include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 #include "xfs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_btree_trace.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_rtalloc.h"
43 #include "xfs_error.h"
44 #include "xfs_itable.h"
45 #include "xfs_fsops.h"
46 #include "xfs_rw.h"
47 #include "xfs_attr.h"
48 #include "xfs_buf_item.h"
49 #include "xfs_utils.h"
50 #include "xfs_vnodeops.h"
51 #include "xfs_version.h"
52 #include "xfs_log_priv.h"
53 #include "xfs_trans_priv.h"
54 #include "xfs_filestream.h"
55 #include "xfs_da_btree.h"
56 #include "xfs_extfree_item.h"
57 #include "xfs_mru_cache.h"
58 #include "xfs_inode_item.h"
59 #include "xfs_sync.h"
60 #include "xfs_trace.h"
61
62 #include <linux/namei.h>
63 #include <linux/init.h>
64 #include <linux/slab.h>
65 #include <linux/mount.h>
66 #include <linux/mempool.h>
67 #include <linux/writeback.h>
68 #include <linux/kthread.h>
69 #include <linux/freezer.h>
70 #include <linux/parser.h>
71
72 static const struct super_operations xfs_super_operations;
73 static kmem_zone_t *xfs_ioend_zone;
74 mempool_t *xfs_ioend_pool;
75
76 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
77 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
78 #define MNTOPT_LOGDEV "logdev" /* log device */
79 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
80 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
81 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
82 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
83 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
84 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
85 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
86 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
87 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
88 #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
89 #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
90 #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
91 #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
92 #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
93 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
94 #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
95 * unwritten extent conversion */
96 #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
97 #define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */
98 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
99 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
100 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
101 #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
102 #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
103 * in stat(). */
104 #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
105 #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
106 #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
107 #define MNTOPT_QUOTA "quota" /* disk quotas (user) */
108 #define MNTOPT_NOQUOTA "noquota" /* no quotas */
109 #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
110 #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
111 #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
112 #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
113 #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
114 #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
115 #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
116 #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
117 #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
118 #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
119 #define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */
120 #define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */
121 #define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */
122
123 /*
124 * Table driven mount option parser.
125 *
126 * Currently only used for remount, but it will be used for mount
127 * in the future, too.
128 */
129 enum {
130 Opt_barrier, Opt_nobarrier, Opt_err
131 };
132
133 static const match_table_t tokens = {
134 {Opt_barrier, "barrier"},
135 {Opt_nobarrier, "nobarrier"},
136 {Opt_err, NULL}
137 };
138
139
140 STATIC unsigned long
141 suffix_strtoul(char *s, char **endp, unsigned int base)
142 {
143 int last, shift_left_factor = 0;
144 char *value = s;
145
146 last = strlen(value) - 1;
147 if (value[last] == 'K' || value[last] == 'k') {
148 shift_left_factor = 10;
149 value[last] = '\0';
150 }
151 if (value[last] == 'M' || value[last] == 'm') {
152 shift_left_factor = 20;
153 value[last] = '\0';
154 }
155 if (value[last] == 'G' || value[last] == 'g') {
156 shift_left_factor = 30;
157 value[last] = '\0';
158 }
159
160 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
161 }
162
163 /*
164 * This function fills in xfs_mount_t fields based on mount args.
165 * Note: the superblock has _not_ yet been read in.
166 *
167 * Note that this function leaks the various device name allocations on
168 * failure. The caller takes care of them.
169 */
170 STATIC int
171 xfs_parseargs(
172 struct xfs_mount *mp,
173 char *options,
174 char **mtpt)
175 {
176 struct super_block *sb = mp->m_super;
177 char *this_char, *value, *eov;
178 int dsunit = 0;
179 int dswidth = 0;
180 int iosize = 0;
181 int dmapi_implies_ikeep = 1;
182 __uint8_t iosizelog = 0;
183
184 /*
185 * Copy binary VFS mount flags we are interested in.
186 */
187 if (sb->s_flags & MS_RDONLY)
188 mp->m_flags |= XFS_MOUNT_RDONLY;
189 if (sb->s_flags & MS_DIRSYNC)
190 mp->m_flags |= XFS_MOUNT_DIRSYNC;
191 if (sb->s_flags & MS_SYNCHRONOUS)
192 mp->m_flags |= XFS_MOUNT_WSYNC;
193
194 /*
195 * Set some default flags that could be cleared by the mount option
196 * parsing.
197 */
198 mp->m_flags |= XFS_MOUNT_BARRIER;
199 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
200 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
201
202 /*
203 * These can be overridden by the mount option parsing.
204 */
205 mp->m_logbufs = -1;
206 mp->m_logbsize = -1;
207
208 if (!options)
209 goto done;
210
211 while ((this_char = strsep(&options, ",")) != NULL) {
212 if (!*this_char)
213 continue;
214 if ((value = strchr(this_char, '=')) != NULL)
215 *value++ = 0;
216
217 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
218 if (!value || !*value) {
219 cmn_err(CE_WARN,
220 "XFS: %s option requires an argument",
221 this_char);
222 return EINVAL;
223 }
224 mp->m_logbufs = simple_strtoul(value, &eov, 10);
225 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
226 if (!value || !*value) {
227 cmn_err(CE_WARN,
228 "XFS: %s option requires an argument",
229 this_char);
230 return EINVAL;
231 }
232 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
233 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
234 if (!value || !*value) {
235 cmn_err(CE_WARN,
236 "XFS: %s option requires an argument",
237 this_char);
238 return EINVAL;
239 }
240 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
241 if (!mp->m_logname)
242 return ENOMEM;
243 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
244 if (!value || !*value) {
245 cmn_err(CE_WARN,
246 "XFS: %s option requires an argument",
247 this_char);
248 return EINVAL;
249 }
250 *mtpt = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
251 if (!*mtpt)
252 return ENOMEM;
253 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
254 if (!value || !*value) {
255 cmn_err(CE_WARN,
256 "XFS: %s option requires an argument",
257 this_char);
258 return EINVAL;
259 }
260 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
261 if (!mp->m_rtname)
262 return ENOMEM;
263 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
