fs/proc/base.c: fix GPF in /proc/$PID/map_files
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98 * Implementing inode permission operations in /proc is almost
99 * certainly an error. Permission checks need to happen during
100 * each system call not at open time. The reason is that most of
101 * what we wish to check for permissions in /proc varies at runtime.
102 *
103 * The classic example of a problem is opening file descriptors
104 * in /proc for a task before it execs a suid executable.
105 */
106
107 struct pid_entry {
108 char *name;
109 int len;
110 umode_t mode;
111 const struct inode_operations *iop;
112 const struct file_operations *fop;
113 union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) { \
117 .name = (NAME), \
118 .len = sizeof(NAME) - 1, \
119 .mode = MODE, \
120 .iop = IOP, \
121 .fop = FOP, \
122 .op = OP, \
123 }
124
125 #define DIR(NAME, MODE, iops, fops) \
126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link) \
128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
129 &proc_pid_link_inode_operations, NULL, \
130 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops) \
132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define INF(NAME, MODE, read) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_info_file_operations, \
136 { .proc_read = read } )
137 #define ONE(NAME, MODE, show) \
138 NOD(NAME, (S_IFREG|(MODE)), \
139 NULL, &proc_single_file_operations, \
140 { .proc_show = show } )
141
142 /*
143 * Count the number of hardlinks for the pid_entry table, excluding the .
144 * and .. links.
145 */
146 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
147 unsigned int n)
148 {
149 unsigned int i;
150 unsigned int count;
151
152 count = 0;
153 for (i = 0; i < n; ++i) {
154 if (S_ISDIR(entries[i].mode))
155 ++count;
156 }
157
158 return count;
159 }
160
161 static int get_task_root(struct task_struct *task, struct path *root)
162 {
163 int result = -ENOENT;
164
165 task_lock(task);
166 if (task->fs) {
167 get_fs_root(task->fs, root);
168 result = 0;
169 }
170 task_unlock(task);
171 return result;
172 }
173
174 static int proc_cwd_link(struct dentry *dentry, struct path *path)
175 {
176 struct task_struct *task = get_proc_task(dentry->d_inode);
177 int result = -ENOENT;
178
179 if (task) {
180 task_lock(task);
181 if (task->fs) {
182 get_fs_pwd(task->fs, path);
183 result = 0;
184 }
185 task_unlock(task);
186 put_task_struct(task);
187 }
188 return result;
189 }
190
191 static int proc_root_link(struct dentry *dentry, struct path *path)
192 {
193 struct task_struct *task = get_proc_task(dentry->d_inode);
194 int result = -ENOENT;
195
196 if (task) {
197 result = get_task_root(task, path);
198 put_task_struct(task);
199 }
200 return result;
201 }
202
203 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
204 {
205 int res = 0;
206 unsigned int len;
207 struct mm_struct *mm = get_task_mm(task);
208 if (!mm)
209 goto out;
210 if (!mm->arg_end)
211 goto out_mm; /* Shh! No looking before we're done */
212
213 len = mm->arg_end - mm->arg_start;
214
215 if (len > PAGE_SIZE)
216 len = PAGE_SIZE;
217
218 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
219
220 // If the nul at the end of args has been overwritten, then
221 // assume application is using setproctitle(3).
222 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
223 len = strnlen(buffer, res);
224 if (len < res) {
225 res = len;
226 } else {
227 len = mm->env_end - mm->env_start;
228 if (len > PAGE_SIZE - res)
229 len = PAGE_SIZE - res;
230 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
231 res = strnlen(buffer, res);
232 }
233 }
234 out_mm:
235 mmput(mm);
236 out:
237 return res;
238 }
239
240 static int proc_pid_auxv(struct task_struct *task, char *buffer)
241 {
242 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
243 int res = PTR_ERR(mm);
244 if (mm && !IS_ERR(mm)) {
245 unsigned int nwords = 0;
246 do {
247 nwords += 2;
248 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
249 res = nwords * sizeof(mm->saved_auxv[0]);
250 if (res > PAGE_SIZE)
251 res = PAGE_SIZE;
252 memcpy(buffer, mm->saved_auxv, res);
253 mmput(mm);
254 }
255 return res;
256 }
257
258
259 #ifdef CONFIG_KALLSYMS
260 /*
261 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
262 * Returns the resolved symbol. If that fails, simply return the address.
263 */
264 static int proc_pid_wchan(struct task_struct *task, char *buffer)
265 {
266 unsigned long wchan;
267 char symname[KSYM_NAME_LEN];
268
269 wchan = get_wchan(task);
270
271 if (lookup_symbol_name(wchan, symname) < 0)
272 if (!ptrace_may_access(task, PTRACE_MODE_READ))
273 return 0;
274 else
275 return sprintf(buffer, "%lu", wchan);
276 else
277 return sprintf(buffer, "%s", symname);
278 }
279 #endif /* CONFIG_KALLSYMS */
280
281 static int lock_trace(struct task_struct *task)
282 {
283 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
284 if (err)
285 return err;
286 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
287 mutex_unlock(&task->signal->cred_guard_mutex);
288 return -EPERM;
289 }
290 return 0;
291 }
292
293 static void unlock_trace(struct task_struct *task)
294 {
295 mutex_unlock(&task->signal->cred_guard_mutex);
296 }
297
298 #ifdef CONFIG_STACKTRACE
299
300 #define MAX_STACK_TRACE_DEPTH 64
301
302 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
303 struct pid *pid, struct task_struct *task)
304 {
305 struct stack_trace trace;
306 unsigned long *entries;
307 int err;
308 int i;
309
310 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
311 if (!entries)
312 return -ENOMEM;
313
314 trace.nr_entries = 0;
315 trace.max_entries = MAX_STACK_TRACE_DEPTH;
316 trace.entries = entries;
317 trace.skip = 0;
318
319 err = lock_trace(task);
320 if (!err) {
321 save_stack_trace_tsk(task, &trace);
322
323 for (i = 0; i < trace.nr_entries; i++) {
324 seq_printf(m, "[<%pK>] %pS\n",
325 (void *)entries[i], (void *)entries[i]);
326 }
327 unlock_trace(task);
328 }
329 kfree(entries);
330
331 return err;
332 }
333 #endif
334
335 #ifdef CONFIG_SCHEDSTATS
336 /*
337 * Provides /proc/PID/schedstat
338 */
339 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
340 {
341 return sprintf(buffer, "%llu %llu %lu\n",
342 (unsigned long long)task->se.sum_exec_runtime,
343 (unsigned long long)task->sched_info.run_delay,
344 task->sched_info.pcount);
345 }
346 #endif
347
348 #ifdef CONFIG_LATENCYTOP
349 static int lstats_show_proc(struct seq_file *m, void *v)
350 {
351 int i;
352 struct inode *inode = m->private;
353 struct task_struct *task = get_proc_task(inode);
354
355 if (!task)
356 return -ESRCH;
357 seq_puts(m, "Latency Top version : v0.1\n");
358 for (i = 0; i < 32; i++) {
359 struct latency_record *lr = &task->latency_record[i];
360 if (lr->backtrace[0]) {
361 int q;
362 seq_printf(m, "%i %li %li",
363 lr->count, lr->time, lr->max);
364 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
365 unsigned long bt = lr->backtrace[q];
366 if (!bt)
367 break;
368 if (bt == ULONG_MAX)
369 break;
370 seq_printf(m, " %ps", (void *)bt);
371 }
372 seq_putc(m, '\n');
373 }
374
375 }
376 put_task_struct(task);
377 return 0;
378 }
379
380 static int lstats_open(struct inode *inode, struct file *file)
381 {
382 return single_open(file, lstats_show_proc, inode);
383 }
384
385 static ssize_t lstats_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *offs)
387 {
388 struct task_struct *task = get_proc_task(file_inode(file));
389
390 if (!task)
391 return -ESRCH;
392 clear_all_latency_tracing(task);
393 put_task_struct(task);
394
395 return count;
396 }
397
398 static const struct file_operations proc_lstats_operations = {
399 .open = lstats_open,
400 .read = seq_read,
401 .write = lstats_write,
402 .llseek = seq_lseek,
403 .release = single_release,
404 };
405
406 #endif
407
408 #ifdef CONFIG_CGROUPS
409 static int cgroup_open(struct inode *inode, struct file *file)
410 {
411 struct pid *pid = PROC_I(inode)->pid;
412 return single_open(file, proc_cgroup_show, pid);
413 }
414
415 static const struct file_operations proc_cgroup_operations = {
416 .open = cgroup_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = single_release,
420 };
421 #endif
422
423 #ifdef CONFIG_PROC_PID_CPUSET
424
425 static int cpuset_open(struct inode *inode, struct file *file)
426 {
427 struct pid *pid = PROC_I(inode)->pid;
428 return single_open(file, proc_cpuset_show, pid);
429 }
430
431 static const struct file_operations proc_cpuset_operations = {
432 .open = cpuset_open,
433 .read = seq_read,
434 .llseek = seq_lseek,
435 .release = single_release,
436 };
437 #endif
438
439 static int proc_oom_score(struct task_struct *task, char *buffer)
440 {
441 unsigned long totalpages = totalram_pages + total_swap_pages;
442 unsigned long points = 0;
443
444 read_lock(&tasklist_lock);
445 if (pid_alive(task))
446 points = oom_badness(task, NULL, NULL, totalpages) *
447 1000 / totalpages;
448 read_unlock(&tasklist_lock);
449 return sprintf(buffer, "%lu\n", points);
450 }
451
452 struct limit_names {
453 char *name;
454 char *unit;
455 };
456
457 static const struct limit_names lnames[RLIM_NLIMITS] = {
458 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
459 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
460 [RLIMIT_DATA] = {"Max data size", "bytes"},
461 [RLIMIT_STACK] = {"Max stack size", "bytes"},
462 [RLIMIT_CORE] = {"Max core file size", "bytes"},
463 [RLIMIT_RSS] = {"Max resident set", "bytes"},
464 [RLIMIT_NPROC] = {"Max processes", "processes"},
465 [RLIMIT_NOFILE] = {"Max open files", "files"},
466 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
467 [RLIMIT_AS] = {"Max address space", "bytes"},
468 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
469 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
470 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
471 [RLIMIT_NICE] = {"Max nice priority", NULL},
472 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
473 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
474 };
475
476 /* Display limits for a process */
477 static int proc_pid_limits(struct task_struct *task, char *buffer)
478 {
479 unsigned int i;
480 int count = 0;
481 unsigned long flags;
482 char *bufptr = buffer;
483
484 struct rlimit rlim[RLIM_NLIMITS];
485
486 if (!lock_task_sighand(task, &flags))
487 return 0;
488 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
489 unlock_task_sighand(task, &flags);
490
491 /*
492 * print the file header
493 */
494 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
495 "Limit", "Soft Limit", "Hard Limit", "Units");
496
497 for (i = 0; i < RLIM_NLIMITS; i++) {
498 if (rlim[i].rlim_cur == RLIM_INFINITY)
499 count += sprintf(&bufptr[count], "%-25s %-20s ",
500 lnames[i].name, "unlimited");
501 else
502 count += sprintf(&bufptr[count], "%-25s %-20lu ",
503 lnames[i].name, rlim[i].rlim_cur);
504
505 if (rlim[i].rlim_max == RLIM_INFINITY)
506 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
507 else
508 count += sprintf(&bufptr[count], "%-20lu ",
509 rlim[i].rlim_max);
510
511 if (lnames[i].unit)
512 count += sprintf(&bufptr[count], "%-10s\n",
513 lnames[i].unit);
514 else
515 count += sprintf(&bufptr[count], "\n");
516 }
517
518 return count;
519 }
520
521 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
522 static int proc_pid_syscall(struct task_struct *task, char *buffer)
523 {
524 long nr;
525 unsigned long args[6], sp, pc;
526 int res = lock_trace(task);
527 if (res)
528 return res;
529
530 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 res = sprintf(buffer, "running\n");
532 else if (nr < 0)
533 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
534 else
535 res = sprintf(buffer,
536 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
537 nr,
538 args[0], args[1], args[2], args[3], args[4], args[5],
539 sp, pc);
540 unlock_trace(task);
541 return res;
542 }
543 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
544
545 /************************************************************************/
546 /* Here the fs part begins */
547 /************************************************************************/
548
549 /* permission checks */
550 static int proc_fd_access_allowed(struct inode *inode)
551 {
552 struct task_struct *task;
553 int allowed = 0;
554 /* Allow access to a task's file descriptors if it is us or we
555 * may use ptrace attach to the process and find out that
556 * information.
