_error);
204 }
205
206 /* must be called with pag_ici_lock held and releases it */
207 int
208 xfs_sync_inode_valid(
209 struct xfs_inode *ip,
210 struct xfs_perag *pag)
211 {
212 struct inode *inode = VFS_I(ip);
213 int error = EFSCORRUPTED;
214
215 /* nothing to sync during shutdown */
216 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
217 goto out_unlock;
218
219 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
220 error = ENOENT;
221 if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
222 goto out_unlock;
223
224 /* If we can't grab the inode, it must on it's way to reclaim. */
225 if (!igrab(inode))
226 goto out_unlock;
227
228 if (is_bad_inode(inode)) {
229 IRELE(ip);
230 goto out_unlock;
231 }
232
233 /* inode is valid */
234 error = 0;
235 out_unlock:
236 read_unlock(&pag->pag_ici_lock);
237 return error;
238 }
239
240 STATIC int
241 xfs_sync_inode_data(
242 struct xfs_inode *ip,
243 struct xfs_perag *pag,
244 int flags)
245 {
246 struct inode *inode = VFS_I(ip);
247 struct address_space *mapping = inode->i_mapping;
248 int error = 0;
249
250 error = xfs_sync_inode_valid(ip, pag);
251 if (error)
252 return error;
253
254 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
255 goto out_wait;
256
257 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
258 if (flags & SYNC_TRYLOCK)
259 goto out_wait;
260 xfs_ilock(ip, XFS_IOLOCK_SHARED);
261 }
262
263 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
264 0 : XBF_ASYNC, FI_NONE);
265 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
266
267 out_wait:
268 if (flags & SYNC_WAIT)
269 xfs_ioend_wait(ip);
270 IRELE(ip);
271 return error;
272 }
273
274 STATIC int
275 xfs_sync_inode_attr(
276 struct xfs_inode *ip,
277 struct xfs_perag *pag,
278 int flags)
279 {
280 int error = 0;
281
282 error = xfs_sync_inode_valid(ip, pag);
283 if (error)
284 return error;
285
286 xfs_ilock(ip, XFS_ILOCK_SHARED);
287 if (xfs_inode_clean(ip))
288 goto out_unlock;
289 if (!xfs_iflock_nowait(ip)) {
290 if (!(flags & SYNC_WAIT))
291 goto out_unlock;
292 xfs_iflock(ip);
293 }
294
295 if (xfs_inode_clean(ip)) {
296 xfs_ifunlock(ip);
297 goto out_unlock;
298 }
299
300 error = xfs_iflush(ip, flags);
301
302 out_unlock:
303 xfs_iunlock(ip, XFS_ILOCK_SHARED);
304 IRELE(ip);
305 return error;
306 }
307
308 /*
309 * Write out pagecache data for the whole filesystem.
310 */
311 int
312 xfs_sync_data(
313 struct xfs_mount *mp,
314 int flags)
315 {
316 int error;
317
318 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
319
320 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
321 XFS_ICI_NO_TAG, 0, NULL);
322 if (error)
323 return XFS_ERROR(error);
324
325 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
326 return 0;
327 }
328
329 /*
330 * Write out inode metadata (attributes) for the whole filesystem.
331 */
332 int
333 xfs_sync_attr(
334 struct xfs_mount *mp,
335 int flags)
336 {
337 ASSERT((flags & ~SYNC_WAIT) == 0);
338
339 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
340 XFS_ICI_NO_TAG, 0, NULL);
341 }
342
343 STATIC int
344 xfs_commit_dummy_trans(
345 struct xfs_mount *mp,
346 uint flags)
347 {
348 struct xfs_inode *ip = mp->m_rootip;
349 struct xfs_trans *tp;
350 int error;
351
352 /*
353 * Put a dummy transaction in the log to tell recovery
354 * that all others are OK.
355 */
356 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
357 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
358 if (error) {
359 xfs_trans_cancel(tp, 0);
360 return error;
361 }
362
363 xfs_ilock(ip, XFS_ILOCK_EXCL);
364
365 xfs_trans_ijoin(tp, ip);
366 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
367 error = xfs_trans_commit(tp, 0);
368 xfs_iunlock(ip, XFS_ILOCK_EXCL);
369
370 /* the log force ensures this transaction is pushed to disk */
371 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
372 return error;
373 }
374
375 STATIC int
376 xfs_sync_fsdata(
377 struct xfs_mount *mp)
378 {
379 struct xfs_buf *bp;
380
381 /*
382 * If the buffer is pinned then push on the log so we won't get stuck
383 * waiting in the write for someone, maybe ourselves, to flush the log.
