ext4: fix reference counting bug on block allocation error
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 int fs_objects = 0;
60 int total_objects;
61
62 sb = container_of(shrink, struct super_block, s_shrink);
63
64 /*
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
67 */
68 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
69 return -1;
70
71 if (!grab_super_passive(sb))
72 return -1;
73
74 if (sb->s_op && sb->s_op->nr_cached_objects)
75 fs_objects = sb->s_op->nr_cached_objects(sb);
76
77 total_objects = sb->s_nr_dentry_unused +
78 sb->s_nr_inodes_unused + fs_objects + 1;
79 if (!total_objects)
80 total_objects = 1;
81
82 if (sc->nr_to_scan) {
83 int dentries;
84 int inodes;
85
86 /* proportion the scan between the caches */
87 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
88 total_objects;
89 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
90 total_objects;
91 if (fs_objects)
92 fs_objects = (sc->nr_to_scan * fs_objects) /
93 total_objects;
94 /*
95 * prune the dcache first as the icache is pinned by it, then
96 * prune the icache, followed by the filesystem specific caches
97 */
98 prune_dcache_sb(sb, dentries);
99 prune_icache_sb(sb, inodes);
100
101 if (fs_objects && sb->s_op->free_cached_objects) {
102 sb->s_op->free_cached_objects(sb, fs_objects);
103 fs_objects = sb->s_op->nr_cached_objects(sb);
104 }
105 total_objects = sb->s_nr_dentry_unused +
106 sb->s_nr_inodes_unused + fs_objects;
107 }
108
109 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
110 drop_super(sb);
111 return total_objects;
112 }
113
114 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
115 {
116 int err;
117 int i;
118
119 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
120 err = percpu_counter_init(&s->s_writers.counter[i], 0);
121 if (err < 0)
122 goto err_out;
123 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
124 &type->s_writers_key[i], 0);
125 }
126 init_waitqueue_head(&s->s_writers.wait);
127 init_waitqueue_head(&s->s_writers.wait_unfrozen);
128 return 0;
129 err_out:
130 while (--i >= 0)
131 percpu_counter_destroy(&s->s_writers.counter[i]);
132 return err;
133 }
134
135 static void destroy_sb_writers(struct super_block *s)
136 {
137 int i;
138
139 for (i = 0; i < SB_FREEZE_LEVELS; i++)
140 percpu_counter_destroy(&s->s_writers.counter[i]);
141 }
142
143 /**
144 * alloc_super - create new superblock
145 * @type: filesystem type superblock should belong to
146 * @flags: the mount flags
147 *
148 * Allocates and initializes a new &struct super_block. alloc_super()
149 * returns a pointer new superblock or %NULL if allocation had failed.
150 */
151 static struct super_block *alloc_super(struct file_system_type *type, int flags)
152 {
153 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
154 static const struct super_operations default_op;
155
156 if (s) {
157 if (security_sb_alloc(s)) {
158 /*
159 * We cannot call security_sb_free() without
160 * security_sb_alloc() succeeding. So bail out manually
161 */
162 kfree(s);
163 s = NULL;
164 goto out;
165 }
166 if (init_sb_writers(s, type))
167 goto err_out;
168 s->s_flags = flags;
169 s->s_bdi = &default_backing_dev_info;
170 INIT_HLIST_NODE(&s->s_instances);
171 INIT_HLIST_BL_HEAD(&s->s_anon);
172 INIT_LIST_HEAD(&s->s_inodes);
173 INIT_LIST_HEAD(&s->s_dentry_lru);
174 INIT_LIST_HEAD(&s->s_inode_lru);
175 spin_lock_init(&s->s_inode_lru_lock);
176 INIT_LIST_HEAD(&s->s_mounts);
177 init_rwsem(&s->s_umount);
178 lockdep_set_class(&s->s_umount, &type->s_umount_key);
179 /*
180 * sget() can have s_umount recursion.
181 *
182 * When it cannot find a suitable sb, it allocates a new
183 * one (this one), and tries again to find a suitable old
184 * one.
185 *
186 * In case that succeeds, it will acquire the s_umount
187 * lock of the old one. Since these are clearly distrinct
188 * locks, and this object isn't exposed yet, there's no
189 * risk of deadlocks.
190 *
191 * Annotate this by putting this lock in a different
192 * subclass.
193 */
194 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
195 s->s_count = 1;
196 atomic_set(&s->s_active, 1);
197 mutex_init(&s->s_vfs_rename_mutex);
198 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
199 mutex_init(&s->s_dquot.dqio_mutex);
200 mutex_init(&s->s_dquot.dqonoff_mutex);
201 init_rwsem(&s->s_dquot.dqptr_sem);
202 s->s_maxbytes = MAX_NON_LFS;
203 s->s_op = &default_op;
204 s->s_time_gran = 1000000000;
205 s->cleancache_poolid = -1;
206
207 s->s_shrink.seeks = DEFAULT_SEEKS;
208 s->s_shrink.shrink = prune_super;
209 s->s_shrink.batch = 1024;
210 }
211 out:
212 return s;
213 err_out:
214 security_sb_free(s);
215 destroy_sb_writers(s);
216 kfree(s);
217 s = NULL;
218 goto out;
219 }
220
221 /**
222 * destroy_super - frees a superblock
223 * @s: superblock to free
224 *
225 * Frees a superblock.