557 */
558 task = get_proc_task(inode);
559 if (task) {
560 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
561 put_task_struct(task);
562 }
563 return allowed;
564 }
565
566 int proc_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 int error;
569 struct inode *inode = dentry->d_inode;
570
571 if (attr->ia_valid & ATTR_MODE)
572 return -EPERM;
573
574 error = inode_change_ok(inode, attr);
575 if (error)
576 return error;
577
578 setattr_copy(inode, attr);
579 mark_inode_dirty(inode);
580 return 0;
581 }
582
583 /*
584 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
585 * or euid/egid (for hide_pid_min=2)?
586 */
587 static bool has_pid_permissions(struct pid_namespace *pid,
588 struct task_struct *task,
589 int hide_pid_min)
590 {
591 if (pid->hide_pid < hide_pid_min)
592 return true;
593 if (in_group_p(pid->pid_gid))
594 return true;
595 return ptrace_may_access(task, PTRACE_MODE_READ);
596 }
597
598
599 static int proc_pid_permission(struct inode *inode, int mask)
600 {
601 struct pid_namespace *pid = inode->i_sb->s_fs_info;
602 struct task_struct *task;
603 bool has_perms;
604
605 task = get_proc_task(inode);
606 if (!task)
607 return -ESRCH;
608 has_perms = has_pid_permissions(pid, task, 1);
609 put_task_struct(task);
610
611 if (!has_perms) {
612 if (pid->hide_pid == 2) {
613 /*
614 * Let's make getdents(), stat(), and open()
615 * consistent with each other. If a process
616 * may not stat() a file, it shouldn't be seen
617 * in procfs at all.
618 */
619 return -ENOENT;
620 }
621
622 return -EPERM;
623 }
624 return generic_permission(inode, mask);
625 }
626
627
628
629 static const struct inode_operations proc_def_inode_operations = {
630 .setattr = proc_setattr,
631 };
632
633 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
634
635 static ssize_t proc_info_read(struct file * file, char __user * buf,
636 size_t count, loff_t *ppos)
637 {
638 struct inode * inode = file_inode(file);
639 unsigned long page;
640 ssize_t length;
641 struct task_struct *task = get_proc_task(inode);
642
643 length = -ESRCH;
644 if (!task)
645 goto out_no_task;
646
647 if (count > PROC_BLOCK_SIZE)
648 count = PROC_BLOCK_SIZE;
649
650 length = -ENOMEM;
651 if (!(page = __get_free_page(GFP_TEMPORARY)))
652 goto out;
653
654 length = PROC_I(inode)->op.proc_read(task, (char*)page);
655
656 if (length >= 0)
657 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
658 free_page(page);
659 out:
660 put_task_struct(task);
661 out_no_task:
662 return length;
663 }
664
665 static const struct file_operations proc_info_file_operations = {
666 .read = proc_info_read,
667 .llseek = generic_file_llseek,
668 };
669
670 static int proc_single_show(struct seq_file *m, void *v)
671 {
672 struct inode *inode = m->private;
673 struct pid_namespace *ns;
674 struct pid *pid;
675 struct task_struct *task;
676 int ret;
677
678 ns = inode->i_sb->s_fs_info;
679 pid = proc_pid(inode);
680 task = get_pid_task(pid, PIDTYPE_PID);
681 if (!task)
682 return -ESRCH;
683
684 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
685
686 put_task_struct(task);
687 return ret;
688 }
689
690 static int proc_single_open(struct inode *inode, struct file *filp)
691 {
692 return single_open(filp, proc_single_show, inode);
693 }
694
695 static const struct file_operations proc_single_file_operations = {
696 .open = proc_single_open,
697 .read = seq_read,
698 .llseek = seq_lseek,
699 .release = single_release,
700 };
701
702 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
703 {
704 struct task_struct *task = get_proc_task(file_inode(file));
705 struct mm_struct *mm;
706
707 if (!task)
708 return -ESRCH;
709
710 mm = mm_access(task, mode);
711 put_task_struct(task);
712
713 if (IS_ERR(mm))
714 return PTR_ERR(mm);
715
716 if (mm) {
717 /* ensure this mm_struct can't be freed */
718 atomic_inc(&mm->mm_count);
719 /* but do not pin its memory */
720 mmput(mm);
721 }
722
723 file->private_data = mm;
724
725 return 0;
726 }
727
728 static int mem_open(struct inode *inode, struct file *file)
729 {
730 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
731
732 /* OK to pass negative loff_t, we can catch out-of-range */
733 file->f_mode |= FMODE_UNSIGNED_OFFSET;
734
735 return ret;
736 }
737
738 static ssize_t mem_rw(struct file *file, char __user *buf,
739 size_t count, loff_t *ppos, int write)
740 {
741 struct mm_struct *mm = file->private_data;
742 unsigned long addr = *ppos;
743 ssize_t copied;
744 char *page;
745
746 if (!mm)
747 return 0;
748
749 page = (char *)__get_free_page(GFP_TEMPORARY);
750 if (!page)
751 return -ENOMEM;
752
753 copied = 0;
754 if (!atomic_inc_not_zero(&mm->mm_users))
755 goto free;
756
757 while (count > 0) {
758 int this_len = min_t(int, count, PAGE_SIZE);
759
760 if (write && copy_from_user(page, buf, this_len)) {
761 copied = -EFAULT;
762 break;
763 }
764
765 this_len = access_remote_vm(mm, addr, page, this_len, write);
766 if (!this_len) {
767 if (!copied)
768 copied = -EIO;
769 break;
770 }
771
772 if (!write && copy_to_user(buf, page, this_len)) {
773 copied = -EFAULT;
774 break;
775 }
776
777 buf += this_len;
778 addr += this_len;
779 copied += this_len;
780 count -= this_len;
781 }
782 *ppos = addr;
783
784 mmput(mm);
785 free:
786 free_page((unsigned long) page);
787 return copied;
788 }
789
790 static ssize_t mem_read(struct file *file, char __user *buf,
791 size_t count, loff_t *ppos)
792 {
793 return mem_rw(file, buf, count, ppos, 0);
794 }
795
796 static ssize_t mem_write(struct file *file, const char __user *buf,
797 size_t count, loff_t *ppos)
798 {
799 return mem_rw(file, (char __user*)buf, count, ppos, 1);
800 }
801
802 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
803 {
804 switch (orig) {
805 case 0:
806 file->f_pos = offset;
807 break;
808 case 1:
809 file->f_pos += offset;
810 break;
811 default:
812 return -EINVAL;
813 }
814 force_successful_syscall_return();
815 return file->f_pos;
816 }
817
818 static int mem_release(struct inode *inode, struct file *file)
819 {
820 struct mm_struct *mm = file->private_data;
821 if (mm)
822 mmdrop(mm);
823 return 0;
824 }
825
826 static const struct file_operations proc_mem_operations = {
827 .llseek = mem_lseek,
828 .read = mem_read,
829 .write = mem_write,
830 .open = mem_open,
831 .release = mem_release,
832 };
833
834 static int environ_open(struct inode *inode, struct file *file)
835 {
836 return __mem_open(inode, file, PTRACE_MODE_READ);
837 }
838
839 static ssize_t environ_read(struct file *file, char __user *buf,
840 size_t count, loff_t *ppos)
841 {
842 char *page;
843 unsigned long src = *ppos;
844 int ret = 0;
845 struct mm_struct *mm = file->private_data;
846
847 if (!mm)
848 return 0;
849
850 page = (char *)__get_free_page(GFP_TEMPORARY);
851 if (!page)
852 return -ENOMEM;
853
854 ret = 0;
855 if (!atomic_inc_not_zero(&mm->mm_users))
856 goto free;
857 while (count > 0) {
858 size_t this_len, max_len;
859 int retval;
860
861 if (src >= (mm->env_end - mm->env_start))
862 break;
863
864 this_len = mm->env_end - (mm->env_start + src);
865
866 max_len = min_t(size_t, PAGE_SIZE, count);
867 this_len = min(max_len, this_len);
868
869 retval = access_remote_vm(mm, (mm->env_start + src),
870 page, this_len, 0);
871
872 if (retval <= 0) {
873 ret = retval;
874 break;
875 }
876
877 if (copy_to_user(buf, page, retval)) {
878 ret = -EFAULT;
879 break;
880 }
881
882 ret += retval;
883 src += retval;
884 buf += retval;
885 count -= retval;
886 }
887 *ppos = src;
888 mmput(mm);
889
890 free:
891 free_page((unsigned long) page);
892 return ret;
893 }
894
895 static const struct file_operations proc_environ_operations = {
896 .open = environ_open,
897 .read = environ_read,
898 .llseek = generic_file_llseek,
899 .release = mem_release,
900 };
901
902 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
903 loff_t *ppos)
904 {
905 struct task_struct *task = get_proc_task(file_inode(file));
906 char buffer[PROC_NUMBUF];
907 int oom_adj = OOM_ADJUST_MIN;
908 size_t len;
909 unsigned long flags;
910
911 if (!task)
912 return -ESRCH;
913 if (lock_task_sighand(task, &flags)) {
914 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
915 oom_adj = OOM_ADJUST_MAX;
916 else
917 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
918 OOM_SCORE_ADJ_MAX;
919 unlock_task_sighand(task, &flags);
920 }
921 put_task_struct(task);
922 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
923 return simple_read_from_buffer(buf, count, ppos, buffer, len);
924 }
925
926 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
927 size_t count, loff_t *ppos)
928 {
929 struct task_struct *task;
930 char buffer[PROC_NUMBUF];
931 int oom_adj;
932 unsigned long flags;
933 int err;
934
935 memset(buffer, 0, sizeof(buffer));
936 if (count > sizeof(buffer) - 1)
937 count = sizeof(buffer) - 1;
938 if (copy_from_user(buffer, buf, count)) {
939 err = -EFAULT;
940 goto out;
941 }
942
943 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
944 if (err)
945 goto out;
946 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
947 oom_adj != OOM_DISABLE) {
948 err = -EINVAL;
949 goto out;
950 }
951
952 task = get_proc_task(file_inode(file));
953 if (!task) {
954 err = -ESRCH;
955 goto out;
956 }
957
958 task_lock(task);
959 if (!task->mm) {
960 err = -EINVAL;
961 goto err_task_lock;
962 }
963
964 if (!lock_task_sighand(task, &flags)) {
965 err = -ESRCH;
966 goto err_task_lock;
967 }
968
969 /*
970 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
971 * value is always attainable.