264 if (!value || !*value) {
265 cmn_err(CE_WARN,
266 "XFS: %s option requires an argument",
267 this_char);
268 return EINVAL;
269 }
270 iosize = simple_strtoul(value, &eov, 10);
271 iosizelog = ffs(iosize) - 1;
272 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
273 if (!value || !*value) {
274 cmn_err(CE_WARN,
275 "XFS: %s option requires an argument",
276 this_char);
277 return EINVAL;
278 }
279 iosize = suffix_strtoul(value, &eov, 10);
280 iosizelog = ffs(iosize) - 1;
281 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
282 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
283 mp->m_flags |= XFS_MOUNT_GRPID;
284 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
285 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
286 mp->m_flags &= ~XFS_MOUNT_GRPID;
287 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
288 mp->m_flags |= XFS_MOUNT_WSYNC;
289 } else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) {
290 mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
291 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
292 mp->m_flags |= XFS_MOUNT_NORECOVERY;
293 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
294 mp->m_flags |= XFS_MOUNT_NOALIGN;
295 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
296 mp->m_flags |= XFS_MOUNT_SWALLOC;
297 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
298 if (!value || !*value) {
299 cmn_err(CE_WARN,
300 "XFS: %s option requires an argument",
301 this_char);
302 return EINVAL;
303 }
304 dsunit = simple_strtoul(value, &eov, 10);
305 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
306 if (!value || !*value) {
307 cmn_err(CE_WARN,
308 "XFS: %s option requires an argument",
309 this_char);
310 return EINVAL;
311 }
312 dswidth = simple_strtoul(value, &eov, 10);
313 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
314 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
315 #if !XFS_BIG_INUMS
316 cmn_err(CE_WARN,
317 "XFS: %s option not allowed on this system",
318 this_char);
319 return EINVAL;
320 #endif
321 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
322 mp->m_flags |= XFS_MOUNT_NOUUID;
323 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
324 mp->m_flags |= XFS_MOUNT_BARRIER;
325 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
326 mp->m_flags &= ~XFS_MOUNT_BARRIER;
327 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
328 mp->m_flags |= XFS_MOUNT_IKEEP;
329 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
330 dmapi_implies_ikeep = 0;
331 mp->m_flags &= ~XFS_MOUNT_IKEEP;
332 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
333 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
334 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
335 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
336 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
337 mp->m_flags |= XFS_MOUNT_ATTR2;
338 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
339 mp->m_flags &= ~XFS_MOUNT_ATTR2;
340 mp->m_flags |= XFS_MOUNT_NOATTR2;
341 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
342 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
343 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
344 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
345 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
346 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
347 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
348 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
349 !strcmp(this_char, MNTOPT_UQUOTA) ||
350 !strcmp(this_char, MNTOPT_USRQUOTA)) {
351 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
352 XFS_UQUOTA_ENFD);
353 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
354 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
355 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
356 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
357 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
358 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
359 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
360 XFS_OQUOTA_ENFD);
361 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
362 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
363 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
364 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
365 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
366 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
367 XFS_OQUOTA_ENFD);
368 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
369 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
370 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
371 } else if (!strcmp(this_char, MNTOPT_DMAPI)) {
372 mp->m_flags |= XFS_MOUNT_DMAPI;
373 } else if (!strcmp(this_char, MNTOPT_XDSM)) {
374 mp->m_flags |= XFS_MOUNT_DMAPI;
375 } else if (!strcmp(this_char, MNTOPT_DMI)) {
376 mp->m_flags |= XFS_MOUNT_DMAPI;
377 } else if (!strcmp(this_char, "ihashsize")) {
378 cmn_err(CE_WARN,
379 "XFS: ihashsize no longer used, option is deprecated.");
380 } else if (!strcmp(this_char, "osyncisdsync")) {
381 /* no-op, this is now the default */
382 cmn_err(CE_WARN,
383 "XFS: osyncisdsync is now the default, option is deprecated.");
384 } else if (!strcmp(this_char, "irixsgid")) {
385 cmn_err(CE_WARN,
386 "XFS: irixsgid is now a sysctl(2) variable, option is deprecated.");
387 } else {
388 cmn_err(CE_WARN,
389 "XFS: unknown mount option [%s].", this_char);
390 return EINVAL;
391 }
392 }
393
394 /*
395 * no recovery flag requires a read-only mount
396 */
397 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
398 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
399 cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only.");
400 return EINVAL;
401 }
402
403 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
404 cmn_err(CE_WARN,
405 "XFS: sunit and swidth options incompatible with the noalign option");
406 return EINVAL;
407 }
408
409 #ifndef CONFIG_XFS_QUOTA
410 if (XFS_IS_QUOTA_RUNNING(mp)) {
411 cmn_err(CE_WARN,
412 "XFS: quota support not available in this kernel.");
413 return EINVAL;
414 }
415 #endif
416
417 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
418 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
419 cmn_err(CE_WARN,
420 "XFS: cannot mount with both project and group quota");
421 return EINVAL;
422 }
423
424 if ((mp->m_flags & XFS_MOUNT_DMAPI) && (!*mtpt || *mtpt[0] == '\0')) {
425 printk("XFS: %s option needs the mount point option as well\n",
426 MNTOPT_DMAPI);
427 return EINVAL;
428 }
429
430 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
431 cmn_err(CE_WARN,
432 "XFS: sunit and swidth must be specified together");
433 return EINVAL;
434 }
435
436 if (dsunit && (dswidth % dsunit != 0)) {
437 cmn_err(CE_WARN,
438 "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)",
439 dswidth, dsunit);
440 return EINVAL;
441 }
442
443 /*
444 * Applications using DMI filesystems often expect the
445 * inode generation number to be monotonically increasing.
446 * If we delete inode chunks we break this assumption, so
447 * keep unused inode chunks on disk for DMI filesystems
448 * until we come up with a better solution.
449 * Note that if "ikeep" or "noikeep" mount options are
450 * supplied, then they are honored.
451 */
452 if ((mp->m_flags & XFS_MOUNT_DMAPI) && dmapi_implies_ikeep)
453 mp->m_flags |= XFS_MOUNT_IKEEP;
454
455 done:
456 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
457 /*
458 * At this point the superblock has not been read
459 * in, therefore we do not know the block size.
460 * Before the mount call ends we will convert
461 * these to FSBs.