226 */
227 static inline void destroy_super(struct super_block *s)
228 {
229 destroy_sb_writers(s);
230 security_sb_free(s);
231 WARN_ON(!list_empty(&s->s_mounts));
232 kfree(s->s_subtype);
233 kfree(s->s_options);
234 kfree(s);
235 }
236
237 /* Superblock refcounting */
238
239 /*
240 * Drop a superblock's refcount. The caller must hold sb_lock.
241 */
242 static void __put_super(struct super_block *sb)
243 {
244 if (!--sb->s_count) {
245 list_del_init(&sb->s_list);
246 destroy_super(sb);
247 }
248 }
249
250 /**
251 * put_super - drop a temporary reference to superblock
252 * @sb: superblock in question
253 *
254 * Drops a temporary reference, frees superblock if there's no
255 * references left.
256 */
257 static void put_super(struct super_block *sb)
258 {
259 spin_lock(&sb_lock);
260 __put_super(sb);
261 spin_unlock(&sb_lock);
262 }
263
264
265 /**
266 * deactivate_locked_super - drop an active reference to superblock
267 * @s: superblock to deactivate
268 *
269 * Drops an active reference to superblock, converting it into a temprory
270 * one if there is no other active references left. In that case we
271 * tell fs driver to shut it down and drop the temporary reference we
272 * had just acquired.
273 *
274 * Caller holds exclusive lock on superblock; that lock is released.
275 */
276 void deactivate_locked_super(struct super_block *s)
277 {
278 struct file_system_type *fs = s->s_type;
279 if (atomic_dec_and_test(&s->s_active)) {
280 cleancache_invalidate_fs(s);
281 fs->kill_sb(s);
282
283 /* caches are now gone, we can safely kill the shrinker now */
284 unregister_shrinker(&s->s_shrink);
285 put_filesystem(fs);
286 put_super(s);
287 } else {
288 up_write(&s->s_umount);
289 }
290 }
291
292 EXPORT_SYMBOL(deactivate_locked_super);
293
294 /**
295 * deactivate_super - drop an active reference to superblock
296 * @s: superblock to deactivate
297 *
298 * Variant of deactivate_locked_super(), except that superblock is *not*
299 * locked by caller. If we are going to drop the final active reference,
300 * lock will be acquired prior to that.
301 */
302 void deactivate_super(struct super_block *s)
303 {
304 if (!atomic_add_unless(&s->s_active, -1, 1)) {
305 down_write(&s->s_umount);
306 deactivate_locked_super(s);
307 }
308 }
309
310 EXPORT_SYMBOL(deactivate_super);
311
312 /**
313 * grab_super - acquire an active reference
314 * @s: reference we are trying to make active
315 *
316 * Tries to acquire an active reference. grab_super() is used when we
317 * had just found a superblock in super_blocks or fs_type->fs_supers
318 * and want to turn it into a full-blown active reference. grab_super()
319 * is called with sb_lock held and drops it. Returns 1 in case of
320 * success, 0 if we had failed (superblock contents was already dead or
321 * dying when grab_super() had been called). Note that this is only
322 * called for superblocks not in rundown mode (== ones still on ->fs_supers
323 * of their type), so increment of ->s_count is OK here.
324 */
325 static int grab_super(struct super_block *s) __releases(sb_lock)
326 {
327 s->s_count++;
328 spin_unlock(&sb_lock);
329 down_write(&s->s_umount);
330 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
331 put_super(s);
332 return 1;
333 }
334 up_write(&s->s_umount);
335 put_super(s);
336 return 0;
337 }
338
339 /*
340 * grab_super_passive - acquire a passive reference
341 * @sb: reference we are trying to grab
342 *
343 * Tries to acquire a passive reference. This is used in places where we
344 * cannot take an active reference but we need to ensure that the
345 * superblock does not go away while we are working on it. It returns
346 * false if a reference was not gained, and returns true with the s_umount
347 * lock held in read mode if a reference is gained. On successful return,
348 * the caller must drop the s_umount lock and the passive reference when
349 * done.
350 */
351 bool grab_super_passive(struct super_block *sb)
352 {
353 spin_lock(&sb_lock);
354 if (hlist_unhashed(&sb->s_instances)) {
355 spin_unlock(&sb_lock);
356 return false;
357 }
358
359 sb->s_count++;
360 spin_unlock(&sb_lock);
361
362 if (down_read_trylock(&sb->s_umount)) {
363 if (sb->s_root && (sb->s_flags & MS_BORN))
364 return true;
365 up_read(&sb->s_umount);
366 }
367
368 put_super(sb);
369 return false;
370 }
371
372 /**
373 * generic_shutdown_super - common helper for ->kill_sb()
374 * @sb: superblock to kill
375 *
376 * generic_shutdown_super() does all fs-independent work on superblock
377 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
378 * that need destruction out of superblock, call generic_shutdown_super()
379 * and release aforementioned objects. Note: dentries and inodes _are_
380 * taken care of and do not need specific handling.
