import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ubifs / orphan.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Author: Adrian Hunter
20 */
21
22 #include "ubifs.h"
23
24 /*
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
33 *
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
39 *
40 * The number of orphans that can fit in a LEB is:
41 *
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
43 *
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
45 *
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
53 */
54
55 static int dbg_check_orphans(struct ubifs_info *c);
56
57 /**
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
61 *
62 * Add an orphan. This function is called when an inodes link count drops to
63 * zero.
64 */
65 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
66 {
67 struct ubifs_orphan *orphan, *o;
68 struct rb_node **p, *parent = NULL;
69
70 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
71 if (!orphan)
72 return -ENOMEM;
73 orphan->inum = inum;
74 orphan->new = 1;
75
76 spin_lock(&c->orphan_lock);
77 if (c->tot_orphans >= c->max_orphans) {
78 spin_unlock(&c->orphan_lock);
79 kfree(orphan);
80 return -ENFILE;
81 }
82 p = &c->orph_tree.rb_node;
83 while (*p) {
84 parent = *p;
85 o = rb_entry(parent, struct ubifs_orphan, rb);
86 if (inum < o->inum)
87 p = &(*p)->rb_left;
88 else if (inum > o->inum)
89 p = &(*p)->rb_right;
90 else {
91 ubifs_err("orphaned twice");
92 spin_unlock(&c->orphan_lock);
93 kfree(orphan);
94 return 0;
95 }
96 }
97 c->tot_orphans += 1;
98 c->new_orphans += 1;
99 rb_link_node(&orphan->rb, parent, p);
100 rb_insert_color(&orphan->rb, &c->orph_tree);
101 list_add_tail(&orphan->list, &c->orph_list);
102 list_add_tail(&orphan->new_list, &c->orph_new);
103 spin_unlock(&c->orphan_lock);
104 dbg_gen("ino %lu", (unsigned long)inum);
105 return 0;
106 }
107
108 /**
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
112 *
113 * Delete an orphan. This function is called when an inode is deleted.
114 */
115 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
116 {
117 struct ubifs_orphan *o;
118 struct rb_node *p;
119
120 spin_lock(&c->orphan_lock);
121 p = c->orph_tree.rb_node;
122 while (p) {
123 o = rb_entry(p, struct ubifs_orphan, rb);
124 if (inum < o->inum)
125 p = p->rb_left;
126 else if (inum > o->inum)
127 p = p->rb_right;
128 else {
129 if (o->del) {
130 spin_unlock(&c->orphan_lock);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum);
133 return;
134 }
135 if (o->cmt) {
136 o->del = 1;
137 o->dnext = c->orph_dnext;
138 c->orph_dnext = o;
139 spin_unlock(&c->orphan_lock);
140 dbg_gen("delete later ino %lu",
141 (unsigned long)inum);
142 return;
143 }
144 rb_erase(p, &c->orph_tree);
145 list_del(&o->list);
146 c->tot_orphans -= 1;
147 if (o->new) {
148 list_del(&o->new_list);
149 c->new_orphans -= 1;
150 }
151 spin_unlock(&c->orphan_lock);
152 kfree(o);
153 dbg_gen("inum %lu", (unsigned long)inum);
154 return;
155 }
156 }
157 spin_unlock(&c->orphan_lock);
158 ubifs_err("missing orphan ino %lu", (unsigned long)inum);
159 dump_stack();
160 }
161
162 /**
163 * ubifs_orphan_start_commit - start commit of orphans.
164 * @c: UBIFS file-system description object
165 *
166 * Start commit of orphans.
