Merge tag 'v3.10.108' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / udf / inode.c
1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
41 #include <linux/aio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 MODULE_AUTHOR("Ben Fennema");
47 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48 MODULE_LICENSE("GPL");
49
50 #define EXTENT_MERGE_SIZE 5
51
52 static umode_t udf_convert_permissions(struct fileEntry *);
53 static int udf_update_inode(struct inode *, int);
54 static void udf_fill_inode(struct inode *, struct buffer_head *);
55 static int udf_sync_inode(struct inode *inode);
56 static int udf_alloc_i_data(struct inode *inode, size_t size);
57 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
58 static int8_t udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60 static void udf_split_extents(struct inode *, int *, int, int,
61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_merge_extents(struct inode *,
65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
66 static void udf_update_extents(struct inode *,
67 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
68 struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79 }
80
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94 {
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111 }
112
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos, int next_epos)
116 {
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos,
125 sizeof(struct extent_position));
126 iinfo->cached_extent.lstart = estart;
127 if (next_epos)
128 switch (iinfo->i_alloc_type) {
129 case ICBTAG_FLAG_AD_SHORT:
130 iinfo->cached_extent.epos.offset -=
131 sizeof(struct short_ad);
132 break;
133 case ICBTAG_FLAG_AD_LONG:
134 iinfo->cached_extent.epos.offset -=
135 sizeof(struct long_ad);
136 }
137 spin_unlock(&iinfo->i_extent_cache_lock);
138 }
139
140 void udf_evict_inode(struct inode *inode)
141 {
142 struct udf_inode_info *iinfo = UDF_I(inode);
143 int want_delete = 0;
144
145 if (!inode->i_nlink && !is_bad_inode(inode)) {
146 want_delete = 1;
147 udf_setsize(inode, 0);
148 udf_update_inode(inode, IS_SYNC(inode));
149 } else
150 truncate_inode_pages(&inode->i_data, 0);
151 invalidate_inode_buffers(inode);
152 clear_inode(inode);
153 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
154 inode->i_size != iinfo->i_lenExtents) {
155 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
156 inode->i_ino, inode->i_mode,
157 (unsigned long long)inode->i_size,
158 (unsigned long long)iinfo->i_lenExtents);
159 }
160 kfree(iinfo->i_ext.i_data);
161 iinfo->i_ext.i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166 }
167
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, to, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183 }
184
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 return block_write_full_page(page, udf_get_block, wbc);
188 }
189
190 static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192 {
193 return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 return mpage_readpage(page, udf_get_block);
199 }
200
201 static int udf_readpages(struct file *file, struct address_space *mapping,
202 struct list_head *pages, unsigned nr_pages)
203 {
204 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
205 }
206
207 static int udf_write_begin(struct file *file, struct address_space *mapping,
208 loff_t pos, unsigned len, unsigned flags,
209 struct page **pagep, void **fsdata)
210 {
211 int ret;
212
213 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
214 if (unlikely(ret))
215 udf_write_failed(mapping, pos + len);
216 return ret;
217 }
218
219 static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
220 const struct iovec *iov,
221 loff_t offset, unsigned long nr_segs)
222 {
223 struct file *file = iocb->ki_filp;
224 struct address_space *mapping = file->f_mapping;
225 struct inode *inode = mapping->host;
226 ssize_t ret;
227
228 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
229 udf_get_block);
230 if (unlikely(ret < 0 && (rw & WRITE)))
231 udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
232 return ret;
233 }
234
235 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
236 {
237 return generic_block_bmap(mapping, block, udf_get_block);
238 }
239
240 const struct address_space_operations udf_aops = {
241 .readpage = udf_readpage,
242 .readpages = udf_readpages,
243 .writepage = udf_writepage,
244 .writepages = udf_writepages,
245 .write_begin = udf_write_begin,
246 .write_end = generic_write_end,
247 .direct_IO = udf_direct_IO,
248 .bmap = udf_bmap,
249 };
250
251 /*
252 * Expand file stored in ICB to a normal one-block-file
253 *
254 * This function requires i_data_sem for writing and releases it.
255 * This function requires i_mutex held
256 */
257 int udf_expand_file_adinicb(struct inode *inode)
258 {
259 struct page *page;
260 char *kaddr;
261 struct udf_inode_info *iinfo = UDF_I(inode);
262 int err;
263 struct writeback_control udf_wbc = {
264 .sync_mode = WB_SYNC_NONE,
265 .nr_to_write = 1,
266 };
267
268 if (!iinfo->i_lenAlloc) {
269 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
271 else
272 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
273 /* from now on we have normal address_space methods */
274 inode->i_data.a_ops = &udf_aops;
275 up_write(&iinfo->i_data_sem);
276 mark_inode_dirty(inode);
277 return 0;
278 }
279 /*
280 * Release i_data_sem so that we can lock a page - page lock ranks
281 * above i_data_sem. i_mutex still protects us against file changes.
282 */
283 up_write(&iinfo->i_data_sem);
284
285 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
286 if (!page)
287 return -ENOMEM;
288
289 if (!PageUptodate(page)) {
290 kaddr = kmap(page);
291 memset(kaddr + iinfo->i_lenAlloc, 0x00,
292 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
293 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
294 iinfo->i_lenAlloc);
295 flush_dcache_page(page);
296 SetPageUptodate(page);
297 kunmap(page);
298 }
299 down_write(&iinfo->i_data_sem);
300 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
301 iinfo->i_lenAlloc);
302 iinfo->i_lenAlloc = 0;
303 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
305 else
306 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
307 /* from now on we have normal address_space methods */
308 inode->i_data.a_ops = &udf_aops;
309 up_write(&iinfo->i_data_sem);
310 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
311 if (err) {
312 /* Restore everything back so that we don't lose data... */
313 lock_page(page);
314 kaddr = kmap(page);
315 down_write(&iinfo->i_data_sem);
316 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
317 inode->i_size);
318 kunmap(page);
319 unlock_page(page);
320 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
321 inode->i_data.a_ops = &udf_adinicb_aops;
322 up_write(&iinfo->i_data_sem);
323 }
324 page_cache_release(page);
325 mark_inode_dirty(inode);
326
327 return err;
328 }
329
330 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
331 int *err)
332 {
333 int newblock;
334 struct buffer_head *dbh = NULL;
335 struct kernel_lb_addr eloc;
336 uint8_t alloctype;
337 struct extent_position epos;
338
339 struct udf_fileident_bh sfibh, dfibh;
340 loff_t f_pos = udf_ext0_offset(inode);
341 int size = udf_ext0_offset(inode) + inode->i_size;
342 struct fileIdentDesc cfi, *sfi, *dfi;
343 struct udf_inode_info *iinfo = UDF_I(inode);
344
345 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
346 alloctype = ICBTAG_FLAG_AD_SHORT;
347 else
348 alloctype = ICBTAG_FLAG_AD_LONG;
349
350 if (!inode->i_size) {
351 iinfo->i_alloc_type = alloctype;
352 mark_inode_dirty(inode);
353 return NULL;
354 }
355
356 /* alloc block, and copy data to it */
357 *block = udf_new_block(inode->i_sb, inode,
358 iinfo->i_location.partitionReferenceNum,
359 iinfo->i_location.logicalBlockNum, err);
360 if (!(*block))
361 return NULL;
362 newblock = udf_get_pblock(inode->i_sb, *block,
363 iinfo->i_location.partitionReferenceNum,
364 0);
365 if (!newblock)
366 return NULL;
367 dbh = udf_tgetblk(inode->i_sb, newblock);
368 if (!dbh)
369 return NULL;
370 lock_buffer(dbh);
371 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
372 set_buffer_uptodate(dbh);
373 unlock_buffer(dbh);
374 mark_buffer_dirty_inode(dbh, inode);
375
376 sfibh.soffset = sfibh.eoffset =
377 f_pos & (inode->i_sb->s_blocksize - 1);
378 sfibh.sbh = sfibh.ebh = NULL;
379 dfibh.soffset = dfibh.eoffset = 0;
380 dfibh.sbh = dfibh.ebh = dbh;
381 while (f_pos < size) {
382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
384 NULL, NULL, NULL);
385 if (!sfi) {
386 brelse(dbh);
387 return NULL;
388 }
389 iinfo->i_alloc_type = alloctype;
390 sfi->descTag.tagLocation = cpu_to_le32(*block);
391 dfibh.soffset = dfibh.eoffset;
392 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