381 *
382 * Upon calling this function, the filesystem may no longer alter or
383 * rearrange the set of dentries belonging to this super_block, nor may it
384 * change the attachments of dentries to inodes.
385 */
386 void generic_shutdown_super(struct super_block *sb)
387 {
388 const struct super_operations *sop = sb->s_op;
389
390 if (sb->s_root) {
391 shrink_dcache_for_umount(sb);
392 sync_filesystem(sb);
393 sb->s_flags &= ~MS_ACTIVE;
394
395 fsnotify_unmount_inodes(&sb->s_inodes);
396
397 evict_inodes(sb);
398
399 if (sop->put_super)
400 sop->put_super(sb);
401
402 if (!list_empty(&sb->s_inodes)) {
403 printk("VFS: Busy inodes after unmount of %s. "
404 "Self-destruct in 5 seconds. Have a nice day...\n",
405 sb->s_id);
406 }
407 }
408 spin_lock(&sb_lock);
409 /* should be initialized for __put_super_and_need_restart() */
410 hlist_del_init(&sb->s_instances);
411 spin_unlock(&sb_lock);
412 up_write(&sb->s_umount);
413 }
414
415 EXPORT_SYMBOL(generic_shutdown_super);
416
417 /**
418 * sget - find or create a superblock
419 * @type: filesystem type superblock should belong to
420 * @test: comparison callback
421 * @set: setup callback
422 * @flags: mount flags
423 * @data: argument to each of them
424 */
425 struct super_block *sget(struct file_system_type *type,
426 int (*test)(struct super_block *,void *),
427 int (*set)(struct super_block *,void *),
428 int flags,
429 void *data)
430 {
431 struct super_block *s = NULL;
432 struct super_block *old;
433 int err;
434
435 retry:
436 spin_lock(&sb_lock);
437 if (test) {
438 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
439 if (!test(old, data))
440 continue;
441 if (!grab_super(old))
442 goto retry;
443 if (s) {
444 up_write(&s->s_umount);
445 destroy_super(s);
446 s = NULL;
447 }
448 return old;
449 }
450 }
451 if (!s) {
452 spin_unlock(&sb_lock);
453 s = alloc_super(type, flags);
454 if (!s)
455 return ERR_PTR(-ENOMEM);
456 goto retry;
457 }
458
459 err = set(s, data);
460 if (err) {
461 spin_unlock(&sb_lock);
462 up_write(&s->s_umount);
463 destroy_super(s);
464 return ERR_PTR(err);
465 }
466 s->s_type = type;
467 strlcpy(s->s_id, type->name, sizeof(s->s_id));
468 list_add_tail(&s->s_list, &super_blocks);
469 hlist_add_head(&s->s_instances, &type->fs_supers);
470 spin_unlock(&sb_lock);
471 get_filesystem(type);
472 register_shrinker(&s->s_shrink);
473 return s;
474 }
475
476 EXPORT_SYMBOL(sget);
477
478 void drop_super(struct super_block *sb)
479 {
480 up_read(&sb->s_umount);
481 put_super(sb);
482 }
483
484 EXPORT_SYMBOL(drop_super);
485
486 /**
487 * iterate_supers - call function for all active superblocks
488 * @f: function to call
489 * @arg: argument to pass to it
490 *
491 * Scans the superblock list and calls given function, passing it
492 * locked superblock and given argument.
493 */
494 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
495 {
496 struct super_block *sb, *p = NULL;
497
498 spin_lock(&sb_lock);
499 list_for_each_entry(sb, &super_blocks, s_list) {
500 if (hlist_unhashed(&sb->s_instances))
501 continue;
502 sb->s_count++;
503 spin_unlock(&sb_lock);
504
505 down_read(&sb->s_umount);
506 if (sb->s_root && (sb->s_flags & MS_BORN))
507 f(sb, arg);
508 up_read(&sb->s_umount);
509
510 spin_lock(&sb_lock);
511 if (p)
512 __put_super(p);
513 p = sb;
514 }
515 if (p)
516 __put_super(p);
517 spin_unlock(&sb_lock);
518 }
519
520 /**
521 * iterate_supers_type - call function for superblocks of given type
522 * @type: fs type
523 * @f: function to call
524 * @arg: argument to pass to it
525 *
526 * Scans the superblock list and calls given function, passing it
527 * locked superblock and given argument.