384 *
385 * Even though we just pushed the log above, we did not have the
386 * superblock buffer locked at that point so it can become pinned in
387 * between there and here.
388 */
389 bp = xfs_getsb(mp, 0);
390 if (XFS_BUF_ISPINNED(bp))
391 xfs_log_force(mp, 0);
392
393 return xfs_bwrite(mp, bp);
394 }
395
396 /*
397 * When remounting a filesystem read-only or freezing the filesystem, we have
398 * two phases to execute. This first phase is syncing the data before we
399 * quiesce the filesystem, and the second is flushing all the inodes out after
400 * we've waited for all the transactions created by the first phase to
401 * complete. The second phase ensures that the inodes are written to their
402 * location on disk rather than just existing in transactions in the log. This
403 * means after a quiesce there is no log replay required to write the inodes to
404 * disk (this is the main difference between a sync and a quiesce).
405 */
406 /*
407 * First stage of freeze - no writers will make progress now we are here,
408 * so we flush delwri and delalloc buffers here, then wait for all I/O to
409 * complete. Data is frozen at that point. Metadata is not frozen,
410 * transactions can still occur here so don't bother flushing the buftarg
411 * because it'll just get dirty again.
412 */
413 int
414 xfs_quiesce_data(
415 struct xfs_mount *mp)
416 {
417 int error, error2 = 0;
418
419 /* push non-blocking */
420 xfs_sync_data(mp, 0);
421 xfs_qm_sync(mp, SYNC_TRYLOCK);
422
423 /* push and block till complete */
424 xfs_sync_data(mp, SYNC_WAIT);
425 xfs_qm_sync(mp, SYNC_WAIT);
426
427 /* write superblock and hoover up shutdown errors */
428 error = xfs_sync_fsdata(mp);
429
430 /* make sure all delwri buffers are written out */
431 xfs_flush_buftarg(mp->m_ddev_targp, 1);
432
433 /* mark the log as covered if needed */
434 if (xfs_log_need_covered(mp))
435 error2 = xfs_commit_dummy_trans(mp, SYNC_WAIT);
436
437 /* flush data-only devices */
438 if (mp->m_rtdev_targp)
439 XFS_bflush(mp->m_rtdev_targp);
440
441 return error ? error : error2;
442 }
443
444 STATIC void
445 xfs_quiesce_fs(
446 struct xfs_mount *mp)
447 {
448 int count = 0, pincount;
449
450 xfs_reclaim_inodes(mp, 0);
451 xfs_flush_buftarg(mp->m_ddev_targp, 0);
452
453 /*
454 * This loop must run at least twice. The first instance of the loop
455 * will flush most meta data but that will generate more meta data
456 * (typically directory updates). Which then must be flushed and
457 * logged before we can write the unmount record. We also so sync
458 * reclaim of inodes to catch any that the above delwri flush skipped.
459 */
460 do {
461 xfs_reclaim_inodes(mp, SYNC_WAIT);
462 xfs_sync_attr(mp, SYNC_WAIT);
463 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
464 if (!pincount) {
465 delay(50);
466 count++;
467 }
468 } while (count < 2);
469 }
470
471 /*
472 * Second stage of a quiesce. The data is already synced, now we have to take
473 * care of the metadata. New transactions are already blocked, so we need to
474 * wait for any remaining transactions to drain out before proceding.
475 */
476 void
477 xfs_quiesce_attr(
478 struct xfs_mount *mp)
479 {
480 int error = 0;
481
482 /* wait for all modifications to complete */
483 while (atomic_read(&mp->m_active_trans) > 0)
484 delay(100);
485
486 /* flush inodes and push all remaining buffers out to disk */
487 xfs_quiesce_fs(mp);
488
489 /*
490 * Just warn here till VFS can correctly support
491 * read-only remount without racing.
492 */
493 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
494
495 /* Push the superblock and write an unmount record */
496 error = xfs_log_sbcount(mp, 1);
497 if (error)
498 xfs_fs_cmn_err(CE_WARN, mp,
499 "xfs_attr_quiesce: failed to log sb changes. "
500 "Frozen image may not be consistent.");
501 xfs_log_unmount_write(mp);
502 xfs_unmountfs_writesb(mp);
503 }
504
505 /*
506 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
507 * Doing this has two advantages:
508 * - It saves on stack space, which is tight in certain situations
509 * - It can be used (with care) as a mechanism to avoid deadlocks.
510 * Flushing while allocating in a full filesystem requires both.