393 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
394 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
395 sfi->fileIdent +
396 le16_to_cpu(sfi->lengthOfImpUse))) {
397 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
398 brelse(dbh);
399 return NULL;
400 }
401 }
402 mark_buffer_dirty_inode(dbh, inode);
403
404 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
405 iinfo->i_lenAlloc);
406 iinfo->i_lenAlloc = 0;
407 eloc.logicalBlockNum = *block;
408 eloc.partitionReferenceNum =
409 iinfo->i_location.partitionReferenceNum;
410 iinfo->i_lenExtents = inode->i_size;
411 epos.bh = NULL;
412 epos.block = iinfo->i_location;
413 epos.offset = udf_file_entry_alloc_offset(inode);
414 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
415 /* UniqueID stuff */
416
417 brelse(epos.bh);
418 mark_inode_dirty(inode);
419 return dbh;
420 }
421
422 static int udf_get_block(struct inode *inode, sector_t block,
423 struct buffer_head *bh_result, int create)
424 {
425 int err, new;
426 sector_t phys = 0;
427 struct udf_inode_info *iinfo;
428
429 if (!create) {
430 phys = udf_block_map(inode, block);
431 if (phys)
432 map_bh(bh_result, inode->i_sb, phys);
433 return 0;
434 }
435
436 err = -EIO;
437 new = 0;
438 iinfo = UDF_I(inode);
439
440 down_write(&iinfo->i_data_sem);
441 if (block == iinfo->i_next_alloc_block + 1) {
442 iinfo->i_next_alloc_block++;
443 iinfo->i_next_alloc_goal++;
444 }
445
446 udf_clear_extent_cache(inode);
447 phys = inode_getblk(inode, block, &err, &new);
448 if (!phys)
449 goto abort;
450
451 if (new)
452 set_buffer_new(bh_result);
453 map_bh(bh_result, inode->i_sb, phys);
454
455 abort:
456 up_write(&iinfo->i_data_sem);
457 return err;
458 }
459
460 static struct buffer_head *udf_getblk(struct inode *inode, long block,
461 int create, int *err)
462 {
463 struct buffer_head *bh;
464 struct buffer_head dummy;
465
466 dummy.b_state = 0;
467 dummy.b_blocknr = -1000;
468 *err = udf_get_block(inode, block, &dummy, create);
469 if (!*err && buffer_mapped(&dummy)) {
470 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
471 if (buffer_new(&dummy)) {
472 lock_buffer(bh);
473 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
474 set_buffer_uptodate(bh);
475 unlock_buffer(bh);
476 mark_buffer_dirty_inode(bh, inode);
477 }
478 return bh;
479 }
480
481 return NULL;
482 }
483
484 /* Extend the file by 'blocks' blocks, return the number of extents added */
485 static int udf_do_extend_file(struct inode *inode,
486 struct extent_position *last_pos,
487 struct kernel_long_ad *last_ext,
488 sector_t blocks)
489 {
490 sector_t add;
491 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
492 struct super_block *sb = inode->i_sb;
493 struct kernel_lb_addr prealloc_loc = {};
494 int prealloc_len = 0;
495 struct udf_inode_info *iinfo;
496 int err;
497
498 /* The previous extent is fake and we should not extend by anything
499 * - there's nothing to do... */
500 if (!blocks && fake)
501 return 0;
502
503 iinfo = UDF_I(inode);
504 /* Round the last extent up to a multiple of block size */
505 if (last_ext->extLength & (sb->s_blocksize - 1)) {
506 last_ext->extLength =
507 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
508 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
509 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
510 iinfo->i_lenExtents =
511 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
512 ~(sb->s_blocksize - 1);
513 }
514
515 /* Last extent are just preallocated blocks? */
516 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
517 EXT_NOT_RECORDED_ALLOCATED) {
518 /* Save the extent so that we can reattach it to the end */
519 prealloc_loc = last_ext->extLocation;
520 prealloc_len = last_ext->extLength;
521 /* Mark the extent as a hole */
522 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
523 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
524 last_ext->extLocation.logicalBlockNum = 0;
525 last_ext->extLocation.partitionReferenceNum = 0;
526 }
527
528 /* Can we merge with the previous extent? */
529 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
530 EXT_NOT_RECORDED_NOT_ALLOCATED) {
531 add = ((1 << 30) - sb->s_blocksize -
532 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
533 sb->s_blocksize_bits;
534 if (add > blocks)
535 add = blocks;
536 blocks -= add;
537 last_ext->extLength += add << sb->s_blocksize_bits;
538 }
539
540 if (fake) {
541 udf_add_aext(inode, last_pos, &last_ext->extLocation,
542 last_ext->extLength, 1);
543 count++;
544 } else
545 udf_write_aext(inode, last_pos, &last_ext->extLocation,
546 last_ext->extLength, 1);
547
548 /* Managed to do everything necessary? */
549 if (!blocks)
550 goto out;
551
552 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
553 last_ext->extLocation.logicalBlockNum = 0;
554 last_ext->extLocation.partitionReferenceNum = 0;
555 add = (1 << (30-sb->s_blocksize_bits)) - 1;
556 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
557 (add << sb->s_blocksize_bits);
558
559 /* Create enough extents to cover the whole hole */
560 while (blocks > add) {
561 blocks -= add;
562 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563 last_ext->extLength, 1);
564 if (err)
565 return err;
566 count++;
567 }
568 if (blocks) {
569 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570 (blocks << sb->s_blocksize_bits);
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 return err;
575 count++;
576 }
577
578 out:
579 /* Do we have some preallocated blocks saved? */
580 if (prealloc_len) {
581 err = udf_add_aext(inode, last_pos, &prealloc_loc,
582 prealloc_len, 1);
583 if (err)
584 return err;
585 last_ext->extLocation = prealloc_loc;
586 last_ext->extLength = prealloc_len;
587 count++;
588 }
589
590 /* last_pos should point to the last written extent... */
591 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
592 last_pos->offset -= sizeof(struct short_ad);
593 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
594 last_pos->offset -= sizeof(struct long_ad);
595 else
596 return -EIO;
597
598 return count;
599 }
600
601 static int udf_extend_file(struct inode *inode, loff_t newsize)
602 {
603
604 struct extent_position epos;
605 struct kernel_lb_addr eloc;
606 uint32_t elen;
607 int8_t etype;
608 struct super_block *sb = inode->i_sb;
609 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
610 int adsize;
611 struct udf_inode_info *iinfo = UDF_I(inode);
612 struct kernel_long_ad extent;
613 int err;
614
615 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
616 adsize = sizeof(struct short_ad);
617 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
618 adsize = sizeof(struct long_ad);
619 else
620 BUG();
621
622 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
623
624 /* File has extent covering the new size (could happen when extending
625 * inside a block)? */
626 if (etype != -1)
627 return 0;
628 if (newsize & (sb->s_blocksize - 1))
629 offset++;
630 /* Extended file just to the boundary of the last file block? */
631 if (offset == 0)
632 return 0;
633
634 /* Truncate is extending the file by 'offset' blocks */
635 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
636 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
637 /* File has no extents at all or has empty last
638 * indirect extent! Create a fake extent... */
639 extent.extLocation.logicalBlockNum = 0;
640 extent.extLocation.partitionReferenceNum = 0;
641 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
642 } else {
643 epos.offset -= adsize;
644 etype = udf_next_aext(inode, &epos, &extent.extLocation,
645 &extent.extLength, 0);
646 extent.extLength |= etype << 30;
647 }
648 err = udf_do_extend_file(inode, &epos, &extent, offset);
649 if (err < 0)
650 goto out;
651 err = 0;
652 iinfo->i_lenExtents = newsize;
653 out:
654 brelse(epos.bh);
655 return err;
656 }
657
658 static sector_t inode_getblk(struct inode *inode, sector_t block,
659 int *err, int *new)
660 {
661 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
662 struct extent_position prev_epos, cur_epos, next_epos;
663 int count = 0, startnum = 0, endnum = 0;
664 uint32_t elen = 0, tmpelen;
665 struct kernel_lb_addr eloc, tmpeloc;
666 int c = 1;
667 loff_t lbcount = 0, b_off = 0;
668 uint32_t newblocknum, newblock;
669 sector_t offset = 0;
670 int8_t etype;
671 struct udf_inode_info *iinfo = UDF_I(inode);
672 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
673 int lastblock = 0;
674 bool isBeyondEOF;
675
676 *err = 0;
677 *new = 0;
678 prev_epos.offset = udf_file_entry_alloc_offset(inode);
679 prev_epos.block = iinfo->i_location;
680 prev_epos.bh = NULL;
681 cur_epos = next_epos = prev_epos;
682 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
683
684 /* find the extent which contains the block we are looking for.