528 */
529 void iterate_supers_type(struct file_system_type *type,
530 void (*f)(struct super_block *, void *), void *arg)
531 {
532 struct super_block *sb, *p = NULL;
533
534 spin_lock(&sb_lock);
535 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
536 sb->s_count++;
537 spin_unlock(&sb_lock);
538
539 down_read(&sb->s_umount);
540 if (sb->s_root && (sb->s_flags & MS_BORN))
541 f(sb, arg);
542 up_read(&sb->s_umount);
543
544 spin_lock(&sb_lock);
545 if (p)
546 __put_super(p);
547 p = sb;
548 }
549 if (p)
550 __put_super(p);
551 spin_unlock(&sb_lock);
552 }
553
554 EXPORT_SYMBOL(iterate_supers_type);
555
556 /**
557 * get_super - get the superblock of a device
558 * @bdev: device to get the superblock for
559 *
560 * Scans the superblock list and finds the superblock of the file system
561 * mounted on the device given. %NULL is returned if no match is found.
562 */
563
564 struct super_block *get_super(struct block_device *bdev)
565 {
566 struct super_block *sb;
567
568 if (!bdev)
569 return NULL;
570
571 spin_lock(&sb_lock);
572 rescan:
573 list_for_each_entry(sb, &super_blocks, s_list) {
574 if (hlist_unhashed(&sb->s_instances))
575 continue;
576 if (sb->s_bdev == bdev) {
577 sb->s_count++;
578 spin_unlock(&sb_lock);
579 down_read(&sb->s_umount);
580 /* still alive? */
581 if (sb->s_root && (sb->s_flags & MS_BORN))
582 return sb;
583 up_read(&sb->s_umount);
584 /* nope, got unmounted */
585 spin_lock(&sb_lock);
586 __put_super(sb);
587 goto rescan;
588 }
589 }
590 spin_unlock(&sb_lock);
591 return NULL;
592 }
593
594 EXPORT_SYMBOL(get_super);
595
596 /**
597 * get_super_thawed - get thawed superblock of a device
598 * @bdev: device to get the superblock for
599 *
600 * Scans the superblock list and finds the superblock of the file system
601 * mounted on the device. The superblock is returned once it is thawed
602 * (or immediately if it was not frozen). %NULL is returned if no match
603 * is found.
604 */
605 struct super_block *get_super_thawed(struct block_device *bdev)
606 {
607 while (1) {
608 struct super_block *s = get_super(bdev);
609 if (!s || s->s_writers.frozen == SB_UNFROZEN)
610 return s;
611 up_read(&s->s_umount);
612 wait_event(s->s_writers.wait_unfrozen,
613 s->s_writers.frozen == SB_UNFROZEN);
614 put_super(s);
615 }
616 }
617 EXPORT_SYMBOL(get_super_thawed);
618
619 /**
620 * get_active_super - get an active reference to the superblock of a device
621 * @bdev: device to get the superblock for
622 *
623 * Scans the superblock list and finds the superblock of the file system
624 * mounted on the device given. Returns the superblock with an active
625 * reference or %NULL if none was found.
626 */
627 struct super_block *get_active_super(struct block_device *bdev)
628 {
629 struct super_block *sb;
630
631 if (!bdev)
632 return NULL;
633
634 restart:
635 spin_lock(&sb_lock);
636 list_for_each_entry(sb, &super_blocks, s_list) {
637 if (hlist_unhashed(&sb->s_instances))
638 continue;
639 if (sb->s_bdev == bdev) {
640 if (!grab_super(sb))
641 goto restart;
642 up_write(&sb->s_umount);
643 return sb;
644 }
645 }
646 spin_unlock(&sb_lock);
647 return NULL;
648 }
649
650 struct super_block *user_get_super(dev_t dev)
651 {
652 struct super_block *sb;
653
654 spin_lock(&sb_lock);
655 rescan:
656 list_for_each_entry(sb, &super_blocks, s_list) {
657 if (hlist_unhashed(&sb->s_instances))
658 continue;
659 if (sb->s_dev == dev) {
660 sb->s_count++;
661 spin_unlock(&sb_lock);
662 down_read(&sb->s_umount);
663 /* still alive? */
664 if (sb->s_root && (sb->s_flags & MS_BORN))
665 return sb;
666 up_read(&sb->s_umount);
667 /* nope, got unmounted */
668 spin_lock(&sb_lock);
669 __put_super(sb);
670 goto rescan;
671 }
672 }
673 spin_unlock(&sb_lock);
674 return NULL;
675 }
676
677 /**
678 * do_remount_sb - asks filesystem to change mount options.
679 * @sb: superblock in question
680 * @flags: numeric part of options
681 * @data: the rest of options
682 * @force: whether or not to force the change
683 *
684 * Alters the mount options of a mounted file system.