167 */
168 int ubifs_orphan_start_commit(struct ubifs_info *c)
169 {
170 struct ubifs_orphan *orphan, **last;
171
172 spin_lock(&c->orphan_lock);
173 last = &c->orph_cnext;
174 list_for_each_entry(orphan, &c->orph_new, new_list) {
175 ubifs_assert(orphan->new);
176 ubifs_assert(!orphan->cmt);
177 orphan->new = 0;
178 orphan->cmt = 1;
179 *last = orphan;
180 last = &orphan->cnext;
181 }
182 *last = NULL;
183 c->cmt_orphans = c->new_orphans;
184 c->new_orphans = 0;
185 dbg_cmt("%d orphans to commit", c->cmt_orphans);
186 INIT_LIST_HEAD(&c->orph_new);
187 if (c->tot_orphans == 0)
188 c->no_orphs = 1;
189 else
190 c->no_orphs = 0;
191 spin_unlock(&c->orphan_lock);
192 return 0;
193 }
194
195 /**
196 * avail_orphs - calculate available space.
197 * @c: UBIFS file-system description object
198 *
199 * This function returns the number of orphans that can be written in the
200 * available space.
201 */
202 static int avail_orphs(struct ubifs_info *c)
203 {
204 int avail_lebs, avail, gap;
205
206 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
207 avail = avail_lebs *
208 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
209 gap = c->leb_size - c->ohead_offs;
210 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
211 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
212 return avail;
213 }
214
215 /**
216 * tot_avail_orphs - calculate total space.
217 * @c: UBIFS file-system description object
218 *
219 * This function returns the number of orphans that can be written in half
220 * the total space. That leaves half the space for adding new orphans.
221 */
222 static int tot_avail_orphs(struct ubifs_info *c)
223 {
224 int avail_lebs, avail;
225
226 avail_lebs = c->orph_lebs;
227 avail = avail_lebs *
228 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
229 return avail / 2;
230 }
231
232 /**
233 * do_write_orph_node - write a node to the orphan head.
234 * @c: UBIFS file-system description object
235 * @len: length of node
236 * @atomic: write atomically
237 *
238 * This function writes a node to the orphan head from the orphan buffer. If
239 * %atomic is not zero, then the write is done atomically. On success, %0 is
240 * returned, otherwise a negative error code is returned.
241 */
242 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
243 {
244 int err = 0;
245
246 if (atomic) {
247 ubifs_assert(c->ohead_offs == 0);
248 ubifs_prepare_node(c, c->orph_buf, len, 1);
249 len = ALIGN(len, c->min_io_size);
250 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
251 } else {
252 if (c->ohead_offs == 0) {
253 /* Ensure LEB has been unmapped */
254 err = ubifs_leb_unmap(c, c->ohead_lnum);
255 if (err)
256 return err;
257 }
258 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
259 c->ohead_offs);
260 }
261 return err;
262 }
263
264 /**
265 * write_orph_node - write an orphan node.
266 * @c: UBIFS file-system description object
267 * @atomic: write atomically
268 *
269 * This function builds an orphan node from the cnext list and writes it to the
270 * orphan head. On success, %0 is returned, otherwise a negative error code
271 * is returned.
272 */
273 static int write_orph_node(struct ubifs_info *c, int atomic)
274 {
275 struct ubifs_orphan *orphan, *cnext;
276 struct ubifs_orph_node *orph;
277 int gap, err, len, cnt, i;
278
279 ubifs_assert(c->cmt_orphans > 0);
280 gap = c->leb_size - c->ohead_offs;
281 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
282 c->ohead_lnum += 1;
283 c->ohead_offs = 0;
284 gap = c->leb_size;
285 if (c->ohead_lnum > c->orph_last) {
286 /*
287 * We limit the number of orphans so that this should
288 * never happen.