972 */
973 if (oom_adj == OOM_ADJUST_MAX)
974 oom_adj = OOM_SCORE_ADJ_MAX;
975 else
976 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
977
978 if (oom_adj < task->signal->oom_score_adj &&
979 !capable(CAP_SYS_RESOURCE)) {
980 err = -EACCES;
981 goto err_sighand;
982 }
983
984 /*
985 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
986 * /proc/pid/oom_score_adj instead.
987 */
988 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
989 current->comm, task_pid_nr(current), task_pid_nr(task),
990 task_pid_nr(task));
991
992 task->signal->oom_score_adj = oom_adj;
993 trace_oom_score_adj_update(task);
994 err_sighand:
995 unlock_task_sighand(task, &flags);
996 err_task_lock:
997 task_unlock(task);
998 put_task_struct(task);
999 out:
1000 return err < 0 ? err : count;
1001 }
1002
1003 static const struct file_operations proc_oom_adj_operations = {
1004 .read = oom_adj_read,
1005 .write = oom_adj_write,
1006 .llseek = generic_file_llseek,
1007 };
1008
1009 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1010 size_t count, loff_t *ppos)
1011 {
1012 struct task_struct *task = get_proc_task(file_inode(file));
1013 char buffer[PROC_NUMBUF];
1014 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1015 unsigned long flags;
1016 size_t len;
1017
1018 if (!task)
1019 return -ESRCH;
1020 if (lock_task_sighand(task, &flags)) {
1021 oom_score_adj = task->signal->oom_score_adj;
1022 unlock_task_sighand(task, &flags);
1023 }
1024 put_task_struct(task);
1025 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1026 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1027 }
1028
1029 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1030 size_t count, loff_t *ppos)
1031 {
1032 struct task_struct *task;
1033 char buffer[PROC_NUMBUF];
1034 unsigned long flags;
1035 int oom_score_adj;
1036 int err;
1037
1038 memset(buffer, 0, sizeof(buffer));
1039 if (count > sizeof(buffer) - 1)
1040 count = sizeof(buffer) - 1;
1041 if (copy_from_user(buffer, buf, count)) {
1042 err = -EFAULT;
1043 goto out;
1044 }
1045
1046 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1047 if (err)
1048 goto out;
1049 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1050 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1051 err = -EINVAL;
1052 goto out;
1053 }
1054
1055 task = get_proc_task(file_inode(file));
1056 if (!task) {
1057 err = -ESRCH;
1058 goto out;
1059 }
1060
1061 task_lock(task);
1062 if (!task->mm) {
1063 err = -EINVAL;
1064 goto err_task_lock;
1065 }
1066
1067 if (!lock_task_sighand(task, &flags)) {
1068 err = -ESRCH;
1069 goto err_task_lock;
1070 }
1071
1072 if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1073 !capable(CAP_SYS_RESOURCE)) {
1074 err = -EACCES;
1075 goto err_sighand;
1076 }
1077
1078 task->signal->oom_score_adj = (short)oom_score_adj;
1079 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1080 task->signal->oom_score_adj_min = (short)oom_score_adj;
1081 trace_oom_score_adj_update(task);
1082
1083 err_sighand:
1084 unlock_task_sighand(task, &flags);
1085 err_task_lock:
1086 task_unlock(task);
1087 put_task_struct(task);
1088 out:
1089 return err < 0 ? err : count;
1090 }
1091
1092 static const struct file_operations proc_oom_score_adj_operations = {
1093 .read = oom_score_adj_read,
1094 .write = oom_score_adj_write,
1095 .llseek = default_llseek,
1096 };
1097
1098 #ifdef CONFIG_AUDITSYSCALL
1099 #define TMPBUFLEN 21
1100 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1101 size_t count, loff_t *ppos)
1102 {
1103 struct inode * inode = file_inode(file);
1104 struct task_struct *task = get_proc_task(inode);
1105 ssize_t length;
1106 char tmpbuf[TMPBUFLEN];
1107
1108 if (!task)
1109 return -ESRCH;
1110 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1111 from_kuid(file->f_cred->user_ns,
1112 audit_get_loginuid(task)));
1113 put_task_struct(task);
1114 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1115 }
1116
1117 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1118 size_t count, loff_t *ppos)
1119 {
1120 struct inode * inode = file_inode(file);
1121 char *page, *tmp;
1122 ssize_t length;
1123 uid_t loginuid;
1124 kuid_t kloginuid;
1125
1126 rcu_read_lock();
1127 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1128 rcu_read_unlock();
1129 return -EPERM;
1130 }
1131 rcu_read_unlock();
1132
1133 if (count >= PAGE_SIZE)
1134 count = PAGE_SIZE - 1;
1135
1136 if (*ppos != 0) {
1137 /* No partial writes. */
1138 return -EINVAL;
1139 }
1140 page = (char*)__get_free_page(GFP_TEMPORARY);
1141 if (!page)
1142 return -ENOMEM;
1143 length = -EFAULT;
1144 if (copy_from_user(page, buf, count))
1145 goto out_free_page;
1146
1147 page[count] = '\0';
1148 loginuid = simple_strtoul(page, &tmp, 10);
1149 if (tmp == page) {
1150 length = -EINVAL;
1151 goto out_free_page;
1152
1153 }
1154 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1155 if (!uid_valid(kloginuid)) {
1156 length = -EINVAL;
1157 goto out_free_page;
1158 }
1159
1160 length = audit_set_loginuid(kloginuid);
1161 if (likely(length == 0))
1162 length = count;
1163
1164 out_free_page:
1165 free_page((unsigned long) page);
1166 return length;
1167 }
1168
1169 static const struct file_operations proc_loginuid_operations = {
1170 .read = proc_loginuid_read,
1171 .write = proc_loginuid_write,
1172 .llseek = generic_file_llseek,
1173 };
1174
1175 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1176 size_t count, loff_t *ppos)
1177 {
1178 struct inode * inode = file_inode(file);
1179 struct task_struct *task = get_proc_task(inode);
1180 ssize_t length;
1181 char tmpbuf[TMPBUFLEN];
1182
1183 if (!task)
1184 return -ESRCH;
1185 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1186 audit_get_sessionid(task));
1187 put_task_struct(task);
1188 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1189 }
1190
1191 static const struct file_operations proc_sessionid_operations = {
1192 .read = proc_sessionid_read,
1193 .llseek = generic_file_llseek,
1194 };
1195 #endif
1196
1197 #ifdef CONFIG_FAULT_INJECTION
1198 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1199 size_t count, loff_t *ppos)
1200 {
1201 struct task_struct *task = get_proc_task(file_inode(file));
1202 char buffer[PROC_NUMBUF];
1203 size_t len;
1204 int make_it_fail;
1205
1206 if (!task)
1207 return -ESRCH;
1208 make_it_fail = task->make_it_fail;
1209 put_task_struct(task);
1210
1211 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1212
1213 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1214 }
1215
1216 static ssize_t proc_fault_inject_write(struct file * file,
1217 const char __user * buf, size_t count, loff_t *ppos)
1218 {
1219 struct task_struct *task;
1220 char buffer[PROC_NUMBUF], *end;
1221 int make_it_fail;
1222
1223 if (!capable(CAP_SYS_RESOURCE))
1224 return -EPERM;
1225 memset(buffer, 0, sizeof(buffer));
1226 if (count > sizeof(buffer) - 1)
1227 count = sizeof(buffer) - 1;
1228 if (copy_from_user(buffer, buf, count))
1229 return -EFAULT;
1230 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1231 if (*end)
1232 return -EINVAL;
1233 task = get_proc_task(file_inode(file));
1234 if (!task)
1235 return -ESRCH;
1236 task->make_it_fail = make_it_fail;
1237 put_task_struct(task);
1238
1239 return count;
1240 }
1241
1242 static const struct file_operations proc_fault_inject_operations = {
1243 .read = proc_fault_inject_read,
1244 .write = proc_fault_inject_write,
1245 .llseek = generic_file_llseek,
1246 };
1247 #endif
1248
1249
1250 #ifdef CONFIG_SCHED_DEBUG
1251 /*
1252 * Print out various scheduling related per-task fields:
1253 */
1254 static int sched_show(struct seq_file *m, void *v)
1255 {
1256 struct inode *inode = m->private;
1257 struct task_struct *p;
1258
1259 p = get_proc_task(inode);
1260 if (!p)
1261 return -ESRCH;
1262 proc_sched_show_task(p, m);
1263
1264 put_task_struct(p);
1265
1266 return 0;
1267 }
1268
1269 static ssize_t
1270 sched_write(struct file *file, const char __user *buf,
1271 size_t count, loff_t *offset)
1272 {
1273 struct inode *inode = file_inode(file);
1274 struct task_struct *p;
1275
1276 p = get_proc_task(inode);
1277 if (!p)
1278 return -ESRCH;
1279 proc_sched_set_task(p);
1280
1281 put_task_struct(p);
1282
1283 return count;
1284 }
1285
1286 static int sched_open(struct inode *inode, struct file *filp)