685 */
686 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
687 {
688 int retval;
689 int remount_ro;
690
691 if (sb->s_writers.frozen != SB_UNFROZEN)
692 return -EBUSY;
693
694 #ifdef CONFIG_BLOCK
695 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
696 return -EACCES;
697 #endif
698
699 if (flags & MS_RDONLY)
700 acct_auto_close(sb);
701 shrink_dcache_sb(sb);
702 sync_filesystem(sb);
703
704 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
705
706 /* If we are remounting RDONLY and current sb is read/write,
707 make sure there are no rw files opened */
708 if (remount_ro) {
709 if (force) {
710 sb->s_readonly_remount = 1;
711 smp_wmb();
712 } else {
713 retval = sb_prepare_remount_readonly(sb);
714 if (retval)
715 return retval;
716 }
717 }
718
719 if (sb->s_op->remount_fs) {
720 retval = sb->s_op->remount_fs(sb, &flags, data);
721 if (retval) {
722 if (!force)
723 goto cancel_readonly;
724 /* If forced remount, go ahead despite any errors */
725 WARN(1, "forced remount of a %s fs returned %i\n",
726 sb->s_type->name, retval);
727 }
728 }
729 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
730 /* Needs to be ordered wrt mnt_is_readonly() */
731 smp_wmb();
732 sb->s_readonly_remount = 0;
733
734 /*
735 * Some filesystems modify their metadata via some other path than the
736 * bdev buffer cache (eg. use a private mapping, or directories in
737 * pagecache, etc). Also file data modifications go via their own
738 * mappings. So If we try to mount readonly then copy the filesystem
739 * from bdev, we could get stale data, so invalidate it to give a best
740 * effort at coherency.
741 */
742 if (remount_ro && sb->s_bdev)
743 invalidate_bdev(sb->s_bdev);
744 return 0;
745
746 cancel_readonly:
747 sb->s_readonly_remount = 0;
748 return retval;
749 }
750
751 static void do_emergency_remount(struct work_struct *work)
752 {
753 struct super_block *sb, *p = NULL;
754
755 spin_lock(&sb_lock);
756 list_for_each_entry(sb, &super_blocks, s_list) {
757 if (hlist_unhashed(&sb->s_instances))
758 continue;
759 sb->s_count++;
760 spin_unlock(&sb_lock);
761 down_write(&sb->s_umount);
762 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
763 !(sb->s_flags & MS_RDONLY)) {
764 /*
765 * What lock protects sb->s_flags??
766 */
767 do_remount_sb(sb, MS_RDONLY, NULL, 1);
768 }
769 up_write(&sb->s_umount);
770 spin_lock(&sb_lock);
771 if (p)
772 __put_super(p);
773 p = sb;
774 }
775 if (p)
776 __put_super(p);
777 spin_unlock(&sb_lock);
778 kfree(work);
779 printk("Emergency Remount complete\n");
780 }
781
782 void emergency_remount(void)
783 {
784 struct work_struct *work;
785
786 work = kmalloc(sizeof(*work), GFP_ATOMIC);
787 if (work) {
788 INIT_WORK(work, do_emergency_remount);
789 schedule_work(work);
790 }
791 }
792
793 /*
794 * Unnamed block devices are dummy devices used by virtual
795 * filesystems which don't use real block-devices. -- jrs
796 */
797
798 static DEFINE_IDA(unnamed_dev_ida);
799 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
800 static int unnamed_dev_start = 0; /* don't bother trying below it */
801
802 int get_anon_bdev(dev_t *p)
803 {
804 int dev;
805 int error;
806
807 retry:
808 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
809 return -ENOMEM;
810 spin_lock(&unnamed_dev_lock);
811 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
812 if (!error)
813 unnamed_dev_start = dev + 1;
814 spin_unlock(&unnamed_dev_lock);
815 if (error == -EAGAIN)
816 /* We raced and lost with another CPU. */
817 goto retry;
818 else if (error)
819 return -EAGAIN;
820
821 if (dev == (1 << MINORBITS)) {
822 spin_lock(&unnamed_dev_lock);
823 ida_remove(&unnamed_dev_ida, dev);
824 if (unnamed_dev_start > dev)
825 unnamed_dev_start = dev;
826 spin_unlock(&unnamed_dev_lock);
827 return -EMFILE;
828 }
829 *p = MKDEV(0, dev & MINORMASK);
830 return 0;
831 }
832 EXPORT_SYMBOL(get_anon_bdev);
833
834 void free_anon_bdev(dev_t dev)
835 {
836 int slot = MINOR(dev);
837 spin_lock(&unnamed_dev_lock);
838 ida_remove(&unnamed_dev_ida, slot);
839 if (slot < unnamed_dev_start)
840 unnamed_dev_start = slot;
841 spin_unlock(&unnamed_dev_lock);
842 }
843 EXPORT_SYMBOL(free_anon_bdev);
844
845 int set_anon_super(struct super_block *s, void *data)
846 {
847 int error = get_anon_bdev(&s->s_dev);
848 if (!error)
849 s->s_bdi = &noop_backing_dev_info;
850 return error;
851 }
852
853 EXPORT_SYMBOL(set_anon_super);
854
855 void kill_anon_super(struct super_block *sb)
856 {
857 dev_t dev = sb->s_dev;
858 generic_shutdown_super(sb);
859 free_anon_bdev(dev);
860 }
861
862 EXPORT_SYMBOL(kill_anon_super);
863
864 void kill_litter_super(struct super_block *sb)
865 {
866 if (sb->s_root)
