Merge tag 'v3.10.105' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 EXPORT_SYMBOL_GPL(super_blocks);
42
43 DEFINE_SPINLOCK(sb_lock);
44
45 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
46 "sb_writers",
47 "sb_pagefaults",
48 "sb_internal",
49 };
50
51 /*
52 * One thing we have to be careful of with a per-sb shrinker is that we don't
53 * drop the last active reference to the superblock from within the shrinker.
54 * If that happens we could trigger unregistering the shrinker from within the
55 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
56 * take a passive reference to the superblock to avoid this from occurring.
57 */
58 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
59 {
60 struct super_block *sb;
61 int fs_objects = 0;
62 int total_objects;
63
64 sb = container_of(shrink, struct super_block, s_shrink);
65
66 /*
67 * Deadlock avoidance. We may hold various FS locks, and we don't want
68 * to recurse into the FS that called us in clear_inode() and friends..
69 */
70 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
71 return -1;
72
73 if (!grab_super_passive(sb))
74 return -1;
75
76 if (sb->s_op && sb->s_op->nr_cached_objects)
77 fs_objects = sb->s_op->nr_cached_objects(sb);
78
79 total_objects = sb->s_nr_dentry_unused +
80 sb->s_nr_inodes_unused + fs_objects + 1;
81 if (!total_objects)
82 total_objects = 1;
83
84 if (sc->nr_to_scan) {
85 int dentries;
86 int inodes;
87
88 /* proportion the scan between the caches */
89 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
90 total_objects;
91 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
92 total_objects;
93 if (fs_objects)
94 fs_objects = (sc->nr_to_scan * fs_objects) /
95 total_objects;
96 /*
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
99 */
100 prune_dcache_sb(sb, dentries);
101 prune_icache_sb(sb, inodes);
102
103 if (fs_objects && sb->s_op->free_cached_objects) {
104 sb->s_op->free_cached_objects(sb, fs_objects);
105 fs_objects = sb->s_op->nr_cached_objects(sb);
106 }
107 total_objects = sb->s_nr_dentry_unused +
108 sb->s_nr_inodes_unused + fs_objects;
109 }
110
111 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
112 drop_super(sb);
113 return total_objects;
114 }
115
116 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
117 {
118 int err;
119 int i;
120
121 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
122 err = percpu_counter_init(&s->s_writers.counter[i], 0);
123 if (err < 0)
124 goto err_out;
125 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
126 &type->s_writers_key[i], 0);
127 }
128 init_waitqueue_head(&s->s_writers.wait);
129 init_waitqueue_head(&s->s_writers.wait_unfrozen);
130 return 0;
131 err_out:
132 while (--i >= 0)
133 percpu_counter_destroy(&s->s_writers.counter[i]);
134 return err;
135 }
136
137 static void destroy_sb_writers(struct super_block *s)
138 {
139 int i;
140
141 for (i = 0; i < SB_FREEZE_LEVELS; i++)
142 percpu_counter_destroy(&s->s_writers.counter[i]);
143 }
144
145 /**
146 * alloc_super - create new superblock
147 * @type: filesystem type superblock should belong to
148 * @flags: the mount flags
149 *
150 * Allocates and initializes a new &struct super_block. alloc_super()
151 * returns a pointer new superblock or %NULL if allocation had failed.
152 */
153 static struct super_block *alloc_super(struct file_system_type *type, int flags)
154 {
155 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
156 static const struct super_operations default_op;
157
158 if (s) {
159 if (security_sb_alloc(s)) {
160 /*
161 * We cannot call security_sb_free() without
162 * security_sb_alloc() succeeding. So bail out manually
163 */
164 kfree(s);
165 s = NULL;
166 goto out;
167 }
168 if (init_sb_writers(s, type))
169 goto err_out;
170 s->s_flags = flags;
171 s->s_bdi = &default_backing_dev_info;
172 INIT_HLIST_NODE(&s->s_instances);
173 INIT_HLIST_BL_HEAD(&s->s_anon);
174 INIT_LIST_HEAD(&s->s_inodes);
175 INIT_LIST_HEAD(&s->s_dentry_lru);
176 INIT_LIST_HEAD(&s->s_inode_lru);
177 spin_lock_init(&s->s_inode_lru_lock);
178 INIT_LIST_HEAD(&s->s_mounts);
179 init_rwsem(&s->s_umount);
180 lockdep_set_class(&s->s_umount, &type->s_umount_key);
181 /*
182 * sget() can have s_umount recursion.
183 *
184 * When it cannot find a suitable sb, it allocates a new
185 * one (this one), and tries again to find a suitable old
186 * one.
187 *
188 * In case that succeeds, it will acquire the s_umount
189 * lock of the old one. Since these are clearly distrinct
190 * locks, and this object isn't exposed yet, there's no
191 * risk of deadlocks.
192 *
193 * Annotate this by putting this lock in a different
194 * subclass.