289 */
290 ubifs_err("out of space in orphan area");
291 return -EINVAL;
292 }
293 }
294 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
295 if (cnt > c->cmt_orphans)
296 cnt = c->cmt_orphans;
297 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
298 ubifs_assert(c->orph_buf);
299 orph = c->orph_buf;
300 orph->ch.node_type = UBIFS_ORPH_NODE;
301 spin_lock(&c->orphan_lock);
302 cnext = c->orph_cnext;
303 for (i = 0; i < cnt; i++) {
304 orphan = cnext;
305 ubifs_assert(orphan->cmt);
306 orph->inos[i] = cpu_to_le64(orphan->inum);
307 orphan->cmt = 0;
308 cnext = orphan->cnext;
309 orphan->cnext = NULL;
310 }
311 c->orph_cnext = cnext;
312 c->cmt_orphans -= cnt;
313 spin_unlock(&c->orphan_lock);
314 if (c->cmt_orphans)
315 orph->cmt_no = cpu_to_le64(c->cmt_no);
316 else
317 /* Mark the last node of the commit */
318 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
319 ubifs_assert(c->ohead_offs + len <= c->leb_size);
320 ubifs_assert(c->ohead_lnum >= c->orph_first);
321 ubifs_assert(c->ohead_lnum <= c->orph_last);
322 err = do_write_orph_node(c, len, atomic);
323 c->ohead_offs += ALIGN(len, c->min_io_size);
324 c->ohead_offs = ALIGN(c->ohead_offs, 8);
325 return err;
326 }
327
328 /**
329 * write_orph_nodes - write orphan nodes until there are no more to commit.
330 * @c: UBIFS file-system description object
331 * @atomic: write atomically
332 *
333 * This function writes orphan nodes for all the orphans to commit. On success,
334 * %0 is returned, otherwise a negative error code is returned.
335 */
336 static int write_orph_nodes(struct ubifs_info *c, int atomic)
337 {
338 int err;
339
340 while (c->cmt_orphans > 0) {
341 err = write_orph_node(c, atomic);
342 if (err)
343 return err;
344 }
345 if (atomic) {
346 int lnum;
347
348 /* Unmap any unused LEBs after consolidation */
349 lnum = c->ohead_lnum + 1;
350 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
351 err = ubifs_leb_unmap(c, lnum);
352 if (err)
353 return err;
354 }
355 }
356 return 0;
357 }
358
359 /**
360 * consolidate - consolidate the orphan area.
361 * @c: UBIFS file-system description object
362 *
363 * This function enables consolidation by putting all the orphans into the list
364 * to commit. The list is in the order that the orphans were added, and the
365 * LEBs are written atomically in order, so at no time can orphans be lost by
366 * an unclean unmount.
367 *
368 * This function returns %0 on success and a negative error code on failure.
369 */
370 static int consolidate(struct ubifs_info *c)
371 {
372 int tot_avail = tot_avail_orphs(c), err = 0;
373
374 spin_lock(&c->orphan_lock);
375 dbg_cmt("there is space for %d orphans and there are %d",
376 tot_avail, c->tot_orphans);
377 if (c->tot_orphans - c->new_orphans <= tot_avail) {
378 struct ubifs_orphan *orphan, **last;
379 int cnt = 0;
380
381 /* Change the cnext list to include all non-new orphans */
382 last = &c->orph_cnext;
383 list_for_each_entry(orphan, &c->orph_list, list) {
384 if (orphan->new)
385 continue;
386 orphan->cmt = 1;
387 *last = orphan;
388 last = &orphan->cnext;
389 cnt += 1;
390 }
391 *last = NULL;
392 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
393 c->cmt_orphans = cnt;
394 c->ohead_lnum = c->orph_first;
395 c->ohead_offs = 0;
396 } else {
397 /*
398 * We limit the number of orphans so that this should
399 * never happen.
400 */
401 ubifs_err("out of space in orphan area");
402 err = -EINVAL;
403 }
404 spin_unlock(&c->orphan_lock);
405 return err;
406 }
407
408 /**
409 * commit_orphans - commit orphans.
410 * @c: UBIFS file-system description object
411 *
412 * This function commits orphans to flash. On success, %0 is returned,
413 * otherwise a negative error code is returned.
414 */
415 static int commit_orphans(struct ubifs_info *c)
416 {
417 int avail, atomic = 0, err;
418
419 ubifs_assert(c->cmt_orphans > 0);
420 avail = avail_orphs(c);
421 if (avail < c->cmt_orphans) {
422 /* Not enough space to write new orphans, so consolidate */
423 err = consolidate(c);
424 if (err)
425 return err;
426 atomic = 1;
427 }
428 err = write_orph_nodes(c, atomic);
429 return err;
430 }
431
432 /**
433 * erase_deleted - erase the orphans marked for deletion.