867 d_genocide(sb->s_root);
868 kill_anon_super(sb);
869 }
870
871 EXPORT_SYMBOL(kill_litter_super);
872
873 static int ns_test_super(struct super_block *sb, void *data)
874 {
875 return sb->s_fs_info == data;
876 }
877
878 static int ns_set_super(struct super_block *sb, void *data)
879 {
880 sb->s_fs_info = data;
881 return set_anon_super(sb, NULL);
882 }
883
884 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
885 void *data, int (*fill_super)(struct super_block *, void *, int))
886 {
887 struct super_block *sb;
888
889 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
890 if (IS_ERR(sb))
891 return ERR_CAST(sb);
892
893 if (!sb->s_root) {
894 int err;
895 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
896 if (err) {
897 deactivate_locked_super(sb);
898 return ERR_PTR(err);
899 }
900
901 sb->s_flags |= MS_ACTIVE;
902 }
903
904 return dget(sb->s_root);
905 }
906
907 EXPORT_SYMBOL(mount_ns);
908
909 #ifdef CONFIG_BLOCK
910 static int set_bdev_super(struct super_block *s, void *data)
911 {
912 s->s_bdev = data;
913 s->s_dev = s->s_bdev->bd_dev;
914
915 /*
916 * We set the bdi here to the queue backing, file systems can
917 * overwrite this in ->fill_super()
918 */
919 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
920 return 0;
921 }
922
923 static int test_bdev_super(struct super_block *s, void *data)
924 {
925 return (void *)s->s_bdev == data;
926 }
927
928 struct dentry *mount_bdev(struct file_system_type *fs_type,
929 int flags, const char *dev_name, void *data,
930 int (*fill_super)(struct super_block *, void *, int))
931 {
932 struct block_device *bdev;
933 struct super_block *s;
934 fmode_t mode = FMODE_READ | FMODE_EXCL;
935 int error = 0;
936
937 if (!(flags & MS_RDONLY))
938 mode |= FMODE_WRITE;
939
940 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
941 if (IS_ERR(bdev))
942 return ERR_CAST(bdev);
943
944 /*
945 * once the super is inserted into the list by sget, s_umount
946 * will protect the lockfs code from trying to start a snapshot
947 * while we are mounting
948 */
949 mutex_lock(&bdev->bd_fsfreeze_mutex);
950 if (bdev->bd_fsfreeze_count > 0) {
951 mutex_unlock(&bdev->bd_fsfreeze_mutex);
952 error = -EBUSY;
953 goto error_bdev;
954 }
955 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
956 bdev);
957 mutex_unlock(&bdev->bd_fsfreeze_mutex);
958 if (IS_ERR(s))
959 goto error_s;
960
961 if (s->s_root) {
962 if ((flags ^ s->s_flags) & MS_RDONLY) {
963 deactivate_locked_super(s);
964 error = -EBUSY;
965 goto error_bdev;
966 }
967
968 /*
969 * s_umount nests inside bd_mutex during
970 * __invalidate_device(). blkdev_put() acquires
971 * bd_mutex and can't be called under s_umount. Drop
972 * s_umount temporarily. This is safe as we're
973 * holding an active reference.
974 */
975 up_write(&s->s_umount);
976 blkdev_put(bdev, mode);
977 down_write(&s->s_umount);
978 } else {
979 char b[BDEVNAME_SIZE];
980
981 s->s_mode = mode;
982 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
983 sb_set_blocksize(s, block_size(bdev));
984 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
985 if (error) {
986 deactivate_locked_super(s);
987 goto error;
988 }
989
990 s->s_flags |= MS_ACTIVE;
991 bdev->bd_super = s;
992 }
993
994 return dget(s->s_root);
995
996 error_s:
997 error = PTR_ERR(s);
998 error_bdev:
999 blkdev_put(bdev, mode);
1000 error:
1001 return ERR_PTR(error);
1002 }
1003 EXPORT_SYMBOL(mount_bdev);
1004
1005 void kill_block_super(struct super_block *sb)
1006 {
1007 struct block_device *bdev = sb->s_bdev;
1008 fmode_t mode = sb->s_mode;
1009
1010 bdev->bd_super = NULL;
1011 generic_shutdown_super(sb);
1012 sync_blockdev(bdev);
1013 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1014 blkdev_put(bdev, mode | FMODE_EXCL);
1015 }
1016
1017 EXPORT_SYMBOL(kill_block_super);
1018 #endif
1019
1020 struct dentry *mount_nodev(struct file_system_type *fs_type,
1021 int flags, void *data,
1022 int (*fill_super)(struct super_block *, void *, int))
1023 {
1024 int error;
1025 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1026
1027 if (IS_ERR(s))
1028 return ERR_CAST(s);
1029
1030 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1031 if (error) {
1032 deactivate_locked_super(s);
1033 return ERR_PTR(error);
1034 }
1035 s->s_flags |= MS_ACTIVE;
1036 return dget(s->s_root);
1037 }
1038 EXPORT_SYMBOL(mount_nodev);
1039
1040 static int compare_single(struct super_block *s, void *p)
1041 {
1042 return 1;
1043 }
1044
1045 struct dentry *mount_single(struct file_system_type *fs_type,
1046 int flags, void *data,
1047 int (*fill_super)(struct super_block *, void *, int))
1048 {
1049 struct super_block *s;
1050 int error;