685 alternate between laarr[0] and laarr[1] for locations of the
686 current extent, and the previous extent */
687 do {
688 if (prev_epos.bh != cur_epos.bh) {
689 brelse(prev_epos.bh);
690 get_bh(cur_epos.bh);
691 prev_epos.bh = cur_epos.bh;
692 }
693 if (cur_epos.bh != next_epos.bh) {
694 brelse(cur_epos.bh);
695 get_bh(next_epos.bh);
696 cur_epos.bh = next_epos.bh;
697 }
698
699 lbcount += elen;
700
701 prev_epos.block = cur_epos.block;
702 cur_epos.block = next_epos.block;
703
704 prev_epos.offset = cur_epos.offset;
705 cur_epos.offset = next_epos.offset;
706
707 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
708 if (etype == -1)
709 break;
710
711 c = !c;
712
713 laarr[c].extLength = (etype << 30) | elen;
714 laarr[c].extLocation = eloc;
715
716 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
717 pgoal = eloc.logicalBlockNum +
718 ((elen + inode->i_sb->s_blocksize - 1) >>
719 inode->i_sb->s_blocksize_bits);
720
721 count++;
722 } while (lbcount + elen <= b_off);
723
724 b_off -= lbcount;
725 offset = b_off >> inode->i_sb->s_blocksize_bits;
726 /*
727 * Move prev_epos and cur_epos into indirect extent if we are at
728 * the pointer to it
729 */
730 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
731 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
732
733 /* if the extent is allocated and recorded, return the block
734 if the extent is not a multiple of the blocksize, round up */
735
736 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
737 if (elen & (inode->i_sb->s_blocksize - 1)) {
738 elen = EXT_RECORDED_ALLOCATED |
739 ((elen + inode->i_sb->s_blocksize - 1) &
740 ~(inode->i_sb->s_blocksize - 1));
741 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
742 }
743 brelse(prev_epos.bh);
744 brelse(cur_epos.bh);
745 brelse(next_epos.bh);
746 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
747 return newblock;
748 }
749
750 /* Are we beyond EOF? */
751 if (etype == -1) {
752 int ret;
753 isBeyondEOF = 1;
754 if (count) {
755 if (c)
756 laarr[0] = laarr[1];
757 startnum = 1;
758 } else {
759 /* Create a fake extent when there's not one */
760 memset(&laarr[0].extLocation, 0x00,
761 sizeof(struct kernel_lb_addr));
762 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
763 /* Will udf_do_extend_file() create real extent from
764 a fake one? */
765 startnum = (offset > 0);
766 }
767 /* Create extents for the hole between EOF and offset */
768 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
769 if (ret < 0) {
770 brelse(prev_epos.bh);
771 brelse(cur_epos.bh);
772 brelse(next_epos.bh);
773 *err = ret;
774 return 0;
775 }
776 c = 0;
777 offset = 0;
778 count += ret;
779 /* We are not covered by a preallocated extent? */
780 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
781 EXT_NOT_RECORDED_ALLOCATED) {
782 /* Is there any real extent? - otherwise we overwrite
783 * the fake one... */
784 if (count)
785 c = !c;
786 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
787 inode->i_sb->s_blocksize;
788 memset(&laarr[c].extLocation, 0x00,
789 sizeof(struct kernel_lb_addr));
790 count++;
791 }
792 endnum = c + 1;
793 lastblock = 1;
794 } else {
795 isBeyondEOF = 0;
796 endnum = startnum = ((count > 2) ? 2 : count);
797
798 /* if the current extent is in position 0,
799 swap it with the previous */
800 if (!c && count != 1) {
801 laarr[2] = laarr[0];
802 laarr[0] = laarr[1];
803 laarr[1] = laarr[2];
804 c = 1;
805 }
806
807 /* if the current block is located in an extent,
808 read the next extent */
809 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
810 if (etype != -1) {
811 laarr[c + 1].extLength = (etype << 30) | elen;
812 laarr[c + 1].extLocation = eloc;
813 count++;
814 startnum++;
815 endnum++;
816 } else
817 lastblock = 1;
818 }
819
820 /* if the current extent is not recorded but allocated, get the
821 * block in the extent corresponding to the requested block */
822 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
823 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
824 else { /* otherwise, allocate a new block */
825 if (iinfo->i_next_alloc_block == block)
826 goal = iinfo->i_next_alloc_goal;
827
828 if (!goal) {
829 if (!(goal = pgoal)) /* XXX: what was intended here? */
830 goal = iinfo->i_location.logicalBlockNum + 1;
831 }
832
833 newblocknum = udf_new_block(inode->i_sb, inode,
834 iinfo->i_location.partitionReferenceNum,
835 goal, err);
836 if (!newblocknum) {
837 brelse(prev_epos.bh);
838 brelse(cur_epos.bh);
839 brelse(next_epos.bh);
840 *err = -ENOSPC;
841 return 0;
842 }
843 if (isBeyondEOF)
844 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
845 }
846
847 /* if the extent the requsted block is located in contains multiple
848 * blocks, split the extent into at most three extents. blocks prior
849 * to requested block, requested block, and blocks after requested
850 * block */
851 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
852
853 #ifdef UDF_PREALLOCATE
854 /* We preallocate blocks only for regular files. It also makes sense
855 * for directories but there's a problem when to drop the
856 * preallocation. We might use some delayed work for that but I feel
857 * it's overengineering for a filesystem like UDF. */
858 if (S_ISREG(inode->i_mode))
859 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
860 #endif
861
862 /* merge any continuous blocks in laarr */
863 udf_merge_extents(inode, laarr, &endnum);
864
865 /* write back the new extents, inserting new extents if the new number
866 * of extents is greater than the old number, and deleting extents if
867 * the new number of extents is less than the old number */
868 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
869
870 brelse(prev_epos.bh);
871 brelse(cur_epos.bh);
872 brelse(next_epos.bh);
873
874 newblock = udf_get_pblock(inode->i_sb, newblocknum,
875 iinfo->i_location.partitionReferenceNum, 0);
876 if (!newblock) {
877 *err = -EIO;
878 return 0;
879 }
880 *new = 1;
881 iinfo->i_next_alloc_block = block;
882 iinfo->i_next_alloc_goal = newblocknum;
883 inode->i_ctime = current_fs_time(inode->i_sb);
884
885 if (IS_SYNC(inode))
886 udf_sync_inode(inode);
887 else
888 mark_inode_dirty(inode);
889
890 return newblock;
891 }
892
893 static void udf_split_extents(struct inode *inode, int *c, int offset,
894 int newblocknum,
895 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
896 int *endnum)
897 {
898 unsigned long blocksize = inode->i_sb->s_blocksize;
899 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
900
901 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
902 (laarr[*c].extLength >> 30) ==
903 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
904 int curr = *c;
905 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
906 blocksize - 1) >> blocksize_bits;
907 int8_t etype = (laarr[curr].extLength >> 30);
908
909 if (blen == 1)
910 ;
911 else if (!offset || blen == offset + 1) {
912 laarr[curr + 2] = laarr[curr + 1];
913 laarr[curr + 1] = laarr[curr];
914 } else {
915 laarr[curr + 3] = laarr[curr + 1];
916 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
917 }
918
919 if (offset) {
920 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
921 udf_free_blocks(inode->i_sb, inode,
922 &laarr[curr].extLocation,
923 0, offset);
924 laarr[curr].extLength =
925 EXT_NOT_RECORDED_NOT_ALLOCATED |
926 (offset << blocksize_bits);
927 laarr[curr].extLocation.logicalBlockNum = 0;
928 laarr[curr].extLocation.