434 * @c: UBIFS file-system description object
435 *
436 * During commit, the orphans being committed cannot be deleted, so they are
437 * marked for deletion and deleted by this function. Also, the recovery
438 * adds killed orphans to the deletion list, and therefore they are deleted
439 * here too.
440 */
441 static void erase_deleted(struct ubifs_info *c)
442 {
443 struct ubifs_orphan *orphan, *dnext;
444
445 spin_lock(&c->orphan_lock);
446 dnext = c->orph_dnext;
447 while (dnext) {
448 orphan = dnext;
449 dnext = orphan->dnext;
450 ubifs_assert(!orphan->new);
451 ubifs_assert(orphan->del);
452 rb_erase(&orphan->rb, &c->orph_tree);
453 list_del(&orphan->list);
454 c->tot_orphans -= 1;
455 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
456 kfree(orphan);
457 }
458 c->orph_dnext = NULL;
459 spin_unlock(&c->orphan_lock);
460 }
461
462 /**
463 * ubifs_orphan_end_commit - end commit of orphans.
464 * @c: UBIFS file-system description object
465 *
466 * End commit of orphans.
467 */
468 int ubifs_orphan_end_commit(struct ubifs_info *c)
469 {
470 int err;
471
472 if (c->cmt_orphans != 0) {
473 err = commit_orphans(c);
474 if (err)
475 return err;
476 }
477 erase_deleted(c);
478 err = dbg_check_orphans(c);
479 return err;
480 }
481
482 /**
483 * ubifs_clear_orphans - erase all LEBs used for orphans.
484 * @c: UBIFS file-system description object
485 *
486 * If recovery is not required, then the orphans from the previous session
487 * are not needed. This function locates the LEBs used to record
488 * orphans, and un-maps them.
489 */
490 int ubifs_clear_orphans(struct ubifs_info *c)
491 {
492 int lnum, err;
493
494 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
495 err = ubifs_leb_unmap(c, lnum);
496 if (err)
497 return err;
498 }
499 c->ohead_lnum = c->orph_first;
500 c->ohead_offs = 0;
501 return 0;
502 }
503
504 /**
505 * insert_dead_orphan - insert an orphan.
506 * @c: UBIFS file-system description object
507 * @inum: orphan inode number
508 *
509 * This function is a helper to the 'do_kill_orphans()' function. The orphan
510 * must be kept until the next commit, so it is added to the rb-tree and the
511 * deletion list.
512 */
513 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
514 {
515 struct ubifs_orphan *orphan, *o;
516 struct rb_node **p, *parent = NULL;
517
518 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
519 if (!orphan)
520 return -ENOMEM;
521 orphan->inum = inum;
522
523 p = &c->orph_tree.rb_node;
524 while (*p) {
525 parent = *p;
526 o = rb_entry(parent, struct ubifs_orphan, rb);
527 if (inum < o->inum)
528 p = &(*p)->rb_left;
529 else if (inum > o->inum)
530 p = &(*p)->rb_right;
531 else {
532 /* Already added - no problem */
533 kfree(orphan);
534 return 0;
535 }
536 }
537 c->tot_orphans += 1;
538 rb_link_node(&orphan->rb, parent, p);
539 rb_insert_color(&orphan->rb, &c->orph_tree);
540 list_add_tail(&orphan->list, &c->orph_list);
541 orphan->del = 1;
542 orphan->dnext = c->orph_dnext;
543 c->orph_dnext = orphan;
544 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
545 c->new_orphans, c->tot_orphans);
546 return 0;
547 }
548
549 /**
550 * do_kill_orphans - remove orphan inodes from the index.
551 * @c: UBIFS file-system description object
552 * @sleb: scanned LEB
553 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
554 * @outofdate: whether the LEB is out of date is returned here
555 * @last_flagged: whether the end orphan node is encountered
556 *
557 * This function is a helper to the 'kill_orphans()' function. It goes through
558 * every orphan node in a LEB and for every inode number recorded, removes
559 * all keys for that inode from the TNC.
