Merge branches 'devel-stable', 'entry', 'fixes', 'mach-types', 'misc' and 'smp-hotplu...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include "internal.h"
35
36 /*
37 * Attempt to steal a page from a pipe buffer. This should perhaps go into
38 * a vm helper function, it's already simplified quite a bit by the
39 * addition of remove_mapping(). If success is returned, the caller may
40 * attempt to reuse this page for another destination.
41 */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43 struct pipe_buffer *buf)
44 {
45 struct page *page = buf->page;
46 struct address_space *mapping;
47
48 lock_page(page);
49
50 mapping = page_mapping(page);
51 if (mapping) {
52 WARN_ON(!PageUptodate(page));
53
54 /*
55 * At least for ext2 with nobh option, we need to wait on
56 * writeback completing on this page, since we'll remove it
57 * from the pagecache. Otherwise truncate wont wait on the
58 * page, allowing the disk blocks to be reused by someone else
59 * before we actually wrote our data to them. fs corruption
60 * ensues.
61 */
62 wait_on_page_writeback(page);
63
64 if (page_has_private(page) &&
65 !try_to_release_page(page, GFP_KERNEL))
66 goto out_unlock;
67
68 /*
69 * If we succeeded in removing the mapping, set LRU flag
70 * and return good.
71 */
72 if (remove_mapping(mapping, page)) {
73 buf->flags |= PIPE_BUF_FLAG_LRU;
74 return 0;
75 }
76 }
77
78 /*
79 * Raced with truncate or failed to remove page from current
80 * address space, unlock and return failure.
81 */
82 out_unlock:
83 unlock_page(page);
84 return 1;
85 }
86
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
89 {
90 page_cache_release(buf->page);
91 buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93
94 /*
95 * Check whether the contents of buf is OK to access. Since the content
96 * is a page cache page, IO may be in flight.
97 */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99 struct pipe_buffer *buf)
100 {
101 struct page *page = buf->page;
102 int err;
103
104 if (!PageUptodate(page)) {
105 lock_page(page);
106
107 /*
108 * Page got truncated/unhashed. This will cause a 0-byte
109 * splice, if this is the first page.
110 */
111 if (!page->mapping) {
112 err = -ENODATA;
113 goto error;
114 }
115
116 /*
117 * Uh oh, read-error from disk.
118 */
119 if (!PageUptodate(page)) {
120 err = -EIO;
121 goto error;
122 }
123
124 /*
125 * Page is ok afterall, we are done.
126 */
127 unlock_page(page);
128 }
129
130 return 0;
131 error:
132 unlock_page(page);
133 return err;
134 }
135
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137 .can_merge = 0,
138 .map = generic_pipe_buf_map,
139 .unmap = generic_pipe_buf_unmap,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
148 {
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
151
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .map = generic_pipe_buf_map,
159 .unmap = generic_pipe_buf_unmap,
160 .confirm = generic_pipe_buf_confirm,
161 .release = page_cache_pipe_buf_release,
162 .steal = user_page_pipe_buf_steal,
163 .get = generic_pipe_buf_get,
164 };
165
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168 smp_mb();
169 if (waitqueue_active(&pipe->wait))
170 wake_up_interruptible(&pipe->wait);
171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173
174 /**
175 * splice_to_pipe - fill passed data into a pipe
176 * @pipe: pipe to fill
177 * @spd: data to fill
178 *
179 * Description:
180 * @spd contains a map of pages and len/offset tuples, along with
181 * the struct pipe_buf_operations associated with these pages. This
182 * function will link that data to the pipe.
183 *
184 */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 struct splice_pipe_desc *spd)
187 {
188 unsigned int spd_pages = spd->nr_pages;
189 int ret, do_wakeup, page_nr;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->inode)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
250 }
251
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
255 }
256
257 pipe_unlock(pipe);
258
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
261
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
264
265 return ret;
266 }
267
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270 page_cache_release(spd->pages[i]);
271 }
272
273 /*
274 * Check if we need to grow the arrays holding pages and partial page
275 * descriptions.
276 */
277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280
281 spd->nr_pages_max = buffers;
282 if (buffers <= PIPE_DEF_BUFFERS)
283 return 0;
284
285 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287
288 if (spd->pages && spd->partial)
289 return 0;
290
291 kfree(spd->pages);
292 kfree(spd->partial);
293 return -ENOMEM;
294 }
295
296 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 {
298 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299 return;
300
301 kfree(spd->pages);
302 kfree(spd->partial);
303 }
304
305 static int
306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307 struct pipe_inode_info *pipe, size_t len,
308 unsigned int flags)
309 {
310 struct address_space *mapping = in->f_mapping;
311 unsigned int loff, nr_pages, req_pages;
312 struct page *pages[PIPE_DEF_BUFFERS];
313 struct partial_page partial[PIPE_DEF_BUFFERS];
314 struct page *page;
315 pgoff_t index, end_index;
316 loff_t isize;
317 int error, page_nr;
318 struct splice_pipe_desc spd = {
319 .pages = pages,
320 .partial = partial,
321 .nr_pages_max = PIPE_DEF_BUFFERS,
322 .flags = flags,
323 .ops = &page_cache_pipe_buf_ops,
324 .spd_release = spd_release_page,
325 };
326
327 if (splice_grow_spd(pipe, &spd))
328 return -ENOMEM;
329
330 index = *ppos >> PAGE_CACHE_SHIFT;
331 loff = *ppos & ~PAGE_CACHE_MASK;
332 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333 nr_pages = min(req_pages, spd.nr_pages_max);
334
335 /*
336 * Lookup the (hopefully) full range of pages we need.
337 */
338 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339 index += spd.nr_pages;
340
341 /*
342 * If find_get_pages_contig() returned fewer pages than we needed,
343 * readahead/allocate the rest and fill in the holes.
344 */
345 if (spd.nr_pages < nr_pages)
346 page_cache_sync_readahead(mapping, &in->f_ra, in,
347 index, req_pages - spd.nr_pages);
348
349 error = 0;
350 while (spd.nr_pages < nr_pages) {
351 /*
352 * Page could be there, find_get_pages_contig() breaks on
353 * the first hole.
354 */
355 page = find_get_page(mapping, index);
356 if (!page) {
357 /*
358 * page didn't exist, allocate one.
359 */
360 page = page_cache_alloc_cold(mapping);
361 if (!page)
362 break;
363
364 error = add_to_page_cache_lru(page, mapping, index,
365 GFP_KERNEL);
366 if (unlikely(error)) {
367 page_cache_release(page);
368 if (error == -EEXIST)
369 continue;
370 break;
371 }
372 /*
373 * add_to_page_cache() locks the page, unlock it
374 * to avoid convoluting the logic below even more.