1051
1052 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1053 if (IS_ERR(s))
1054 return ERR_CAST(s);
1055 if (!s->s_root) {
1056 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1057 if (error) {
1058 deactivate_locked_super(s);
1059 return ERR_PTR(error);
1060 }
1061 s->s_flags |= MS_ACTIVE;
1062 } else {
1063 do_remount_sb(s, flags, data, 0);
1064 }
1065 return dget(s->s_root);
1066 }
1067 EXPORT_SYMBOL(mount_single);
1068
1069 struct dentry *
1070 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1071 {
1072 struct dentry *root;
1073 struct super_block *sb;
1074 char *secdata = NULL;
1075 int error = -ENOMEM;
1076
1077 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1078 secdata = alloc_secdata();
1079 if (!secdata)
1080 goto out;
1081
1082 error = security_sb_copy_data(data, secdata);
1083 if (error)
1084 goto out_free_secdata;
1085 }
1086
1087 root = type->mount(type, flags, name, data);
1088 if (IS_ERR(root)) {
1089 error = PTR_ERR(root);
1090 goto out_free_secdata;
1091 }
1092 sb = root->d_sb;
1093 BUG_ON(!sb);
1094 WARN_ON(!sb->s_bdi);
1095 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1096 sb->s_flags |= MS_BORN;
1097
1098 error = security_sb_kern_mount(sb, flags, secdata);
1099 if (error)
1100 goto out_sb;
1101
1102 /*
1103 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1104 * but s_maxbytes was an unsigned long long for many releases. Throw
1105 * this warning for a little while to try and catch filesystems that
1106 * violate this rule.
1107 */
1108 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1109 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1110
1111 up_write(&sb->s_umount);
1112 free_secdata(secdata);
1113 return root;
1114 out_sb:
1115 dput(root);
1116 deactivate_locked_super(sb);
1117 out_free_secdata:
1118 free_secdata(secdata);
1119 out:
1120 return ERR_PTR(error);
1121 }
1122
1123 /*
1124 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1125 * instead.
1126 */
1127 void __sb_end_write(struct super_block *sb, int level)
1128 {
1129 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1130 /*
1131 * Make sure s_writers are updated before we wake up waiters in
1132 * freeze_super().
1133 */
1134 smp_mb();
1135 if (waitqueue_active(&sb->s_writers.wait))
1136 wake_up(&sb->s_writers.wait);
1137 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1138 }
1139 EXPORT_SYMBOL(__sb_end_write);
1140
1141 #ifdef CONFIG_LOCKDEP
1142 /*
1143 * We want lockdep to tell us about possible deadlocks with freezing but
1144 * it's it bit tricky to properly instrument it. Getting a freeze protection
1145 * works as getting a read lock but there are subtle problems. XFS for example
1146 * gets freeze protection on internal level twice in some cases, which is OK
1147 * only because we already hold a freeze protection also on higher level. Due
1148 * to these cases we have to tell lockdep we are doing trylock when we
1149 * already hold a freeze protection for a higher freeze level.
1150 */
1151 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1152 unsigned long ip)
1153 {
1154 int i;
1155
1156 if (!trylock) {
1157 for (i = 0; i < level - 1; i++)
1158 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1159 trylock = true;
1160 break;
1161 }
1162 }
1163 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1164 }
1165 #endif
1166
1167 /*
1168 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1169 * instead.
1170 */
1171 int __sb_start_write(struct super_block *sb, int level, bool wait)
1172 {
1173 retry:
1174 if (unlikely(sb->s_writers.frozen >= level)) {
1175 if (!wait)
1176 return 0;
1177 wait_event(sb->s_writers.wait_unfrozen,
1178 sb->s_writers.frozen < level);
1179 }
1180
1181 #ifdef CONFIG_LOCKDEP
1182 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1183 #endif
1184 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1185 /*
1186 * Make sure counter is updated before we check for frozen.
1187 * freeze_super() first sets frozen and then checks the counter.
1188 */
1189 smp_mb();
1190 if (unlikely(sb->s_writers.frozen >= level)) {
1191 __sb_end_write(sb, level);
1192 goto retry;
1193 }
1194 return 1;
1195 }
1196 EXPORT_SYMBOL(__sb_start_write);
1197
1198 /**
1199 * sb_wait_write - wait until all writers to given file system finish
1200 * @sb: the super for which we wait
1201 * @level: type of writers we wait for (normal vs page fault)
1202 *
1203 * This function waits until there are no writers of given type to given file
1204 * system. Caller of this function should make sure there can be no new writers
1205 * of type @level before calling this function. Otherwise this function can
1206 * livelock.