560 */
561 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
562 unsigned long long *last_cmt_no, int *outofdate,
563 int *last_flagged)
564 {
565 struct ubifs_scan_node *snod;
566 struct ubifs_orph_node *orph;
567 unsigned long long cmt_no;
568 ino_t inum;
569 int i, n, err, first = 1;
570
571 list_for_each_entry(snod, &sleb->nodes, list) {
572 if (snod->type != UBIFS_ORPH_NODE) {
573 ubifs_err("invalid node type %d in orphan area at %d:%d",
574 snod->type, sleb->lnum, snod->offs);
575 ubifs_dump_node(c, snod->node);
576 return -EINVAL;
577 }
578
579 orph = snod->node;
580
581 /* Check commit number */
582 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
583 /*
584 * The commit number on the master node may be less, because
585 * of a failed commit. If there are several failed commits in a
586 * row, the commit number written on orphan nodes will continue
587 * to increase (because the commit number is adjusted here) even
588 * though the commit number on the master node stays the same
589 * because the master node has not been re-written.
590 */
591 if (cmt_no > c->cmt_no)
592 c->cmt_no = cmt_no;
593 if (cmt_no < *last_cmt_no && *last_flagged) {
594 /*
595 * The last orphan node had a higher commit number and
596 * was flagged as the last written for that commit
597 * number. That makes this orphan node, out of date.
598 */
599 if (!first) {
600 ubifs_err("out of order commit number %llu in orphan node at %d:%d",
601 cmt_no, sleb->lnum, snod->offs);
602 ubifs_dump_node(c, snod->node);
603 return -EINVAL;
604 }
605 dbg_rcvry("out of date LEB %d", sleb->lnum);
606 *outofdate = 1;
607 return 0;
608 }
609
610 if (first)
611 first = 0;
612
613 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
614 for (i = 0; i < n; i++) {
615 inum = le64_to_cpu(orph->inos[i]);
616 dbg_rcvry("deleting orphaned inode %lu",
617 (unsigned long)inum);
618 err = ubifs_tnc_remove_ino(c, inum);
619 if (err)
620 return err;
621 err = insert_dead_orphan(c, inum);
622 if (err)
623 return err;
624 }
625
626 *last_cmt_no = cmt_no;
627 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
628 dbg_rcvry("last orph node for commit %llu at %d:%d",
629 cmt_no, sleb->lnum, snod->offs);
630 *last_flagged = 1;
631 } else
632 *last_flagged = 0;
633 }
634
635 return 0;
636 }
637
638 /**
639 * kill_orphans - remove all orphan inodes from the index.
640 * @c: UBIFS file-system description object
641 *
642 * If recovery is required, then orphan inodes recorded during the previous
643 * session (which ended with an unclean unmount) must be deleted from the index.
644 * This is done by updating the TNC, but since the index is not updated until
645 * the next commit, the LEBs where the orphan information is recorded are not
646 * erased until the next commit.
647 */
648 static int kill_orphans(struct ubifs_info *c)
649 {
650 unsigned long long last_cmt_no = 0;
651 int lnum, err = 0, outofdate = 0, last_flagged = 0;
652
653 c->ohead_lnum = c->orph_first;
654 c->ohead_offs = 0;
655 /* Check no-orphans flag and skip this if no orphans */
656 if (c->no_orphs) {
657 dbg_rcvry("no orphans");
658 return 0;
659 }
660 /*
661 * Orph nodes always start at c->orph_first and are written to each
662 * successive LEB in turn. Generally unused LEBs will have been unmapped
663 * but may contain out of date orphan nodes if the unmap didn't go
664 * through. In addition, the last orphan node written for each commit is
665 * marked (top bit of orph->cmt_no is set to 1). It is possible that
666 * there are orphan nodes from the next commit (i.e. the commit did not
667 * complete successfully). In that case, no orphans will have been lost
668 * due to the way that orphans are written, and any orphans added will
669 * be valid orphans anyway and so can be deleted.