375 */
376 unlock_page(page);
377 }
378
379 spd.pages[spd.nr_pages++] = page;
380 index++;
381 }
382
383 /*
384 * Now loop over the map and see if we need to start IO on any
385 * pages, fill in the partial map, etc.
386 */
387 index = *ppos >> PAGE_CACHE_SHIFT;
388 nr_pages = spd.nr_pages;
389 spd.nr_pages = 0;
390 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391 unsigned int this_len;
392
393 if (!len)
394 break;
395
396 /*
397 * this_len is the max we'll use from this page
398 */
399 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400 page = spd.pages[page_nr];
401
402 if (PageReadahead(page))
403 page_cache_async_readahead(mapping, &in->f_ra, in,
404 page, index, req_pages - page_nr);
405
406 /*
407 * If the page isn't uptodate, we may need to start io on it
408 */
409 if (!PageUptodate(page)) {
410 lock_page(page);
411
412 /*
413 * Page was truncated, or invalidated by the
414 * filesystem. Redo the find/create, but this time the
415 * page is kept locked, so there's no chance of another
416 * race with truncate/invalidate.
417 */
418 if (!page->mapping) {
419 unlock_page(page);
420 page = find_or_create_page(mapping, index,
421 mapping_gfp_mask(mapping));
422
423 if (!page) {
424 error = -ENOMEM;
425 break;
426 }
427 page_cache_release(spd.pages[page_nr]);
428 spd.pages[page_nr] = page;
429 }
430 /*
431 * page was already under io and is now done, great
432 */
433 if (PageUptodate(page)) {
434 unlock_page(page);
435 goto fill_it;
436 }
437
438 /*
439 * need to read in the page
440 */
441 error = mapping->a_ops->readpage(in, page);
442 if (unlikely(error)) {
443 /*
444 * We really should re-lookup the page here,
445 * but it complicates things a lot. Instead
446 * lets just do what we already stored, and
447 * we'll get it the next time we are called.
448 */
449 if (error == AOP_TRUNCATED_PAGE)
450 error = 0;
451
452 break;
453 }
454 }
455 fill_it:
456 /*
457 * i_size must be checked after PageUptodate.
458 */
459 isize = i_size_read(mapping->host);
460 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461 if (unlikely(!isize || index > end_index))
462 break;
463
464 /*
465 * if this is the last page, see if we need to shrink
466 * the length and stop
467 */
468 if (end_index == index) {
469 unsigned int plen;
470
471 /*
472 * max good bytes in this page
473 */
474 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475 if (plen <= loff)
476 break;
477
478 /*
479 * force quit after adding this page
480 */
481 this_len = min(this_len, plen - loff);
482 len = this_len;
483 }
484
485 spd.partial[page_nr].offset = loff;
486 spd.partial[page_nr].len = this_len;
487 len -= this_len;
488 loff = 0;
489 spd.nr_pages++;
490 index++;
491 }
492
493 /*
494 * Release any pages at the end, if we quit early. 'page_nr' is how far
495 * we got, 'nr_pages' is how many pages are in the map.
496 */
497 while (page_nr < nr_pages)
498 page_cache_release(spd.pages[page_nr++]);
499 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500
501 if (spd.nr_pages)
502 error = splice_to_pipe(pipe, &spd);
503
504 splice_shrink_spd(&spd);
505 return error;
506 }
507
508 /**
509 * generic_file_splice_read - splice data from file to a pipe
510 * @in: file to splice from
511 * @ppos: position in @in
512 * @pipe: pipe to splice to
513 * @len: number of bytes to splice
514 * @flags: splice modifier flags
515 *
516 * Description:
517 * Will read pages from given file and fill them into a pipe. Can be
518 * used as long as the address_space operations for the source implements
519 * a readpage() hook.
520 *
521 */
522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523 struct pipe_inode_info *pipe, size_t len,
524 unsigned int flags)
525 {
526 loff_t isize, left;
527 int ret;
528
529 isize = i_size_read(in->f_mapping->host);
530 if (unlikely(*ppos >= isize))
531 return 0;
532
533 left = isize - *ppos;
534 if (unlikely(left < len))
535 len = left;
536
537 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538 if (ret > 0) {
539 *ppos += ret;
540 file_accessed(in);
541 }
542
543 return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548 .can_merge = 0,
549 .map = generic_pipe_buf_map,
550 .unmap = generic_pipe_buf_unmap,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
555 };
556
557 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
558 unsigned long vlen, loff_t offset)
559 {
560 mm_segment_t old_fs;
561 loff_t pos = offset;
562 ssize_t res;
563
564 old_fs = get_fs();
565 set_fs(get_ds());
566 /* The cast to a user pointer is valid due to the set_fs() */
567 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
568 set_fs(old_fs);
569
570 return res;
571 }
572
573 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
574 loff_t pos)
575 {
576 mm_segment_t old_fs;
577 ssize_t res;
578
579 old_fs = get_fs();
580 set_fs(get_ds());
581 /* The cast to a user pointer is valid due to the set_fs() */
582 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
583 set_fs(old_fs);
584
585 return res;
586 }
587 EXPORT_SYMBOL(kernel_write);
588
589 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
590 struct pipe_inode_info *pipe, size_t len,
591 unsigned int flags)
592 {
593 unsigned int nr_pages;
594 unsigned int nr_freed;
595 size_t offset;
596 struct page *pages[PIPE_DEF_BUFFERS];
597 struct partial_page partial[PIPE_DEF_BUFFERS];
598 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
599 ssize_t res;
600 size_t this_len;
601 int error;
602 int i;
603 struct splice_pipe_desc spd = {
604 .pages = pages,
605 .partial = partial,
606 .nr_pages_max = PIPE_DEF_BUFFERS,
607 .flags = flags,
608 .ops = &default_pipe_buf_ops,
609 .spd_release = spd_release_page,
610 };
611
612 if (splice_grow_spd(pipe, &spd))
613 return -ENOMEM;
614
615 res = -ENOMEM;
616 vec = __vec;
617 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
618 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
619 if (!vec)
620 goto shrink_ret;
621 }
622
623 offset = *ppos & ~PAGE_CACHE_MASK;
624 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
625
626 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
627 struct page *page;
628
629 page = alloc_page(GFP_USER);
630 error = -ENOMEM;
631 if (!page)
632 goto err;
633
634 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
635 vec[i].iov_base = (void __user *) page_address(page);
636 vec[i].iov_len = this_len;
637 spd.pages[i] = page;
638 spd.nr_pages++;
639 len -= this_len;
640 offset = 0;
641 }
642
643 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
644 if (res < 0) {
645 error = res;
646 goto err;
647 }
648
649 error = 0;
650 if (!res)
651 goto err;
652
653 nr_freed = 0;
654 for (i = 0; i < spd.nr_pages; i++) {
655 this_len = min_t(size_t, vec[i].iov_len, res);
656 spd.partial[i].offset = 0;
657 spd.partial[i].len = this_len;
658 if (!this_len) {
659 __free_page(spd.pages[i]);
660 spd.pages[i] = NULL;
661 nr_freed++;
662 }
663 res -= this_len;
664 }
665 spd.nr_pages -= nr_freed;
666
667 res = splice_to_pipe(pipe, &spd);
668 if (res > 0)
669 *ppos += res;
670
671 shrink_ret:
672 if (vec != __vec)
673 kfree(vec);
674 splice_shrink_spd(&spd);
675 return res;
676
677 err:
678 for (i = 0; i < spd.nr_pages; i++)
679 __free_page(spd.pages[i]);
680
681 res = error;
682 goto shrink_ret;
683 }
684 EXPORT_SYMBOL(default_file_splice_read);
685
686 /*
687 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
688 * using sendpage(). Return the number of bytes sent.