1287 {
1288 return single_open(filp, sched_show, inode);
1289 }
1290
1291 static const struct file_operations proc_pid_sched_operations = {
1292 .open = sched_open,
1293 .read = seq_read,
1294 .write = sched_write,
1295 .llseek = seq_lseek,
1296 .release = single_release,
1297 };
1298
1299 #endif
1300
1301 #ifdef CONFIG_SCHED_AUTOGROUP
1302 /*
1303 * Print out autogroup related information:
1304 */
1305 static int sched_autogroup_show(struct seq_file *m, void *v)
1306 {
1307 struct inode *inode = m->private;
1308 struct task_struct *p;
1309
1310 p = get_proc_task(inode);
1311 if (!p)
1312 return -ESRCH;
1313 proc_sched_autogroup_show_task(p, m);
1314
1315 put_task_struct(p);
1316
1317 return 0;
1318 }
1319
1320 static ssize_t
1321 sched_autogroup_write(struct file *file, const char __user *buf,
1322 size_t count, loff_t *offset)
1323 {
1324 struct inode *inode = file_inode(file);
1325 struct task_struct *p;
1326 char buffer[PROC_NUMBUF];
1327 int nice;
1328 int err;
1329
1330 memset(buffer, 0, sizeof(buffer));
1331 if (count > sizeof(buffer) - 1)
1332 count = sizeof(buffer) - 1;
1333 if (copy_from_user(buffer, buf, count))
1334 return -EFAULT;
1335
1336 err = kstrtoint(strstrip(buffer), 0, &nice);
1337 if (err < 0)
1338 return err;
1339
1340 p = get_proc_task(inode);
1341 if (!p)
1342 return -ESRCH;
1343
1344 err = proc_sched_autogroup_set_nice(p, nice);
1345 if (err)
1346 count = err;
1347
1348 put_task_struct(p);
1349
1350 return count;
1351 }
1352
1353 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1354 {
1355 int ret;
1356
1357 ret = single_open(filp, sched_autogroup_show, NULL);
1358 if (!ret) {
1359 struct seq_file *m = filp->private_data;
1360
1361 m->private = inode;
1362 }
1363 return ret;
1364 }
1365
1366 static const struct file_operations proc_pid_sched_autogroup_operations = {
1367 .open = sched_autogroup_open,
1368 .read = seq_read,
1369 .write = sched_autogroup_write,
1370 .llseek = seq_lseek,
1371 .release = single_release,
1372 };
1373
1374 #endif /* CONFIG_SCHED_AUTOGROUP */
1375
1376 static ssize_t comm_write(struct file *file, const char __user *buf,
1377 size_t count, loff_t *offset)
1378 {
1379 struct inode *inode = file_inode(file);
1380 struct task_struct *p;
1381 char buffer[TASK_COMM_LEN];
1382 const size_t maxlen = sizeof(buffer) - 1;
1383
1384 memset(buffer, 0, sizeof(buffer));
1385 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1386 return -EFAULT;
1387
1388 p = get_proc_task(inode);
1389 if (!p)
1390 return -ESRCH;
1391
1392 if (same_thread_group(current, p))
1393 set_task_comm(p, buffer);
1394 else
1395 count = -EINVAL;
1396
1397 put_task_struct(p);
1398
1399 return count;
1400 }
1401
1402 static int comm_show(struct seq_file *m, void *v)
1403 {
1404 struct inode *inode = m->private;
1405 struct task_struct *p;
1406
1407 p = get_proc_task(inode);
1408 if (!p)
1409 return -ESRCH;
1410
1411 task_lock(p);
1412 seq_printf(m, "%s\n", p->comm);
1413 task_unlock(p);
1414
1415 put_task_struct(p);
1416
1417 return 0;
1418 }
1419
1420 static int comm_open(struct inode *inode, struct file *filp)
1421 {
1422 return single_open(filp, comm_show, inode);
1423 }
1424
1425 static const struct file_operations proc_pid_set_comm_operations = {
1426 .open = comm_open,
1427 .read = seq_read,
1428 .write = comm_write,
1429 .llseek = seq_lseek,
1430 .release = single_release,
1431 };
1432
1433 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1434 {
1435 struct task_struct *task;
1436 struct mm_struct *mm;
1437 struct file *exe_file;
1438
1439 task = get_proc_task(dentry->d_inode);
1440 if (!task)
1441 return -ENOENT;
1442 mm = get_task_mm(task);
1443 put_task_struct(task);
1444 if (!mm)
1445 return -ENOENT;
1446 exe_file = get_mm_exe_file(mm);
1447 mmput(mm);
1448 if (exe_file) {
1449 *exe_path = exe_file->f_path;
1450 path_get(&exe_file->f_path);
1451 fput(exe_file);
1452 return 0;
1453 } else
1454 return -ENOENT;
1455 }
1456
1457 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1458 {
1459 struct inode *inode = dentry->d_inode;
1460 struct path path;
1461 int error = -EACCES;
1462
1463 /* Are we allowed to snoop on the tasks file descriptors? */
1464 if (!proc_fd_access_allowed(inode))
1465 goto out;
1466
1467 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1468 if (error)
1469 goto out;
1470
1471 nd_jump_link(nd, &path);
1472 return NULL;
1473 out:
1474 return ERR_PTR(error);
1475 }
1476
1477 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1478 {
1479 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1480 char *pathname;
1481 int len;
1482
1483 if (!tmp)
1484 return -ENOMEM;
1485
1486 pathname = d_path(path, tmp, PAGE_SIZE);
1487 len = PTR_ERR(pathname);
1488 if (IS_ERR(pathname))
1489 goto out;
1490 len = tmp + PAGE_SIZE - 1 - pathname;
1491
1492 if (len > buflen)
1493 len = buflen;
1494 if (copy_to_user(buffer, pathname, len))
1495 len = -EFAULT;
1496 out:
1497 free_page((unsigned long)tmp);
1498 return len;
1499 }
1500
1501 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1502 {
1503 int error = -EACCES;
1504 struct inode *inode = dentry->d_inode;
1505 struct path path;
1506
1507 /* Are we allowed to snoop on the tasks file descriptors? */
1508 if (!proc_fd_access_allowed(inode))
1509 goto out;
1510
1511 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1512 if (error)
1513 goto out;
1514
1515 error = do_proc_readlink(&path, buffer, buflen);
1516 path_put(&path);
1517 out:
1518 return error;
1519 }
1520
1521 const struct inode_operations proc_pid_link_inode_operations = {
1522 .readlink = proc_pid_readlink,
1523 .follow_link = proc_pid_follow_link,
1524 .setattr = proc_setattr,
1525 };
1526
1527
1528 /* building an inode */
1529
1530 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1531 {
1532 struct inode * inode;
1533 struct proc_inode *ei;
1534 const struct cred *cred;
1535
1536 /* We need a new inode */
1537
1538 inode = new_inode(sb);
1539 if (!inode)
1540 goto out;
1541
1542 /* Common stuff */
1543 ei = PROC_I(inode);
1544 inode->i_ino = get_next_ino();
1545 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1546 inode->i_op = &proc_def_inode_operations;
1547
1548 /*
1549 * grab the reference to task.
1550 */
1551 ei->pid = get_task_pid(task, PIDTYPE_PID);
1552 if (!ei->pid)
1553 goto out_unlock;
1554
1555 if (task_dumpable(task)) {
1556 rcu_read_lock();
1557 cred = __task_cred(task);
1558 inode->i_uid = cred->euid;
1559 inode->i_gid = cred->egid;
1560 rcu_read_unlock();
1561 }
1562 security_task_to_inode(task, inode);
1563
1564 out:
1565 return inode;
1566
1567 out_unlock:
1568 iput(inode);
1569 return NULL;
1570 }
1571
1572 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1573 {
1574 struct inode *inode = dentry->d_inode;
1575 struct task_struct *task;
1576 const struct cred *cred;
1577 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1578
1579 generic_fillattr(inode, stat);
1580
1581 rcu_read_lock();
1582 stat->uid = GLOBAL_ROOT_UID;
1583 stat->gid = GLOBAL_ROOT_GID;
1584 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1585 if (task) {
1586 if (!has_pid_permissions(pid, task, 2)) {
1587 rcu_read_unlock();
1588 /*
1589 * This doesn't prevent learning whether PID exists,
1590 * it only makes getattr() consistent with readdir().
1591 */
1592 return -ENOENT;
1593 }
1594 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1595 task_dumpable(task)) {
1596 cred = __task_cred(task);
1597 stat->uid = cred->euid;
1598 stat->gid = cred->egid;
1599 }
1600 }
1601 rcu_read_unlock();
1602 return 0;
1603 }
1604
1605 /* dentry stuff */
1606
1607 /*
1608 * Exceptional case: normally we are not allowed to unhash a busy
1609 * directory. In this case, however, we can do it - no aliasing problems
1610 * due to the way we treat inodes.
1611 *
1612 * Rewrite the inode's ownerships here because the owning task may have
1613 * performed a setuid(), etc.
1614 *
1615 * Before the /proc/pid/status file was created the only way to read
1616 * the effective uid of a /process was to stat /proc/pid. Reading
1617 * /proc/pid/status is slow enough that procps and other packages
1618 * kept stating /proc/pid. To keep the rules in /proc simple I have
1619 * made this apply to all per process world readable and executable
1620 * directories.