929 partitionReferenceNum = 0;
930 } else
931 laarr[curr].extLength = (etype << 30) |
932 (offset << blocksize_bits);
933 curr++;
934 (*c)++;
935 (*endnum)++;
936 }
937
938 laarr[curr].extLocation.logicalBlockNum = newblocknum;
939 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
940 laarr[curr].extLocation.partitionReferenceNum =
941 UDF_I(inode)->i_location.partitionReferenceNum;
942 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
943 blocksize;
944 curr++;
945
946 if (blen != offset + 1) {
947 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
948 laarr[curr].extLocation.logicalBlockNum +=
949 offset + 1;
950 laarr[curr].extLength = (etype << 30) |
951 ((blen - (offset + 1)) << blocksize_bits);
952 curr++;
953 (*endnum)++;
954 }
955 }
956 }
957
958 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
959 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
960 int *endnum)
961 {
962 int start, length = 0, currlength = 0, i;
963
964 if (*endnum >= (c + 1)) {
965 if (!lastblock)
966 return;
967 else
968 start = c;
969 } else {
970 if ((laarr[c + 1].extLength >> 30) ==
971 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972 start = c + 1;
973 length = currlength =
974 (((laarr[c + 1].extLength &
975 UDF_EXTENT_LENGTH_MASK) +
976 inode->i_sb->s_blocksize - 1) >>
977 inode->i_sb->s_blocksize_bits);
978 } else
979 start = c;
980 }
981
982 for (i = start + 1; i <= *endnum; i++) {
983 if (i == *endnum) {
984 if (lastblock)
985 length += UDF_DEFAULT_PREALLOC_BLOCKS;
986 } else if ((laarr[i].extLength >> 30) ==
987 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
988 length += (((laarr[i].extLength &
989 UDF_EXTENT_LENGTH_MASK) +
990 inode->i_sb->s_blocksize - 1) >>
991 inode->i_sb->s_blocksize_bits);
992 } else
993 break;
994 }
995
996 if (length) {
997 int next = laarr[start].extLocation.logicalBlockNum +
998 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
999 inode->i_sb->s_blocksize - 1) >>
1000 inode->i_sb->s_blocksize_bits);
1001 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1002 laarr[start].extLocation.partitionReferenceNum,
1003 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1004 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1005 currlength);
1006 if (numalloc) {
1007 if (start == (c + 1))
1008 laarr[start].extLength +=
1009 (numalloc <<
1010 inode->i_sb->s_blocksize_bits);
1011 else {
1012 memmove(&laarr[c + 2], &laarr[c + 1],
1013 sizeof(struct long_ad) * (*endnum - (c + 1)));
1014 (*endnum)++;
1015 laarr[c + 1].extLocation.logicalBlockNum = next;
1016 laarr[c + 1].extLocation.partitionReferenceNum =
1017 laarr[c].extLocation.
1018 partitionReferenceNum;
1019 laarr[c + 1].extLength =
1020 EXT_NOT_RECORDED_ALLOCATED |
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 start = c + 1;
1024 }
1025
1026 for (i = start + 1; numalloc && i < *endnum; i++) {
1027 int elen = ((laarr[i].extLength &
1028 UDF_EXTENT_LENGTH_MASK) +
1029 inode->i_sb->s_blocksize - 1) >>
1030 inode->i_sb->s_blocksize_bits;
1031
1032 if (elen > numalloc) {
1033 laarr[i].extLength -=
1034 (numalloc <<
1035 inode->i_sb->s_blocksize_bits);
1036 numalloc = 0;
1037 } else {
1038 numalloc -= elen;
1039 if (*endnum > (i + 1))
1040 memmove(&laarr[i],
1041 &laarr[i + 1],
1042 sizeof(struct long_ad) *
1043 (*endnum - (i + 1)));
1044 i--;
1045 (*endnum)--;
1046 }
1047 }
1048 UDF_I(inode)->i_lenExtents +=
1049 numalloc << inode->i_sb->s_blocksize_bits;
1050 }
1051 }
1052 }
1053
1054 static void udf_merge_extents(struct inode *inode,
1055 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1056 int *endnum)
1057 {
1058 int i;
1059 unsigned long blocksize = inode->i_sb->s_blocksize;
1060 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1061
1062 for (i = 0; i < (*endnum - 1); i++) {
1063 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1064 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1065
1066 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1067 (((li->extLength >> 30) ==
1068 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1069 ((lip1->extLocation.logicalBlockNum -
1070 li->extLocation.logicalBlockNum) ==
1071 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1072 blocksize - 1) >> blocksize_bits)))) {
1073
1074 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1075 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1076 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1077 lip1->extLength = (lip1->extLength -
1078 (li->extLength &
1079 UDF_EXTENT_LENGTH_MASK) +
1080 UDF_EXTENT_LENGTH_MASK) &
1081 ~(blocksize - 1);
1082 li->extLength = (li->extLength &
1083 UDF_EXTENT_FLAG_MASK) +
1084 (UDF_EXTENT_LENGTH_MASK + 1) -
1085 blocksize;
1086 lip1->extLocation.logicalBlockNum =
1087 li->extLocation.logicalBlockNum +
1088 ((li->extLength &
1089 UDF_EXTENT_LENGTH_MASK) >>
1090 blocksize_bits);
1091 } else {
1092 li->extLength = lip1->extLength +
1093 (((li->extLength &
1094 UDF_EXTENT_LENGTH_MASK) +
1095 blocksize - 1) & ~(blocksize - 1));
1096 if (*endnum > (i + 2))
1097 memmove(&laarr[i + 1], &laarr[i + 2],
1098 sizeof(struct long_ad) *
1099 (*endnum - (i + 2)));
1100 i--;
1101 (*endnum)--;
1102 }
1103 } else if (((li->extLength >> 30) ==
1104 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1105 ((lip1->extLength >> 30) ==
1106 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1107 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1108 ((li->extLength &
1109 UDF_EXTENT_LENGTH_MASK) +
1110 blocksize - 1) >> blocksize_bits);
1111 li->extLocation.logicalBlockNum = 0;
1112 li->extLocation.partitionReferenceNum = 0;
1113
1114 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1115 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1117 lip1->extLength = (lip1->extLength -
1118 (li->extLength &
1119 UDF_EXTENT_LENGTH_MASK) +
1120 UDF_EXTENT_LENGTH_MASK) &
1121 ~(blocksize - 1);
1122 li->extLength = (li->extLength &
1123 UDF_EXTENT_FLAG_MASK) +
1124 (UDF_EXTENT_LENGTH_MASK + 1) -
1125 blocksize;
1126 } else {
1127 li->extLength = lip1->extLength +
1128 (((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) & ~(blocksize - 1));
1131 if (*endnum > (i + 2))
1132 memmove(&laarr[i + 1], &laarr[i + 2],
1133 sizeof(struct long_ad) *
1134 (*endnum - (i + 2)));
1135 i--;
1136 (*endnum)--;
1137 }
1138 } else if ((li->extLength >> 30) ==
1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1140 udf_free_blocks(inode->i_sb, inode,
1141 &li->extLocation, 0,
1142 ((li->extLength &
1143 UDF_EXTENT_LENGTH_MASK) +
1144 blocksize - 1) >> blocksize_bits);
1145 li->extLocation.logicalBlockNum = 0;
1146 li->extLocation.partitionReferenceNum = 0;
1147 li->extLength = (li->extLength &
1148 UDF_EXTENT_LENGTH_MASK) |
1149 EXT_NOT_RECORDED_NOT_ALLOCATED;
1150 }
1151 }
1152 }
1153
1154 static void udf_update_extents(struct inode *inode,
1155 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1156 int startnum, int endnum,
1157 struct extent_position *epos)
1158 {
1159 int start = 0, i;
1160 struct kernel_lb_addr tmploc;
1161 uint32_t tmplen;
1162
1163 if (startnum > endnum) {
1164 for (i = 0; i < (startnum - endnum); i++)
1165 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1166 laarr[i].extLength);
1167 } else if (startnum < endnum) {
1168 for (i = 0; i < (endnum - startnum); i++) {
1169 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1170 laarr[i].extLength);
1171 udf_next_aext(inode, epos, &laarr[i].extLocation,
1172 &laarr[i].extLength, 1);
1173 start++;
1174 }
1175 }
1176
1177 for (i = start; i < endnum; i++) {
1178 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1179 udf_write_aext(inode, epos, &laarr[i].extLocation,
1180 laarr[i].extLength, 1);
1181 }
1182 }
1183
1184 struct buffer_head *udf_bread(struct inode *inode, int block,
1185 int create, int *err)
1186 {
1187 struct buffer_head *bh = NULL;
1188
1189 bh = udf_getblk(inode, block, create, err);
1190 if (!bh)
1191 return NULL;
1192
1193 if (buffer_uptodate(bh))
1194 return bh;
1195
1196 ll_rw_block(READ, 1, &bh);
1197
1198 wait_on_buffer(bh);
1199 if (buffer_uptodate(bh))
1200 return bh;
1201
1202 brelse(bh);
1203 *err = -EIO;
1204 return NULL;
1205 }
1206
1207 int udf_setsize(struct inode *inode, loff_t newsize)
1208 {
1209 int err;
1210 struct udf_inode_info *iinfo;
1211 int bsize = 1 << inode->i_blkbits;
1212
1213 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1214 S_ISLNK(inode->i_mode)))
1215 return -EINVAL;
1216 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1217 return -EPERM;
1218
1219 iinfo = UDF_I(inode);
1220 if (newsize > inode->i_size) {
1221 down_write(&iinfo->i_data_sem);
1222 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1223 if (bsize <
1224 (udf_file_entry_alloc_offset(inode) + newsize)) {
1225 err = udf_expand_file_adinicb(inode);
1226 if (err)
1227 return err;
1228 down_write(&iinfo->i_data_sem);
1229 } else {
1230 iinfo->i_lenAlloc = newsize;
1231 goto set_size;
1232 }
1233 }
1234 err = udf_extend_file(inode, newsize);
1235 if (err) {
1236 up_write(&iinfo->i_data_sem);
1237 return err;
1238 }
1239 set_size:
1240 up_write(&iinfo->i_data_sem);
1241 truncate_setsize(inode, newsize);
1242 } else {
1243 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1247 0x00, bsize - newsize -
1248 udf_file_entry_alloc_offset(inode));
1249 iinfo->i_lenAlloc = newsize;
1250 truncate_setsize(inode, newsize);
1251 up_write(&iinfo->i_data_sem);
1252 goto update_time;
1253 }
1254 err = block_truncate_page(inode->i_mapping, newsize,
1255 udf_get_block);
1256 if (err)
1257 return err;
1258 truncate_setsize(inode, newsize);
1259 down_write(&iinfo->i_data_sem);
1260 udf_clear_extent_cache(inode);
1261 udf_truncate_extents(inode);
1262 up_write(&iinfo->i_data_sem);
1263 }
1264 update_time:
1265 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1266 if (IS_SYNC(inode))
1267 udf_sync_inode(inode);
1268 else
1269 mark_inode_dirty(inode);
1270 return 0;
1271 }
1272
1273 /*
1274 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1275 * arbitrary - just that we hopefully don't limit any real use of rewritten
1276 * inode on write-once media but avoid looping for too long on corrupted media.