689 */
690 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
691 struct pipe_buffer *buf, struct splice_desc *sd)
692 {
693 struct file *file = sd->u.file;
694 loff_t pos = sd->pos;
695 int more;
696
697 if (!likely(file->f_op && file->f_op->sendpage))
698 return -EINVAL;
699
700 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
701
702 if (sd->len < sd->total_len && pipe->nrbufs > 1)
703 more |= MSG_SENDPAGE_NOTLAST;
704
705 return file->f_op->sendpage(file, buf->page, buf->offset,
706 sd->len, &pos, more);
707 }
708
709 /*
710 * This is a little more tricky than the file -> pipe splicing. There are
711 * basically three cases:
712 *
713 * - Destination page already exists in the address space and there
714 * are users of it. For that case we have no other option that
715 * copying the data. Tough luck.
716 * - Destination page already exists in the address space, but there
717 * are no users of it. Make sure it's uptodate, then drop it. Fall
718 * through to last case.
719 * - Destination page does not exist, we can add the pipe page to
720 * the page cache and avoid the copy.
721 *
722 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
723 * sd->flags), we attempt to migrate pages from the pipe to the output
724 * file address space page cache. This is possible if no one else has
725 * the pipe page referenced outside of the pipe and page cache. If
726 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
727 * a new page in the output file page cache and fill/dirty that.
728 */
729 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
730 struct splice_desc *sd)
731 {
732 struct file *file = sd->u.file;
733 struct address_space *mapping = file->f_mapping;
734 unsigned int offset, this_len;
735 struct page *page;
736 void *fsdata;
737 int ret;
738
739 offset = sd->pos & ~PAGE_CACHE_MASK;
740
741 this_len = sd->len;
742 if (this_len + offset > PAGE_CACHE_SIZE)
743 this_len = PAGE_CACHE_SIZE - offset;
744
745 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
746 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
747 if (unlikely(ret))
748 goto out;
749
750 if (buf->page != page) {
751 char *src = buf->ops->map(pipe, buf, 1);
752 char *dst = kmap_atomic(page);
753
754 memcpy(dst + offset, src + buf->offset, this_len);
755 flush_dcache_page(page);
756 kunmap_atomic(dst);
757 buf->ops->unmap(pipe, buf, src);
758 }
759 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
760 page, fsdata);
761 out:
762 return ret;
763 }
764 EXPORT_SYMBOL(pipe_to_file);
765
766 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
767 {
768 smp_mb();
769 if (waitqueue_active(&pipe->wait))
770 wake_up_interruptible(&pipe->wait);
771 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
772 }
773
774 /**
775 * splice_from_pipe_feed - feed available data from a pipe to a file
776 * @pipe: pipe to splice from
777 * @sd: information to @actor
778 * @actor: handler that splices the data
779 *
780 * Description:
781 * This function loops over the pipe and calls @actor to do the
782 * actual moving of a single struct pipe_buffer to the desired
783 * destination. It returns when there's no more buffers left in
784 * the pipe or if the requested number of bytes (@sd->total_len)
785 * have been copied. It returns a positive number (one) if the
786 * pipe needs to be filled with more data, zero if the required
787 * number of bytes have been copied and -errno on error.
788 *
789 * This, together with splice_from_pipe_{begin,end,next}, may be
790 * used to implement the functionality of __splice_from_pipe() when
791 * locking is required around copying the pipe buffers to the
792 * destination.
793 */
794 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
795 splice_actor *actor)
796 {
797 int ret;
798
799 while (pipe->nrbufs) {
800 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
801 const struct pipe_buf_operations *ops = buf->ops;
802
803 sd->len = buf->len;
804 if (sd->len > sd->total_len)
805 sd->len = sd->total_len;
806
807 ret = buf->ops->confirm(pipe, buf);
808 if (unlikely(ret)) {
809 if (ret == -ENODATA)
810 ret = 0;
811 return ret;
812 }
813
814 ret = actor(pipe, buf, sd);
815 if (ret <= 0)
816 return ret;
817
818 buf->offset += ret;
819 buf->len -= ret;
820
821 sd->num_spliced += ret;
822 sd->len -= ret;
823 sd->pos += ret;
824 sd->total_len -= ret;
825
826 if (!buf->len) {
827 buf->ops = NULL;
828 ops->release(pipe, buf);
829 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
830 pipe->nrbufs--;
831 if (pipe->inode)
832 sd->need_wakeup = true;
833 }
834
835 if (!sd->total_len)
836 return 0;
837 }
838
839 return 1;
840 }
841 EXPORT_SYMBOL(splice_from_pipe_feed);
842
843 /**
844 * splice_from_pipe_next - wait for some data to splice from
845 * @pipe: pipe to splice from
846 * @sd: information about the splice operation
847 *
848 * Description:
849 * This function will wait for some data and return a positive
850 * value (one) if pipe buffers are available. It will return zero
851 * or -errno if no more data needs to be spliced.
852 */
853 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
854 {
855 while (!pipe->nrbufs) {
856 if (!pipe->writers)
857 return 0;
858
859 if (!pipe->waiting_writers && sd->num_spliced)
860 return 0;
861
862 if (sd->flags & SPLICE_F_NONBLOCK)
863 return -EAGAIN;
864
865 if (signal_pending(current))
866 return -ERESTARTSYS;
867
868 if (sd->need_wakeup) {
869 wakeup_pipe_writers(pipe);
870 sd->need_wakeup = false;
871 }
872
873 pipe_wait(pipe);
874 }
875
876 return 1;
877 }
878 EXPORT_SYMBOL(splice_from_pipe_next);
879
880 /**
881 * splice_from_pipe_begin - start splicing from pipe
882 * @sd: information about the splice operation
883 *
884 * Description:
885 * This function should be called before a loop containing
886 * splice_from_pipe_next() and splice_from_pipe_feed() to
887 * initialize the necessary fields of @sd.