195 */
196 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
197 s->s_count = 1;
198 atomic_set(&s->s_active, 1);
199 mutex_init(&s->s_vfs_rename_mutex);
200 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
201 mutex_init(&s->s_dquot.dqio_mutex);
202 mutex_init(&s->s_dquot.dqonoff_mutex);
203 init_rwsem(&s->s_dquot.dqptr_sem);
204 s->s_maxbytes = MAX_NON_LFS;
205 s->s_op = &default_op;
206 s->s_time_gran = 1000000000;
207 s->cleancache_poolid = -1;
208
209 s->s_shrink.seeks = DEFAULT_SEEKS;
210 s->s_shrink.shrink = prune_super;
211 s->s_shrink.batch = 1024;
212 }
213 out:
214 return s;
215 err_out:
216 security_sb_free(s);
217 destroy_sb_writers(s);
218 kfree(s);
219 s = NULL;
220 goto out;
221 }
222
223 /**
224 * destroy_super - frees a superblock
225 * @s: superblock to free
226 *
227 * Frees a superblock.
228 */
229 static inline void destroy_super(struct super_block *s)
230 {
231 destroy_sb_writers(s);
232 security_sb_free(s);
233 WARN_ON(!list_empty(&s->s_mounts));
234 kfree(s->s_subtype);
235 kfree(s->s_options);
236 kfree(s);
237 }
238
239 /* Superblock refcounting */
240
241 /*
242 * Drop a superblock's refcount. The caller must hold sb_lock.
243 */
244 static void __put_super(struct super_block *sb)
245 {
246 if (!--sb->s_count) {
247 list_del_init(&sb->s_list);
248 destroy_super(sb);
249 }
250 }
251
252 /**
253 * put_super - drop a temporary reference to superblock
254 * @sb: superblock in question
255 *
256 * Drops a temporary reference, frees superblock if there's no
257 * references left.
258 */
259 static void put_super(struct super_block *sb)
260 {
261 spin_lock(&sb_lock);
262 __put_super(sb);
263 spin_unlock(&sb_lock);
264 }
265
266
267 /**
268 * deactivate_locked_super - drop an active reference to superblock
269 * @s: superblock to deactivate
270 *
271 * Drops an active reference to superblock, converting it into a temprory
272 * one if there is no other active references left. In that case we
273 * tell fs driver to shut it down and drop the temporary reference we
274 * had just acquired.
275 *
276 * Caller holds exclusive lock on superblock; that lock is released.
277 */
278 void deactivate_locked_super(struct super_block *s)
279 {
280 struct file_system_type *fs = s->s_type;
281 if (atomic_dec_and_test(&s->s_active)) {
282 cleancache_invalidate_fs(s);
283 fs->kill_sb(s);
284
285 /* caches are now gone, we can safely kill the shrinker now */
286 unregister_shrinker(&s->s_shrink);
287 put_filesystem(fs);
288 put_super(s);
289 } else {
290 up_write(&s->s_umount);
291 }
292 }
293
294 EXPORT_SYMBOL(deactivate_locked_super);
295
296 /**
297 * deactivate_super - drop an active reference to superblock
298 * @s: superblock to deactivate
299 *
300 * Variant of deactivate_locked_super(), except that superblock is *not*
301 * locked by caller. If we are going to drop the final active reference,
302 * lock will be acquired prior to that.
303 */
304 void deactivate_super(struct super_block *s)
305 {
306 if (!atomic_add_unless(&s->s_active, -1, 1)) {
307 down_write(&s->s_umount);
308 deactivate_locked_super(s);
309 }
310 }
311
312 EXPORT_SYMBOL(deactivate_super);
313
314 /**
315 * grab_super - acquire an active reference
316 * @s: reference we are trying to make active
317 *
318 * Tries to acquire an active reference. grab_super() is used when we
319 * had just found a superblock in super_blocks or fs_type->fs_supers
320 * and want to turn it into a full-blown active reference. grab_super()
321 * is called with sb_lock held and drops it. Returns 1 in case of
322 * success, 0 if we had failed (superblock contents was already dead or
323 * dying when grab_super() had been called). Note that this is only
324 * called for superblocks not in rundown mode (== ones still on ->fs_supers
325 * of their type), so increment of ->s_count is OK here.
326 */
327 static int grab_super(struct super_block *s) __releases(sb_lock)
328 {
329 s->s_count++;
330 spin_unlock(&sb_lock);
331 down_write(&s->s_umount);
332 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
333 put_super(s);
334 return 1;
335 }
336 up_write(&s->s_umount);
337 put_super(s);
338 return 0;
339 }
340
341 /*
342 * grab_super_passive - acquire a passive reference
343 * @sb: reference we are trying to grab
344 *
345 * Tries to acquire a passive reference. This is used in places where we
346 * cannot take an active reference but we need to ensure that the
347 * superblock does not go away while we are working on it. It returns
348 * false if a reference was not gained, and returns true with the s_umount
349 * lock held in read mode if a reference is gained. On successful return,
350 * the caller must drop the s_umount lock and the passive reference when
351 * done.