1207 */
1208 static void sb_wait_write(struct super_block *sb, int level)
1209 {
1210 s64 writers;
1211
1212 /*
1213 * We just cycle-through lockdep here so that it does not complain
1214 * about returning with lock to userspace
1215 */
1216 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1217 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1218
1219 do {
1220 DEFINE_WAIT(wait);
1221
1222 /*
1223 * We use a barrier in prepare_to_wait() to separate setting
1224 * of frozen and checking of the counter
1225 */
1226 prepare_to_wait(&sb->s_writers.wait, &wait,
1227 TASK_UNINTERRUPTIBLE);
1228
1229 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1230 if (writers)
1231 schedule();
1232
1233 finish_wait(&sb->s_writers.wait, &wait);
1234 } while (writers);
1235 }
1236
1237 /**
1238 * freeze_super - lock the filesystem and force it into a consistent state
1239 * @sb: the super to lock
1240 *
1241 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1242 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1243 * -EBUSY.
1244 *
1245 * During this function, sb->s_writers.frozen goes through these values:
1246 *
1247 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1248 *
1249 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1250 * writes should be blocked, though page faults are still allowed. We wait for
1251 * all writes to complete and then proceed to the next stage.
1252 *
1253 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1254 * but internal fs threads can still modify the filesystem (although they
1255 * should not dirty new pages or inodes), writeback can run etc. After waiting
1256 * for all running page faults we sync the filesystem which will clean all
1257 * dirty pages and inodes (no new dirty pages or inodes can be created when
1258 * sync is running).
1259 *
1260 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1261 * modification are blocked (e.g. XFS preallocation truncation on inode
1262 * reclaim). This is usually implemented by blocking new transactions for
1263 * filesystems that have them and need this additional guard. After all
1264 * internal writers are finished we call ->freeze_fs() to finish filesystem
1265 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1266 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1267 *
1268 * sb->s_writers.frozen is protected by sb->s_umount.
1269 */
1270 int freeze_super(struct super_block *sb)
1271 {
1272 int ret;
1273
1274 atomic_inc(&sb->s_active);
1275 down_write(&sb->s_umount);
1276 if (sb->s_writers.frozen != SB_UNFROZEN) {
1277 deactivate_locked_super(sb);
1278 return -EBUSY;
1279 }
1280
1281 if (!(sb->s_flags & MS_BORN)) {
1282 up_write(&sb->s_umount);
1283 return 0; /* sic - it's "nothing to do" */
1284 }
1285
1286 if (sb->s_flags & MS_RDONLY) {
1287 /* Nothing to do really... */
1288 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1289 up_write(&sb->s_umount);
1290 return 0;
1291 }
1292
1293 /* From now on, no new normal writers can start */
1294 sb->s_writers.frozen = SB_FREEZE_WRITE;
1295 smp_wmb();
1296
1297 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1298 up_write(&sb->s_umount);
1299
1300 sb_wait_write(sb, SB_FREEZE_WRITE);
1301
1302 /* Now we go and block page faults... */
1303 down_write(&sb->s_umount);
1304 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1305 smp_wmb();
1306
1307 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1308
1309 /* All writers are done so after syncing there won't be dirty data */
1310 sync_filesystem(sb);
1311
1312 /* Now wait for internal filesystem counter */
1313 sb->s_writers.frozen = SB_FREEZE_FS;
1314 smp_wmb();
1315 sb_wait_write(sb, SB_FREEZE_FS);
1316
1317 if (sb->s_op->freeze_fs) {
1318 ret = sb->s_op->freeze_fs(sb);
1319 if (ret) {
1320 printk(KERN_ERR
1321 "VFS:Filesystem freeze failed\n");
1322 sb->s_writers.frozen = SB_UNFROZEN;
1323 smp_wmb();
1324 wake_up(&sb->s_writers.wait_unfrozen);
1325 deactivate_locked_super(sb);
1326 return ret;
1327 }
1328 }
1329 /*
1330 * This is just for debugging purposes so that fs can warn if it
1331 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1332 */
1333 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1334 up_write(&sb->s_umount);
1335 return 0;
1336 }
1337 EXPORT_SYMBOL(freeze_super);
1338
1339 /**
1340 * thaw_super -- unlock filesystem
1341 * @sb: the super to thaw
1342 *
1343 * Unlocks the filesystem and marks it writeable again after freeze_super().
1344 */
1345 int thaw_super(struct super_block *sb)
1346 {
1347 int error;
1348
1349 down_write(&sb->s_umount);
1350 if (sb->s_writers.frozen == SB_UNFROZEN) {
1351 up_write(&sb->s_umount);
1352 return -EINVAL;
1353 }
1354
1355 if (sb->s_flags & MS_RDONLY)
1356 goto out;
1357
1358 if (sb->s_op->unfreeze_fs) {
1359 error = sb->s_op->unfreeze_fs(sb);
1360 if (error) {
1361 printk(KERN_ERR
1362 "VFS:Filesystem thaw failed\n");
1363 up_write(&sb->s_umount);
1364 return error;
1365 }
1366 }
1367
1368 out:
1369 sb->s_writers.frozen = SB_UNFROZEN;
1370 smp_wmb();
1371 wake_up(&sb->s_writers.wait_unfrozen);
1372 deactivate_locked_super(sb);
1373
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(thaw_super);