888 */
889 void splice_from_pipe_begin(struct splice_desc *sd)
890 {
891 sd->num_spliced = 0;
892 sd->need_wakeup = false;
893 }
894 EXPORT_SYMBOL(splice_from_pipe_begin);
895
896 /**
897 * splice_from_pipe_end - finish splicing from pipe
898 * @pipe: pipe to splice from
899 * @sd: information about the splice operation
900 *
901 * Description:
902 * This function will wake up pipe writers if necessary. It should
903 * be called after a loop containing splice_from_pipe_next() and
904 * splice_from_pipe_feed().
905 */
906 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
907 {
908 if (sd->need_wakeup)
909 wakeup_pipe_writers(pipe);
910 }
911 EXPORT_SYMBOL(splice_from_pipe_end);
912
913 /**
914 * __splice_from_pipe - splice data from a pipe to given actor
915 * @pipe: pipe to splice from
916 * @sd: information to @actor
917 * @actor: handler that splices the data
918 *
919 * Description:
920 * This function does little more than loop over the pipe and call
921 * @actor to do the actual moving of a single struct pipe_buffer to
922 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
923 * pipe_to_user.
924 *
925 */
926 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
927 splice_actor *actor)
928 {
929 int ret;
930
931 splice_from_pipe_begin(sd);
932 do {
933 ret = splice_from_pipe_next(pipe, sd);
934 if (ret > 0)
935 ret = splice_from_pipe_feed(pipe, sd, actor);
936 } while (ret > 0);
937 splice_from_pipe_end(pipe, sd);
938
939 return sd->num_spliced ? sd->num_spliced : ret;
940 }
941 EXPORT_SYMBOL(__splice_from_pipe);
942
943 /**
944 * splice_from_pipe - splice data from a pipe to a file
945 * @pipe: pipe to splice from
946 * @out: file to splice to
947 * @ppos: position in @out
948 * @len: how many bytes to splice
949 * @flags: splice modifier flags
950 * @actor: handler that splices the data
951 *
952 * Description:
953 * See __splice_from_pipe. This function locks the pipe inode,
954 * otherwise it's identical to __splice_from_pipe().
955 *
956 */
957 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
958 loff_t *ppos, size_t len, unsigned int flags,
959 splice_actor *actor)
960 {
961 ssize_t ret;
962 struct splice_desc sd = {
963 .total_len = len,
964 .flags = flags,
965 .pos = *ppos,
966 .u.file = out,
967 };
968
969 pipe_lock(pipe);
970 ret = __splice_from_pipe(pipe, &sd, actor);
971 pipe_unlock(pipe);
972
973 return ret;
974 }
975
976 /**
977 * generic_file_splice_write - splice data from a pipe to a file
978 * @pipe: pipe info
979 * @out: file to write to
980 * @ppos: position in @out
981 * @len: number of bytes to splice
982 * @flags: splice modifier flags
983 *
984 * Description:
985 * Will either move or copy pages (determined by @flags options) from
986 * the given pipe inode to the given file.
987 *
988 */
989 ssize_t
990 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
991 loff_t *ppos, size_t len, unsigned int flags)
992 {
993 struct address_space *mapping = out->f_mapping;
994 struct inode *inode = mapping->host;
995 struct splice_desc sd = {
996 .total_len = len,
997 .flags = flags,
998 .pos = *ppos,
999 .u.file = out,
1000 };
1001 ssize_t ret;
1002
1003 sb_start_write(inode->i_sb);
1004
1005 pipe_lock(pipe);
1006
1007 splice_from_pipe_begin(&sd);
1008 do {
1009 ret = splice_from_pipe_next(pipe, &sd);
1010 if (ret <= 0)
1011 break;
1012
1013 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1014 ret = file_remove_suid(out);
1015 if (!ret) {
1016 ret = file_update_time(out);
1017 if (!ret)
1018 ret = splice_from_pipe_feed(pipe, &sd,
1019 pipe_to_file);
1020 }
1021 mutex_unlock(&inode->i_mutex);
1022 } while (ret > 0);
1023 splice_from_pipe_end(pipe, &sd);
1024
1025 pipe_unlock(pipe);
1026
1027 if (sd.num_spliced)
1028 ret = sd.num_spliced;
1029
1030 if (ret > 0) {
1031 int err;
1032
1033 err = generic_write_sync(out, *ppos, ret);
1034 if (err)
1035 ret = err;
1036 else
1037 *ppos += ret;
1038 balance_dirty_pages_ratelimited(mapping);
1039 }
1040 sb_end_write(inode->i_sb);
1041
1042 return ret;
1043 }
1044
1045 EXPORT_SYMBOL(generic_file_splice_write);
1046
1047 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1048 struct splice_desc *sd)
1049 {
1050 int ret;
1051 void *data;
1052 loff_t tmp = sd->pos;
1053
1054 data = buf->ops->map(pipe, buf, 0);
1055 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1056 buf->ops->unmap(pipe, buf, data);
1057
1058 return ret;
1059 }
1060
1061 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1062 struct file *out, loff_t *ppos,
1063 size_t len, unsigned int flags)
1064 {
1065 ssize_t ret;
1066
1067 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1068 if (ret > 0)
1069 *ppos += ret;
1070
1071 return ret;
1072 }
1073
1074 /**
1075 * generic_splice_sendpage - splice data from a pipe to a socket
1076 * @pipe: pipe to splice from
1077 * @out: socket to write to
1078 * @ppos: position in @out
1079 * @len: number of bytes to splice
1080 * @flags: splice modifier flags
1081 *
1082 * Description:
1083 * Will send @len bytes from the pipe to a network socket. No data copying
1084 * is involved.
1085 *
1086 */
1087 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1088 loff_t *ppos, size_t len, unsigned int flags)
1089 {
1090 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1091 }
1092
1093 EXPORT_SYMBOL(generic_splice_sendpage);
1094
1095 /*
1096 * Attempt to initiate a splice from pipe to file.
1097 */
1098 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1099 loff_t *ppos, size_t len, unsigned int flags)
1100 {
1101 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1102 loff_t *, size_t, unsigned int);
1103 int ret;
1104
1105 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1106 return -EBADF;
1107
1108 if (unlikely(out->f_flags & O_APPEND))
1109 return -EINVAL;
1110
1111 ret = rw_verify_area(WRITE, out, ppos, len);
1112 if (unlikely(ret < 0))
1113 return ret;
1114
1115 if (out->f_op && out->f_op->splice_write)
1116 splice_write = out->f_op->splice_write;
1117 else
1118 splice_write = default_file_splice_write;
1119
1120 return splice_write(pipe, out, ppos, len, flags);
1121 }
1122
1123 /*
1124 * Attempt to initiate a splice from a file to a pipe.