670 */
671 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
672 struct ubifs_scan_leb *sleb;
673
674 dbg_rcvry("LEB %d", lnum);
675 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
676 if (IS_ERR(sleb)) {
677 if (PTR_ERR(sleb) == -EUCLEAN)
678 sleb = ubifs_recover_leb(c, lnum, 0,
679 c->sbuf, -1);
680 if (IS_ERR(sleb)) {
681 err = PTR_ERR(sleb);
682 break;
683 }
684 }
685 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
686 &last_flagged);
687 if (err || outofdate) {
688 ubifs_scan_destroy(sleb);
689 break;
690 }
691 if (sleb->endpt) {
692 c->ohead_lnum = lnum;
693 c->ohead_offs = sleb->endpt;
694 }
695 ubifs_scan_destroy(sleb);
696 }
697 return err;
698 }
699
700 /**
701 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
702 * @c: UBIFS file-system description object
703 * @unclean: indicates recovery from unclean unmount
704 * @read_only: indicates read only mount
705 *
706 * This function is called when mounting to erase orphans from the previous
707 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
708 * orphans are deleted.
709 */
710 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
711 {
712 int err = 0;
713
714 c->max_orphans = tot_avail_orphs(c);
715
716 if (!read_only) {
717 c->orph_buf = kmalloc(c->leb_size, GFP_KERNEL);
718 if (!c->orph_buf)
719 return -ENOMEM;
720 }
721
722 if (unclean)
723 err = kill_orphans(c);
724 else if (!read_only)
725 err = ubifs_clear_orphans(c);
726
727 return err;
728 }
729
730 /*
731 * Everything below is related to debugging.
732 */
733
734 struct check_orphan {
735 struct rb_node rb;
736 ino_t inum;
737 };
738
739 struct check_info {
740 unsigned long last_ino;
741 unsigned long tot_inos;
742 unsigned long missing;
743 unsigned long long leaf_cnt;
744 struct ubifs_ino_node *node;
745 struct rb_root root;
746 };
747
748 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
749 {
750 struct ubifs_orphan *o;
751 struct rb_node *p;
752
753 spin_lock(&c->orphan_lock);
754 p = c->orph_tree.rb_node;
755 while (p) {
756 o = rb_entry(p, struct ubifs_orphan, rb);
757 if (inum < o->inum)
758 p = p->rb_left;
759 else if (inum > o->inum)
760 p = p->rb_right;
761 else {
762 spin_unlock(&c->orphan_lock);
763 return 1;
764 }
765 }
766 spin_unlock(&c->orphan_lock);
767 return 0;
768 }
769
770 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
771 {
772 struct check_orphan *orphan, *o;
773 struct rb_node **p, *parent = NULL;
774
775 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
776 if (!orphan)
777 return -ENOMEM;
778 orphan->inum = inum;
779
780 p = &root->rb_node;
781 while (*p) {
782 parent = *p;
783 o = rb_entry(parent, struct check_orphan, rb);
784 if (inum < o->inum)
785 p = &(*p)->rb_left;
786 else if (inum > o->inum)
787 p = &(*p)->rb_right;
788 else {
789 kfree(orphan);
790 return 0;
791 }
792 }
793 rb_link_node(&orphan->rb, parent, p);
794 rb_insert_color(&orphan->rb, root);
795 return 0;
796 }
797
798 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
799 {
800 struct check_orphan *o;
801 struct rb_node *p;
802
803 p = root->rb_node;
804 while (p) {
805 o = rb_entry(p, struct check_orphan, rb);
806 if (inum < o->inum)
807 p = p->rb_left;
808 else if (inum > o->inum)
809 p = p->rb_right;
810 else
811 return 1;
812 }
813 return 0;
814 }
815
816 static void dbg_free_check_tree(struct rb_root *root)
817 {
818 struct rb_node *this = root->rb_node;
819 struct check_orphan *o;
820
821 while (this) {
822 if (this->rb_left) {
823 this = this->rb_left;