352 */
353 bool grab_super_passive(struct super_block *sb)
354 {
355 spin_lock(&sb_lock);
356 if (hlist_unhashed(&sb->s_instances)) {
357 spin_unlock(&sb_lock);
358 return false;
359 }
360
361 sb->s_count++;
362 spin_unlock(&sb_lock);
363
364 if (down_read_trylock(&sb->s_umount)) {
365 if (sb->s_root && (sb->s_flags & MS_BORN))
366 return true;
367 up_read(&sb->s_umount);
368 }
369
370 put_super(sb);
371 return false;
372 }
373
374 /**
375 * generic_shutdown_super - common helper for ->kill_sb()
376 * @sb: superblock to kill
377 *
378 * generic_shutdown_super() does all fs-independent work on superblock
379 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
380 * that need destruction out of superblock, call generic_shutdown_super()
381 * and release aforementioned objects. Note: dentries and inodes _are_
382 * taken care of and do not need specific handling.
383 *
384 * Upon calling this function, the filesystem may no longer alter or
385 * rearrange the set of dentries belonging to this super_block, nor may it
386 * change the attachments of dentries to inodes.
387 */
388 void generic_shutdown_super(struct super_block *sb)
389 {
390 const struct super_operations *sop = sb->s_op;
391
392 if (sb->s_root) {
393 shrink_dcache_for_umount(sb);
394 sync_filesystem(sb);
395 sb->s_flags &= ~MS_ACTIVE;
396
397 fsnotify_unmount_inodes(&sb->s_inodes);
398
399 evict_inodes(sb);
400
401 if (sop->put_super)
402 sop->put_super(sb);
403
404 if (!list_empty(&sb->s_inodes)) {
405 printk("VFS: Busy inodes after unmount of %s. "
406 "Self-destruct in 5 seconds. Have a nice day...\n",
407 sb->s_id);
408 }
409 }
410 spin_lock(&sb_lock);
411 /* should be initialized for __put_super_and_need_restart() */
412 hlist_del_init(&sb->s_instances);
413 spin_unlock(&sb_lock);
414 up_write(&sb->s_umount);
415 }
416
417 EXPORT_SYMBOL(generic_shutdown_super);
418
419 /**
420 * sget - find or create a superblock
421 * @type: filesystem type superblock should belong to
422 * @test: comparison callback
423 * @set: setup callback
424 * @flags: mount flags
425 * @data: argument to each of them
426 */
427 struct super_block *sget(struct file_system_type *type,
428 int (*test)(struct super_block *,void *),
429 int (*set)(struct super_block *,void *),
430 int flags,
431 void *data)
432 {
433 struct super_block *s = NULL;
434 struct super_block *old;
435 int err;
436
437 retry:
438 spin_lock(&sb_lock);
439 if (test) {
440 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
441 if (!test(old, data))
442 continue;
443 if (!grab_super(old))
444 goto retry;
445 if (s) {
446 up_write(&s->s_umount);
447 destroy_super(s);
448 s = NULL;
449 }
450 return old;
451 }
452 }
453 if (!s) {
454 spin_unlock(&sb_lock);
455 s = alloc_super(type, flags);
456 if (!s)
457 return ERR_PTR(-ENOMEM);
458 goto retry;
459 }
460
461 err = set(s, data);
462 if (err) {
463 spin_unlock(&sb_lock);
464 up_write(&s->s_umount);
465 destroy_super(s);
466 return ERR_PTR(err);
467 }
468 s->s_type = type;
469 strlcpy(s->s_id, type->name, sizeof(s->s_id));
470 list_add_tail(&s->s_list, &super_blocks);
471 hlist_add_head(&s->s_instances, &type->fs_supers);
472 spin_unlock(&sb_lock);
473 get_filesystem(type);
474 register_shrinker(&s->s_shrink);
475 return s;
476 }
477
478 EXPORT_SYMBOL(sget);
479
480 void drop_super(struct super_block *sb)
481 {
482 up_read(&sb->s_umount);
483 put_super(sb);
484 }
485
486 EXPORT_SYMBOL(drop_super);
487
488 /**
489 * iterate_supers - call function for all active superblocks
490 * @f: function to call
491 * @arg: argument to pass to it
492 *
493 * Scans the superblock list and calls given function, passing it
494 * locked superblock and given argument.
495 */
496 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
497 {
498 struct super_block *sb, *p = NULL;
499
500 spin_lock(&sb_lock);
501 list_for_each_entry(sb, &super_blocks, s_list) {
502 if (hlist_unhashed(&sb->s_instances))
503 continue;
504 sb->s_count++;
505 spin_unlock(&sb_lock);
506
507 down_read(&sb->s_umount);
508 if (sb->s_root && (sb->s_flags & MS_BORN))
509 f(sb, arg);
510 up_read(&sb->s_umount);
511
512 spin_lock(&sb_lock);
513 if (p)
514 __put_super(p);
515 p = sb;
516 }
517 if (p)
518 __put_super(p);
519 spin_unlock(&sb_lock);
520 }
521
522 /**
523 * iterate_supers_type - call function for superblocks of given type
524 * @type: fs type
525 * @f: function to call
526 * @arg: argument to pass to it
527 *
528 * Scans the superblock list and calls given function, passing it
529 * locked superblock and given argument.