1125 */
1126 static long do_splice_to(struct file *in, loff_t *ppos,
1127 struct pipe_inode_info *pipe, size_t len,
1128 unsigned int flags)
1129 {
1130 ssize_t (*splice_read)(struct file *, loff_t *,
1131 struct pipe_inode_info *, size_t, unsigned int);
1132 int ret;
1133
1134 if (unlikely(!(in->f_mode & FMODE_READ)))
1135 return -EBADF;
1136
1137 ret = rw_verify_area(READ, in, ppos, len);
1138 if (unlikely(ret < 0))
1139 return ret;
1140
1141 if (in->f_op && in->f_op->splice_read)
1142 splice_read = in->f_op->splice_read;
1143 else
1144 splice_read = default_file_splice_read;
1145
1146 return splice_read(in, ppos, pipe, len, flags);
1147 }
1148
1149 /**
1150 * splice_direct_to_actor - splices data directly between two non-pipes
1151 * @in: file to splice from
1152 * @sd: actor information on where to splice to
1153 * @actor: handles the data splicing
1154 *
1155 * Description:
1156 * This is a special case helper to splice directly between two
1157 * points, without requiring an explicit pipe. Internally an allocated
1158 * pipe is cached in the process, and reused during the lifetime of
1159 * that process.
1160 *
1161 */
1162 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1163 splice_direct_actor *actor)
1164 {
1165 struct pipe_inode_info *pipe;
1166 long ret, bytes;
1167 umode_t i_mode;
1168 size_t len;
1169 int i, flags;
1170
1171 /*
1172 * We require the input being a regular file, as we don't want to
1173 * randomly drop data for eg socket -> socket splicing. Use the
1174 * piped splicing for that!
1175 */
1176 i_mode = file_inode(in)->i_mode;
1177 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1178 return -EINVAL;
1179
1180 /*
1181 * neither in nor out is a pipe, setup an internal pipe attached to
1182 * 'out' and transfer the wanted data from 'in' to 'out' through that
1183 */
1184 pipe = current->splice_pipe;
1185 if (unlikely(!pipe)) {
1186 pipe = alloc_pipe_info(NULL);
1187 if (!pipe)
1188 return -ENOMEM;
1189
1190 /*
1191 * We don't have an immediate reader, but we'll read the stuff
1192 * out of the pipe right after the splice_to_pipe(). So set
1193 * PIPE_READERS appropriately.
1194 */
1195 pipe->readers = 1;
1196
1197 current->splice_pipe = pipe;
1198 }
1199
1200 /*
1201 * Do the splice.
1202 */
1203 ret = 0;
1204 bytes = 0;
1205 len = sd->total_len;
1206 flags = sd->flags;
1207
1208 /*
1209 * Don't block on output, we have to drain the direct pipe.
1210 */
1211 sd->flags &= ~SPLICE_F_NONBLOCK;
1212
1213 while (len) {
1214 size_t read_len;
1215 loff_t pos = sd->pos, prev_pos = pos;
1216
1217 ret = do_splice_to(in, &pos, pipe, len, flags);
1218 if (unlikely(ret <= 0))
1219 goto out_release;
1220
1221 read_len = ret;
1222 sd->total_len = read_len;
1223
1224 /*
1225 * NOTE: nonblocking mode only applies to the input. We
1226 * must not do the output in nonblocking mode as then we
1227 * could get stuck data in the internal pipe:
1228 */
1229 ret = actor(pipe, sd);
1230 if (unlikely(ret <= 0)) {
1231 sd->pos = prev_pos;
1232 goto out_release;
1233 }
1234
1235 bytes += ret;
1236 len -= ret;
1237 sd->pos = pos;
1238
1239 if (ret < read_len) {
1240 sd->pos = prev_pos + ret;
1241 goto out_release;
1242 }
1243 }
1244
1245 done:
1246 pipe->nrbufs = pipe->curbuf = 0;
1247 file_accessed(in);
1248 return bytes;
1249
1250 out_release:
1251 /*
1252 * If we did an incomplete transfer we must release
1253 * the pipe buffers in question:
1254 */
1255 for (i = 0; i < pipe->buffers; i++) {
1256 struct pipe_buffer *buf = pipe->bufs + i;
1257
1258 if (buf->ops) {
1259 buf->ops->release(pipe, buf);
1260 buf->ops = NULL;
1261 }
1262 }
1263
1264 if (!bytes)
1265 bytes = ret;
1266
1267 goto done;
1268 }
1269 EXPORT_SYMBOL(splice_direct_to_actor);
1270
1271 static int direct_splice_actor(struct pipe_inode_info *pipe,
1272 struct splice_desc *sd)
1273 {
1274 struct file *file = sd->u.file;
1275
1276 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1277 sd->flags);
1278 }
1279
1280 /**
1281 * do_splice_direct - splices data directly between two files
1282 * @in: file to splice from
1283 * @ppos: input file offset
1284 * @out: file to splice to
1285 * @len: number of bytes to splice
1286 * @flags: splice modifier flags
1287 *
1288 * Description:
1289 * For use by do_sendfile(). splice can easily emulate sendfile, but
1290 * doing it in the application would incur an extra system call
1291 * (splice in + splice out, as compared to just sendfile()). So this helper
1292 * can splice directly through a process-private pipe.
1293 *
1294 */
1295 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1296 size_t len, unsigned int flags)
1297 {
1298 struct splice_desc sd = {
1299 .len = len,
1300 .total_len = len,
1301 .flags = flags,
1302 .pos = *ppos,
1303 .u.file = out,
1304 };
1305 long ret;
1306
1307 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1308 if (ret > 0)
1309 *ppos = sd.pos;
1310
1311 return ret;
1312 }
1313
1314 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1315 struct pipe_inode_info *opipe,
1316 size_t len, unsigned int flags);
1317
1318 /*
1319 * Determine where to splice to/from.