462 */
463 if (dsunit) {
464 mp->m_dalign = dsunit;
465 mp->m_flags |= XFS_MOUNT_RETERR;
466 }
467
468 if (dswidth)
469 mp->m_swidth = dswidth;
470 }
471
472 if (mp->m_logbufs != -1 &&
473 mp->m_logbufs != 0 &&
474 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
475 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
476 cmn_err(CE_WARN,
477 "XFS: invalid logbufs value: %d [not %d-%d]",
478 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
479 return XFS_ERROR(EINVAL);
480 }
481 if (mp->m_logbsize != -1 &&
482 mp->m_logbsize != 0 &&
483 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
484 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
485 !is_power_of_2(mp->m_logbsize))) {
486 cmn_err(CE_WARN,
487 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
488 mp->m_logbsize);
489 return XFS_ERROR(EINVAL);
490 }
491
492 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
493 if (!mp->m_fsname)
494 return ENOMEM;
495 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
496
497 if (iosizelog) {
498 if (iosizelog > XFS_MAX_IO_LOG ||
499 iosizelog < XFS_MIN_IO_LOG) {
500 cmn_err(CE_WARN,
501 "XFS: invalid log iosize: %d [not %d-%d]",
502 iosizelog, XFS_MIN_IO_LOG,
503 XFS_MAX_IO_LOG);
504 return XFS_ERROR(EINVAL);
505 }
506
507 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
508 mp->m_readio_log = iosizelog;
509 mp->m_writeio_log = iosizelog;
510 }
511
512 return 0;
513 }
514
515 struct proc_xfs_info {
516 int flag;
517 char *str;
518 };
519
520 STATIC int
521 xfs_showargs(
522 struct xfs_mount *mp,
523 struct seq_file *m)
524 {
525 static struct proc_xfs_info xfs_info_set[] = {
526 /* the few simple ones we can get from the mount struct */
527 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
528 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
529 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
530 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
531 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
532 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
533 { XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC },
534 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
535 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
536 { XFS_MOUNT_DMAPI, "," MNTOPT_DMAPI },
537 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
538 { 0, NULL }
539 };
540 static struct proc_xfs_info xfs_info_unset[] = {
541 /* the few simple ones we can get from the mount struct */
542 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
543 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
544 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
545 { 0, NULL }
546 };
547 struct proc_xfs_info *xfs_infop;
548
549 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
550 if (mp->m_flags & xfs_infop->flag)
551 seq_puts(m, xfs_infop->str);
552 }
553 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
554 if (!(mp->m_flags & xfs_infop->flag))
555 seq_puts(m, xfs_infop->str);
556 }
557
558 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
559 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
560 (int)(1 << mp->m_writeio_log) >> 10);
561
562 if (mp->m_logbufs > 0)
563 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
564 if (mp->m_logbsize > 0)
565 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
566
567 if (mp->m_logname)
568 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
569 if (mp->m_rtname)
570 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
571
572 if (mp->m_dalign > 0)
573 seq_printf(m, "," MNTOPT_SUNIT "=%d",
574 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
575 if (mp->m_swidth > 0)
576 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
577 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
578
579 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
580 seq_puts(m, "," MNTOPT_USRQUOTA);
581 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
582 seq_puts(m, "," MNTOPT_UQUOTANOENF);
583
584 /* Either project or group quotas can be active, not both */
585
586 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
587 if (mp->m_qflags & XFS_OQUOTA_ENFD)
588 seq_puts(m, "," MNTOPT_PRJQUOTA);
589 else
590 seq_puts(m, "," MNTOPT_PQUOTANOENF);
591 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
592 if (mp->m_qflags & XFS_OQUOTA_ENFD)
593 seq_puts(m, "," MNTOPT_GRPQUOTA);
594 else
595 seq_puts(m, "," MNTOPT_GQUOTANOENF);
596 }
597
598 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
599 seq_puts(m, "," MNTOPT_NOQUOTA);
600
601 return 0;
602 }
603 __uint64_t
604 xfs_max_file_offset(
605 unsigned int blockshift)
606 {
607 unsigned int pagefactor = 1;
608 unsigned int bitshift = BITS_PER_LONG - 1;
609
610 /* Figure out maximum filesize, on Linux this can depend on
611 * the filesystem blocksize (on 32 bit platforms).
612 * __block_prepare_write does this in an [unsigned] long...
613 * page->index << (PAGE_CACHE_SHIFT - bbits)
614 * So, for page sized blocks (4K on 32 bit platforms),
615 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
616 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
617 * but for smaller blocksizes it is less (bbits = log2 bsize).
618 * Note1: get_block_t takes a long (implicit cast from above)
619 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
620 * can optionally convert the [unsigned] long from above into
621 * an [unsigned] long long.
622 */
623
624 #if BITS_PER_LONG == 32
625 # if defined(CONFIG_LBDAF)
626 ASSERT(sizeof(sector_t) == 8);
627 pagefactor = PAGE_CACHE_SIZE;
628 bitshift = BITS_PER_LONG;
629 # else
630 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
631 # endif
632 #endif
633
634 return (((__uint64_t)pagefactor) << bitshift) - 1;
635 }
636
637 STATIC int
638 xfs_blkdev_get(
639 xfs_mount_t *mp,
640 const char *name,
641 struct block_device **bdevp)
642 {
643 int error = 0;
644
645 *bdevp = open_bdev_exclusive(name, FMODE_READ|FMODE_WRITE, mp);
646 if (IS_ERR(*bdevp)) {
647 error = PTR_ERR(*bdevp);
648 printk("XFS: Invalid device [%s], error=%d\n", name, error);
649 }
650
651 return -error;
652 }
653
654 STATIC void
655 xfs_blkdev_put(
656 struct block_device *bdev)
657 {
658 if (bdev)
659 close_bdev_exclusive(bdev, FMODE_READ|FMODE_WRITE);
660 }
661
662 /*
663 * Try to write out the superblock using barriers.
664 */
665 STATIC int
666 xfs_barrier_test(
667 xfs_mount_t *mp)
668 {
669 xfs_buf_t *sbp = xfs_getsb(mp, 0);
670 int error;
671
672 XFS_BUF_UNDONE(sbp);
673 XFS_BUF_UNREAD(sbp);
674 XFS_BUF_UNDELAYWRITE(sbp);
675 XFS_BUF_WRITE(sbp);
676 XFS_BUF_UNASYNC(sbp);
677 XFS_BUF_ORDERED(sbp);
678
679 xfsbdstrat(mp, sbp);
680 error = xfs_iowait(sbp);
681
682 /*
683 * Clear all the flags we set and possible error state in the
684 * buffer. We only did the write to try out whether barriers
685 * worked and shouldn't leave any traces in the superblock
686 * buffer.
687 */
688 XFS_BUF_DONE(sbp);
689 XFS_BUF_ERROR(sbp, 0);
690 XFS_BUF_UNORDERED(sbp);
691
692 xfs_buf_relse(sbp);
693 return error;
694 }
695
696 STATIC void
697 xfs_mountfs_check_barriers(xfs_mount_t *mp)
698 {
699 int error;
700
701 if (mp->m_logdev_targp != mp->m_ddev_targp) {
702 xfs_fs_cmn_err(CE_NOTE, mp,
703 "Disabling barriers, not supported with external log device");
704 mp->m_flags &= ~XFS_MOUNT_BARRIER;
705 return;
706 }
707
708 if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
709 xfs_fs_cmn_err(CE_NOTE, mp,
710 "Disabling barriers, underlying device is readonly");
711 mp->m_flags &= ~XFS_MOUNT_BARRIER;
712 return;
713 }
714
715 error = xfs_barrier_test(mp);
716 if (error) {
717 xfs_fs_cmn_err(CE_NOTE, mp,
718 "Disabling barriers, trial barrier write failed");
719 mp->m_flags &= ~XFS_MOUNT_BARRIER;
720 return;
721 }
722 }
723
724 void
725 xfs_blkdev_issue_flush(
726 xfs_buftarg_t *buftarg)
727 {
728 blkdev_issue_flush(buftarg->bt_bdev, NULL);
729 }
730
731 STATIC void
732 xfs_close_devices(
733 struct xfs_mount *mp)
734 {
735 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
736 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
737 xfs_free_buftarg(mp, mp->m_logdev_targp);
738 xfs_blkdev_put(logdev);
739 }
740 if (mp->m_rtdev_targp) {
741 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
742 xfs_free_buftarg(mp, mp->m_rtdev_targp);
743 xfs_blkdev_put(rtdev);
744 }
745 xfs_free_buftarg(mp, mp->m_ddev_targp);
746 }
747
748 /*
749 * The file system configurations are:
750 * (1) device (partition) with data and internal log
751 * (2) logical volume with data and log subvolumes.
752 * (3) logical volume with data, log, and realtime subvolumes.
753 *
754 * We only have to handle opening the log and realtime volumes here if
755 * they are present. The data subvolume has already been opened by
756 * get_sb_bdev() and is stored in sb->s_bdev.
757 */
758 STATIC int
759 xfs_open_devices(
760 struct xfs_mount *mp)
761 {
762 struct block_device *ddev = mp->m_super->s_bdev;
763 struct block_device *logdev = NULL, *rtdev = NULL;
764 int error;
765
766 /*
767 * Open real time and log devices - order is important.
