import PULS_20180308
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ubifs / sb.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS superblock. The superblock is stored at the first
25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26 * change it. The superblock node mostly contains geometry information.
27 */
28
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/random.h>
32 #include <linux/math64.h>
33
34 /*
35 * Default journal size in logical eraseblocks as a percent of total
36 * flash size.
37 */
38 #define DEFAULT_JNL_PERCENT 5
39
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
42
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
45
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
48
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB 0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB 2
53
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
56
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
59
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (16*1024*1024)
62
63 #define UBIFS_ONE_GIGA 1024*1024*1024
64
65 /* Default time granularity in nanoseconds */
66 #define DEFAULT_TIME_GRAN 1000000000
67
68 /**
69 * create_default_filesystem - format empty UBI volume.
70 * @c: UBIFS file-system description object
71 *
72 * This function creates default empty file-system. Returns zero in case of
73 * success and a negative error code in case of failure.
74 */
75 static int create_default_filesystem(struct ubifs_info *c)
76 {
77 struct ubifs_sb_node *sup;
78 struct ubifs_mst_node *mst;
79 struct ubifs_idx_node *idx;
80 struct ubifs_branch *br;
81 struct ubifs_ino_node *ino;
82 struct ubifs_cs_node *cs;
83 union ubifs_key key;
84 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
85 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
86 int min_leb_cnt = UBIFS_MIN_LEB_CNT;
87 long long tmp64, main_bytes;
88 __le64 tmp_le64;
89
90 /* Some functions called from here depend on the @c->key_len filed */
91 c->key_len = UBIFS_SK_LEN;
92
93 /*
94 * First of all, we have to calculate default file-system geometry -
95 * log size, journal size, etc.
96 */
97 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
98 /* We can first multiply then divide and have no overflow */
99 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
100 else
101 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
102
103 if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
104 jnl_lebs = UBIFS_MIN_JNL_LEBS;
105 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
106 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
107
108 /*
109 * The log should be large enough to fit reference nodes for all bud
110 * LEBs. Because buds do not have to start from the beginning of LEBs
111 * (half of the LEB may contain committed data), the log should
112 * generally be larger, make it twice as large.
113 */
114 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
115 log_lebs = tmp / c->leb_size;
116 /* Plus one LEB reserved for commit */
117 log_lebs += 1;
118 if (c->leb_cnt - min_leb_cnt > 8) {
119 /* And some extra space to allow writes while committing */
120 log_lebs += 1;
121 min_leb_cnt += 1;
122 }
123
124 max_buds = jnl_lebs - log_lebs;
125 if (max_buds < UBIFS_MIN_BUD_LEBS)
126 max_buds = UBIFS_MIN_BUD_LEBS;
127
128 /*
129 * Orphan nodes are stored in a separate area. One node can store a lot
130 * of orphan inode numbers, but when new orphan comes we just add a new
131 * orphan node. At some point the nodes are consolidated into one
132 * orphan node.
133 */
134 orph_lebs = UBIFS_MIN_ORPH_LEBS;
135 if (c->leb_cnt - min_leb_cnt > 1)
136 /*
137 * For debugging purposes it is better to have at least 2
138 * orphan LEBs, because the orphan subsystem would need to do
139 * consolidations and would be stressed more.