511 */
512 STATIC void
513 xfs_syncd_queue_work(
514 struct xfs_mount *mp,
515 void *data,
516 void (*syncer)(struct xfs_mount *, void *),
517 struct completion *completion)
518 {
519 struct xfs_sync_work *work;
520
521 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
522 INIT_LIST_HEAD(&work->w_list);
523 work->w_syncer = syncer;
524 work->w_data = data;
525 work->w_mount = mp;
526 work->w_completion = completion;
527 spin_lock(&mp->m_sync_lock);
528 list_add_tail(&work->w_list, &mp->m_sync_list);
529 spin_unlock(&mp->m_sync_lock);
530 wake_up_process(mp->m_sync_task);
531 }
532
533 /*
534 * Flush delayed allocate data, attempting to free up reserved space
535 * from existing allocations. At this point a new allocation attempt
536 * has failed with ENOSPC and we are in the process of scratching our
537 * heads, looking about for more room...
538 */
539 STATIC void
540 xfs_flush_inodes_work(
541 struct xfs_mount *mp,
542 void *arg)
543 {
544 struct inode *inode = arg;
545 xfs_sync_data(mp, SYNC_TRYLOCK);
546 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
547 iput(inode);
548 }
549
550 void
551 xfs_flush_inodes(
552 xfs_inode_t *ip)
553 {
554 struct inode *inode = VFS_I(ip);
555 DECLARE_COMPLETION_ONSTACK(completion);
556
557 igrab(inode);
558 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
559 wait_for_completion(&completion);
560 xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
561 }
562
563 /*
564 * Every sync period we need to unpin all items, reclaim inodes and sync
565 * disk quotas. We might need to cover the log to indicate that the
566 * filesystem is idle.
567 */
568 STATIC void
569 xfs_sync_worker(
570 struct xfs_mount *mp,
571 void *unused)
572 {
573 int error;
574
575 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
576 xfs_log_force(mp, 0);
577 xfs_reclaim_inodes(mp, 0);
578 /* dgc: errors ignored here */
579 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
580 if (xfs_log_need_covered(mp))
581 error = xfs_commit_dummy_trans(mp, 0);
582 }
583 mp->m_sync_seq++;
584 wake_up(&mp->m_wait_single_sync_task);
585 }
586
587 STATIC int
588 xfssyncd(
589 void *arg)
590 {
591 struct xfs_mount *mp = arg;
592 long timeleft;
593 xfs_sync_work_t *work, *n;
594 LIST_HEAD (tmp);
595
596 set_freezable();
597 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
598 for (;;) {
599 if (list_empty(&mp->m_sync_list))
600 timeleft = schedule_timeout_interruptible(timeleft);
601 /* swsusp */
602 try_to_freeze();
603 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
604 break;
605
606 spin_lock(&mp->m_sync_lock);
607 /*
608 * We can get woken by laptop mode, to do a sync -
609 * that's the (only!) case where the list would be
610 * empty with time remaining.
611 */
612 if (!timeleft || list_empty(&mp->m_sync_list)) {
613 if (!timeleft)
614 timeleft = xfs_syncd_centisecs *
615 msecs_to_jiffies(10);
616 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
617 list_add_tail(&mp->m_sync_work.w_list,
618 &mp->m_sync_list);
619 }
620 list_splice_init(&mp->m_sync_list, &tmp);
621 spin_unlock(&mp->m_sync_lock);
622
623 list_for_each_entry_safe(work, n, &tmp, w_list) {
624 (*work->w_syncer)(mp, work->w_data);
625 list_del(&work->w_list);
626 if (work == &mp->m_sync_work)
627 continue;
628 if (work->w_completion)
629 complete(work->w_completion);
630 kmem_free(work);
631 }
632 }
633
634 return 0;
635 }
636
637 int
638 xfs_syncd_init(
639 struct xfs_mount *mp)
640 {
641 mp->m_sync_work.w_syncer = xfs_sync_worker;
642 mp->m_sync_work.w_mount = mp;
643 mp->m_sync_work.w_completion = NULL;
644 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
645 if (IS_ERR(mp->m_sync_task))
646 return -PTR_ERR(mp->m_sync_task);
647 return 0;
648 }
649
650 void
651 xfs_syncd_stop(
652 struct xfs_mount *mp)
653 {
654 kthread_stop(mp->m_sync_task);
655 }
656
657 void
658 __xfs_inode_set_reclaim_tag(
659 struct xfs_perag *pag,
660 struct xfs_inode *ip)
661 {
662 radix_tree_tag_set(&pag->pag_ici_root,
663 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
664 XFS_ICI_RECLAIM_TAG);
665
666 if (!pag->pag_ici_reclaimable) {
667 /* propagate the reclaim tag up into the perag radix tree */
668 spin_lock(&ip->i_mount->m_perag_lock);
669 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
670 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
671 XFS_ICI_RECLAIM_TAG);
672 spin_unlock(&ip->i_mount->m_perag_lock);
673 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
674 -1, _RET_IP_);
675 }
676 pag->pag_ici_reclaimable++;
677 }
678
679 /*
680 * We set the inode flag atomically with the radix tree tag.