1277 */
1278 #define UDF_MAX_ICB_NESTING 1024
1279
1280 static void __udf_read_inode(struct inode *inode)
1281 {
1282 struct buffer_head *bh = NULL;
1283 struct fileEntry *fe;
1284 uint16_t ident;
1285 struct udf_inode_info *iinfo = UDF_I(inode);
1286 unsigned int indirections = 0;
1287
1288 reread:
1289 /*
1290 * Set defaults, but the inode is still incomplete!
1291 * Note: get_new_inode() sets the following on a new inode:
1292 * i_sb = sb
1293 * i_no = ino
1294 * i_flags = sb->s_flags
1295 * i_state = 0
1296 * clean_inode(): zero fills and sets
1297 * i_count = 1
1298 * i_nlink = 1
1299 * i_op = NULL;
1300 */
1301 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1302 if (!bh) {
1303 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1304 make_bad_inode(inode);
1305 return;
1306 }
1307
1308 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1309 ident != TAG_IDENT_USE) {
1310 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1311 inode->i_ino, ident);
1312 brelse(bh);
1313 make_bad_inode(inode);
1314 return;
1315 }
1316
1317 fe = (struct fileEntry *)bh->b_data;
1318
1319 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1320 struct buffer_head *ibh;
1321
1322 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1323 &ident);
1324 if (ident == TAG_IDENT_IE && ibh) {
1325 struct kernel_lb_addr loc;
1326 struct indirectEntry *ie;
1327
1328 ie = (struct indirectEntry *)ibh->b_data;
1329 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1330
1331 if (ie->indirectICB.extLength) {
1332 brelse(bh);
1333 brelse(ibh);
1334 memcpy(&iinfo->i_location, &loc,
1335 sizeof(struct kernel_lb_addr));
1336 if (++indirections > UDF_MAX_ICB_NESTING) {
1337 udf_err(inode->i_sb,
1338 "too many ICBs in ICB hierarchy"
1339 " (max %d supported)\n",
1340 UDF_MAX_ICB_NESTING);
1341 make_bad_inode(inode);
1342 return;
1343 }
1344 goto reread;
1345 }
1346 }
1347 brelse(ibh);
1348 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1349 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1350 le16_to_cpu(fe->icbTag.strategyType));
1351 brelse(bh);
1352 make_bad_inode(inode);
1353 return;
1354 }
1355 udf_fill_inode(inode, bh);
1356
1357 brelse(bh);
1358 }
1359
1360 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1361 {
1362 struct fileEntry *fe;
1363 struct extendedFileEntry *efe;
1364 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1365 struct udf_inode_info *iinfo = UDF_I(inode);
1366 unsigned int link_count;
1367
1368 fe = (struct fileEntry *)bh->b_data;
1369 efe = (struct extendedFileEntry *)bh->b_data;
1370
1371 if (fe->icbTag.strategyType == cpu_to_le16(4))
1372 iinfo->i_strat4096 = 0;
1373 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1374 iinfo->i_strat4096 = 1;
1375
1376 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1377 ICBTAG_FLAG_AD_MASK;
1378 iinfo->i_unique = 0;
1379 iinfo->i_lenEAttr = 0;
1380 iinfo->i_lenExtents = 0;
1381 iinfo->i_lenAlloc = 0;
1382 iinfo->i_next_alloc_block = 0;
1383 iinfo->i_next_alloc_goal = 0;
1384 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1385 iinfo->i_efe = 1;
1386 iinfo->i_use = 0;
1387 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1388 sizeof(struct extendedFileEntry))) {
1389 make_bad_inode(inode);
1390 return;
1391 }
1392 memcpy(iinfo->i_ext.i_data,
1393 bh->b_data + sizeof(struct extendedFileEntry),
1394 inode->i_sb->s_blocksize -
1395 sizeof(struct extendedFileEntry));
1396 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1397 iinfo->i_efe = 0;
1398 iinfo->i_use = 0;
1399 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1400 sizeof(struct fileEntry))) {
1401 make_bad_inode(inode);
1402 return;
1403 }
1404 memcpy(iinfo->i_ext.i_data,
1405 bh->b_data + sizeof(struct fileEntry),
1406 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1407 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1408 iinfo->i_efe = 0;
1409 iinfo->i_use = 1;
1410 iinfo->i_lenAlloc = le32_to_cpu(
1411 ((struct unallocSpaceEntry *)bh->b_data)->
1412 lengthAllocDescs);
1413 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1414 sizeof(struct unallocSpaceEntry))) {
1415 make_bad_inode(inode);
1416 return;
1417 }
1418 memcpy(iinfo->i_ext.i_data,
1419 bh->b_data + sizeof(struct unallocSpaceEntry),
1420 inode->i_sb->s_blocksize -
1421 sizeof(struct unallocSpaceEntry));
1422 return;
1423 }
1424
1425 read_lock(&sbi->s_cred_lock);
1426 i_uid_write(inode, le32_to_cpu(fe->uid));
1427 if (!uid_valid(inode->i_uid) ||
1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1429 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1430 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1431
1432 i_gid_write(inode, le32_to_cpu(fe->gid));
1433 if (!gid_valid(inode->i_gid) ||
1434 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1435 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1436 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1437
1438 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1439 sbi->s_fmode != UDF_INVALID_MODE)
1440 inode->i_mode = sbi->s_fmode;
1441 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1442 sbi->s_dmode != UDF_INVALID_MODE)
1443 inode->i_mode = sbi->s_dmode;
1444 else
1445 inode->i_mode = udf_convert_permissions(fe);
1446 inode->i_mode &= ~sbi->s_umask;
1447 read_unlock(&sbi->s_cred_lock);
1448
1449 link_count = le16_to_cpu(fe->fileLinkCount);
1450 if (!link_count)
1451 link_count = 1;
1452 set_nlink(inode, link_count);
1453
1454 inode->i_size = le64_to_cpu(fe->informationLength);
1455 iinfo->i_lenExtents = inode->i_size;
1456
1457 if (iinfo->i_efe == 0) {
1458 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1459 (inode->i_sb->s_blocksize_bits - 9);
1460
1461 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1462 inode->i_atime = sbi->s_record_time;
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1465 fe->modificationTime))
1466 inode->i_mtime = sbi->s_record_time;
1467
1468 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1469 inode->i_ctime = sbi->s_record_time;
1470
1471 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1472 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1473 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1474 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1475 } else {
1476 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1477 (inode->i_sb->s_blocksize_bits - 9);
1478
1479 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1480 inode->i_atime = sbi->s_record_time;
1481
1482 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1483 efe->modificationTime))
1484 inode->i_mtime = sbi->s_record_time;
1485
1486 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1487 iinfo->i_crtime = sbi->s_record_time;
1488
1489 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1490 inode->i_ctime = sbi->s_record_time;
1491
1492 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1493 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1494 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1495 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1496 }
1497
1498 /*
1499 * Sanity check length of allocation descriptors and extended attrs to
1500 * avoid integer overflows
1501 */
1502 if (iinfo->i_lenEAttr > inode->i_sb->s_blocksize || iinfo->i_lenAlloc > inode->i_sb->s_blocksize)
1503 return;
1504 /* Now do exact checks */
1505 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > inode->i_sb->s_blocksize)
1506 return;
1507
1508 switch (fe->icbTag.fileType) {
1509 case ICBTAG_FILE_TYPE_DIRECTORY:
1510 inode->i_op = &udf_dir_inode_operations;
1511 inode->i_fop = &udf_dir_operations;
1512 inode->i_mode |= S_IFDIR;
1513 inc_nlink(inode);
1514 break;
1515 case ICBTAG_FILE_TYPE_REALTIME:
1516 case ICBTAG_FILE_TYPE_REGULAR:
1517 case ICBTAG_FILE_TYPE_UNDEF:
1518 case ICBTAG_FILE_TYPE_VAT20:
1519 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1520 inode->i_data.a_ops = &udf_adinicb_aops;
1521 else
1522 inode->i_data.a_ops = &udf_aops;
1523 inode->i_op = &udf_file_inode_operations;
1524 inode->i_fop = &udf_file_operations;
1525 inode->i_mode |= S_IFREG;
1526 break;
1527 case ICBTAG_FILE_TYPE_BLOCK:
1528 inode->i_mode |= S_IFBLK;
1529 break;
1530 case ICBTAG_FILE_TYPE_CHAR:
1531 inode->i_mode |= S_IFCHR;
1532 break;
1533 case ICBTAG_FILE_TYPE_FIFO:
1534 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1535 break;
1536 case ICBTAG_FILE_TYPE_SOCKET:
1537 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1538 break;
1539 case ICBTAG_FILE_TYPE_SYMLINK:
1540 inode->i_data.a_ops = &udf_symlink_aops;
1541 inode->i_op = &udf_symlink_inode_operations;
1542 inode->i_mode = S_IFLNK | S_IRWXUGO;
1543 break;
1544 case ICBTAG_FILE_TYPE_MAIN:
1545 udf_debug("METADATA FILE-----\n");
1546 break;
1547 case ICBTAG_FILE_TYPE_MIRROR:
1548 udf_debug("METADATA MIRROR FILE-----\n");
1549 break;
1550 case ICBTAG_FILE_TYPE_BITMAP:
1551 udf_debug("METADATA BITMAP FILE-----\n");
1552 break;
1553 default:
1554 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1555 inode->i_ino, fe->icbTag.fileType);
1556 make_bad_inode(inode);
1557 return;
1558 }
1559 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1560 struct deviceSpec *dsea =
1561 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1562 if (dsea) {
1563 init_special_inode(inode, inode->i_mode,
1564 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1565 le32_to_cpu(dsea->minorDeviceIdent)));
1566 /* Developer ID ??? */
1567 } else
1568 make_bad_inode(inode);
1569 }
1570 }
1571
1572 static int udf_alloc_i_data(struct inode *inode, size_t size)
1573 {
1574 struct udf_inode_info *iinfo = UDF_I(inode);
1575 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1576
1577 if (!iinfo->i_ext.i_data) {
1578 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1579 inode->i_ino);
1580 return -ENOMEM;
1581 }
1582
1583 return 0;
1584 }
1585
1586 static umode_t udf_convert_permissions(struct fileEntry *fe)
1587 {
1588 umode_t mode;
1589 uint32_t permissions;
1590 uint32_t flags;
1591
1592 permissions = le32_to_cpu(fe->permissions);
1593 flags = le16_to_cpu(fe->icbTag.flags);
1594
1595 mode = ((permissions) & S_IRWXO) |
1596 ((permissions >> 2) & S_IRWXG) |
1597 ((permissions >> 4) & S_IRWXU) |
1598 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1599 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1600 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1601
1602 return mode;
1603 }
1604
1605 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1606 {
1607 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1608 }
1609
1610 static int udf_sync_inode(struct inode *inode)
1611 {
1612 return udf_update_inode(inode, 1);
1613 }
1614
1615 static int udf_update_inode(struct inode *inode, int do_sync)
1616 {
1617 struct buffer_head *bh = NULL;
1618 struct fileEntry *fe;
1619 struct extendedFileEntry *efe;
1620 uint64_t lb_recorded;
1621 uint32_t udfperms;
1622 uint16_t icbflags;
1623 uint16_t crclen;
1624 int err = 0;
1625 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1626 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1627 struct udf_inode_info *iinfo = UDF_I(inode);
1628
1629 bh = udf_tgetblk(inode->i_sb,
1630 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1631 if (!bh) {
1632 udf_debug("getblk failure\n");
1633 return -ENOMEM;
1634 }
1635
1636 lock_buffer(bh);
1637 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1638 fe = (struct fileEntry *)bh->b_data;
1639 efe = (struct extendedFileEntry *)bh->b_data;
1640
1641 if (iinfo->i_use) {
1642 struct unallocSpaceEntry *use =
1643 (struct unallocSpaceEntry *)bh->b_data;
1644
1645 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1646 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1647 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1648 sizeof(struct unallocSpaceEntry));
1649 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1650 use->descTag.tagLocation =
1651 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1652 crclen = sizeof(struct unallocSpaceEntry) +
1653 iinfo->i_lenAlloc - sizeof(struct tag);
1654 use->descTag.descCRCLength = cpu_to_le16(crclen);
1655 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1656 sizeof(struct tag),
1657 crclen));
1658 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1659
1660 goto out;
1661 }
1662
1663 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1664 fe->uid = cpu_to_le32(-1);
1665 else
1666 fe->uid = cpu_to_le32(i_uid_read(inode));
1667
1668 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1669 fe->gid = cpu_to_le32(-1);
1670 else
1671 fe->gid = cpu_to_le32(i_gid_read(inode));
1672
1673 udfperms = ((inode->i_mode & S_IRWXO)) |
1674 ((inode->i_mode & S_IRWXG) << 2) |
1675 ((inode->i_mode & S_IRWXU) << 4);
1676
1677 udfperms |= (le32_to_cpu(fe->permissions) &
1678 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1679 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1680 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1681 fe->permissions = cpu_to_le32(udfperms);
1682
1683 if (S_ISDIR(inode->i_mode))
1684 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1685 else
1686 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1687
1688 fe->informationLength = cpu_to_le64(inode->i_size);
1689
1690 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1691 struct regid *eid;
1692 struct deviceSpec *dsea =
1693 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1694 if (!dsea) {
1695 dsea = (struct deviceSpec *)
1696 udf_add_extendedattr(inode,
1697 sizeof(struct deviceSpec) +
1698 sizeof(struct regid), 12, 0x3);
1699 dsea->attrType = cpu_to_le32(12);
1700 dsea->attrSubtype = 1;
1701 dsea->attrLength = cpu_to_le32(
1702 sizeof(struct deviceSpec) +
1703 sizeof(struct regid));
1704 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1705 }
1706 eid = (struct regid *)dsea->impUse;
1707 memset(eid, 0, sizeof(struct regid));
1708 strcpy(eid->ident, UDF_ID_DEVELOPER);
1709 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1710 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1711 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1712 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1713 }
1714
1715 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1716 lb_recorded = 0; /* No extents => no blocks! */
1717 else
1718 lb_recorded =
1719 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1720 (blocksize_bits - 9);
1721
1722 if (iinfo->i_efe == 0) {
1723 memcpy(bh->b_data + sizeof(struct fileEntry),
1724 iinfo->i_ext.i_data,
1725 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1726 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1727
1728 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1729 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1730 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1731 memset(&(fe->impIdent), 0, sizeof(struct regid));
1732 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1733 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1734 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1735 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1736 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1737 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1738 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1739 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1740 crclen = sizeof(struct fileEntry);
1741 } else {
1742 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1743 iinfo->i_ext.i_data,
1744 inode->i_sb->s_blocksize -
1745 sizeof(struct extendedFileEntry));
1746 efe->objectSize = cpu_to_le64(inode->i_size);
1747 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1748
1749 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1750 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1751 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1752 iinfo->i_crtime = inode->i_atime;
1753
1754 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1755 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1756 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1757 iinfo->i_crtime = inode->i_mtime;
1758
1759 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1760 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1761 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1762 iinfo->i_crtime = inode->i_ctime;
1763
1764 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1765 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1766 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1767 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1768
1769 memset(&(efe->impIdent), 0, sizeof(struct regid));
1770 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1771 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1772 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1773 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1774 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1775 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1776 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1777 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1778 crclen = sizeof(struct extendedFileEntry);
1779 }
1780 if (iinfo->i_strat4096) {
1781 fe->icbTag.strategyType = cpu_to_le16(4096);
1782 fe->icbTag.strategyParameter = cpu_to_le16(1);
1783 fe->icbTag.numEntries = cpu_to_le16(2);
1784 } else {
1785 fe->icbTag.strategyType = cpu_to_le16(4);
1786 fe->icbTag.numEntries = cpu_to_le16(1);