768 */
769 if (mp->m_logname) {
770 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
771 if (error)
772 goto out;
773 }
774
775 if (mp->m_rtname) {
776 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
777 if (error)
778 goto out_close_logdev;
779
780 if (rtdev == ddev || rtdev == logdev) {
781 cmn_err(CE_WARN,
782 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
783 error = EINVAL;
784 goto out_close_rtdev;
785 }
786 }
787
788 /*
789 * Setup xfs_mount buffer target pointers
790 */
791 error = ENOMEM;
792 mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0);
793 if (!mp->m_ddev_targp)
794 goto out_close_rtdev;
795
796 if (rtdev) {
797 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1);
798 if (!mp->m_rtdev_targp)
799 goto out_free_ddev_targ;
800 }
801
802 if (logdev && logdev != ddev) {
803 mp->m_logdev_targp = xfs_alloc_buftarg(logdev, 1);
804 if (!mp->m_logdev_targp)
805 goto out_free_rtdev_targ;
806 } else {
807 mp->m_logdev_targp = mp->m_ddev_targp;
808 }
809
810 return 0;
811
812 out_free_rtdev_targ:
813 if (mp->m_rtdev_targp)
814 xfs_free_buftarg(mp, mp->m_rtdev_targp);
815 out_free_ddev_targ:
816 xfs_free_buftarg(mp, mp->m_ddev_targp);
817 out_close_rtdev:
818 if (rtdev)
819 xfs_blkdev_put(rtdev);
820 out_close_logdev:
821 if (logdev && logdev != ddev)
822 xfs_blkdev_put(logdev);
823 out:
824 return error;
825 }
826
827 /*
828 * Setup xfs_mount buffer target pointers based on superblock
829 */
830 STATIC int
831 xfs_setup_devices(
832 struct xfs_mount *mp)
833 {
834 int error;
835
836 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
837 mp->m_sb.sb_sectsize);
838 if (error)
839 return error;
840
841 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
842 unsigned int log_sector_size = BBSIZE;
843
844 if (xfs_sb_version_hassector(&mp->m_sb))
845 log_sector_size = mp->m_sb.sb_logsectsize;
846 error = xfs_setsize_buftarg(mp->m_logdev_targp,
847 mp->m_sb.sb_blocksize,
848 log_sector_size);
849 if (error)
850 return error;
851 }
852 if (mp->m_rtdev_targp) {
853 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
854 mp->m_sb.sb_blocksize,
855 mp->m_sb.sb_sectsize);
856 if (error)
857 return error;
858 }
859
860 return 0;
861 }
862
863 /*
864 * XFS AIL push thread support
865 */
866 void
867 xfsaild_wakeup(
868 struct xfs_ail *ailp,
869 xfs_lsn_t threshold_lsn)
870 {
871 ailp->xa_target = threshold_lsn;
872 wake_up_process(ailp->xa_task);
873 }
874
875 STATIC int
876 xfsaild(
877 void *data)
878 {
879 struct xfs_ail *ailp = data;
880 xfs_lsn_t last_pushed_lsn = 0;
881 long tout = 0; /* milliseconds */
882
883 while (!kthread_should_stop()) {
884 schedule_timeout_interruptible(tout ?
885 msecs_to_jiffies(tout) : MAX_SCHEDULE_TIMEOUT);
886
887 /* swsusp */
888 try_to_freeze();
889
890 ASSERT(ailp->xa_mount->m_log);
891 if (XFS_FORCED_SHUTDOWN(ailp->xa_mount))
892 continue;
893
894 tout = xfsaild_push(ailp, &last_pushed_lsn);
895 }
896
897 return 0;
898 } /* xfsaild */
899
900 int
901 xfsaild_start(
902 struct xfs_ail *ailp)
903 {
904 ailp->xa_target = 0;
905 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild");
906 if (IS_ERR(ailp->xa_task))
907 return -PTR_ERR(ailp->xa_task);
908 return 0;
909 }
910
911 void
912 xfsaild_stop(
913 struct xfs_ail *ailp)
914 {
915 kthread_stop(ailp->xa_task);
916 }
917
918
919 /* Catch misguided souls that try to use this interface on XFS */
920 STATIC struct inode *
921 xfs_fs_alloc_inode(
922 struct super_block *sb)
923 {
924 BUG();
925 return NULL;
926 }
927
928 /*
929 * Now that the generic code is guaranteed not to be accessing
930 * the linux inode, we can reclaim the inode.
931 */
932 STATIC void
933 xfs_fs_destroy_inode(
934 struct inode *inode)
935 {
936 struct xfs_inode *ip = XFS_I(inode);
937
938 xfs_itrace_entry(ip);
939
940 XFS_STATS_INC(vn_reclaim);
941
942 /* bad inode, get out here ASAP */
943 if (is_bad_inode(inode))
944 goto out_reclaim;
945
946 xfs_ioend_wait(ip);
947
948 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
949
950 /*
951 * We should never get here with one of the reclaim flags already set.
952 */
953 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
954 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
955
956 /*
957 * We always use background reclaim here because even if the
958 * inode is clean, it still may be under IO and hence we have
959 * to take the flush lock. The background reclaim path handles
960 * this more efficiently than we can here, so simply let background
961 * reclaim tear down all inodes.
962 */
963 out_reclaim:
964 xfs_inode_set_reclaim_tag(ip);
965 }
966
967 /*
968 * Slab object creation initialisation for the XFS inode.
969 * This covers only the idempotent fields in the XFS inode;
970 * all other fields need to be initialised on allocation
971 * from the slab. This avoids the need to repeatedly intialise
972 * fields in the xfs inode that left in the initialise state
973 * when freeing the inode.
974 */
975 STATIC void
976 xfs_fs_inode_init_once(
977 void *inode)
978 {
979 struct xfs_inode *ip = inode;
980
981 memset(ip, 0, sizeof(struct xfs_inode));
982
983 /* vfs inode */
984 inode_init_once(VFS_I(ip));
985
986 /* xfs inode */
987 atomic_set(&ip->i_iocount, 0);
988 atomic_set(&ip->i_pincount, 0);
989 spin_lock_init(&ip->i_flags_lock);
990 init_waitqueue_head(&ip->i_ipin_wait);
991 /*
992 * Because we want to use a counting completion, complete
993 * the flush completion once to allow a single access to
994 * the flush completion without blocking.
995 */
996 init_completion(&ip->i_flush);
997 complete(&ip->i_flush);
998
999 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
1000 "xfsino", ip->i_ino);
1001 }
1002
1003 /*
1004 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
1005 * we catch unlogged VFS level updates to the inode. Care must be taken
1006 * here - the transaction code calls mark_inode_dirty_sync() to mark the
1007 * VFS inode dirty in a transaction and clears the i_update_core field;
1008 * it must clear the field after calling mark_inode_dirty_sync() to
1009 * correctly indicate that the dirty state has been propagated into the
1010 * inode log item.
1011 *
1012 * We need the barrier() to maintain correct ordering between unlogged
1013 * updates and the transaction commit code that clears the i_update_core
1014 * field. This requires all updates to be completed before marking the
1015 * inode dirty.