140 */
141 orph_lebs += 1;
142
143 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
144 main_lebs -= orph_lebs;
145
146 lpt_first = UBIFS_LOG_LNUM + log_lebs;
147 c->lsave_cnt = DEFAULT_LSAVE_CNT;
148 c->max_leb_cnt = c->leb_cnt;
149 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
150 &big_lpt);
151 if (err)
152 return err;
153
154 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
155 lpt_first + lpt_lebs - 1);
156
157 main_first = c->leb_cnt - main_lebs;
158
159 /* Create default superblock */
160 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
161 sup = kzalloc(tmp, GFP_KERNEL);
162 if (!sup)
163 return -ENOMEM;
164
165 tmp64 = (long long)max_buds * c->leb_size;
166 if (big_lpt)
167 sup_flags |= UBIFS_FLG_BIGLPT;
168
169 sup->ch.node_type = UBIFS_SB_NODE;
170 sup->key_hash = UBIFS_KEY_HASH_R5;
171 sup->flags = cpu_to_le32(sup_flags);
172 sup->min_io_size = cpu_to_le32(c->min_io_size);
173 sup->leb_size = cpu_to_le32(c->leb_size);
174 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
175 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
176 sup->max_bud_bytes = cpu_to_le64(tmp64);
177 sup->log_lebs = cpu_to_le32(log_lebs);
178 sup->lpt_lebs = cpu_to_le32(lpt_lebs);
179 sup->orph_lebs = cpu_to_le32(orph_lebs);
180 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
181 sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
182 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
183 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
184 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
185 if (c->mount_opts.override_compr)
186 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
187 else {
188 #if defined(CONFIG_UBIFS_FS_LZ4K)
189 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZ4K);
190 #else
191 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
192 #endif
193 }
194
195 generate_random_uuid(sup->uuid);
196
197 main_bytes = (long long)main_lebs * c->leb_size;
198
199 /*If the size of a volume is bigger than 1G, set rp_size to DEFAULT_MAX_RP_SIZE(16M).*/
200 if (main_bytes >= UBIFS_ONE_GIGA)
201 tmp64 = DEFAULT_MAX_RP_SIZE;
202 else
203 tmp64 = 0;
204
205 sup->rp_size = cpu_to_le64(tmp64);
206 sup->rp_uid = 10010; //VID_CCCI
207 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
208
209 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
210 kfree(sup);
211 if (err)
212 return err;
213
214 dbg_gen("default superblock created at LEB 0:0");
215
216 /* Create default master node */
217 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
218 if (!mst)
219 return -ENOMEM;
220
221 mst->ch.node_type = UBIFS_MST_NODE;
222 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
223 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
224 mst->cmt_no = 0;
225 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
226 mst->root_offs = 0;
227 tmp = ubifs_idx_node_sz(c, 1);
228 mst->root_len = cpu_to_le32(tmp);
229 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
230 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
231 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
232 mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
233 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
234 mst->lpt_offs = cpu_to_le32(c->lpt_offs);
235 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
236 mst->nhead_offs = cpu_to_le32(c->nhead_offs);
237 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
238 mst->ltab_offs = cpu_to_le32(c->ltab_offs);
239 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
240 mst->lsave_offs = cpu_to_le32(c->lsave_offs);
241 mst->lscan_lnum = cpu_to_le32(main_first);
242 mst->empty_lebs = cpu_to_le32(main_lebs - 2);
243 mst->idx_lebs = cpu_to_le32(1);
244 mst->leb_cnt = cpu_to_le32(c->leb_cnt);
245
246 /* Calculate lprops statistics */
247 tmp64 = main_bytes;
248 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
249 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
250 mst->total_free = cpu_to_le64(tmp64);
251
252 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
253 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
254 UBIFS_INO_NODE_SZ;
255 tmp64 += ino_waste;
256 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
257 mst->total_dirty = cpu_to_le64(tmp64);
258
259 /* The indexing LEB does not contribute to dark space */
260 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
261 mst->total_dark = cpu_to_le64(tmp64);
262
263 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
264
265 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
266 if (err) {
267 kfree(mst);
268 return err;
269 }
270 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
271 0);
272 kfree(mst);
273 if (err)
274 return err;
275
276 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
277
278 /* Create the root indexing node */
279 tmp = ubifs_idx_node_sz(c, 1);
280 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
281 if (!idx)
282 return -ENOMEM;
283
284 c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
285 c->key_hash = key_r5_hash;
286
287 idx->ch.node_type = UBIFS_IDX_NODE;
288 idx->child_cnt = cpu_to_le16(1);
289 ino_key_init(c, &key, UBIFS_ROOT_INO);
290 br = ubifs_idx_branch(c, idx, 0);
291 key_write_idx(c, &key, &br->key);
292 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
293 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
294 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
295 kfree(idx);
296 if (err)
297 return err;
298
299 dbg_gen("default root indexing node created LEB %d:0",
300 main_first + DEFAULT_IDX_LEB);
301
302 /* Create default root inode */
303 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
304 ino = kzalloc(tmp, GFP_KERNEL);
305 if (!ino)
306 return -ENOMEM;
307
308 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
309 ino->ch.node_type = UBIFS_INO_NODE;
310 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
311 ino->nlink = cpu_to_le32(2);
312 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
313 ino->atime_sec = tmp_le64;
314 ino->ctime_sec = tmp_le64;
315 ino->mtime_sec = tmp_le64;
316 ino->atime_nsec = 0;
317 ino->ctime_nsec = 0;
318 ino->mtime_nsec = 0;
319 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
320 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
321
322 /* Set compression enabled by default */
323 ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
324
325 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
326 main_first + DEFAULT_DATA_LEB, 0);
327 kfree(ino);
328 if (err)
329 return err;
330
331 dbg_gen("root inode created at LEB %d:0",
332 main_first + DEFAULT_DATA_LEB);
333
334 /*
335 * The first node in the log has to be the commit start node. This is
336 * always the case during normal file-system operation. Write a fake
337 * commit start node to the log.