1787 }
1788
1789 if (S_ISDIR(inode->i_mode))
1790 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1791 else if (S_ISREG(inode->i_mode))
1792 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1793 else if (S_ISLNK(inode->i_mode))
1794 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1795 else if (S_ISBLK(inode->i_mode))
1796 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1797 else if (S_ISCHR(inode->i_mode))
1798 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1799 else if (S_ISFIFO(inode->i_mode))
1800 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1801 else if (S_ISSOCK(inode->i_mode))
1802 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1803
1804 icbflags = iinfo->i_alloc_type |
1805 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1806 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1807 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1808 (le16_to_cpu(fe->icbTag.flags) &
1809 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1810 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1811
1812 fe->icbTag.flags = cpu_to_le16(icbflags);
1813 if (sbi->s_udfrev >= 0x0200)
1814 fe->descTag.descVersion = cpu_to_le16(3);
1815 else
1816 fe->descTag.descVersion = cpu_to_le16(2);
1817 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1818 fe->descTag.tagLocation = cpu_to_le32(
1819 iinfo->i_location.logicalBlockNum);
1820 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1821 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1822 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1823 crclen));
1824 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1825
1826 out:
1827 set_buffer_uptodate(bh);
1828 unlock_buffer(bh);
1829
1830 /* write the data blocks */
1831 mark_buffer_dirty(bh);
1832 if (do_sync) {
1833 sync_dirty_buffer(bh);
1834 if (buffer_write_io_error(bh)) {
1835 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1836 inode->i_ino);
1837 err = -EIO;
1838 }
1839 }
1840 brelse(bh);
1841
1842 return err;
1843 }
1844
1845 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1846 {
1847 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1848 struct inode *inode = iget_locked(sb, block);
1849
1850 if (!inode)
1851 return NULL;
1852
1853 if (inode->i_state & I_NEW) {
1854 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1855 __udf_read_inode(inode);
1856 unlock_new_inode(inode);
1857 }
1858
1859 if (is_bad_inode(inode))
1860 goto out_iput;
1861
1862 if (ino->logicalBlockNum >= UDF_SB(sb)->
1863 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1864 udf_debug("block=%d, partition=%d out of range\n",
1865 ino->logicalBlockNum, ino->partitionReferenceNum);
1866 make_bad_inode(inode);
1867 goto out_iput;
1868 }
1869
1870 return inode;
1871
1872 out_iput:
1873 iput(inode);
1874 return NULL;
1875 }
1876
1877 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1878 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1879 {
1880 int adsize;
1881 struct short_ad *sad = NULL;
1882 struct long_ad *lad = NULL;
1883 struct allocExtDesc *aed;
1884 uint8_t *ptr;
1885 struct udf_inode_info *iinfo = UDF_I(inode);
1886
1887 if (!epos->bh)
1888 ptr = iinfo->i_ext.i_data + epos->offset -
1889 udf_file_entry_alloc_offset(inode) +
1890 iinfo->i_lenEAttr;
1891 else
1892 ptr = epos->bh->b_data + epos->offset;
1893
1894 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1895 adsize = sizeof(struct short_ad);
1896 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1897 adsize = sizeof(struct long_ad);
1898 else
1899 return -EIO;
1900
1901 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1902 unsigned char *sptr, *dptr;
1903 struct buffer_head *nbh;
1904 int err, loffset;
1905 struct kernel_lb_addr obloc = epos->block;
1906
1907 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1908 obloc.partitionReferenceNum,
1909 obloc.logicalBlockNum, &err);
1910 if (!epos->block.logicalBlockNum)
1911 return -ENOSPC;
1912 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1913 &epos->block,
1914 0));
1915 if (!nbh)
1916 return -EIO;
1917 lock_buffer(nbh);
1918 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1919 set_buffer_uptodate(nbh);
1920 unlock_buffer(nbh);
1921 mark_buffer_dirty_inode(nbh, inode);
1922
1923 aed = (struct allocExtDesc *)(nbh->b_data);
1924 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1925 aed->previousAllocExtLocation =
1926 cpu_to_le32(obloc.logicalBlockNum);
1927 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1928 loffset = epos->offset;
1929 aed->lengthAllocDescs = cpu_to_le32(adsize);
1930 sptr = ptr - adsize;
1931 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1932 memcpy(dptr, sptr, adsize);
1933 epos->offset = sizeof(struct allocExtDesc) + adsize;
1934 } else {
1935 loffset = epos->offset + adsize;
1936 aed->lengthAllocDescs = cpu_to_le32(0);
1937 sptr = ptr;
1938 epos->offset = sizeof(struct allocExtDesc);
1939
1940 if (epos->bh) {
1941 aed = (struct allocExtDesc *)epos->bh->b_data;
1942 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1943 } else {
1944 iinfo->i_lenAlloc += adsize;
1945 mark_inode_dirty(inode);
1946 }
1947 }
1948 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1949 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1950 epos->block.logicalBlockNum, sizeof(struct tag));
1951 else
1952 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1953 epos->block.logicalBlockNum, sizeof(struct tag));
1954 switch (iinfo->i_alloc_type) {
1955 case ICBTAG_FLAG_AD_SHORT:
1956 sad = (struct short_ad *)sptr;
1957 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1958 inode->i_sb->s_blocksize);
1959 sad->extPosition =
1960 cpu_to_le32(epos->block.logicalBlockNum);
1961 break;
1962 case ICBTAG_FLAG_AD_LONG:
1963 lad = (struct long_ad *)sptr;
1964 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1965 inode->i_sb->s_blocksize);
1966 lad->extLocation = cpu_to_lelb(epos->block);
1967 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1968 break;
1969 }
1970 if (epos->bh) {
1971 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1972 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1973 udf_update_tag(epos->bh->b_data, loffset);
1974 else
1975 udf_update_tag(epos->bh->b_data,
1976 sizeof(struct allocExtDesc));
1977 mark_buffer_dirty_inode(epos->bh, inode);
1978 brelse(epos->bh);
1979 } else {
1980 mark_inode_dirty(inode);
1981 }
1982 epos->bh = nbh;
1983 }
1984
1985 udf_write_aext(inode, epos, eloc, elen, inc);
1986
1987 if (!epos->bh) {
1988 iinfo->i_lenAlloc += adsize;
1989 mark_inode_dirty(inode);
1990 } else {
1991 aed = (struct allocExtDesc *)epos->bh->b_data;
1992 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1993 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1994 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1995 udf_update_tag(epos->bh->b_data,
1996 epos->offset + (inc ? 0 : adsize));
1997 else
1998 udf_update_tag(epos->bh->b_data,
1999 sizeof(struct allocExtDesc));
2000 mark_buffer_dirty_inode(epos->bh, inode);
2001 }
2002
2003 return 0;
2004 }
2005
2006 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2007 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2008 {
2009 int adsize;
2010 uint8_t *ptr;
2011 struct short_ad *sad;
2012 struct long_ad *lad;
2013 struct udf_inode_info *iinfo = UDF_I(inode);
2014
2015 if (!epos->bh)
2016 ptr = iinfo->i_ext.i_data + epos->offset -
2017 udf_file_entry_alloc_offset(inode) +
2018 iinfo->i_lenEAttr;
2019 else
2020 ptr = epos->bh->b_data + epos->offset;
2021
2022 switch (iinfo->i_alloc_type) {
2023 case ICBTAG_FLAG_AD_SHORT:
2024 sad = (struct short_ad *)ptr;
2025 sad->extLength = cpu_to_le32(elen);
2026 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2027 adsize = sizeof(struct short_ad);
2028 break;
2029 case ICBTAG_FLAG_AD_LONG:
2030 lad = (struct long_ad *)ptr;
2031 lad->extLength = cpu_to_le32(elen);
2032 lad->extLocation = cpu_to_lelb(*eloc);
2033 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2034 adsize = sizeof(struct long_ad);
2035 break;
2036 default:
2037 return;
2038 }
2039
2040 if (epos->bh) {
2041 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2042 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2043 struct allocExtDesc *aed =
2044 (struct allocExtDesc *)epos->bh->b_data;
2045 udf_update_tag(epos->bh->b_data,
2046 le32_to_cpu(aed->lengthAllocDescs) +
2047 sizeof(struct allocExtDesc));
2048 }
2049 mark_buffer_dirty_inode(epos->bh, inode);
2050 } else {
2051 mark_inode_dirty(inode);
2052 }
2053
2054 if (inc)
2055 epos->offset += adsize;
2056 }
2057
2058 /*
2059 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2060 * someone does some weird stuff.