530 */
531 void iterate_supers_type(struct file_system_type *type,
532 void (*f)(struct super_block *, void *), void *arg)
533 {
534 struct super_block *sb, *p = NULL;
535
536 spin_lock(&sb_lock);
537 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
538 sb->s_count++;
539 spin_unlock(&sb_lock);
540
541 down_read(&sb->s_umount);
542 if (sb->s_root && (sb->s_flags & MS_BORN))
543 f(sb, arg);
544 up_read(&sb->s_umount);
545
546 spin_lock(&sb_lock);
547 if (p)
548 __put_super(p);
549 p = sb;
550 }
551 if (p)
552 __put_super(p);
553 spin_unlock(&sb_lock);
554 }
555
556 EXPORT_SYMBOL(iterate_supers_type);
557
558 /**
559 * get_super - get the superblock of a device
560 * @bdev: device to get the superblock for
561 *
562 * Scans the superblock list and finds the superblock of the file system
563 * mounted on the device given. %NULL is returned if no match is found.
564 */
565
566 struct super_block *get_super(struct block_device *bdev)
567 {
568 struct super_block *sb;
569
570 if (!bdev)
571 return NULL;
572
573 spin_lock(&sb_lock);
574 rescan:
575 list_for_each_entry(sb, &super_blocks, s_list) {
576 if (hlist_unhashed(&sb->s_instances))
577 continue;
578 if (sb->s_bdev == bdev) {
579 sb->s_count++;
580 spin_unlock(&sb_lock);
581 down_read(&sb->s_umount);
582 /* still alive? */
583 if (sb->s_root && (sb->s_flags & MS_BORN))
584 return sb;
585 up_read(&sb->s_umount);
586 /* nope, got unmounted */
587 spin_lock(&sb_lock);
588 __put_super(sb);
589 goto rescan;
590 }
591 }
592 spin_unlock(&sb_lock);
593 return NULL;
594 }
595
596 EXPORT_SYMBOL(get_super);
597
598 /**
599 * get_super_thawed - get thawed superblock of a device
600 * @bdev: device to get the superblock for
601 *
602 * Scans the superblock list and finds the superblock of the file system
603 * mounted on the device. The superblock is returned once it is thawed
604 * (or immediately if it was not frozen). %NULL is returned if no match
605 * is found.
606 */
607 struct super_block *get_super_thawed(struct block_device *bdev)
608 {
609 while (1) {
610 struct super_block *s = get_super(bdev);
611 if (!s || s->s_writers.frozen == SB_UNFROZEN)
612 return s;
613 up_read(&s->s_umount);
614 wait_event(s->s_writers.wait_unfrozen,
615 s->s_writers.frozen == SB_UNFROZEN);
616 put_super(s);
617 }
618 }
619 EXPORT_SYMBOL(get_super_thawed);
620
621 /**
622 * get_active_super - get an active reference to the superblock of a device
623 * @bdev: device to get the superblock for
624 *
625 * Scans the superblock list and finds the superblock of the file system
626 * mounted on the device given. Returns the superblock with an active
627 * reference or %NULL if none was found.
628 */
629 struct super_block *get_active_super(struct block_device *bdev)
630 {
631 struct super_block *sb;
632
633 if (!bdev)
634 return NULL;
635
636 restart:
637 spin_lock(&sb_lock);
638 list_for_each_entry(sb, &super_blocks, s_list) {
639 if (hlist_unhashed(&sb->s_instances))
640 continue;
641 if (sb->s_bdev == bdev) {
642 if (!grab_super(sb))
643 goto restart;
644 up_write(&sb->s_umount);
645 return sb;
646 }
647 }
648 spin_unlock(&sb_lock);
649 return NULL;
650 }
651
652 struct super_block *user_get_super(dev_t dev)
653 {
654 struct super_block *sb;
655
656 spin_lock(&sb_lock);
657 rescan:
658 list_for_each_entry(sb, &super_blocks, s_list) {
659 if (hlist_unhashed(&sb->s_instances))
660 continue;
661 if (sb->s_dev == dev) {
662 sb->s_count++;
663 spin_unlock(&sb_lock);
664 down_read(&sb->s_umount);
665 /* still alive? */
666 if (sb->s_root && (sb->s_flags & MS_BORN))
667 return sb;
668 up_read(&sb->s_umount);
669 /* nope, got unmounted */
670 spin_lock(&sb_lock);
671 __put_super(sb);
672 goto rescan;
673 }
674 }
675 spin_unlock(&sb_lock);
676 return NULL;
677 }
678
679 /**
680 * do_remount_sb - asks filesystem to change mount options.
681 * @sb: superblock in question
682 * @flags: numeric part of options
683 * @data: the rest of options
684 * @force: whether or not to force the change
685 *
686 * Alters the mount options of a mounted file system.