1621 */
1622 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1623 {
1624 struct inode *inode;
1625 struct task_struct *task;
1626 const struct cred *cred;
1627
1628 if (flags & LOOKUP_RCU)
1629 return -ECHILD;
1630
1631 inode = dentry->d_inode;
1632 task = get_proc_task(inode);
1633
1634 if (task) {
1635 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1636 task_dumpable(task)) {
1637 rcu_read_lock();
1638 cred = __task_cred(task);
1639 inode->i_uid = cred->euid;
1640 inode->i_gid = cred->egid;
1641 rcu_read_unlock();
1642 } else {
1643 inode->i_uid = GLOBAL_ROOT_UID;
1644 inode->i_gid = GLOBAL_ROOT_GID;
1645 }
1646 inode->i_mode &= ~(S_ISUID | S_ISGID);
1647 security_task_to_inode(task, inode);
1648 put_task_struct(task);
1649 return 1;
1650 }
1651 d_drop(dentry);
1652 return 0;
1653 }
1654
1655 int pid_delete_dentry(const struct dentry *dentry)
1656 {
1657 /* Is the task we represent dead?
1658 * If so, then don't put the dentry on the lru list,
1659 * kill it immediately.
1660 */
1661 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1662 }
1663
1664 const struct dentry_operations pid_dentry_operations =
1665 {
1666 .d_revalidate = pid_revalidate,
1667 .d_delete = pid_delete_dentry,
1668 };
1669
1670 /* Lookups */
1671
1672 /*
1673 * Fill a directory entry.
1674 *
1675 * If possible create the dcache entry and derive our inode number and
1676 * file type from dcache entry.
1677 *
1678 * Since all of the proc inode numbers are dynamically generated, the inode
1679 * numbers do not exist until the inode is cache. This means creating the
1680 * the dcache entry in readdir is necessary to keep the inode numbers
1681 * reported by readdir in sync with the inode numbers reported
1682 * by stat.
1683 */
1684 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1685 const char *name, int len,
1686 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1687 {
1688 struct dentry *child, *dir = filp->f_path.dentry;
1689 struct inode *inode;
1690 struct qstr qname;
1691 ino_t ino = 0;
1692 unsigned type = DT_UNKNOWN;
1693
1694 qname.name = name;
1695 qname.len = len;
1696 qname.hash = full_name_hash(name, len);
1697
1698 child = d_lookup(dir, &qname);
1699 if (!child) {
1700 struct dentry *new;
1701 new = d_alloc(dir, &qname);
1702 if (new) {
1703 child = instantiate(dir->d_inode, new, task, ptr);
1704 if (child)
1705 dput(new);
1706 else
1707 child = new;
1708 }
1709 }
1710 if (!child || IS_ERR(child) || !child->d_inode)
1711 goto end_instantiate;
1712 inode = child->d_inode;
1713 if (inode) {
1714 ino = inode->i_ino;
1715 type = inode->i_mode >> 12;
1716 }
1717 dput(child);
1718 end_instantiate:
1719 if (!ino)
1720 ino = find_inode_number(dir, &qname);
1721 if (!ino)
1722 ino = 1;
1723 return filldir(dirent, name, len, filp->f_pos, ino, type);
1724 }
1725
1726 #ifdef CONFIG_CHECKPOINT_RESTORE
1727
1728 /*
1729 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1730 * which represent vma start and end addresses.
1731 */
1732 static int dname_to_vma_addr(struct dentry *dentry,
1733 unsigned long *start, unsigned long *end)
1734 {
1735 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1736 return -EINVAL;
1737
1738 return 0;
1739 }
1740
1741 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1742 {
1743 unsigned long vm_start, vm_end;
1744 bool exact_vma_exists = false;
1745 struct mm_struct *mm = NULL;
1746 struct task_struct *task;
1747 const struct cred *cred;
1748 struct inode *inode;
1749 int status = 0;
1750
1751 if (flags & LOOKUP_RCU)
1752 return -ECHILD;
1753
1754 if (!capable(CAP_SYS_ADMIN)) {
1755 status = -EPERM;
1756 goto out_notask;
1757 }
1758
1759 inode = dentry->d_inode;
1760 task = get_proc_task(inode);
1761 if (!task)
1762 goto out_notask;
1763
1764 mm = mm_access(task, PTRACE_MODE_READ);
1765 if (IS_ERR_OR_NULL(mm))
1766 goto out;
1767
1768 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1769 down_read(&mm->mmap_sem);
1770 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1771 up_read(&mm->mmap_sem);
1772 }
1773
1774 mmput(mm);
1775
1776 if (exact_vma_exists) {
1777 if (task_dumpable(task)) {
1778 rcu_read_lock();
1779 cred = __task_cred(task);
1780 inode->i_uid = cred->euid;
1781 inode->i_gid = cred->egid;
1782 rcu_read_unlock();
1783 } else {
1784 inode->i_uid = GLOBAL_ROOT_UID;
1785 inode->i_gid = GLOBAL_ROOT_GID;
1786 }
1787 security_task_to_inode(task, inode);
1788 status = 1;
1789 }
1790
1791 out:
1792 put_task_struct(task);
1793
1794 out_notask:
1795 if (status <= 0)
1796 d_drop(dentry);
1797
1798 return status;
1799 }
1800
1801 static const struct dentry_operations tid_map_files_dentry_operations = {
1802 .d_revalidate = map_files_d_revalidate,
1803 .d_delete = pid_delete_dentry,
1804 };
1805
1806 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1807 {
1808 unsigned long vm_start, vm_end;
1809 struct vm_area_struct *vma;
1810 struct task_struct *task;
1811 struct mm_struct *mm;
1812 int rc;
1813
1814 rc = -ENOENT;
1815 task = get_proc_task(dentry->d_inode);
1816 if (!task)
1817 goto out;
1818
1819 mm = get_task_mm(task);
1820 put_task_struct(task);
1821 if (!mm)
1822 goto out;
1823
1824 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1825 if (rc)
1826 goto out_mmput;
1827
1828 rc = -ENOENT;
1829 down_read(&mm->mmap_sem);
1830 vma = find_exact_vma(mm, vm_start, vm_end);
1831 if (vma && vma->vm_file) {
1832 *path = vma->vm_file->f_path;
1833 path_get(path);
1834 rc = 0;
1835 }
1836 up_read(&mm->mmap_sem);
1837
1838 out_mmput:
1839 mmput(mm);
1840 out:
1841 return rc;
1842 }
1843
1844 struct map_files_info {
1845 fmode_t mode;
1846 unsigned long len;
1847 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1848 };
1849
1850 static struct dentry *
1851 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1852 struct task_struct *task, const void *ptr)
1853 {
1854 fmode_t mode = (fmode_t)(unsigned long)ptr;
1855 struct proc_inode *ei;
1856 struct inode *inode;
1857
1858 inode = proc_pid_make_inode(dir->i_sb, task);
1859 if (!inode)
1860 return ERR_PTR(-ENOENT);
1861
1862 ei = PROC_I(inode);
1863 ei->op.proc_get_link = proc_map_files_get_link;
1864
1865 inode->i_op = &proc_pid_link_inode_operations;
1866 inode->i_size = 64;
1867 inode->i_mode = S_IFLNK;
1868
1869 if (mode & FMODE_READ)
1870 inode->i_mode |= S_IRUSR;
1871 if (mode & FMODE_WRITE)
1872 inode->i_mode |= S_IWUSR;
1873
1874 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1875 d_add(dentry, inode);
1876
1877 return NULL;
1878 }
1879
1880 static struct dentry *proc_map_files_lookup(struct inode *dir,
1881 struct dentry *dentry, unsigned int flags)
1882 {
1883 unsigned long vm_start, vm_end;
1884 struct vm_area_struct *vma;
1885 struct task_struct *task;
1886 struct dentry *result;
1887 struct mm_struct *mm;
1888
1889 result = ERR_PTR(-EPERM);
1890 if (!capable(CAP_SYS_ADMIN))
1891 goto out;
1892
1893 result = ERR_PTR(-ENOENT);
1894 task = get_proc_task(dir);
1895 if (!task)
1896 goto out;
1897
1898 result = ERR_PTR(-EACCES);
1899 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1900 goto out_put_task;
1901
1902 result = ERR_PTR(-ENOENT);
1903 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1904 goto out_put_task;
1905
1906 mm = get_task_mm(task);
1907 if (!mm)
1908 goto out_put_task;
1909
1910 down_read(&mm->mmap_sem);
1911 vma = find_exact_vma(mm, vm_start, vm_end);
1912 if (!vma)
1913 goto out_no_vma;
1914
1915 if (vma->vm_file)
1916 result = proc_map_files_instantiate(dir, dentry, task,
1917 (void *)(unsigned long)vma->vm_file->f_mode);
1918
1919 out_no_vma:
1920 up_read(&mm->mmap_sem);
1921 mmput(mm);
1922 out_put_task:
1923 put_task_struct(task);
1924 out:
1925 return result;
1926 }
1927
1928 static const struct inode_operations proc_map_files_inode_operations = {
1929 .lookup = proc_map_files_lookup,
1930 .permission = proc_fd_permission,
1931 .setattr = proc_setattr,
1932 };
1933
1934 static int
1935 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1936 {
1937 struct dentry *dentry = filp->f_path.dentry;
1938 struct inode *inode = dentry->d_inode;
1939 struct vm_area_struct *vma;
1940 struct task_struct *task;
1941 struct mm_struct *mm;
1942 ino_t ino;
1943 int ret;
1944
1945 ret = -EPERM;
1946 if (!capable(CAP_SYS_ADMIN))
1947 goto out;
1948
1949 ret = -ENOENT;
1950 task = get_proc_task(inode);
1951 if (!task)
1952 goto out;
1953
1954 ret = -EACCES;
1955 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1956 goto out_put_task;
1957
1958 ret = 0;
1959 switch (filp->f_pos) {
1960 case 0:
1961 ino = inode->i_ino;
1962 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1963 goto out_put_task;
1964 filp->f_pos++;
1965 case 1:
1966 ino = parent_ino(dentry);
1967 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1968 goto out_put_task;
1969 filp->f_pos++;
1970 default:
1971 {
1972 unsigned long nr_files, pos, i;
1973 struct flex_array *fa = NULL;
1974 struct map_files_info info;
1975 struct map_files_info *p;
1976
1977 mm = get_task_mm(task);
1978 if (!mm)
1979 goto out_put_task;
1980 down_read(&mm->mmap_sem);
1981
1982 nr_files = 0;
1983
1984 /*
1985 * We need two passes here:
1986 *
1987 * 1) Collect vmas of mapped files with mmap_sem taken
1988 * 2) Release mmap_sem and instantiate entries
1989 *
1990 * otherwise we get lockdep complained, since filldir()
1991 * routine might require mmap_sem taken in might_fault().