1320 */
1321 static long do_splice(struct file *in, loff_t __user *off_in,
1322 struct file *out, loff_t __user *off_out,
1323 size_t len, unsigned int flags)
1324 {
1325 struct pipe_inode_info *ipipe;
1326 struct pipe_inode_info *opipe;
1327 loff_t offset, *off;
1328 long ret;
1329
1330 ipipe = get_pipe_info(in);
1331 opipe = get_pipe_info(out);
1332
1333 if (ipipe && opipe) {
1334 if (off_in || off_out)
1335 return -ESPIPE;
1336
1337 if (!(in->f_mode & FMODE_READ))
1338 return -EBADF;
1339
1340 if (!(out->f_mode & FMODE_WRITE))
1341 return -EBADF;
1342
1343 /* Splicing to self would be fun, but... */
1344 if (ipipe == opipe)
1345 return -EINVAL;
1346
1347 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1348 }
1349
1350 if (ipipe) {
1351 if (off_in)
1352 return -ESPIPE;
1353 if (off_out) {
1354 if (!(out->f_mode & FMODE_PWRITE))
1355 return -EINVAL;
1356 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1357 return -EFAULT;
1358 off = &offset;
1359 } else
1360 off = &out->f_pos;
1361
1362 ret = do_splice_from(ipipe, out, off, len, flags);
1363
1364 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1365 ret = -EFAULT;
1366
1367 return ret;
1368 }
1369
1370 if (opipe) {
1371 if (off_out)
1372 return -ESPIPE;
1373 if (off_in) {
1374 if (!(in->f_mode & FMODE_PREAD))
1375 return -EINVAL;
1376 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1377 return -EFAULT;
1378 off = &offset;
1379 } else
1380 off = &in->f_pos;
1381
1382 ret = do_splice_to(in, off, opipe, len, flags);
1383
1384 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1385 ret = -EFAULT;
1386
1387 return ret;
1388 }
1389
1390 return -EINVAL;
1391 }
1392
1393 /*
1394 * Map an iov into an array of pages and offset/length tupples. With the
1395 * partial_page structure, we can map several non-contiguous ranges into
1396 * our ones pages[] map instead of splitting that operation into pieces.
1397 * Could easily be exported as a generic helper for other users, in which
1398 * case one would probably want to add a 'max_nr_pages' parameter as well.
1399 */
1400 static int get_iovec_page_array(const struct iovec __user *iov,
1401 unsigned int nr_vecs, struct page **pages,
1402 struct partial_page *partial, bool aligned,
1403 unsigned int pipe_buffers)
1404 {
1405 int buffers = 0, error = 0;
1406
1407 while (nr_vecs) {
1408 unsigned long off, npages;
1409 struct iovec entry;
1410 void __user *base;
1411 size_t len;
1412 int i;
1413
1414 error = -EFAULT;
1415 if (copy_from_user(&entry, iov, sizeof(entry)))
1416 break;
1417
1418 base = entry.iov_base;
1419 len = entry.iov_len;
1420
1421 /*
1422 * Sanity check this iovec. 0 read succeeds.
1423 */
1424 error = 0;
1425 if (unlikely(!len))
1426 break;
1427 error = -EFAULT;
1428 if (!access_ok(VERIFY_READ, base, len))
1429 break;
1430
1431 /*
1432 * Get this base offset and number of pages, then map
1433 * in the user pages.
1434 */
1435 off = (unsigned long) base & ~PAGE_MASK;
1436
1437 /*
1438 * If asked for alignment, the offset must be zero and the
1439 * length a multiple of the PAGE_SIZE.
1440 */
1441 error = -EINVAL;
1442 if (aligned && (off || len & ~PAGE_MASK))
1443 break;
1444
1445 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1446 if (npages > pipe_buffers - buffers)
1447 npages = pipe_buffers - buffers;
1448
1449 error = get_user_pages_fast((unsigned long)base, npages,
1450 0, &pages[buffers]);
1451
1452 if (unlikely(error <= 0))
1453 break;
1454
1455 /*
1456 * Fill this contiguous range into the partial page map.
1457 */
1458 for (i = 0; i < error; i++) {
1459 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1460
1461 partial[buffers].offset = off;
1462 partial[buffers].len = plen;
1463
1464 off = 0;
1465 len -= plen;
1466 buffers++;
1467 }
1468
1469 /*
1470 * We didn't complete this iov, stop here since it probably
1471 * means we have to move some of this into a pipe to
1472 * be able to continue.
1473 */
1474 if (len)
1475 break;
1476
1477 /*
1478 * Don't continue if we mapped fewer pages than we asked for,
1479 * or if we mapped the max number of pages that we have
1480 * room for.
1481 */
1482 if (error < npages || buffers == pipe_buffers)
1483 break;
1484
1485 nr_vecs--;
1486 iov++;
1487 }
1488
1489 if (buffers)
1490 return buffers;
1491
1492 return error;
1493 }
1494
1495 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 struct splice_desc *sd)
1497 {
1498 char *src;
1499 int ret;
1500
1501 /*
1502 * See if we can use the atomic maps, by prefaulting in the
1503 * pages and doing an atomic copy
1504 */
1505 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1506 src = buf->ops->map(pipe, buf, 1);
1507 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1508 sd->len);
1509 buf->ops->unmap(pipe, buf, src);
1510 if (!ret) {
1511 ret = sd->len;
1512 goto out;
1513 }
1514 }
1515
1516 /*
1517 * No dice, use slow non-atomic map and copy
1518 */
1519 src = buf->ops->map(pipe, buf, 0);
1520
1521 ret = sd->len;
1522 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1523 ret = -EFAULT;
1524
1525 buf->ops->unmap(pipe, buf, src);
1526 out:
1527 if (ret > 0)
1528 sd->u.userptr += ret;
1529 return ret;
1530 }
1531
1532 /*
1533 * For lack of a better implementation, implement vmsplice() to userspace
1534 * as a simple copy of the pipes pages to the user iov.
1535 */
1536 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1537 unsigned long nr_segs, unsigned int flags)
1538 {
1539 struct pipe_inode_info *pipe;
1540 struct splice_desc sd;
1541 ssize_t size;
1542 int error;
1543 long ret;
1544
1545 pipe = get_pipe_info(file);
1546 if (!pipe)
1547 return -EBADF;
1548
1549 pipe_lock(pipe);
1550
1551 error = ret = 0;
1552 while (nr_segs) {
1553 void __user *base;
1554 size_t len;
1555
1556 /*
1557 * Get user address base and length for this iovec.
1558 */
1559 error = get_user(base, &iov->iov_base);
1560 if (unlikely(error))
1561 break;
1562 error = get_user(len, &iov->iov_len);
1563 if (unlikely(error))
1564 break;
1565
1566 /*
1567 * Sanity check this iovec. 0 read succeeds.