687 */
688 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
689 {
690 int retval;
691 int remount_ro;
692
693 if (sb->s_writers.frozen != SB_UNFROZEN)
694 return -EBUSY;
695
696 #ifdef CONFIG_BLOCK
697 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
698 return -EACCES;
699 #endif
700
701 if (flags & MS_RDONLY)
702 acct_auto_close(sb);
703 shrink_dcache_sb(sb);
704 sync_filesystem(sb);
705
706 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
707
708 /* If we are remounting RDONLY and current sb is read/write,
709 make sure there are no rw files opened */
710 if (remount_ro) {
711 if (force) {
712 sb->s_readonly_remount = 1;
713 smp_wmb();
714 } else {
715 retval = sb_prepare_remount_readonly(sb);
716 if (retval)
717 return retval;
718 }
719 }
720
721 if (sb->s_op->remount_fs) {
722 retval = sb->s_op->remount_fs(sb, &flags, data);
723 if (retval) {
724 if (!force)
725 goto cancel_readonly;
726 /* If forced remount, go ahead despite any errors */
727 WARN(1, "forced remount of a %s fs returned %i\n",
728 sb->s_type->name, retval);
729 }
730 }
731 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
732 /* Needs to be ordered wrt mnt_is_readonly() */
733 smp_wmb();
734 sb->s_readonly_remount = 0;
735
736 /*
737 * Some filesystems modify their metadata via some other path than the
738 * bdev buffer cache (eg. use a private mapping, or directories in
739 * pagecache, etc). Also file data modifications go via their own
740 * mappings. So If we try to mount readonly then copy the filesystem
741 * from bdev, we could get stale data, so invalidate it to give a best
742 * effort at coherency.
743 */
744 if (remount_ro && sb->s_bdev)
745 invalidate_bdev(sb->s_bdev);
746 return 0;
747
748 cancel_readonly:
749 sb->s_readonly_remount = 0;
750 return retval;
751 }
752
753 static void do_emergency_remount(struct work_struct *work)
754 {
755 struct super_block *sb, *p = NULL;
756
757 spin_lock(&sb_lock);
758 list_for_each_entry(sb, &super_blocks, s_list) {
759 if (hlist_unhashed(&sb->s_instances))
760 continue;
761 sb->s_count++;
762 spin_unlock(&sb_lock);
763 down_write(&sb->s_umount);
764 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
765 !(sb->s_flags & MS_RDONLY)) {
766 /*
767 * What lock protects sb->s_flags??
768 */
769 do_remount_sb(sb, MS_RDONLY, NULL, 1);
770 }
771 up_write(&sb->s_umount);
772 spin_lock(&sb_lock);
773 if (p)
774 __put_super(p);
775 p = sb;
776 }
777 if (p)
778 __put_super(p);
779 spin_unlock(&sb_lock);
780 kfree(work);
781 printk("Emergency Remount complete\n");
782 }
783
784 void emergency_remount(void)
785 {
786 struct work_struct *work;
787
788 work = kmalloc(sizeof(*work), GFP_ATOMIC);
789 if (work) {
790 INIT_WORK(work, do_emergency_remount);
791 schedule_work(work);
792 }
793 }
794
795 /*
796 * Unnamed block devices are dummy devices used by virtual
797 * filesystems which don't use real block-devices. -- jrs
798 */
799
800 static DEFINE_IDA(unnamed_dev_ida);
801 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
802 static int unnamed_dev_start = 0; /* don't bother trying below it */
803
804 int get_anon_bdev(dev_t *p)
805 {
806 int dev;
807 int error;
808
809 retry:
810 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
811 return -ENOMEM;
812 spin_lock(&unnamed_dev_lock);
813 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
814 if (!error)
815 unnamed_dev_start = dev + 1;
816 spin_unlock(&unnamed_dev_lock);
817 if (error == -EAGAIN)
818 /* We raced and lost with another CPU. */
819 goto retry;
820 else if (error)
821 return -EAGAIN;
822
823 if (dev == (1 << MINORBITS)) {
824 spin_lock(&unnamed_dev_lock);
825 ida_remove(&unnamed_dev_ida, dev);
826 if (unnamed_dev_start > dev)
827 unnamed_dev_start = dev;
828 spin_unlock(&unnamed_dev_lock);
829 return -EMFILE;
830 }
831 *p = MKDEV(0, dev & MINORMASK);
832 return 0;
833 }
834 EXPORT_SYMBOL(get_anon_bdev);
835
836 void free_anon_bdev(dev_t dev)
837 {
838 int slot = MINOR(dev);
839 spin_lock(&unnamed_dev_lock);
840 ida_remove(&unnamed_dev_ida, slot);
841 if (slot < unnamed_dev_start)
842 unnamed_dev_start = slot;
843 spin_unlock(&unnamed_dev_lock);
844 }
845 EXPORT_SYMBOL(free_anon_bdev);
846
847 int set_anon_super(struct super_block *s, void *data)
848 {
849 int error = get_anon_bdev(&s->s_dev);
850 if (!error)
851 s->s_bdi = &noop_backing_dev_info;
852 return error;
853 }
854
855 EXPORT_SYMBOL(set_anon_super);
856
857 void kill_anon_super(struct super_block *sb)
858 {
859 dev_t dev = sb->s_dev;
860 generic_shutdown_super(sb);
861 free_anon_bdev(dev);
862 }
863
864 EXPORT_SYMBOL(kill_anon_super);
865
866 void kill_litter_super(struct super_block *sb)
867 {
868 if (sb->s_root)
869 d_genocide(sb->s_root);