681 * Once we get tag lookups on the radix tree, this inode flag
682 * can go away.
683 */
684 void
685 xfs_inode_set_reclaim_tag(
686 xfs_inode_t *ip)
687 {
688 struct xfs_mount *mp = ip->i_mount;
689 struct xfs_perag *pag;
690
691 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
692 write_lock(&pag->pag_ici_lock);
693 spin_lock(&ip->i_flags_lock);
694 __xfs_inode_set_reclaim_tag(pag, ip);
695 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
696 spin_unlock(&ip->i_flags_lock);
697 write_unlock(&pag->pag_ici_lock);
698 xfs_perag_put(pag);
699 }
700
701 void
702 __xfs_inode_clear_reclaim_tag(
703 xfs_mount_t *mp,
704 xfs_perag_t *pag,
705 xfs_inode_t *ip)
706 {
707 radix_tree_tag_clear(&pag->pag_ici_root,
708 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
709 pag->pag_ici_reclaimable--;
710 if (!pag->pag_ici_reclaimable) {
711 /* clear the reclaim tag from the perag radix tree */
712 spin_lock(&ip->i_mount->m_perag_lock);
713 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
714 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
715 XFS_ICI_RECLAIM_TAG);
716 spin_unlock(&ip->i_mount->m_perag_lock);
717 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
718 -1, _RET_IP_);
719 }
720 }
721
722 /*
723 * Inodes in different states need to be treated differently, and the return
724 * value of xfs_iflush is not sufficient to get this right. The following table
725 * lists the inode states and the reclaim actions necessary for non-blocking
726 * reclaim:
727 *
728 *
729 * inode state iflush ret required action
730 * --------------- ---------- ---------------
731 * bad - reclaim
732 * shutdown EIO unpin and reclaim
733 * clean, unpinned 0 reclaim
734 * stale, unpinned 0 reclaim
735 * clean, pinned(*) 0 requeue
736 * stale, pinned EAGAIN requeue
737 * dirty, delwri ok 0 requeue
738 * dirty, delwri blocked EAGAIN requeue
739 * dirty, sync flush 0 reclaim
740 *
741 * (*) dgc: I don't think the clean, pinned state is possible but it gets
742 * handled anyway given the order of checks implemented.
743 *
744 * As can be seen from the table, the return value of xfs_iflush() is not
745 * sufficient to correctly decide the reclaim action here. The checks in
746 * xfs_iflush() might look like duplicates, but they are not.
747 *
748 * Also, because we get the flush lock first, we know that any inode that has
749 * been flushed delwri has had the flush completed by the time we check that
750 * the inode is clean. The clean inode check needs to be done before flushing
751 * the inode delwri otherwise we would loop forever requeuing clean inodes as
752 * we cannot tell apart a successful delwri flush and a clean inode from the
753 * return value of xfs_iflush().
754 *
755 * Note that because the inode is flushed delayed write by background
756 * writeback, the flush lock may already be held here and waiting on it can
757 * result in very long latencies. Hence for sync reclaims, where we wait on the
758 * flush lock, the caller should push out delayed write inodes first before
759 * trying to reclaim them to minimise the amount of time spent waiting. For
760 * background relaim, we just requeue the inode for the next pass.
761 *
762 * Hence the order of actions after gaining the locks should be:
763 * bad => reclaim
764 * shutdown => unpin and reclaim
765 * pinned, delwri => requeue
766 * pinned, sync => unpin
767 * stale => reclaim
768 * clean => reclaim
769 * dirty, delwri => flush and requeue
770 * dirty, sync => flush, wait and reclaim
771 */
772 STATIC int
773 xfs_reclaim_inode(
774 struct xfs_inode *ip,
775 struct xfs_perag *pag,
776 int sync_mode)
777 {
778 int error = 0;
779
780 /*
781 * The radix tree lock here protects a thread in xfs_iget from racing
782 * with us starting reclaim on the inode. Once we have the
783 * XFS_IRECLAIM flag set it will not touch us.