1568 */
1569 if (unlikely(!len))
1570 break;
1571 if (unlikely(!base)) {
1572 error = -EFAULT;
1573 break;
1574 }
1575
1576 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1577 error = -EFAULT;
1578 break;
1579 }
1580
1581 sd.len = 0;
1582 sd.total_len = len;
1583 sd.flags = flags;
1584 sd.u.userptr = base;
1585 sd.pos = 0;
1586
1587 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1588 if (size < 0) {
1589 if (!ret)
1590 ret = size;
1591
1592 break;
1593 }
1594
1595 ret += size;
1596
1597 if (size < len)
1598 break;
1599
1600 nr_segs--;
1601 iov++;
1602 }
1603
1604 pipe_unlock(pipe);
1605
1606 if (!ret)
1607 ret = error;
1608
1609 return ret;
1610 }
1611
1612 /*
1613 * vmsplice splices a user address range into a pipe. It can be thought of
1614 * as splice-from-memory, where the regular splice is splice-from-file (or
1615 * to file). In both cases the output is a pipe, naturally.
1616 */
1617 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1618 unsigned long nr_segs, unsigned int flags)
1619 {
1620 struct pipe_inode_info *pipe;
1621 struct page *pages[PIPE_DEF_BUFFERS];
1622 struct partial_page partial[PIPE_DEF_BUFFERS];
1623 struct splice_pipe_desc spd = {
1624 .pages = pages,
1625 .partial = partial,
1626 .nr_pages_max = PIPE_DEF_BUFFERS,
1627 .flags = flags,
1628 .ops = &user_page_pipe_buf_ops,
1629 .spd_release = spd_release_page,
1630 };
1631 long ret;
1632
1633 pipe = get_pipe_info(file);
1634 if (!pipe)
1635 return -EBADF;
1636
1637 if (splice_grow_spd(pipe, &spd))
1638 return -ENOMEM;
1639
1640 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1641 spd.partial, false,
1642 spd.nr_pages_max);
1643 if (spd.nr_pages <= 0)
1644 ret = spd.nr_pages;
1645 else
1646 ret = splice_to_pipe(pipe, &spd);
1647
1648 splice_shrink_spd(&spd);
1649 return ret;
1650 }
1651
1652 /*
1653 * Note that vmsplice only really supports true splicing _from_ user memory
1654 * to a pipe, not the other way around. Splicing from user memory is a simple
1655 * operation that can be supported without any funky alignment restrictions
1656 * or nasty vm tricks. We simply map in the user memory and fill them into
1657 * a pipe. The reverse isn't quite as easy, though. There are two possible
1658 * solutions for that:
1659 *
1660 * - memcpy() the data internally, at which point we might as well just
1661 * do a regular read() on the buffer anyway.
1662 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1663 * has restriction limitations on both ends of the pipe).
1664 *
1665 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1666 *
1667 */
1668 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1669 unsigned long, nr_segs, unsigned int, flags)
1670 {
1671 struct fd f;
1672 long error;
1673
1674 if (unlikely(nr_segs > UIO_MAXIOV))
1675 return -EINVAL;
1676 else if (unlikely(!nr_segs))
1677 return 0;
1678
1679 error = -EBADF;
1680 f = fdget(fd);
1681 if (f.file) {
1682 if (f.file->f_mode & FMODE_WRITE)
1683 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1684 else if (f.file->f_mode & FMODE_READ)
1685 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1686
1687 fdput(f);
1688 }
1689
1690 return error;
1691 }
1692
1693 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1694 int, fd_out, loff_t __user *, off_out,
1695 size_t, len, unsigned int, flags)
1696 {
1697 struct fd in, out;
1698 long error;
1699
1700 if (unlikely(!len))
1701 return 0;
1702
1703 error = -EBADF;
1704 in = fdget(fd_in);
1705 if (in.file) {
1706 if (in.file->f_mode & FMODE_READ) {
1707 out = fdget(fd_out);
1708 if (out.file) {
1709 if (out.file->f_mode & FMODE_WRITE)
1710 error = do_splice(in.file, off_in,
1711 out.file, off_out,
1712 len, flags);
1713 fdput(out);
1714 }
1715 }
1716 fdput(in);
1717 }
1718 return error;
1719 }
1720
1721 /*
1722 * Make sure there's data to read. Wait for input if we can, otherwise
1723 * return an appropriate error.
1724 */
1725 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1726 {
1727 int ret;
1728
1729 /*
1730 * Check ->nrbufs without the inode lock first. This function
1731 * is speculative anyways, so missing one is ok.
1732 */
1733 if (pipe->nrbufs)
1734 return 0;
1735
1736 ret = 0;
1737 pipe_lock(pipe);
1738
1739 while (!pipe->nrbufs) {
1740 if (signal_pending(current)) {
1741 ret = -ERESTARTSYS;
1742 break;
1743 }
1744 if (!pipe->writers)
1745 break;
1746 if (!pipe->waiting_writers) {
1747 if (flags & SPLICE_F_NONBLOCK) {
1748 ret = -EAGAIN;
1749 break;
1750 }
1751 }
1752 pipe_wait(pipe);
1753 }
1754
1755 pipe_unlock(pipe);
1756 return ret;
1757 }
1758
1759 /*
1760 * Make sure there's writeable room. Wait for room if we can, otherwise
1761 * return an appropriate error.
1762 */
1763 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1764 {
1765 int ret;
1766
1767 /*
1768 * Check ->nrbufs without the inode lock first. This function
1769 * is speculative anyways, so missing one is ok.
1770 */
1771 if (pipe->nrbufs < pipe->buffers)
1772 return 0;
1773
1774 ret = 0;
1775 pipe_lock(pipe);
1776
1777 while (pipe->nrbufs >= pipe->buffers) {
1778 if (!pipe->readers) {
1779 send_sig(SIGPIPE, current, 0);
1780 ret = -EPIPE;
1781 break;
1782 }
1783 if (flags & SPLICE_F_NONBLOCK) {
1784 ret = -EAGAIN;
1785 break;
1786 }
1787 if (signal_pending(current)) {
1788 ret = -ERESTARTSYS;
1789 break;
1790 }
1791 pipe->waiting_writers++;
1792 pipe_wait(pipe);
1793 pipe->waiting_writers--;
1794 }
1795
1796 pipe_unlock(pipe);
1797 return ret;
1798 }
1799
1800 /*
1801 * Splice contents of ipipe to opipe.
1802 */
1803 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1804 struct pipe_inode_info *opipe,
1805 size_t len, unsigned int flags)
1806 {
1807 struct pipe_buffer *ibuf, *obuf;
1808 int ret = 0, nbuf;
1809 bool input_wakeup = false;
1810
1811
1812 retry:
1813 ret = ipipe_prep(ipipe, flags);
1814 if (ret)
1815 return ret;
1816
1817 ret = opipe_prep(opipe, flags);
1818 if (ret)
1819 return ret;
1820
1821 /*
1822 * Potential ABBA deadlock, work around it by ordering lock
1823 * grabbing by pipe info address. Otherwise two different processes
1824 * could deadlock (one doing tee from A -> B, the other from B -> A).