824 continue;
825 } else if (this->rb_right) {
826 this = this->rb_right;
827 continue;
828 }
829 o = rb_entry(this, struct check_orphan, rb);
830 this = rb_parent(this);
831 if (this) {
832 if (this->rb_left == &o->rb)
833 this->rb_left = NULL;
834 else
835 this->rb_right = NULL;
836 }
837 kfree(o);
838 }
839 }
840
841 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
842 void *priv)
843 {
844 struct check_info *ci = priv;
845 ino_t inum;
846 int err;
847
848 inum = key_inum(c, &zbr->key);
849 if (inum != ci->last_ino) {
850 /* Lowest node type is the inode node, so it comes first */
851 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
852 ubifs_err("found orphan node ino %lu, type %d",
853 (unsigned long)inum, key_type(c, &zbr->key));
854 ci->last_ino = inum;
855 ci->tot_inos += 1;
856 err = ubifs_tnc_read_node(c, zbr, ci->node);
857 if (err) {
858 ubifs_err("node read failed, error %d", err);
859 return err;
860 }
861 if (ci->node->nlink == 0)
862 /* Must be recorded as an orphan */
863 if (!dbg_find_check_orphan(&ci->root, inum) &&
864 !dbg_find_orphan(c, inum)) {
865 ubifs_err("missing orphan, ino %lu",
866 (unsigned long)inum);
867 ci->missing += 1;
868 }
869 }
870 ci->leaf_cnt += 1;
871 return 0;
872 }
873
874 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
875 {
876 struct ubifs_scan_node *snod;
877 struct ubifs_orph_node *orph;
878 ino_t inum;
879 int i, n, err;
880
881 list_for_each_entry(snod, &sleb->nodes, list) {
882 cond_resched();
883 if (snod->type != UBIFS_ORPH_NODE)
884 continue;
885 orph = snod->node;
886 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
887 for (i = 0; i < n; i++) {
888 inum = le64_to_cpu(orph->inos[i]);
889 err = dbg_ins_check_orphan(&ci->root, inum);
890 if (err)
891 return err;
892 }
893 }
894 return 0;
895 }
896
897 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
898 {
899 int lnum, err = 0;
900 void *buf;
901
902 /* Check no-orphans flag and skip this if no orphans */
903 if (c->no_orphs)
904 return 0;
905
906 buf = kmalloc(c->leb_size, GFP_KERNEL);
907 if (!buf) {
908 ubifs_err("cannot allocate memory to check orphans");
909 return 0;
910 }
911
912 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
913 struct ubifs_scan_leb *sleb;
914
915 sleb = ubifs_scan(c, lnum, 0, buf, 0);
916 if (IS_ERR(sleb)) {
917 err = PTR_ERR(sleb);
918 break;
919 }
920
921 err = dbg_read_orphans(ci, sleb);
922 ubifs_scan_destroy(sleb);
923 if (err)
924 break;
925 }
926
927 kfree(buf);
928 return err;
929 }
930
931 static int dbg_check_orphans(struct ubifs_info *c)
932 {
933 struct check_info ci;
934 int err;
935
936 if (!dbg_is_chk_orph(c))
937 return 0;
938
939 ci.last_ino = 0;
940 ci.tot_inos = 0;
941 ci.missing = 0;
942 ci.leaf_cnt = 0;
943 ci.root = RB_ROOT;
944 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
945 if (!ci.node) {
946 ubifs_err("out of memory");
947 return -ENOMEM;
948 }
949
950 err = dbg_scan_orphans(c, &ci);
951 if (err)
952 goto out;
953
954 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
955 if (err) {
956 ubifs_err("cannot scan TNC, error %d", err);
957 goto out;
958 }
959
960 if (ci.missing) {
961 ubifs_err("%lu missing orphan(s)", ci.missing);
962 err = -EINVAL;
963 goto out;
964 }
965
966 dbg_cmt("last inode number is %lu", ci.last_ino);
967 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
968 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
969
970 out:
971 dbg_free_check_tree(&ci.root);
972 kfree(ci.node);
973 return err;
974 }