784 */
785 spin_lock(&ip->i_flags_lock);
786 ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
787 if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
788 /* ignore as it is already under reclaim */
789 spin_unlock(&ip->i_flags_lock);
790 write_unlock(&pag->pag_ici_lock);
791 return 0;
792 }
793 __xfs_iflags_set(ip, XFS_IRECLAIM);
794 spin_unlock(&ip->i_flags_lock);
795 write_unlock(&pag->pag_ici_lock);
796
797 xfs_ilock(ip, XFS_ILOCK_EXCL);
798 if (!xfs_iflock_nowait(ip)) {
799 if (!(sync_mode & SYNC_WAIT))
800 goto out;
801 xfs_iflock(ip);
802 }
803
804 if (is_bad_inode(VFS_I(ip)))
805 goto reclaim;
806 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
807 xfs_iunpin_wait(ip);
808 goto reclaim;
809 }
810 if (xfs_ipincount(ip)) {
811 if (!(sync_mode & SYNC_WAIT)) {
812 xfs_ifunlock(ip);
813 goto out;
814 }
815 xfs_iunpin_wait(ip);
816 }
817 if (xfs_iflags_test(ip, XFS_ISTALE))
818 goto reclaim;
819 if (xfs_inode_clean(ip))
820 goto reclaim;
821
822 /* Now we have an inode that needs flushing */
823 error = xfs_iflush(ip, sync_mode);
824 if (sync_mode & SYNC_WAIT) {
825 xfs_iflock(ip);
826 goto reclaim;
827 }
828
829 /*
830 * When we have to flush an inode but don't have SYNC_WAIT set, we
831 * flush the inode out using a delwri buffer and wait for the next
832 * call into reclaim to find it in a clean state instead of waiting for
833 * it now. We also don't return errors here - if the error is transient
834 * then the next reclaim pass will flush the inode, and if the error
835 * is permanent then the next sync reclaim will reclaim the inode and
836 * pass on the error.
837 */
838 if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
839 xfs_fs_cmn_err(CE_WARN, ip->i_mount,
840 "inode 0x%llx background reclaim flush failed with %d",
841 (long long)ip->i_ino, error);
842 }
843 out:
844 xfs_iflags_clear(ip, XFS_IRECLAIM);
845 xfs_iunlock(ip, XFS_ILOCK_EXCL);
846 /*
847 * We could return EAGAIN here to make reclaim rescan the inode tree in
848 * a short while. However, this just burns CPU time scanning the tree
849 * waiting for IO to complete and xfssyncd never goes back to the idle
850 * state. Instead, return 0 to let the next scheduled background reclaim
851 * attempt to reclaim the inode again.
852 */
853 return 0;
854
855 reclaim:
856 xfs_ifunlock(ip);
857 xfs_iunlock(ip, XFS_ILOCK_EXCL);
858 xfs_ireclaim(ip);
859 return error;
860
861 }
862
863 int
864 xfs_reclaim_inodes(
865 xfs_mount_t *mp,
866 int mode)
867 {
868 return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
869 XFS_ICI_RECLAIM_TAG, 1, NULL);
870 }
871
872 /*
873 * Shrinker infrastructure.
874 */
875 static int
876 xfs_reclaim_inode_shrink(
877 struct shrinker *shrink,
878 int nr_to_scan,
879 gfp_t gfp_mask)
880 {
881 struct xfs_mount *mp;
882 struct xfs_perag *pag;
883 xfs_agnumber_t ag;
884 int reclaimable;
885
886 mp = container_of(shrink, struct xfs_mount, m_inode_shrink);
887 if (nr_to_scan) {
888 if (!(gfp_mask & __GFP_FS))
889 return -1;
890
891 xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0,
892 XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan);
893 /* if we don't exhaust the scan, don't bother coming back */
894 if (nr_to_scan > 0)
895 return -1;
896 }
897
898 reclaimable = 0;
899 ag = 0;
900 while ((pag = xfs_inode_ag_iter_next_pag(mp, &ag,
901 XFS_ICI_RECLAIM_TAG))) {
902 reclaimable += pag->pag_ici_reclaimable;
903 xfs_perag_put(pag);
904 }
905 return reclaimable;
906 }
907
908 void
909 xfs_inode_shrinker_register(
910 struct xfs_mount *mp)
911 {
912 mp->m_inode_shrink.shrink = xfs_reclaim_inode_shrink;
913 mp->m_inode_shrink.seeks = DEFAULT_SEEKS;
914 register_shrinker(&mp->m_inode_shrink);
915 }
916
917 void
918 xfs_inode_shrinker_unregister(
919 struct xfs_mount *mp)
920 {
921 unregister_shrinker(&mp->m_inode_shrink);
922 }