338 */
339 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
340 cs = kzalloc(tmp, GFP_KERNEL);
341 if (!cs)
342 return -ENOMEM;
343
344 cs->ch.node_type = UBIFS_CS_NODE;
345 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
346 kfree(cs);
347
348 ubifs_msg("default file-system created");
349 return 0;
350 }
351
352 /**
353 * validate_sb - validate superblock node.
354 * @c: UBIFS file-system description object
355 * @sup: superblock node
356 *
357 * This function validates superblock node @sup. Since most of data was read
358 * from the superblock and stored in @c, the function validates fields in @c
359 * instead. Returns zero in case of success and %-EINVAL in case of validation
360 * failure.
361 */
362 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
363 {
364 long long max_bytes;
365 int err = 1, min_leb_cnt;
366
367 if (!c->key_hash) {
368 err = 2;
369 goto failed;
370 }
371
372 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
373 err = 3;
374 goto failed;
375 }
376
377 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
378 ubifs_err("min. I/O unit mismatch: %d in superblock, %d real",
379 le32_to_cpu(sup->min_io_size), c->min_io_size);
380 goto failed;
381 }
382
383 if (le32_to_cpu(sup->leb_size) != c->leb_size) {
384 ubifs_err("LEB size mismatch: %d in superblock, %d real",
385 le32_to_cpu(sup->leb_size), c->leb_size);
386 goto failed;
387 }
388
389 if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
390 c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
391 c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
392 c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
393 err = 4;
394 goto failed;
395 }
396
397 /*
398 * Calculate minimum allowed amount of main area LEBs. This is very
399 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
400 * have just read from the superblock.
401 */
402 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
403 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
404
405 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
406 ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
407 c->leb_cnt, c->vi.size, min_leb_cnt);
408 goto failed;
409 }
410
411 if (c->max_leb_cnt < c->leb_cnt) {
412 ubifs_err("max. LEB count %d less than LEB count %d",
413 c->max_leb_cnt, c->leb_cnt);
414 goto failed;
415 }
416
417 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
418 ubifs_err("too few main LEBs count %d, must be at least %d",
419 c->main_lebs, UBIFS_MIN_MAIN_LEBS);
420 goto failed;
421 }
422
423 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
424 if (c->max_bud_bytes < max_bytes) {
425 ubifs_err("too small journal (%lld bytes), must be at least %lld bytes",
426 c->max_bud_bytes, max_bytes);
427 goto failed;
428 }
429
430 max_bytes = (long long)c->leb_size * c->main_lebs;
431 if (c->max_bud_bytes > max_bytes) {
432 ubifs_err("too large journal size (%lld bytes), only %lld bytes available in the main area",
433 c->max_bud_bytes, max_bytes);
434 goto failed;
435 }
436
437 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
438 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
439 err = 9;
440 goto failed;
441 }
442
443 if (c->fanout < UBIFS_MIN_FANOUT ||
444 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
445 err = 10;
446 goto failed;
447 }
448
449 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
450 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
451 c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
452 err = 11;
453 goto failed;
454 }
455
456 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
457 c->orph_lebs + c->main_lebs != c->leb_cnt) {
458 err = 12;
459 goto failed;
460 }
461
462 if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
463 err = 13;
464 goto failed;
465 }
466
467 if (c->rp_size < 0 || max_bytes < c->rp_size) {
468 err = 14;
469 goto failed;
470 }
471
472 if (le32_to_cpu(sup->time_gran) > 1000000000 ||
473 le32_to_cpu(sup->time_gran) < 1) {
474 err = 15;
475 goto failed;
476 }
477
478 return 0;
479
480 failed:
481 ubifs_err("bad superblock, error %d", err);
482 ubifs_dump_node(c, sup);
483 return -EINVAL;
484 }
485
486 /**
487 * ubifs_read_sb_node - read superblock node.
488 * @c: UBIFS file-system description object
489 *
490 * This function returns a pointer to the superblock node or a negative error
491 * code. Note, the user of this function is responsible of kfree()'ing the
492 * returned superblock buffer.
493 */
494 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
495 {
496 struct ubifs_sb_node *sup;
497 int err;
498
499 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
500 if (!sup)
501 return ERR_PTR(-ENOMEM);
502
503 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
504 UBIFS_SB_LNUM, 0);
505 if (err) {
506 kfree(sup);
507 return ERR_PTR(err);
508 }
509
510 return sup;
511 }
512
513 /**
514 * ubifs_write_sb_node - write superblock node.