870 kill_anon_super(sb);
871 }
872
873 EXPORT_SYMBOL(kill_litter_super);
874
875 static int ns_test_super(struct super_block *sb, void *data)
876 {
877 return sb->s_fs_info == data;
878 }
879
880 static int ns_set_super(struct super_block *sb, void *data)
881 {
882 sb->s_fs_info = data;
883 return set_anon_super(sb, NULL);
884 }
885
886 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
887 void *data, int (*fill_super)(struct super_block *, void *, int))
888 {
889 struct super_block *sb;
890
891 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
892 if (IS_ERR(sb))
893 return ERR_CAST(sb);
894
895 if (!sb->s_root) {
896 int err;
897 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
898 if (err) {
899 deactivate_locked_super(sb);
900 return ERR_PTR(err);
901 }
902
903 sb->s_flags |= MS_ACTIVE;
904 }
905
906 return dget(sb->s_root);
907 }
908
909 EXPORT_SYMBOL(mount_ns);
910
911 #ifdef CONFIG_BLOCK
912 static int set_bdev_super(struct super_block *s, void *data)
913 {
914 s->s_bdev = data;
915 s->s_dev = s->s_bdev->bd_dev;
916
917 /*
918 * We set the bdi here to the queue backing, file systems can
919 * overwrite this in ->fill_super()
920 */
921 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
922 return 0;
923 }
924
925 static int test_bdev_super(struct super_block *s, void *data)
926 {
927 return (void *)s->s_bdev == data;
928 }
929
930 struct dentry *mount_bdev(struct file_system_type *fs_type,
931 int flags, const char *dev_name, void *data,
932 int (*fill_super)(struct super_block *, void *, int))
933 {
934 struct block_device *bdev;
935 struct super_block *s;
936 fmode_t mode = FMODE_READ | FMODE_EXCL;
937 int error = 0;
938
939 if (!(flags & MS_RDONLY))
940 mode |= FMODE_WRITE;
941
942 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
943 if (IS_ERR(bdev))
944 return ERR_CAST(bdev);
945
946 /*
947 * once the super is inserted into the list by sget, s_umount
948 * will protect the lockfs code from trying to start a snapshot
949 * while we are mounting
950 */
951 mutex_lock(&bdev->bd_fsfreeze_mutex);
952 if (bdev->bd_fsfreeze_count > 0) {
953 mutex_unlock(&bdev->bd_fsfreeze_mutex);
954 error = -EBUSY;
955 goto error_bdev;
956 }
957 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
958 bdev);
959 mutex_unlock(&bdev->bd_fsfreeze_mutex);
960 if (IS_ERR(s))
961 goto error_s;
962
963 if (s->s_root) {
964 if ((flags ^ s->s_flags) & MS_RDONLY) {
965 deactivate_locked_super(s);
966 error = -EBUSY;
967 goto error_bdev;
968 }
969
970 /*
971 * s_umount nests inside bd_mutex during
972 * __invalidate_device(). blkdev_put() acquires
973 * bd_mutex and can't be called under s_umount. Drop
974 * s_umount temporarily. This is safe as we're
975 * holding an active reference.
976 */
977 up_write(&s->s_umount);
978 blkdev_put(bdev, mode);
979 down_write(&s->s_umount);
980 } else {
981 char b[BDEVNAME_SIZE];
982
983 s->s_mode = mode;
984 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
985 sb_set_blocksize(s, block_size(bdev));
986 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
987 if (error) {
988 deactivate_locked_super(s);
989 goto error;
990 }
991
992 s->s_flags |= MS_ACTIVE;
993 bdev->bd_super = s;
994 }
995
996 return dget(s->s_root);
997
998 error_s:
999 error = PTR_ERR(s);
1000 error_bdev:
1001 blkdev_put(bdev, mode);
1002 error:
1003 return ERR_PTR(error);
1004 }
1005 EXPORT_SYMBOL(mount_bdev);
1006
1007 void kill_block_super(struct super_block *sb)
1008 {
1009 struct block_device *bdev = sb->s_bdev;
1010 fmode_t mode = sb->s_mode;
1011
1012 bdev->bd_super = NULL;
1013 generic_shutdown_super(sb);
1014 sync_blockdev(bdev);
1015 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1016 blkdev_put(bdev, mode | FMODE_EXCL);
1017 }
1018
1019 EXPORT_SYMBOL(kill_block_super);
1020 #endif
1021
1022 struct dentry *mount_nodev(struct file_system_type *fs_type,
1023 int flags, void *data,
1024 int (*fill_super)(struct super_block *, void *, int))
1025 {
1026 int error;
1027 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1028
1029 if (IS_ERR(s))
1030 return ERR_CAST(s);
1031
1032 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1033 if (error) {
1034 deactivate_locked_super(s);
1035 return ERR_PTR(error);
1036 }
1037 s->s_flags |= MS_ACTIVE;
1038 return dget(s->s_root);
1039 }
1040 EXPORT_SYMBOL(mount_nodev);
1041
1042 static int compare_single(struct super_block *s, void *p)
1043 {
1044 return 1;
1045 }
1046
1047 struct dentry *mount_single(struct file_system_type *fs_type,
1048 int flags, void *data,
1049 int (*fill_super)(struct super_block *, void *, int))
1050 {
1051 struct super_block *s;
1052 int error;
1053
1054 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1055 if (IS_ERR(s))