1992 */
1993
1994 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1995 if (vma->vm_file && ++pos > filp->f_pos)
1996 nr_files++;
1997 }
1998
1999 if (nr_files) {
2000 fa = flex_array_alloc(sizeof(info), nr_files,
2001 GFP_KERNEL);
2002 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2003 GFP_KERNEL)) {
2004 ret = -ENOMEM;
2005 if (fa)
2006 flex_array_free(fa);
2007 up_read(&mm->mmap_sem);
2008 mmput(mm);
2009 goto out_put_task;
2010 }
2011 for (i = 0, vma = mm->mmap, pos = 2; vma;
2012 vma = vma->vm_next) {
2013 if (!vma->vm_file)
2014 continue;
2015 if (++pos <= filp->f_pos)
2016 continue;
2017
2018 info.mode = vma->vm_file->f_mode;
2019 info.len = snprintf(info.name,
2020 sizeof(info.name), "%lx-%lx",
2021 vma->vm_start, vma->vm_end);
2022 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2023 BUG();
2024 }
2025 }
2026 up_read(&mm->mmap_sem);
2027
2028 for (i = 0; i < nr_files; i++) {
2029 p = flex_array_get(fa, i);
2030 ret = proc_fill_cache(filp, dirent, filldir,
2031 p->name, p->len,
2032 proc_map_files_instantiate,
2033 task,
2034 (void *)(unsigned long)p->mode);
2035 if (ret)
2036 break;
2037 filp->f_pos++;
2038 }
2039 if (fa)
2040 flex_array_free(fa);
2041 mmput(mm);
2042 }
2043 }
2044
2045 out_put_task:
2046 put_task_struct(task);
2047 out:
2048 return ret;
2049 }
2050
2051 static const struct file_operations proc_map_files_operations = {
2052 .read = generic_read_dir,
2053 .readdir = proc_map_files_readdir,
2054 .llseek = default_llseek,
2055 };
2056
2057 struct timers_private {
2058 struct pid *pid;
2059 struct task_struct *task;
2060 struct sighand_struct *sighand;
2061 struct pid_namespace *ns;
2062 unsigned long flags;
2063 };
2064
2065 static void *timers_start(struct seq_file *m, loff_t *pos)
2066 {
2067 struct timers_private *tp = m->private;
2068
2069 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2070 if (!tp->task)
2071 return ERR_PTR(-ESRCH);
2072
2073 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2074 if (!tp->sighand)
2075 return ERR_PTR(-ESRCH);
2076
2077 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2078 }
2079
2080 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2081 {
2082 struct timers_private *tp = m->private;
2083 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2084 }
2085
2086 static void timers_stop(struct seq_file *m, void *v)
2087 {
2088 struct timers_private *tp = m->private;
2089
2090 if (tp->sighand) {
2091 unlock_task_sighand(tp->task, &tp->flags);
2092 tp->sighand = NULL;
2093 }
2094
2095 if (tp->task) {
2096 put_task_struct(tp->task);
2097 tp->task = NULL;
2098 }
2099 }
2100
2101 static int show_timer(struct seq_file *m, void *v)
2102 {
2103 struct k_itimer *timer;
2104 struct timers_private *tp = m->private;
2105 int notify;
2106 static char *nstr[] = {
2107 [SIGEV_SIGNAL] = "signal",
2108 [SIGEV_NONE] = "none",
2109 [SIGEV_THREAD] = "thread",
2110 };
2111
2112 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2113 notify = timer->it_sigev_notify;
2114
2115 seq_printf(m, "ID: %d\n", timer->it_id);
2116 seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2117 timer->sigq->info.si_value.sival_ptr);
2118 seq_printf(m, "notify: %s/%s.%d\n",
2119 nstr[notify & ~SIGEV_THREAD_ID],
2120 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2121 pid_nr_ns(timer->it_pid, tp->ns));
2122 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2123
2124 return 0;
2125 }
2126
2127 static const struct seq_operations proc_timers_seq_ops = {
2128 .start = timers_start,
2129 .next = timers_next,
2130 .stop = timers_stop,
2131 .show = show_timer,
2132 };
2133
2134 static int proc_timers_open(struct inode *inode, struct file *file)
2135 {
2136 struct timers_private *tp;
2137
2138 tp = __seq_open_private(file, &proc_timers_seq_ops,
2139 sizeof(struct timers_private));
2140 if (!tp)
2141 return -ENOMEM;
2142
2143 tp->pid = proc_pid(inode);
2144 tp->ns = inode->i_sb->s_fs_info;
2145 return 0;
2146 }
2147
2148 static const struct file_operations proc_timers_operations = {
2149 .open = proc_timers_open,
2150 .read = seq_read,
2151 .llseek = seq_lseek,
2152 .release = seq_release_private,
2153 };
2154 #endif /* CONFIG_CHECKPOINT_RESTORE */
2155
2156 static struct dentry *proc_pident_instantiate(struct inode *dir,
2157 struct dentry *dentry, struct task_struct *task, const void *ptr)
2158 {
2159 const struct pid_entry *p = ptr;
2160 struct inode *inode;
2161 struct proc_inode *ei;
2162 struct dentry *error = ERR_PTR(-ENOENT);
2163
2164 inode = proc_pid_make_inode(dir->i_sb, task);
2165 if (!inode)
2166 goto out;
2167
2168 ei = PROC_I(inode);
2169 inode->i_mode = p->mode;
2170 if (S_ISDIR(inode->i_mode))
2171 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2172 if (p->iop)
2173 inode->i_op = p->iop;
2174 if (p->fop)
2175 inode->i_fop = p->fop;
2176 ei->op = p->op;
2177 d_set_d_op(dentry, &pid_dentry_operations);
2178 d_add(dentry, inode);
2179 /* Close the race of the process dying before we return the dentry */
2180 if (pid_revalidate(dentry, 0))
2181 error = NULL;
2182 out:
2183 return error;
2184 }
2185
2186 static struct dentry *proc_pident_lookup(struct inode *dir,
2187 struct dentry *dentry,
2188 const struct pid_entry *ents,
2189 unsigned int nents)
2190 {
2191 struct dentry *error;
2192 struct task_struct *task = get_proc_task(dir);
2193 const struct pid_entry *p, *last;
2194
2195 error = ERR_PTR(-ENOENT);
2196
2197 if (!task)
2198 goto out_no_task;
2199
2200 /*
2201 * Yes, it does not scale. And it should not. Don't add
2202 * new entries into /proc/<tgid>/ without very good reasons.
2203 */
2204 last = &ents[nents - 1];
2205 for (p = ents; p <= last; p++) {
2206 if (p->len != dentry->d_name.len)
2207 continue;
2208 if (!memcmp(dentry->d_name.name, p->name, p->len))
2209 break;
2210 }
2211 if (p > last)
2212 goto out;
2213
2214 error = proc_pident_instantiate(dir, dentry, task, p);
2215 out:
2216 put_task_struct(task);
2217 out_no_task:
2218 return error;
2219 }
2220
2221 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2222 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2223 {
2224 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2225 proc_pident_instantiate, task, p);
2226 }
2227
2228 static int proc_pident_readdir(struct file *filp,
2229 void *dirent, filldir_t filldir,
2230 const struct pid_entry *ents, unsigned int nents)
2231 {
2232 int i;
2233 struct dentry *dentry = filp->f_path.dentry;
2234 struct inode *inode = dentry->d_inode;
2235 struct task_struct *task = get_proc_task(inode);
2236 const struct pid_entry *p, *last;
2237 ino_t ino;
2238 int ret;
2239
2240 ret = -ENOENT;
2241 if (!task)
2242 goto out_no_task;
2243
2244 ret = 0;
2245 i = filp->f_pos;
2246 switch (i) {
2247 case 0:
2248 ino = inode->i_ino;
2249 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2250 goto out;
2251 i++;
2252 filp->f_pos++;
2253 /* fall through */
2254 case 1:
2255 ino = parent_ino(dentry);
2256 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2257 goto out;
2258 i++;
2259 filp->f_pos++;
2260 /* fall through */
2261 default:
2262 i -= 2;
2263 if (i >= nents) {
2264 ret = 1;
2265 goto out;
2266 }
2267 p = ents + i;
2268 last = &ents[nents - 1];
2269 while (p <= last) {
2270 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2271 goto out;
2272 filp->f_pos++;
2273 p++;
2274 }
2275 }
2276
2277 ret = 1;
2278 out:
2279 put_task_struct(task);
2280 out_no_task:
2281 return ret;
2282 }
2283
2284 #ifdef CONFIG_SECURITY
2285 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2286 size_t count, loff_t *ppos)
2287 {
2288 struct inode * inode = file_inode(file);
2289 char *p = NULL;
2290 ssize_t length;
2291 struct task_struct *task = get_proc_task(inode);
2292
2293 if (!task)
2294 return -ESRCH;
2295
2296 length = security_getprocattr(task,
2297 (char*)file->f_path.dentry->d_name.name,
2298 &p);
2299 put_task_struct(task);
2300 if (length > 0)
2301 length = simple_read_from_buffer(buf, count, ppos, p, length);
2302 kfree(p);
2303 return length;
2304 }
2305
2306 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2307 size_t count, loff_t *ppos)
2308 {
2309 struct inode * inode = file_inode(file);
2310 char *page;
2311 ssize_t length;
2312 struct task_struct *task = get_proc_task(inode);
2313
2314 length = -ESRCH;
2315 if (!task)
2316 goto out_no_task;
2317 if (count > PAGE_SIZE)
2318 count = PAGE_SIZE;
2319
2320 /* No partial writes. */
2321 length = -EINVAL;
2322 if (*ppos != 0)
2323 goto out;
2324
2325 length = -ENOMEM;
2326 page = (char*)__get_free_page(GFP_TEMPORARY);
2327 if (!page)
2328 goto out;
2329
2330 length = -EFAULT;
2331 if (copy_from_user(page, buf, count))
2332 goto out_free;
2333
2334 /* Guard against adverse ptrace interaction */
2335 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2336 if (length < 0)
2337 goto out_free;
2338
2339 length = security_setprocattr(task,
2340 (char*)file->f_path.dentry->d_name.name,
2341 (void*)page, count);
2342 mutex_unlock(&task->signal->cred_guard_mutex);
2343 out_free:
2344 free_page((unsigned long) page);
2345 out:
2346 put_task_struct(task);
2347 out_no_task:
2348 return length;
2349 }
2350
2351 static const struct file_operations proc_pid_attr_operations = {
2352 .read = proc_pid_attr_read,
2353 .write = proc_pid_attr_write,
2354 .llseek = generic_file_llseek,
2355 };
2356
2357 static const struct pid_entry attr_dir_stuff[] = {
2358 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2359 REG("prev", S_IRUGO, proc_pid_attr_operations),
2360 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2361 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2362 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2363 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2364 };
2365
2366 static int proc_attr_dir_readdir(struct file * filp,
2367 void * dirent, filldir_t filldir)
2368 {
2369 return proc_pident_readdir(filp,dirent,filldir,
2370 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2371 }
2372
2373 static const struct file_operations proc_attr_dir_operations = {
2374 .read = generic_read_dir,
2375 .readdir = proc_attr_dir_readdir,
2376 .llseek = default_llseek,
2377 };
2378
2379 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2380 struct dentry *dentry, unsigned int flags)
2381 {
2382 return proc_pident_lookup(dir, dentry,
2383 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2384 }
2385
2386 static const struct inode_operations proc_attr_dir_inode_operations = {
2387 .lookup = proc_attr_dir_lookup,
2388 .getattr = pid_getattr,
2389 .setattr = proc_setattr,
2390 };
2391
2392 #endif
2393
2394 #ifdef CONFIG_ELF_CORE
2395 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2396 size_t count, loff_t *ppos)
2397 {
2398 struct task_struct *task = get_proc_task(file_inode(file));
2399 struct mm_struct *mm;
2400 char buffer[PROC_NUMBUF];
2401 size_t len;
2402 int ret;
2403
2404 if (!task)
2405 return -ESRCH;
2406
2407 ret = 0;
2408 mm = get_task_mm(task);
2409 if (mm) {
2410 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2411 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2412 MMF_DUMP_FILTER_SHIFT));
2413 mmput(mm);
2414 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2415 }
2416
2417 put_task_struct(task);
2418
2419 return ret;
2420 }
2421
2422 static ssize_t proc_coredump_filter_write(struct file *file,