1016 */
1017 STATIC void
1018 xfs_fs_dirty_inode(
1019 struct inode *inode)
1020 {
1021 barrier();
1022 XFS_I(inode)->i_update_core = 1;
1023 }
1024
1025 STATIC int
1026 xfs_log_inode(
1027 struct xfs_inode *ip)
1028 {
1029 struct xfs_mount *mp = ip->i_mount;
1030 struct xfs_trans *tp;
1031 int error;
1032
1033 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1034 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1035 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
1036
1037 if (error) {
1038 xfs_trans_cancel(tp, 0);
1039 /* we need to return with the lock hold shared */
1040 xfs_ilock(ip, XFS_ILOCK_SHARED);
1041 return error;
1042 }
1043
1044 xfs_ilock(ip, XFS_ILOCK_EXCL);
1045
1046 /*
1047 * Note - it's possible that we might have pushed ourselves out of the
1048 * way during trans_reserve which would flush the inode. But there's
1049 * no guarantee that the inode buffer has actually gone out yet (it's
1050 * delwri). Plus the buffer could be pinned anyway if it's part of
1051 * an inode in another recent transaction. So we play it safe and
1052 * fire off the transaction anyway.
1053 */
1054 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1055 xfs_trans_ihold(tp, ip);
1056 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1057 xfs_trans_set_sync(tp);
1058 error = xfs_trans_commit(tp, 0);
1059 xfs_ilock_demote(ip, XFS_ILOCK_EXCL);
1060
1061 return error;
1062 }
1063
1064 STATIC int
1065 xfs_fs_write_inode(
1066 struct inode *inode,
1067 struct writeback_control *wbc)
1068 {
1069 struct xfs_inode *ip = XFS_I(inode);
1070 struct xfs_mount *mp = ip->i_mount;
1071 int error = EAGAIN;
1072
1073 xfs_itrace_entry(ip);
1074
1075 if (XFS_FORCED_SHUTDOWN(mp))
1076 return XFS_ERROR(EIO);
1077
1078 if (wbc->sync_mode == WB_SYNC_ALL) {
1079 /*
1080 * Make sure the inode has hit stable storage. By using the
1081 * log and the fsync transactions we reduce the IOs we have
1082 * to do here from two (log and inode) to just the log.
1083 *
1084 * Note: We still need to do a delwri write of the inode after
1085 * this to flush it to the backing buffer so that bulkstat
1086 * works properly if this is the first time the inode has been
1087 * written. Because we hold the ilock atomically over the
1088 * transaction commit and the inode flush we are guaranteed
1089 * that the inode is not pinned when it returns. If the flush
1090 * lock is already held, then the inode has already been
1091 * flushed once and we don't need to flush it again. Hence
1092 * the code will only flush the inode if it isn't already
1093 * being flushed.
1094 */
1095 xfs_ilock(ip, XFS_ILOCK_SHARED);
1096 if (ip->i_update_core) {
1097 error = xfs_log_inode(ip);
1098 if (error)
1099 goto out_unlock;
1100 }
1101 } else {
1102 /*
1103 * We make this non-blocking if the inode is contended, return
1104 * EAGAIN to indicate to the caller that they did not succeed.
1105 * This prevents the flush path from blocking on inodes inside
1106 * another operation right now, they get caught later by xfs_sync.
1107 */
1108 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1109 goto out;
1110 }
1111
1112 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
1113 goto out_unlock;
1114
1115 /*
1116 * Now we have the flush lock and the inode is not pinned, we can check
1117 * if the inode is really clean as we know that there are no pending
1118 * transaction completions, it is not waiting on the delayed write
1119 * queue and there is no IO in progress.
1120 */
1121 if (xfs_inode_clean(ip)) {
1122 xfs_ifunlock(ip);
1123 error = 0;
1124 goto out_unlock;
1125 }
1126 error = xfs_iflush(ip, 0);
1127
1128 out_unlock:
1129 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1130 out:
1131 /*
1132 * if we failed to write out the inode then mark
1133 * it dirty again so we'll try again later.
1134 */
1135 if (error)
1136 xfs_mark_inode_dirty_sync(ip);
1137 return -error;
1138 }
1139
1140 STATIC void
1141 xfs_fs_clear_inode(
1142 struct inode *inode)
1143 {
1144 xfs_inode_t *ip = XFS_I(inode);
1145
1146 xfs_itrace_entry(ip);
1147 XFS_STATS_INC(vn_rele);
1148 XFS_STATS_INC(vn_remove);
1149 XFS_STATS_DEC(vn_active);
1150
1151 /*
1152 * The iolock is used by the file system to coordinate reads,
1153 * writes, and block truncates. Up to this point the lock
1154 * protected concurrent accesses by users of the inode. But
1155 * from here forward we're doing some final processing of the
1156 * inode because we're done with it, and although we reuse the
1157 * iolock for protection it is really a distinct lock class
1158 * (in the lockdep sense) from before. To keep lockdep happy
1159 * (and basically indicate what we are doing), we explicitly
1160 * re-init the iolock here.
1161 */
1162 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
1163 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
1164
1165 xfs_inactive(ip);
1166 }
1167
1168 STATIC void
1169 xfs_free_fsname(
1170 struct xfs_mount *mp)
1171 {
1172 kfree(mp->m_fsname);
1173 kfree(mp->m_rtname);
1174 kfree(mp->m_logname);
1175 }
1176
1177 STATIC void
1178 xfs_fs_put_super(
1179 struct super_block *sb)
1180 {
1181 struct xfs_mount *mp = XFS_M(sb);
1182
1183 xfs_syncd_stop(mp);
1184
1185 if (!(sb->s_flags & MS_RDONLY)) {
1186 /*
1187 * XXX(hch): this should be SYNC_WAIT.
1188 *
1189 * Or more likely not needed at all because the VFS is already
1190 * calling ->sync_fs after shutting down all filestem
1191 * operations and just before calling ->put_super.
1192 */
1193 xfs_sync_data(mp, 0);
1194 xfs_sync_attr(mp, 0);
1195 }
1196
1197 XFS_SEND_PREUNMOUNT(mp);
1198
1199 /*
1200 * Blow away any referenced inode in the filestreams cache.
1201 * This can and will cause log traffic as inodes go inactive
1202 * here.
1203 */
1204 xfs_filestream_unmount(mp);
1205
1206 XFS_bflush(mp->m_ddev_targp);
1207
1208 XFS_SEND_UNMOUNT(mp);
1209
1210 xfs_unmountfs(mp);
1211 xfs_freesb(mp);
1212 xfs_icsb_destroy_counters(mp);
1213 xfs_close_devices(mp);
1214 xfs_dmops_put(mp);
1215 xfs_free_fsname(mp);
1216 kfree(mp);
1217 }
1218
1219 STATIC int
1220 xfs_fs_sync_fs(
1221 struct super_block *sb,
1222 int wait)
1223 {
1224 struct xfs_mount *mp = XFS_M(sb);
1225 int error;
1226
1227 /*
1228 * Not much we can do for the first async pass. Writing out the
1229 * superblock would be counter-productive as we are going to redirty
1230 * when writing out other data and metadata (and writing out a single
1231 * block is quite fast anyway).
1232 *
1233 * Try to asynchronously kick off quota syncing at least.