515 * @c: UBIFS file-system description object
516 * @sup: superblock node read with 'ubifs_read_sb_node()'
517 *
518 * This function returns %0 on success and a negative error code on failure.
519 */
520 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
521 {
522 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
523
524 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
525 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
526 }
527
528 /**
529 * ubifs_read_superblock - read superblock.
530 * @c: UBIFS file-system description object
531 *
532 * This function finds, reads and checks the superblock. If an empty UBI volume
533 * is being mounted, this function creates default superblock. Returns zero in
534 * case of success, and a negative error code in case of failure.
535 */
536 int ubifs_read_superblock(struct ubifs_info *c)
537 {
538 int err, sup_flags;
539 struct ubifs_sb_node *sup;
540
541 if (c->empty) {
542 err = create_default_filesystem(c);
543 if (err)
544 return err;
545 }
546
547 sup = ubifs_read_sb_node(c);
548 if (IS_ERR(sup))
549 return PTR_ERR(sup);
550
551 c->fmt_version = le32_to_cpu(sup->fmt_version);
552 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
553
554 /*
555 * The software supports all previous versions but not future versions,
556 * due to the unavailability of time-travelling equipment.
557 */
558 if (c->fmt_version > UBIFS_FORMAT_VERSION) {
559 ubifs_assert(!c->ro_media || c->ro_mount);
560 if (!c->ro_mount ||
561 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
562 ubifs_err("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
563 c->fmt_version, c->ro_compat_version,
564 UBIFS_FORMAT_VERSION,
565 UBIFS_RO_COMPAT_VERSION);
566 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
567 ubifs_msg("only R/O mounting is possible");
568 err = -EROFS;
569 } else
570 err = -EINVAL;
571 goto out;
572 }
573
574 /*
575 * The FS is mounted R/O, and the media format is
576 * R/O-compatible with the UBIFS implementation, so we can
577 * mount.
578 */
579 c->rw_incompat = 1;
580 }
581
582 if (c->fmt_version < 3) {
583 ubifs_err("on-flash format version %d is not supported",
584 c->fmt_version);
585 err = -EINVAL;
586 goto out;
587 }
588
589 switch (sup->key_hash) {
590 case UBIFS_KEY_HASH_R5:
591 c->key_hash = key_r5_hash;
592 c->key_hash_type = UBIFS_KEY_HASH_R5;
593 break;
594
595 case UBIFS_KEY_HASH_TEST:
596 c->key_hash = key_test_hash;
597 c->key_hash_type = UBIFS_KEY_HASH_TEST;
598 break;
599 };
600
601 c->key_fmt = sup->key_fmt;
602
603 switch (c->key_fmt) {
604 case UBIFS_SIMPLE_KEY_FMT:
605 c->key_len = UBIFS_SK_LEN;
606 break;
607 default:
608 ubifs_err("unsupported key format");
609 err = -EINVAL;
610 goto out;
611 }
612
613 c->leb_cnt = le32_to_cpu(sup->leb_cnt);
614 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
615 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
616 c->log_lebs = le32_to_cpu(sup->log_lebs);
617 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
618 c->orph_lebs = le32_to_cpu(sup->orph_lebs);
619 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
620 c->fanout = le32_to_cpu(sup->fanout);
621 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
622 c->rp_size = le64_to_cpu(sup->rp_size);
623 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
624 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
625 sup_flags = le32_to_cpu(sup->flags);
626 if (!c->mount_opts.override_compr)
627 c->default_compr = le16_to_cpu(sup->default_compr);
628
629 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
630 memcpy(&c->uuid, &sup->uuid, 16);
631 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
632 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
633
634 /* Automatically increase file system size to the maximum size */
635 c->old_leb_cnt = c->leb_cnt;
636 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
637 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
638 if (c->ro_mount)
639 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
640 c->old_leb_cnt, c->leb_cnt);
641 else {
642 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
643 c->old_leb_cnt, c->leb_cnt);
644 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
645 err = ubifs_write_sb_node(c, sup);
646 if (err)
647 goto out;
648 c->old_leb_cnt = c->leb_cnt;
649 }
650 }
651
652 c->log_bytes = (long long)c->log_lebs * c->leb_size;
653 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
654 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
655 c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
656 c->orph_first = c->lpt_last + 1;
657 c->orph_last = c->orph_first + c->orph_lebs - 1;
658 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
659 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
660 c->main_first = c->leb_cnt - c->main_lebs;
661
662 err = validate_sb(c, sup);
663 out:
664 kfree(sup);
665 return err;
666 }
667
668 /**
669 * fixup_leb - fixup/unmap an LEB containing free space.