2423 const char __user *buf,
2424 size_t count,
2425 loff_t *ppos)
2426 {
2427 struct task_struct *task;
2428 struct mm_struct *mm;
2429 char buffer[PROC_NUMBUF], *end;
2430 unsigned int val;
2431 int ret;
2432 int i;
2433 unsigned long mask;
2434
2435 ret = -EFAULT;
2436 memset(buffer, 0, sizeof(buffer));
2437 if (count > sizeof(buffer) - 1)
2438 count = sizeof(buffer) - 1;
2439 if (copy_from_user(buffer, buf, count))
2440 goto out_no_task;
2441
2442 ret = -EINVAL;
2443 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2444 if (*end == '\n')
2445 end++;
2446 if (end - buffer == 0)
2447 goto out_no_task;
2448
2449 ret = -ESRCH;
2450 task = get_proc_task(file_inode(file));
2451 if (!task)
2452 goto out_no_task;
2453
2454 ret = end - buffer;
2455 mm = get_task_mm(task);
2456 if (!mm)
2457 goto out_no_mm;
2458
2459 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2460 if (val & mask)
2461 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2462 else
2463 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2464 }
2465
2466 mmput(mm);
2467 out_no_mm:
2468 put_task_struct(task);
2469 out_no_task:
2470 return ret;
2471 }
2472
2473 static const struct file_operations proc_coredump_filter_operations = {
2474 .read = proc_coredump_filter_read,
2475 .write = proc_coredump_filter_write,
2476 .llseek = generic_file_llseek,
2477 };
2478 #endif
2479
2480 #ifdef CONFIG_TASK_IO_ACCOUNTING
2481 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2482 {
2483 struct task_io_accounting acct = task->ioac;
2484 unsigned long flags;
2485 int result;
2486
2487 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2488 if (result)
2489 return result;
2490
2491 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2492 result = -EACCES;
2493 goto out_unlock;
2494 }
2495
2496 if (whole && lock_task_sighand(task, &flags)) {
2497 struct task_struct *t = task;
2498
2499 task_io_accounting_add(&acct, &task->signal->ioac);
2500 while_each_thread(task, t)
2501 task_io_accounting_add(&acct, &t->ioac);
2502
2503 unlock_task_sighand(task, &flags);
2504 }
2505 result = sprintf(buffer,
2506 "rchar: %llu\n"
2507 "wchar: %llu\n"
2508 "syscr: %llu\n"
2509 "syscw: %llu\n"
2510 "read_bytes: %llu\n"
2511 "write_bytes: %llu\n"
2512 "cancelled_write_bytes: %llu\n",
2513 (unsigned long long)acct.rchar,
2514 (unsigned long long)acct.wchar,
2515 (unsigned long long)acct.syscr,
2516 (unsigned long long)acct.syscw,
2517 (unsigned long long)acct.read_bytes,
2518 (unsigned long long)acct.write_bytes,
2519 (unsigned long long)acct.cancelled_write_bytes);
2520 out_unlock:
2521 mutex_unlock(&task->signal->cred_guard_mutex);
2522 return result;
2523 }
2524
2525 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2526 {
2527 return do_io_accounting(task, buffer, 0);
2528 }
2529
2530 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2531 {
2532 return do_io_accounting(task, buffer, 1);
2533 }
2534 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2535
2536 #ifdef CONFIG_USER_NS
2537 static int proc_id_map_open(struct inode *inode, struct file *file,
2538 struct seq_operations *seq_ops)
2539 {
2540 struct user_namespace *ns = NULL;
2541 struct task_struct *task;
2542 struct seq_file *seq;
2543 int ret = -EINVAL;
2544
2545 task = get_proc_task(inode);
2546 if (task) {
2547 rcu_read_lock();
2548 ns = get_user_ns(task_cred_xxx(task, user_ns));
2549 rcu_read_unlock();
2550 put_task_struct(task);
2551 }
2552 if (!ns)
2553 goto err;
2554
2555 ret = seq_open(file, seq_ops);
2556 if (ret)
2557 goto err_put_ns;
2558
2559 seq = file->private_data;
2560 seq->private = ns;
2561
2562 return 0;
2563 err_put_ns:
2564 put_user_ns(ns);
2565 err:
2566 return ret;
2567 }
2568
2569 static int proc_id_map_release(struct inode *inode, struct file *file)
2570 {
2571 struct seq_file *seq = file->private_data;
2572 struct user_namespace *ns = seq->private;
2573 put_user_ns(ns);
2574 return seq_release(inode, file);
2575 }
2576
2577 static int proc_uid_map_open(struct inode *inode, struct file *file)
2578 {
2579 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2580 }
2581
2582 static int proc_gid_map_open(struct inode *inode, struct file *file)
2583 {
2584 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2585 }
2586
2587 static int proc_projid_map_open(struct inode *inode, struct file *file)
2588 {
2589 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2590 }
2591
2592 static const struct file_operations proc_uid_map_operations = {
2593 .open = proc_uid_map_open,
2594 .write = proc_uid_map_write,
2595 .read = seq_read,
2596 .llseek = seq_lseek,
2597 .release = proc_id_map_release,
2598 };
2599
2600 static const struct file_operations proc_gid_map_operations = {
2601 .open = proc_gid_map_open,
2602 .write = proc_gid_map_write,
2603 .read = seq_read,
2604 .llseek = seq_lseek,
2605 .release = proc_id_map_release,
2606 };
2607
2608 static const struct file_operations proc_projid_map_operations = {
2609 .open = proc_projid_map_open,
2610 .write = proc_projid_map_write,
2611 .read = seq_read,
2612 .llseek = seq_lseek,
2613 .release = proc_id_map_release,
2614 };
2615 #endif /* CONFIG_USER_NS */
2616
2617 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2618 struct pid *pid, struct task_struct *task)
2619 {
2620 int err = lock_trace(task);
2621 if (!err) {
2622 seq_printf(m, "%08x\n", task->personality);
2623 unlock_trace(task);
2624 }
2625 return err;
2626 }
2627
2628 /*
2629 * Thread groups
2630 */
2631 static const struct file_operations proc_task_operations;
2632 static const struct inode_operations proc_task_inode_operations;
2633
2634 static const struct pid_entry tgid_base_stuff[] = {
2635 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2636 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2637 #ifdef CONFIG_CHECKPOINT_RESTORE
2638 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2639 #endif
2640 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2641 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2642 #ifdef CONFIG_NET
2643 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2644 #endif
2645 REG("environ", S_IRUSR, proc_environ_operations),
2646 INF("auxv", S_IRUSR, proc_pid_auxv),
2647 ONE("status", S_IRUGO, proc_pid_status),
2648 ONE("personality", S_IRUGO, proc_pid_personality),
2649 INF("limits", S_IRUGO, proc_pid_limits),
2650 #ifdef CONFIG_SCHED_DEBUG
2651 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2652 #endif
2653 #ifdef CONFIG_SCHED_AUTOGROUP
2654 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2655 #endif
2656 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2657 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2658 INF("syscall", S_IRUGO, proc_pid_syscall),
2659 #endif
2660 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2661 ONE("stat", S_IRUGO, proc_tgid_stat),
2662 ONE("statm", S_IRUGO, proc_pid_statm),
2663 REG("maps", S_IRUGO, proc_pid_maps_operations),
2664 #ifdef CONFIG_NUMA
2665 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2666 #endif
2667 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2668 LNK("cwd", proc_cwd_link),
2669 LNK("root", proc_root_link),
2670 LNK("exe", proc_exe_link),
2671 REG("mounts", S_IRUGO, proc_mounts_operations),
2672 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2673 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2674 #ifdef CONFIG_PROC_PAGE_MONITOR
2675 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2676 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2677 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2678 #endif
2679 #ifdef CONFIG_SECURITY
2680 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2681 #endif
2682 #ifdef CONFIG_KALLSYMS
2683 INF("wchan", S_IRUGO, proc_pid_wchan),
2684 #endif
2685 #ifdef CONFIG_STACKTRACE
2686 ONE("stack", S_IRUGO, proc_pid_stack),
2687 #endif
2688 #ifdef CONFIG_SCHEDSTATS
2689 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2690 #endif
2691 #ifdef CONFIG_LATENCYTOP
2692 REG("latency", S_IRUGO, proc_lstats_operations),
2693 #endif
2694 #ifdef CONFIG_PROC_PID_CPUSET
2695 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2696 #endif
2697 #ifdef CONFIG_CGROUPS
2698 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2699 #endif
2700 INF("oom_score", S_IRUGO, proc_oom_score),
2701 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2702 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2703 #ifdef CONFIG_AUDITSYSCALL
2704 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2705 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2706 #endif
2707 #ifdef CONFIG_FAULT_INJECTION
2708 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2709 #endif
2710 #ifdef CONFIG_ELF_CORE
2711 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2712 #endif
2713 #ifdef CONFIG_TASK_IO_ACCOUNTING
2714 INF("io", S_IRUSR, proc_tgid_io_accounting),
2715 #endif
2716 #ifdef CONFIG_HARDWALL
2717 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2718 #endif
2719 #ifdef CONFIG_USER_NS
2720 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2721 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2722 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2723 #endif
2724 #ifdef CONFIG_CHECKPOINT_RESTORE
2725 REG("timers", S_IRUGO, proc_timers_operations),
2726 #endif
2727 };
2728
2729 static int proc_tgid_base_readdir(struct file * filp,
2730 void * dirent, filldir_t filldir)
2731 {
2732 return proc_pident_readdir(filp,dirent,filldir,
2733 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2734 }
2735
2736 static const struct file_operations proc_tgid_base_operations = {
2737 .read = generic_read_dir,
2738 .readdir = proc_tgid_base_readdir,
2739 .llseek = default_llseek,
2740 };
2741
2742 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2743 {
2744 return proc_pident_lookup(dir, dentry,
2745 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2746 }
2747
2748 static const struct inode_operations proc_tgid_base_inode_operations = {
2749 .lookup = proc_tgid_base_lookup,
2750 .getattr = pid_getattr,
2751 .setattr = proc_setattr,
2752 .permission = proc_pid_permission,
2753 };
2754
2755 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2756 {
2757 struct dentry *dentry, *leader, *dir;
2758 char buf[PROC_NUMBUF];
2759 struct qstr name;
2760
2761 name.name = buf;
2762 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2763 /* no ->d_hash() rejects on procfs */
2764 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2765 if (dentry) {
2766 shrink_dcache_parent(dentry);
2767 d_drop(dentry);
2768 dput(dentry);
2769 }
2770
2771 name.name = buf;
2772 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2773 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2774 if (!leader)
2775 goto out;
2776
2777 name.name = "task";
2778 name.len = strlen(name.name);
2779 dir = d_hash_and_lookup(leader, &name);
2780 if (!dir)
2781 goto out_put_leader;
2782
2783 name.name = buf;
2784 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2785 dentry = d_hash_and_lookup(dir, &name);
2786 if (dentry) {
2787 shrink_dcache_parent(dentry);
2788 d_drop(dentry);
2789 dput(dentry);
2790 }
2791
2792 dput(dir);
2793 out_put_leader:
2794 dput(leader);
2795 out:
2796 return;
2797 }
2798
2799 /**
2800 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2801 * @task: task that should be flushed.