1234 */
1235 if (!wait) {
1236 xfs_qm_sync(mp, SYNC_TRYLOCK);
1237 return 0;
1238 }
1239
1240 error = xfs_quiesce_data(mp);
1241 if (error)
1242 return -error;
1243
1244 if (laptop_mode) {
1245 int prev_sync_seq = mp->m_sync_seq;
1246
1247 /*
1248 * The disk must be active because we're syncing.
1249 * We schedule xfssyncd now (now that the disk is
1250 * active) instead of later (when it might not be).
1251 */
1252 wake_up_process(mp->m_sync_task);
1253 /*
1254 * We have to wait for the sync iteration to complete.
1255 * If we don't, the disk activity caused by the sync
1256 * will come after the sync is completed, and that
1257 * triggers another sync from laptop mode.
1258 */
1259 wait_event(mp->m_wait_single_sync_task,
1260 mp->m_sync_seq != prev_sync_seq);
1261 }
1262
1263 return 0;
1264 }
1265
1266 STATIC int
1267 xfs_fs_statfs(
1268 struct dentry *dentry,
1269 struct kstatfs *statp)
1270 {
1271 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1272 xfs_sb_t *sbp = &mp->m_sb;
1273 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1274 __uint64_t fakeinos, id;
1275 xfs_extlen_t lsize;
1276
1277 statp->f_type = XFS_SB_MAGIC;
1278 statp->f_namelen = MAXNAMELEN - 1;
1279
1280 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1281 statp->f_fsid.val[0] = (u32)id;
1282 statp->f_fsid.val[1] = (u32)(id >> 32);
1283
1284 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1285
1286 spin_lock(&mp->m_sb_lock);
1287 statp->f_bsize = sbp->sb_blocksize;
1288 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1289 statp->f_blocks = sbp->sb_dblocks - lsize;
1290 statp->f_bfree = statp->f_bavail =
1291 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1292 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1293 statp->f_files =
1294 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1295 if (mp->m_maxicount)
1296 statp->f_files = min_t(typeof(statp->f_files),
1297 statp->f_files,
1298 mp->m_maxicount);
1299 statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1300 spin_unlock(&mp->m_sb_lock);
1301
1302 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1303 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1304 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1305 xfs_qm_statvfs(ip, statp);
1306 return 0;
1307 }
1308
1309 STATIC void
1310 xfs_save_resvblks(struct xfs_mount *mp)
1311 {
1312 __uint64_t resblks = 0;
1313
1314 mp->m_resblks_save = mp->m_resblks;
1315 xfs_reserve_blocks(mp, &resblks, NULL);
1316 }
1317
1318 STATIC void
1319 xfs_restore_resvblks(struct xfs_mount *mp)
1320 {
1321 __uint64_t resblks;
1322
1323 if (mp->m_resblks_save) {
1324 resblks = mp->m_resblks_save;
1325 mp->m_resblks_save = 0;
1326 } else
1327 resblks = xfs_default_resblks(mp);
1328
1329 xfs_reserve_blocks(mp, &resblks, NULL);
1330 }
1331
1332 STATIC int
1333 xfs_fs_remount(
1334 struct super_block *sb,
1335 int *flags,
1336 char *options)
1337 {
1338 struct xfs_mount *mp = XFS_M(sb);
1339 substring_t args[MAX_OPT_ARGS];
1340 char *p;
1341 int error;
1342
1343 while ((p = strsep(&options, ",")) != NULL) {
1344 int token;
1345
1346 if (!*p)
1347 continue;
1348
1349 token = match_token(p, tokens, args);
1350 switch (token) {
1351 case Opt_barrier:
1352 mp->m_flags |= XFS_MOUNT_BARRIER;
1353
1354 /*
1355 * Test if barriers are actually working if we can,
1356 * else delay this check until the filesystem is
1357 * marked writeable.
1358 */
1359 if (!(mp->m_flags & XFS_MOUNT_RDONLY))
1360 xfs_mountfs_check_barriers(mp);
1361 break;
1362 case Opt_nobarrier:
1363 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1364 break;
1365 default:
1366 /*
1367 * Logically we would return an error here to prevent
1368 * users from believing they might have changed
1369 * mount options using remount which can't be changed.
1370 *
1371 * But unfortunately mount(8) adds all options from
1372 * mtab and fstab to the mount arguments in some cases
1373 * so we can't blindly reject options, but have to
1374 * check for each specified option if it actually
1375 * differs from the currently set option and only
1376 * reject it if that's the case.
1377 *
1378 * Until that is implemented we return success for
1379 * every remount request, and silently ignore all
1380 * options that we can't actually change.
1381 */
1382 #if 0
1383 printk(KERN_INFO
1384 "XFS: mount option \"%s\" not supported for remount\n", p);
1385 return -EINVAL;
1386 #else
1387 break;
1388 #endif
1389 }
1390 }
1391
1392 /* ro -> rw */
1393 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1394 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1395 if (mp->m_flags & XFS_MOUNT_BARRIER)
1396 xfs_mountfs_check_barriers(mp);
1397
1398 /*
1399 * If this is the first remount to writeable state we
1400 * might have some superblock changes to update.
1401 */
1402 if (mp->m_update_flags) {
1403 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1404 if (error) {
1405 cmn_err(CE_WARN,
1406 "XFS: failed to write sb changes");
1407 return error;
1408 }
1409 mp->m_update_flags = 0;
1410 }
1411
1412 /*
1413 * Fill out the reserve pool if it is empty. Use the stashed
1414 * value if it is non-zero, otherwise go with the default.
1415 */
1416 xfs_restore_resvblks(mp);
1417 }
1418
1419 /* rw -> ro */
1420 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1421 /*
1422 * After we have synced the data but before we sync the
1423 * metadata, we need to free up the reserve block pool so that
1424 * the used block count in the superblock on disk is correct at
1425 * the end of the remount. Stash the current reserve pool size
1426 * so that if we get remounted rw, we can return it to the same
1427 * size.
1428 */
1429
1430 xfs_quiesce_data(mp);
1431 xfs_save_resvblks(mp);
1432 xfs_quiesce_attr(mp);
1433 mp->m_flags |= XFS_MOUNT_RDONLY;
1434 }
1435
1436 return 0;
1437 }
1438
1439 /*
1440 * Second stage of a freeze. The data is already frozen so we only
1441 * need to take care of the metadata. Once that's done write a dummy
1442 * record to dirty the log in case of a crash while frozen.
1443 */
1444 STATIC int
1445 xfs_fs_freeze(
1446 struct super_block *sb)
1447 {
1448 struct xfs_mount *mp = XFS_M(sb);
1449
1450 xfs_save_resvblks(mp);
1451 xfs_quiesce_attr(mp);
1452 return -xfs_fs_log_dummy(mp);
1453 }
1454
1455 STATIC int
1456 xfs_fs_unfreeze(
1457 struct super_block *sb)
1458 {
1459 struct xfs_mount *mp = XFS_M(sb);
1460
1461 xfs_restore_resvblks(mp);
1462 return 0;
1463 }
1464
1465 STATIC int
1466 xfs_fs_show_options(
1467 struct seq_file *m,
1468 struct vfsmount *mnt)
1469 {
1470 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1471 }
1472
1473 /*
1474 * This function fills in xfs_mount_t fields based on mount args.
1475 * Note: the superblock _has_ now been read in.