670 * @c: UBIFS file-system description object
671 * @lnum: the LEB number to fix up
672 * @len: number of used bytes in LEB (starting at offset 0)
673 *
674 * This function reads the contents of the given LEB number @lnum, then fixes
675 * it up, so that empty min. I/O units in the end of LEB are actually erased on
676 * flash (rather than being just all-0xff real data). If the LEB is completely
677 * empty, it is simply unmapped.
678 */
679 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
680 {
681 int err;
682
683 ubifs_assert(len >= 0);
684 ubifs_assert(len % c->min_io_size == 0);
685 ubifs_assert(len < c->leb_size);
686
687 if (len == 0) {
688 dbg_mnt("unmap empty LEB %d", lnum);
689 return ubifs_leb_unmap(c, lnum);
690 }
691
692 dbg_mnt("fixup LEB %d, data len %d", lnum, len);
693 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
694 if (err)
695 return err;
696
697 return ubifs_leb_change(c, lnum, c->sbuf, len);
698 }
699
700 /**
701 * fixup_free_space - find & remap all LEBs containing free space.
702 * @c: UBIFS file-system description object
703 *
704 * This function walks through all LEBs in the filesystem and fiexes up those
705 * containing free/empty space.
706 */
707 static int fixup_free_space(struct ubifs_info *c)
708 {
709 int lnum, err = 0;
710 struct ubifs_lprops *lprops;
711
712 ubifs_get_lprops(c);
713
714 /* Fixup LEBs in the master area */
715 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
716 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
717 if (err)
718 goto out;
719 }
720
721 /* Unmap unused log LEBs */
722 lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
723 while (lnum != c->ltail_lnum) {
724 err = fixup_leb(c, lnum, 0);
725 if (err)
726 goto out;
727 lnum = ubifs_next_log_lnum(c, lnum);
728 }
729
730 /*
731 * Fixup the log head which contains the only a CS node at the
732 * beginning.
733 */
734 err = fixup_leb(c, c->lhead_lnum,
735 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
736 if (err)
737 goto out;
738
739 /* Fixup LEBs in the LPT area */
740 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
741 int free = c->ltab[lnum - c->lpt_first].free;
742
743 if (free > 0) {
744 err = fixup_leb(c, lnum, c->leb_size - free);
745 if (err)
746 goto out;
747 }
748 }
749
750 /* Unmap LEBs in the orphans area */
751 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
752 err = fixup_leb(c, lnum, 0);
753 if (err)
754 goto out;
755 }
756
757 /* Fixup LEBs in the main area */
758 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
759 lprops = ubifs_lpt_lookup(c, lnum);
760 if (IS_ERR(lprops)) {
761 err = PTR_ERR(lprops);
762 goto out;
763 }
764
765 if (lprops->free > 0) {
766 err = fixup_leb(c, lnum, c->leb_size - lprops->free);
767 if (err)
768 goto out;
769 }
770 }
771
772 out:
773 ubifs_release_lprops(c);
774 return err;
775 }
776
777 /**
778 * ubifs_fixup_free_space - find & fix all LEBs with free space.
779 * @c: UBIFS file-system description object
780 *
781 * This function fixes up LEBs containing free space on first mount, if the
782 * appropriate flag was set when the FS was created. Each LEB with one or more
783 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
784 * the free space is actually erased. E.g., this is necessary for some NAND
785 * chips, since the free space may have been programmed like real "0xff" data
786 * (generating a non-0xff ECC), causing future writes to the not-really-erased
787 * NAND pages to behave badly. After the space is fixed up, the superblock flag
788 * is cleared, so that this is skipped for all future mounts.
789 */
790 int ubifs_fixup_free_space(struct ubifs_info *c)
791 {
792 int err;
793 struct ubifs_sb_node *sup;
794
795 ubifs_assert(c->space_fixup);
796 ubifs_assert(!c->ro_mount);
797
798 ubifs_msg("start fixing up free space");
799
800 err = fixup_free_space(c);
801 if (err)
802 return err;
803
804 sup = ubifs_read_sb_node(c);
805 if (IS_ERR(sup))
806 return PTR_ERR(sup);
807
808 /* Free-space fixup is no longer required */
809 c->space_fixup = 0;
810 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
811
812 err = ubifs_write_sb_node(c, sup);
813 kfree(sup);
814 if (err)
815 return err;
816
817 ubifs_msg("free space fixup complete");
818 return err;
819 }