1056 return ERR_CAST(s);
1057 if (!s->s_root) {
1058 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1059 if (error) {
1060 deactivate_locked_super(s);
1061 return ERR_PTR(error);
1062 }
1063 s->s_flags |= MS_ACTIVE;
1064 } else {
1065 do_remount_sb(s, flags, data, 0);
1066 }
1067 return dget(s->s_root);
1068 }
1069 EXPORT_SYMBOL(mount_single);
1070
1071 struct dentry *
1072 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1073 {
1074 struct dentry *root;
1075 struct super_block *sb;
1076 char *secdata = NULL;
1077 int error = -ENOMEM;
1078
1079 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1080 secdata = alloc_secdata();
1081 if (!secdata)
1082 goto out;
1083
1084 error = security_sb_copy_data(data, secdata);
1085 if (error)
1086 goto out_free_secdata;
1087 }
1088
1089 root = type->mount(type, flags, name, data);
1090 if (IS_ERR(root)) {
1091 error = PTR_ERR(root);
1092 goto out_free_secdata;
1093 }
1094 sb = root->d_sb;
1095 BUG_ON(!sb);
1096 WARN_ON(!sb->s_bdi);
1097 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1098 sb->s_flags |= MS_BORN;
1099
1100 error = security_sb_kern_mount(sb, flags, secdata);
1101 if (error)
1102 goto out_sb;
1103
1104 /*
1105 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1106 * but s_maxbytes was an unsigned long long for many releases. Throw
1107 * this warning for a little while to try and catch filesystems that
1108 * violate this rule.
1109 */
1110 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1111 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1112
1113 up_write(&sb->s_umount);
1114 free_secdata(secdata);
1115 return root;
1116 out_sb:
1117 dput(root);
1118 deactivate_locked_super(sb);
1119 out_free_secdata:
1120 free_secdata(secdata);
1121 out:
1122 return ERR_PTR(error);
1123 }
1124
1125 /*
1126 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1127 * instead.
1128 */
1129 void __sb_end_write(struct super_block *sb, int level)
1130 {
1131 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1132 /*
1133 * Make sure s_writers are updated before we wake up waiters in
1134 * freeze_super().
1135 */
1136 smp_mb();
1137 if (waitqueue_active(&sb->s_writers.wait))
1138 wake_up(&sb->s_writers.wait);
1139 lockdep_off();
1140 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1141 lockdep_on();
1142 }
1143 EXPORT_SYMBOL(__sb_end_write);
1144
1145 #ifdef CONFIG_LOCKDEP
1146 /*
1147 * We want lockdep to tell us about possible deadlocks with freezing but
1148 * it's it bit tricky to properly instrument it. Getting a freeze protection
1149 * works as getting a read lock but there are subtle problems. XFS for example
1150 * gets freeze protection on internal level twice in some cases, which is OK
1151 * only because we already hold a freeze protection also on higher level. Due
1152 * to these cases we have to tell lockdep we are doing trylock when we
1153 * already hold a freeze protection for a higher freeze level.
1154 */
1155 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1156 unsigned long ip)
1157 {
1158 int i;
1159
1160 if (!trylock) {
1161 for (i = 0; i < level - 1; i++)
1162 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1163 trylock = true;
1164 break;
1165 }
1166 }
1167 lockdep_off();
1168 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1169 lockdep_on();
1170 }
1171 #endif
1172
1173 /*
1174 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1175 * instead.
1176 */
1177 int __sb_start_write(struct super_block *sb, int level, bool wait)
1178 {
1179 retry:
1180 if (unlikely(sb->s_writers.frozen >= level)) {
1181 if (!wait)
1182 return 0;
1183 wait_event(sb->s_writers.wait_unfrozen,
1184 sb->s_writers.frozen < level);
1185 }
1186
1187 #ifdef CONFIG_LOCKDEP
1188 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1189 #endif
1190 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1191 /*
1192 * Make sure counter is updated before we check for frozen.
1193 * freeze_super() first sets frozen and then checks the counter.
1194 */
1195 smp_mb();
1196 if (unlikely(sb->s_writers.frozen >= level)) {
1197 __sb_end_write(sb, level);
1198 goto retry;
1199 }
1200 return 1;
1201 }
1202 EXPORT_SYMBOL(__sb_start_write);
1203
1204 /**
1205 * sb_wait_write - wait until all writers to given file system finish
1206 * @sb: the super for which we wait
1207 * @level: type of writers we wait for (normal vs page fault)
1208 *
1209 * This function waits until there are no writers of given type to given file
1210 * system. Caller of this function should make sure there can be no new writers
1211 * of type @level before calling this function. Otherwise this function can
1212 * livelock.