1476 */
1477 STATIC int
1478 xfs_finish_flags(
1479 struct xfs_mount *mp)
1480 {
1481 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1482
1483 /* Fail a mount where the logbuf is smaller than the log stripe */
1484 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1485 if (mp->m_logbsize <= 0 &&
1486 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1487 mp->m_logbsize = mp->m_sb.sb_logsunit;
1488 } else if (mp->m_logbsize > 0 &&
1489 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1490 cmn_err(CE_WARN,
1491 "XFS: logbuf size must be greater than or equal to log stripe size");
1492 return XFS_ERROR(EINVAL);
1493 }
1494 } else {
1495 /* Fail a mount if the logbuf is larger than 32K */
1496 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1497 cmn_err(CE_WARN,
1498 "XFS: logbuf size for version 1 logs must be 16K or 32K");
1499 return XFS_ERROR(EINVAL);
1500 }
1501 }
1502
1503 /*
1504 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1505 * told by noattr2 to turn it off
1506 */
1507 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1508 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1509 mp->m_flags |= XFS_MOUNT_ATTR2;
1510
1511 /*
1512 * prohibit r/w mounts of read-only filesystems
1513 */
1514 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1515 cmn_err(CE_WARN,
1516 "XFS: cannot mount a read-only filesystem as read-write");
1517 return XFS_ERROR(EROFS);
1518 }
1519
1520 return 0;
1521 }
1522
1523 STATIC int
1524 xfs_fs_fill_super(
1525 struct super_block *sb,
1526 void *data,
1527 int silent)
1528 {
1529 struct inode *root;
1530 struct xfs_mount *mp = NULL;
1531 int flags = 0, error = ENOMEM;
1532 char *mtpt = NULL;
1533
1534 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1535 if (!mp)
1536 goto out;
1537
1538 spin_lock_init(&mp->m_sb_lock);
1539 mutex_init(&mp->m_growlock);
1540 atomic_set(&mp->m_active_trans, 0);
1541 INIT_LIST_HEAD(&mp->m_sync_list);
1542 spin_lock_init(&mp->m_sync_lock);
1543 init_waitqueue_head(&mp->m_wait_single_sync_task);
1544
1545 mp->m_super = sb;
1546 sb->s_fs_info = mp;
1547
1548 error = xfs_parseargs(mp, (char *)data, &mtpt);
1549 if (error)
1550 goto out_free_fsname;
1551
1552 sb_min_blocksize(sb, BBSIZE);
1553 sb->s_xattr = xfs_xattr_handlers;
1554 sb->s_export_op = &xfs_export_operations;
1555 #ifdef CONFIG_XFS_QUOTA
1556 sb->s_qcop = &xfs_quotactl_operations;
1557 #endif
1558 sb->s_op = &xfs_super_operations;
1559
1560 error = xfs_dmops_get(mp);
1561 if (error)
1562 goto out_free_fsname;
1563
1564 if (silent)
1565 flags |= XFS_MFSI_QUIET;
1566
1567 error = xfs_open_devices(mp);
1568 if (error)
1569 goto out_put_dmops;
1570
1571 if (xfs_icsb_init_counters(mp))
1572 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
1573
1574 error = xfs_readsb(mp, flags);
1575 if (error)
1576 goto out_destroy_counters;
1577
1578 error = xfs_finish_flags(mp);
1579 if (error)
1580 goto out_free_sb;
1581
1582 error = xfs_setup_devices(mp);
1583 if (error)
1584 goto out_free_sb;
1585
1586 if (mp->m_flags & XFS_MOUNT_BARRIER)
1587 xfs_mountfs_check_barriers(mp);
1588
1589 error = xfs_filestream_mount(mp);
1590 if (error)
1591 goto out_free_sb;
1592
1593 error = xfs_mountfs(mp);
1594 if (error)
1595 goto out_filestream_unmount;
1596
1597 XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, mtpt, mp->m_fsname);
1598
1599 sb->s_magic = XFS_SB_MAGIC;
1600 sb->s_blocksize = mp->m_sb.sb_blocksize;
1601 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1602 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1603 sb->s_time_gran = 1;
1604 set_posix_acl_flag(sb);
1605
1606 root = igrab(VFS_I(mp->m_rootip));
1607 if (!root) {
1608 error = ENOENT;
1609 goto fail_unmount;
1610 }
1611 if (is_bad_inode(root)) {
1612 error = EINVAL;
1613 goto fail_vnrele;
1614 }
1615 sb->s_root = d_alloc_root(root);
1616 if (!sb->s_root) {
1617 error = ENOMEM;
1618 goto fail_vnrele;
1619 }
1620
1621 error = xfs_syncd_init(mp);
1622 if (error)
1623 goto fail_vnrele;
1624
1625 kfree(mtpt);
1626 return 0;
1627
1628 out_filestream_unmount:
1629 xfs_filestream_unmount(mp);
1630 out_free_sb:
1631 xfs_freesb(mp);
1632 out_destroy_counters:
1633 xfs_icsb_destroy_counters(mp);
1634 xfs_close_devices(mp);
1635 out_put_dmops:
1636 xfs_dmops_put(mp);
1637 out_free_fsname:
1638 xfs_free_fsname(mp);
1639 kfree(mtpt);
1640 kfree(mp);
1641 out:
1642 return -error;
1643
1644 fail_vnrele:
1645 if (sb->s_root) {
1646 dput(sb->s_root);
1647 sb->s_root = NULL;
1648 } else {
1649 iput(root);
1650 }
1651
1652 fail_unmount:
1653 /*
1654 * Blow away any referenced inode in the filestreams cache.
1655 * This can and will cause log traffic as inodes go inactive
1656 * here.
1657 */
1658 xfs_filestream_unmount(mp);
1659
1660 XFS_bflush(mp->m_ddev_targp);
1661
1662 xfs_unmountfs(mp);
1663 goto out_free_sb;
1664 }
1665
1666 STATIC int
1667 xfs_fs_get_sb(
1668 struct file_system_type *fs_type,
1669 int flags,
1670 const char *dev_name,
1671 void *data,
1672 struct vfsmount *mnt)
1673 {
1674 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
1675 mnt);
1676 }
1677
1678 static const struct super_operations xfs_super_operations = {
1679 .alloc_inode = xfs_fs_alloc_inode,
1680 .destroy_inode = xfs_fs_destroy_inode,
1681 .dirty_inode = xfs_fs_dirty_inode,
1682 .write_inode = xfs_fs_write_inode,
1683 .clear_inode = xfs_fs_clear_inode,
1684 .put_super = xfs_fs_put_super,
1685 .sync_fs = xfs_fs_sync_fs,
1686 .freeze_fs = xfs_fs_freeze,
1687 .unfreeze_fs = xfs_fs_unfreeze,
1688 .statfs = xfs_fs_statfs,
1689 .remount_fs = xfs_fs_remount,
1690 .show_options = xfs_fs_show_options,
1691 };
1692
1693 static struct file_system_type xfs_fs_type = {
1694 .owner = THIS_MODULE,
1695 .name = "xfs",
1696 .get_sb = xfs_fs_get_sb,
1697 .kill_sb = kill_block_super,
1698 .fs_flags = FS_REQUIRES_DEV,
1699 };
1700
1701 STATIC int __init
1702 xfs_init_zones(void)
1703 {
1704
1705 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1706 if (!xfs_ioend_zone)
1707 goto out;
1708
1709 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1710 xfs_ioend_zone);
1711 if (!xfs_ioend_pool)
1712 goto out_destroy_ioend_zone;
1713
1714 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1715 "xfs_log_ticket");
1716 if (!xfs_log_ticket_zone)
1717 goto out_destroy_ioend_pool;
1718
1719 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1720 "xfs_bmap_free_item");
1721 if (!xfs_bmap_free_item_zone)
1722 goto out_destroy_log_ticket_zone;
1723
1724 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1725 "xfs_btree_cur");
1726 if (!xfs_btree_cur_zone)
1727 goto out_destroy_bmap_free_item_zone;
1728
1729 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1730 "xfs_da_state");
1731 if (!xfs_da_state_zone)
1732 goto out_destroy_btree_cur_zone;
1733
1734 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1735 if (!xfs_dabuf_zone)
1736 goto out_destroy_da_state_zone;
1737
1738 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1739 if (!xfs_ifork_zone)
1740 goto out_destroy_dabuf_zone;
1741
1742 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1743 if (!xfs_trans_zone)
1744 goto out_destroy_ifork_zone;
1745
1746 /*
1747 * The size of the zone allocated buf log item is the maximum
1748 * size possible under XFS. This wastes a little bit of memory,
1749 * but it is much faster.