2061 */
2062 #define UDF_MAX_INDIR_EXTS 16
2063
2064 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2065 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2066 {
2067 int8_t etype;
2068 unsigned int indirections = 0;
2069
2070 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2071 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2072 int block;
2073
2074 if (++indirections > UDF_MAX_INDIR_EXTS) {
2075 udf_err(inode->i_sb,
2076 "too many indirect extents in inode %lu\n",
2077 inode->i_ino);
2078 return -1;
2079 }
2080
2081 epos->block = *eloc;
2082 epos->offset = sizeof(struct allocExtDesc);
2083 brelse(epos->bh);
2084 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2085 epos->bh = udf_tread(inode->i_sb, block);
2086 if (!epos->bh) {
2087 udf_debug("reading block %d failed!\n", block);
2088 return -1;
2089 }
2090 }
2091
2092 return etype;
2093 }
2094
2095 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2096 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2097 {
2098 int alen;
2099 int8_t etype;
2100 uint8_t *ptr;
2101 struct short_ad *sad;
2102 struct long_ad *lad;
2103 struct udf_inode_info *iinfo = UDF_I(inode);
2104
2105 if (!epos->bh) {
2106 if (!epos->offset)
2107 epos->offset = udf_file_entry_alloc_offset(inode);
2108 ptr = iinfo->i_ext.i_data + epos->offset -
2109 udf_file_entry_alloc_offset(inode) +
2110 iinfo->i_lenEAttr;
2111 alen = udf_file_entry_alloc_offset(inode) +
2112 iinfo->i_lenAlloc;
2113 } else {
2114 if (!epos->offset)
2115 epos->offset = sizeof(struct allocExtDesc);
2116 ptr = epos->bh->b_data + epos->offset;
2117 alen = sizeof(struct allocExtDesc) +
2118 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2119 lengthAllocDescs);
2120 }
2121
2122 switch (iinfo->i_alloc_type) {
2123 case ICBTAG_FLAG_AD_SHORT:
2124 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2125 if (!sad)
2126 return -1;
2127 etype = le32_to_cpu(sad->extLength) >> 30;
2128 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2129 eloc->partitionReferenceNum =
2130 iinfo->i_location.partitionReferenceNum;
2131 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2132 break;
2133 case ICBTAG_FLAG_AD_LONG:
2134 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2135 if (!lad)
2136 return -1;
2137 etype = le32_to_cpu(lad->extLength) >> 30;
2138 *eloc = lelb_to_cpu(lad->extLocation);
2139 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2140 break;
2141 default:
2142 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2143 return -1;
2144 }
2145
2146 return etype;
2147 }
2148
2149 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2150 struct kernel_lb_addr neloc, uint32_t nelen)
2151 {
2152 struct kernel_lb_addr oeloc;
2153 uint32_t oelen;
2154 int8_t etype;
2155
2156 if (epos.bh)
2157 get_bh(epos.bh);
2158
2159 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2160 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2161 neloc = oeloc;
2162 nelen = (etype << 30) | oelen;
2163 }
2164 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2165 brelse(epos.bh);
2166
2167 return (nelen >> 30);
2168 }
2169
2170 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2171 struct kernel_lb_addr eloc, uint32_t elen)
2172 {
2173 struct extent_position oepos;
2174 int adsize;
2175 int8_t etype;
2176 struct allocExtDesc *aed;
2177 struct udf_inode_info *iinfo;
2178
2179 if (epos.bh) {
2180 get_bh(epos.bh);
2181 get_bh(epos.bh);
2182 }
2183
2184 iinfo = UDF_I(inode);
2185 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2186 adsize = sizeof(struct short_ad);
2187 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2188 adsize = sizeof(struct long_ad);
2189 else
2190 adsize = 0;
2191
2192 oepos = epos;
2193 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2194 return -1;
2195
2196 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2197 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2198 if (oepos.bh != epos.bh) {
2199 oepos.block = epos.block;
2200 brelse(oepos.bh);
2201 get_bh(epos.bh);
2202 oepos.bh = epos.bh;
2203 oepos.offset = epos.offset - adsize;
2204 }
2205 }
2206 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2207 elen = 0;
2208
2209 if (epos.bh != oepos.bh) {
2210 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2211 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2212 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2213 if (!oepos.bh) {
2214 iinfo->i_lenAlloc -= (adsize * 2);
2215 mark_inode_dirty(inode);
2216 } else {
2217 aed = (struct allocExtDesc *)oepos.bh->b_data;
2218 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2219 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2220 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2221 udf_update_tag(oepos.bh->b_data,
2222 oepos.offset - (2 * adsize));
2223 else
2224 udf_update_tag(oepos.bh->b_data,
2225 sizeof(struct allocExtDesc));
2226 mark_buffer_dirty_inode(oepos.bh, inode);
2227 }
2228 } else {
2229 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2230 if (!oepos.bh) {
2231 iinfo->i_lenAlloc -= adsize;
2232 mark_inode_dirty(inode);
2233 } else {
2234 aed = (struct allocExtDesc *)oepos.bh->b_data;
2235 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2236 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2237 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2238 udf_update_tag(oepos.bh->b_data,
2239 epos.offset - adsize);
2240 else
2241 udf_update_tag(oepos.bh->b_data,
2242 sizeof(struct allocExtDesc));
2243 mark_buffer_dirty_inode(oepos.bh, inode);
2244 }
2245 }
2246
2247 brelse(epos.bh);
2248 brelse(oepos.bh);
2249
2250 return (elen >> 30);
2251 }
2252
2253 int8_t inode_bmap(struct inode *inode, sector_t block,
2254 struct extent_position *pos, struct kernel_lb_addr *eloc,
2255 uint32_t *elen, sector_t *offset)
2256 {
2257 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2258 loff_t lbcount = 0, bcount =
2259 (loff_t) block << blocksize_bits;
2260 int8_t etype;
2261 struct udf_inode_info *iinfo;
2262
2263 iinfo = UDF_I(inode);
2264 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2265 pos->offset = 0;
2266 pos->block = iinfo->i_location;
2267 pos->bh = NULL;
2268 }
2269 *elen = 0;
2270 do {
2271 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2272 if (etype == -1) {
2273 *offset = (bcount - lbcount) >> blocksize_bits;
2274 iinfo->i_lenExtents = lbcount;
2275 return -1;
2276 }
2277 lbcount += *elen;
2278 } while (lbcount <= bcount);
2279 /* update extent cache */
2280 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2281 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2282
2283 return etype;
2284 }
2285
2286 long udf_block_map(struct inode *inode, sector_t block)
2287 {
2288 struct kernel_lb_addr eloc;
2289 uint32_t elen;
2290 sector_t offset;
2291 struct extent_position epos = {};
2292 int ret;
2293
2294 down_read(&UDF_I(inode)->i_data_sem);
2295
2296 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2297 (EXT_RECORDED_ALLOCATED >> 30))
2298 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2299 else
2300 ret = 0;
2301
2302 up_read(&UDF_I(inode)->i_data_sem);
2303 brelse(epos.bh);
2304
2305 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2306 return udf_fixed_to_variable(ret);
2307 else
2308 return ret;
2309 }