1213 */
1214 static void sb_wait_write(struct super_block *sb, int level)
1215 {
1216 s64 writers;
1217
1218 /*
1219 * We just cycle-through lockdep here so that it does not complain
1220 * about returning with lock to userspace
1221 */
1222 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1223 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1224
1225 do {
1226 DEFINE_WAIT(wait);
1227
1228 /*
1229 * We use a barrier in prepare_to_wait() to separate setting
1230 * of frozen and checking of the counter
1231 */
1232 prepare_to_wait(&sb->s_writers.wait, &wait,
1233 TASK_UNINTERRUPTIBLE);
1234
1235 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1236 if (writers)
1237 schedule();
1238
1239 finish_wait(&sb->s_writers.wait, &wait);
1240 } while (writers);
1241 }
1242
1243 /**
1244 * freeze_super - lock the filesystem and force it into a consistent state
1245 * @sb: the super to lock
1246 *
1247 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1248 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1249 * -EBUSY.
1250 *
1251 * During this function, sb->s_writers.frozen goes through these values:
1252 *
1253 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1254 *
1255 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1256 * writes should be blocked, though page faults are still allowed. We wait for
1257 * all writes to complete and then proceed to the next stage.
1258 *
1259 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1260 * but internal fs threads can still modify the filesystem (although they
1261 * should not dirty new pages or inodes), writeback can run etc. After waiting
1262 * for all running page faults we sync the filesystem which will clean all
1263 * dirty pages and inodes (no new dirty pages or inodes can be created when
1264 * sync is running).
1265 *
1266 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1267 * modification are blocked (e.g. XFS preallocation truncation on inode
1268 * reclaim). This is usually implemented by blocking new transactions for
1269 * filesystems that have them and need this additional guard. After all
1270 * internal writers are finished we call ->freeze_fs() to finish filesystem
1271 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1272 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1273 *
1274 * sb->s_writers.frozen is protected by sb->s_umount.
1275 */
1276 int freeze_super(struct super_block *sb)
1277 {
1278 int ret;
1279
1280 atomic_inc(&sb->s_active);
1281 down_write(&sb->s_umount);
1282 if (sb->s_writers.frozen != SB_UNFROZEN) {
1283 deactivate_locked_super(sb);
1284 return -EBUSY;
1285 }
1286
1287 if (!(sb->s_flags & MS_BORN)) {
1288 up_write(&sb->s_umount);
1289 return 0; /* sic - it's "nothing to do" */
1290 }
1291
1292 if (sb->s_flags & MS_RDONLY) {
1293 /* Nothing to do really... */
1294 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1295 up_write(&sb->s_umount);
1296 return 0;
1297 }
1298
1299 /* From now on, no new normal writers can start */
1300 sb->s_writers.frozen = SB_FREEZE_WRITE;
1301 smp_wmb();
1302
1303 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1304 up_write(&sb->s_umount);
1305
1306 sb_wait_write(sb, SB_FREEZE_WRITE);
1307
1308 /* Now we go and block page faults... */
1309 down_write(&sb->s_umount);
1310 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1311 smp_wmb();
1312
1313 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1314
1315 /* All writers are done so after syncing there won't be dirty data */
1316 sync_filesystem(sb);
1317
1318 /* Now wait for internal filesystem counter */
1319 sb->s_writers.frozen = SB_FREEZE_FS;
1320 smp_wmb();
1321 sb_wait_write(sb, SB_FREEZE_FS);
1322
1323 if (sb->s_op->freeze_fs) {
1324 ret = sb->s_op->freeze_fs(sb);
1325 if (ret) {
1326 printk(KERN_ERR
1327 "VFS:Filesystem freeze failed\n");
1328 sb->s_writers.frozen = SB_UNFROZEN;
1329 smp_wmb();
1330 wake_up(&sb->s_writers.wait_unfrozen);
1331 deactivate_locked_super(sb);
1332 return ret;
1333 }
1334 }
1335 /*
1336 * For debugging purposes so that fs can warn if it sees write activity
1337 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1338 */
1339 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1340 up_write(&sb->s_umount);
1341 return 0;
1342 }
1343 EXPORT_SYMBOL(freeze_super);
1344
1345 /**
1346 * thaw_super -- unlock filesystem
1347 * @sb: the super to thaw
1348 *
1349 * Unlocks the filesystem and marks it writeable again after freeze_super().
1350 */
1351 int thaw_super(struct super_block *sb)
1352 {
1353 int error;
1354
1355 down_write(&sb->s_umount);
1356 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1357 up_write(&sb->s_umount);
1358 return -EINVAL;
1359 }
1360
1361 if (sb->s_flags & MS_RDONLY)
1362 goto out;
1363
1364 if (sb->s_op->unfreeze_fs) {
1365 error = sb->s_op->unfreeze_fs(sb);
1366 if (error) {
1367 printk(KERN_ERR
1368 "VFS:Filesystem thaw failed\n");
1369 up_write(&sb->s_umount);
1370 return error;
1371 }
1372 }
1373
1374 out:
1375 sb->s_writers.frozen = SB_UNFROZEN;
1376 smp_wmb();
1377 wake_up(&sb->s_writers.wait_unfrozen);
1378 deactivate_locked_super(sb);
1379
1380 return 0;
1381 }
1382 EXPORT_SYMBOL(thaw_super);