1750 */
1751 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1752 (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
1753 NBWORD) * sizeof(int))), "xfs_buf_item");
1754 if (!xfs_buf_item_zone)
1755 goto out_destroy_trans_zone;
1756
1757 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1758 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1759 sizeof(xfs_extent_t))), "xfs_efd_item");
1760 if (!xfs_efd_zone)
1761 goto out_destroy_buf_item_zone;
1762
1763 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1764 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1765 sizeof(xfs_extent_t))), "xfs_efi_item");
1766 if (!xfs_efi_zone)
1767 goto out_destroy_efd_zone;
1768
1769 xfs_inode_zone =
1770 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1771 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1772 xfs_fs_inode_init_once);
1773 if (!xfs_inode_zone)
1774 goto out_destroy_efi_zone;
1775
1776 xfs_ili_zone =
1777 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1778 KM_ZONE_SPREAD, NULL);
1779 if (!xfs_ili_zone)
1780 goto out_destroy_inode_zone;
1781
1782 return 0;
1783
1784 out_destroy_inode_zone:
1785 kmem_zone_destroy(xfs_inode_zone);
1786 out_destroy_efi_zone:
1787 kmem_zone_destroy(xfs_efi_zone);
1788 out_destroy_efd_zone:
1789 kmem_zone_destroy(xfs_efd_zone);
1790 out_destroy_buf_item_zone:
1791 kmem_zone_destroy(xfs_buf_item_zone);
1792 out_destroy_trans_zone:
1793 kmem_zone_destroy(xfs_trans_zone);
1794 out_destroy_ifork_zone:
1795 kmem_zone_destroy(xfs_ifork_zone);
1796 out_destroy_dabuf_zone:
1797 kmem_zone_destroy(xfs_dabuf_zone);
1798 out_destroy_da_state_zone:
1799 kmem_zone_destroy(xfs_da_state_zone);
1800 out_destroy_btree_cur_zone:
1801 kmem_zone_destroy(xfs_btree_cur_zone);
1802 out_destroy_bmap_free_item_zone:
1803 kmem_zone_destroy(xfs_bmap_free_item_zone);
1804 out_destroy_log_ticket_zone:
1805 kmem_zone_destroy(xfs_log_ticket_zone);
1806 out_destroy_ioend_pool:
1807 mempool_destroy(xfs_ioend_pool);
1808 out_destroy_ioend_zone:
1809 kmem_zone_destroy(xfs_ioend_zone);
1810 out:
1811 return -ENOMEM;
1812 }
1813
1814 STATIC void
1815 xfs_destroy_zones(void)
1816 {
1817 kmem_zone_destroy(xfs_ili_zone);
1818 kmem_zone_destroy(xfs_inode_zone);
1819 kmem_zone_destroy(xfs_efi_zone);
1820 kmem_zone_destroy(xfs_efd_zone);
1821 kmem_zone_destroy(xfs_buf_item_zone);
1822 kmem_zone_destroy(xfs_trans_zone);
1823 kmem_zone_destroy(xfs_ifork_zone);
1824 kmem_zone_destroy(xfs_dabuf_zone);
1825 kmem_zone_destroy(xfs_da_state_zone);
1826 kmem_zone_destroy(xfs_btree_cur_zone);
1827 kmem_zone_destroy(xfs_bmap_free_item_zone);
1828 kmem_zone_destroy(xfs_log_ticket_zone);
1829 mempool_destroy(xfs_ioend_pool);
1830 kmem_zone_destroy(xfs_ioend_zone);
1831
1832 }
1833
1834 STATIC int __init
1835 init_xfs_fs(void)
1836 {
1837 int error;
1838
1839 printk(KERN_INFO XFS_VERSION_STRING " with "
1840 XFS_BUILD_OPTIONS " enabled\n");
1841
1842 xfs_ioend_init();
1843 xfs_dir_startup();
1844
1845 error = xfs_init_zones();
1846 if (error)
1847 goto out;
1848
1849 error = xfs_mru_cache_init();
1850 if (error)
1851 goto out_destroy_zones;
1852
1853 error = xfs_filestream_init();
1854 if (error)
1855 goto out_mru_cache_uninit;
1856
1857 error = xfs_buf_init();
1858 if (error)
1859 goto out_filestream_uninit;
1860
1861 error = xfs_init_procfs();
1862 if (error)
1863 goto out_buf_terminate;
1864
1865 error = xfs_sysctl_register();
1866 if (error)
1867 goto out_cleanup_procfs;
1868
1869 vfs_initquota();
1870
1871 error = register_filesystem(&xfs_fs_type);
1872 if (error)
1873 goto out_sysctl_unregister;
1874 return 0;
1875
1876 out_sysctl_unregister:
1877 xfs_sysctl_unregister();
1878 out_cleanup_procfs:
1879 xfs_cleanup_procfs();
1880 out_buf_terminate:
1881 xfs_buf_terminate();
1882 out_filestream_uninit:
1883 xfs_filestream_uninit();
1884 out_mru_cache_uninit:
1885 xfs_mru_cache_uninit();
1886 out_destroy_zones:
1887 xfs_destroy_zones();
1888 out:
1889 return error;
1890 }
1891
1892 STATIC void __exit
1893 exit_xfs_fs(void)
1894 {
1895 vfs_exitquota();
1896 unregister_filesystem(&xfs_fs_type);
1897 xfs_sysctl_unregister();
1898 xfs_cleanup_procfs();
1899 xfs_buf_terminate();
1900 xfs_filestream_uninit();
1901 xfs_mru_cache_uninit();
1902 xfs_destroy_zones();
1903 }
1904
1905 module_init(init_xfs_fs);
1906 module_exit(exit_xfs_fs);
1907
1908 MODULE_AUTHOR("Silicon Graphics, Inc.");
1909 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1910 MODULE_LICENSE("GPL");