1825 */
1826 pipe_double_lock(ipipe, opipe);
1827
1828 do {
1829 if (!opipe->readers) {
1830 send_sig(SIGPIPE, current, 0);
1831 if (!ret)
1832 ret = -EPIPE;
1833 break;
1834 }
1835
1836 if (!ipipe->nrbufs && !ipipe->writers)
1837 break;
1838
1839 /*
1840 * Cannot make any progress, because either the input
1841 * pipe is empty or the output pipe is full.
1842 */
1843 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1844 /* Already processed some buffers, break */
1845 if (ret)
1846 break;
1847
1848 if (flags & SPLICE_F_NONBLOCK) {
1849 ret = -EAGAIN;
1850 break;
1851 }
1852
1853 /*
1854 * We raced with another reader/writer and haven't
1855 * managed to process any buffers. A zero return
1856 * value means EOF, so retry instead.
1857 */
1858 pipe_unlock(ipipe);
1859 pipe_unlock(opipe);
1860 goto retry;
1861 }
1862
1863 ibuf = ipipe->bufs + ipipe->curbuf;
1864 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1865 obuf = opipe->bufs + nbuf;
1866
1867 if (len >= ibuf->len) {
1868 /*
1869 * Simply move the whole buffer from ipipe to opipe
1870 */
1871 *obuf = *ibuf;
1872 ibuf->ops = NULL;
1873 opipe->nrbufs++;
1874 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1875 ipipe->nrbufs--;
1876 input_wakeup = true;
1877 } else {
1878 /*
1879 * Get a reference to this pipe buffer,
1880 * so we can copy the contents over.
1881 */
1882 ibuf->ops->get(ipipe, ibuf);
1883 *obuf = *ibuf;
1884
1885 /*
1886 * Don't inherit the gift flag, we need to
1887 * prevent multiple steals of this page.
1888 */
1889 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1890
1891 obuf->len = len;
1892 opipe->nrbufs++;
1893 ibuf->offset += obuf->len;
1894 ibuf->len -= obuf->len;
1895 }
1896 ret += obuf->len;
1897 len -= obuf->len;
1898 } while (len);
1899
1900 pipe_unlock(ipipe);
1901 pipe_unlock(opipe);
1902
1903 /*
1904 * If we put data in the output pipe, wakeup any potential readers.
1905 */
1906 if (ret > 0)
1907 wakeup_pipe_readers(opipe);
1908
1909 if (input_wakeup)
1910 wakeup_pipe_writers(ipipe);
1911
1912 return ret;
1913 }
1914
1915 /*
1916 * Link contents of ipipe to opipe.
1917 */
1918 static int link_pipe(struct pipe_inode_info *ipipe,
1919 struct pipe_inode_info *opipe,
1920 size_t len, unsigned int flags)
1921 {
1922 struct pipe_buffer *ibuf, *obuf;
1923 int ret = 0, i = 0, nbuf;
1924
1925 /*
1926 * Potential ABBA deadlock, work around it by ordering lock
1927 * grabbing by pipe info address. Otherwise two different processes
1928 * could deadlock (one doing tee from A -> B, the other from B -> A).
1929 */
1930 pipe_double_lock(ipipe, opipe);
1931
1932 do {
1933 if (!opipe->readers) {
1934 send_sig(SIGPIPE, current, 0);
1935 if (!ret)
1936 ret = -EPIPE;
1937 break;
1938 }
1939
1940 /*
1941 * If we have iterated all input buffers or ran out of
1942 * output room, break.
1943 */
1944 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1945 break;
1946
1947 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1948 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1949
1950 /*
1951 * Get a reference to this pipe buffer,
1952 * so we can copy the contents over.
1953 */
1954 ibuf->ops->get(ipipe, ibuf);
1955
1956 obuf = opipe->bufs + nbuf;
1957 *obuf = *ibuf;
1958
1959 /*
1960 * Don't inherit the gift flag, we need to
1961 * prevent multiple steals of this page.
1962 */
1963 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1964
1965 if (obuf->len > len)
1966 obuf->len = len;
1967
1968 opipe->nrbufs++;
1969 ret += obuf->len;
1970 len -= obuf->len;
1971 i++;
1972 } while (len);
1973
1974 /*
1975 * return EAGAIN if we have the potential of some data in the
1976 * future, otherwise just return 0
1977 */
1978 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1979 ret = -EAGAIN;
1980
1981 pipe_unlock(ipipe);
1982 pipe_unlock(opipe);
1983
1984 /*
1985 * If we put data in the output pipe, wakeup any potential readers.
1986 */
1987 if (ret > 0)
1988 wakeup_pipe_readers(opipe);
1989
1990 return ret;
1991 }
1992
1993 /*
1994 * This is a tee(1) implementation that works on pipes. It doesn't copy
1995 * any data, it simply references the 'in' pages on the 'out' pipe.
1996 * The 'flags' used are the SPLICE_F_* variants, currently the only
1997 * applicable one is SPLICE_F_NONBLOCK.
1998 */
1999 static long do_tee(struct file *in, struct file *out, size_t len,
2000 unsigned int flags)
2001 {
2002 struct pipe_inode_info *ipipe = get_pipe_info(in);
2003 struct pipe_inode_info *opipe = get_pipe_info(out);
2004 int ret = -EINVAL;
2005
2006 /*
2007 * Duplicate the contents of ipipe to opipe without actually
2008 * copying the data.
2009 */
2010 if (ipipe && opipe && ipipe != opipe) {
2011 /*
2012 * Keep going, unless we encounter an error. The ipipe/opipe
2013 * ordering doesn't really matter.
2014 */
2015 ret = ipipe_prep(ipipe, flags);
2016 if (!ret) {
2017 ret = opipe_prep(opipe, flags);
2018 if (!ret)
2019 ret = link_pipe(ipipe, opipe, len, flags);
2020 }
2021 }
2022
2023 return ret;
2024 }
2025
2026 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2027 {
2028 struct fd in;
2029 int error;
2030
2031 if (unlikely(!len))
2032 return 0;
2033
2034 error = -EBADF;
2035 in = fdget(fdin);
2036 if (in.file) {
2037 if (in.file->f_mode & FMODE_READ) {
2038 struct fd out = fdget(fdout);
2039 if (out.file) {
2040 if (out.file->f_mode & FMODE_WRITE)
2041 error = do_tee(in.file, out.file,
2042 len, flags);
2043 fdput(out);
2044 }
2045 }
2046 fdput(in);
2047 }
2048
2049 return error;
2050 }