2802 *
2803 * When flushing dentries from proc, one needs to flush them from global
2804 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2805 * in. This call is supposed to do all of this job.
2806 *
2807 * Looks in the dcache for
2808 * /proc/@pid
2809 * /proc/@tgid/task/@pid
2810 * if either directory is present flushes it and all of it'ts children
2811 * from the dcache.
2812 *
2813 * It is safe and reasonable to cache /proc entries for a task until
2814 * that task exits. After that they just clog up the dcache with
2815 * useless entries, possibly causing useful dcache entries to be
2816 * flushed instead. This routine is proved to flush those useless
2817 * dcache entries at process exit time.
2818 *
2819 * NOTE: This routine is just an optimization so it does not guarantee
2820 * that no dcache entries will exist at process exit time it
2821 * just makes it very unlikely that any will persist.
2822 */
2823
2824 void proc_flush_task(struct task_struct *task)
2825 {
2826 int i;
2827 struct pid *pid, *tgid;
2828 struct upid *upid;
2829
2830 pid = task_pid(task);
2831 tgid = task_tgid(task);
2832
2833 for (i = 0; i <= pid->level; i++) {
2834 upid = &pid->numbers[i];
2835 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2836 tgid->numbers[i].nr);
2837 }
2838 }
2839
2840 static struct dentry *proc_pid_instantiate(struct inode *dir,
2841 struct dentry * dentry,
2842 struct task_struct *task, const void *ptr)
2843 {
2844 struct dentry *error = ERR_PTR(-ENOENT);
2845 struct inode *inode;
2846
2847 inode = proc_pid_make_inode(dir->i_sb, task);
2848 if (!inode)
2849 goto out;
2850
2851 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2852 inode->i_op = &proc_tgid_base_inode_operations;
2853 inode->i_fop = &proc_tgid_base_operations;
2854 inode->i_flags|=S_IMMUTABLE;
2855
2856 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2857 ARRAY_SIZE(tgid_base_stuff)));
2858
2859 d_set_d_op(dentry, &pid_dentry_operations);
2860
2861 d_add(dentry, inode);
2862 /* Close the race of the process dying before we return the dentry */
2863 if (pid_revalidate(dentry, 0))
2864 error = NULL;
2865 out:
2866 return error;
2867 }
2868
2869 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2870 {
2871 struct dentry *result = NULL;
2872 struct task_struct *task;
2873 unsigned tgid;
2874 struct pid_namespace *ns;
2875
2876 tgid = name_to_int(dentry);
2877 if (tgid == ~0U)
2878 goto out;
2879
2880 ns = dentry->d_sb->s_fs_info;
2881 rcu_read_lock();
2882 task = find_task_by_pid_ns(tgid, ns);
2883 if (task)
2884 get_task_struct(task);
2885 rcu_read_unlock();
2886 if (!task)
2887 goto out;
2888
2889 result = proc_pid_instantiate(dir, dentry, task, NULL);
2890 put_task_struct(task);
2891 out:
2892 return result;
2893 }
2894
2895 /*
2896 * Find the first task with tgid >= tgid
2897 *
2898 */
2899 struct tgid_iter {
2900 unsigned int tgid;
2901 struct task_struct *task;
2902 };
2903 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2904 {
2905 struct pid *pid;
2906
2907 if (iter.task)
2908 put_task_struct(iter.task);
2909 rcu_read_lock();
2910 retry:
2911 iter.task = NULL;
2912 pid = find_ge_pid(iter.tgid, ns);
2913 if (pid) {
2914 iter.tgid = pid_nr_ns(pid, ns);
2915 iter.task = pid_task(pid, PIDTYPE_PID);
2916 /* What we to know is if the pid we have find is the
2917 * pid of a thread_group_leader. Testing for task
2918 * being a thread_group_leader is the obvious thing
2919 * todo but there is a window when it fails, due to
2920 * the pid transfer logic in de_thread.
2921 *
2922 * So we perform the straight forward test of seeing
2923 * if the pid we have found is the pid of a thread
2924 * group leader, and don't worry if the task we have
2925 * found doesn't happen to be a thread group leader.
2926 * As we don't care in the case of readdir.
2927 */
2928 if (!iter.task || !has_group_leader_pid(iter.task)) {
2929 iter.tgid += 1;
2930 goto retry;
2931 }
2932 get_task_struct(iter.task);
2933 }
2934 rcu_read_unlock();
2935 return iter;
2936 }
2937
2938 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
2939
2940 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2941 struct tgid_iter iter)
2942 {
2943 char name[PROC_NUMBUF];
2944 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2945 return proc_fill_cache(filp, dirent, filldir, name, len,
2946 proc_pid_instantiate, iter.task, NULL);
2947 }
2948
2949 static int fake_filldir(void *buf, const char *name, int namelen,
2950 loff_t offset, u64 ino, unsigned d_type)
2951 {
2952 return 0;
2953 }
2954
2955 /* for the /proc/ directory itself, after non-process stuff has been done */
2956 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2957 {
2958 struct tgid_iter iter;
2959 struct pid_namespace *ns;
2960 filldir_t __filldir;
2961 loff_t pos = filp->f_pos;
2962
2963 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2964 goto out;
2965
2966 if (pos == TGID_OFFSET - 1) {
2967 if (proc_fill_cache(filp, dirent, filldir, "self", 4,
2968 NULL, NULL, NULL) < 0)
2969 goto out;
2970 iter.tgid = 0;
2971 } else {
2972 iter.tgid = pos - TGID_OFFSET;
2973 }
2974 iter.task = NULL;
2975 ns = filp->f_dentry->d_sb->s_fs_info;
2976 for (iter = next_tgid(ns, iter);
2977 iter.task;
2978 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2979 if (has_pid_permissions(ns, iter.task, 2))
2980 __filldir = filldir;
2981 else
2982 __filldir = fake_filldir;
2983
2984 filp->f_pos = iter.tgid + TGID_OFFSET;
2985 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2986 put_task_struct(iter.task);
2987 goto out;
2988 }
2989 }
2990 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2991 out:
2992 return 0;
2993 }
2994
2995 /*
2996 * Tasks
2997 */
2998 static const struct pid_entry tid_base_stuff[] = {
2999 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3000 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3001 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3002 REG("environ", S_IRUSR, proc_environ_operations),
3003 INF("auxv", S_IRUSR, proc_pid_auxv),
3004 ONE("status", S_IRUGO, proc_pid_status),
3005 ONE("personality", S_IRUGO, proc_pid_personality),
3006 INF("limits", S_IRUGO, proc_pid_limits),
3007 #ifdef CONFIG_SCHED_DEBUG
3008 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3009 #endif
3010 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3011 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3012 INF("syscall", S_IRUGO, proc_pid_syscall),
3013 #endif
3014 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3015 ONE("stat", S_IRUGO, proc_tid_stat),
3016 ONE("statm", S_IRUGO, proc_pid_statm),
3017 REG("maps", S_IRUGO, proc_tid_maps_operations),
3018 #ifdef CONFIG_CHECKPOINT_RESTORE
3019 REG("children", S_IRUGO, proc_tid_children_operations),
3020 #endif
3021 #ifdef CONFIG_NUMA
3022 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3023 #endif
3024 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3025 LNK("cwd", proc_cwd_link),
3026 LNK("root", proc_root_link),
3027 LNK("exe", proc_exe_link),
3028 REG("mounts", S_IRUGO, proc_mounts_operations),
3029 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3030 #ifdef CONFIG_PROC_PAGE_MONITOR
3031 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3032 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3033 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3034 #endif
3035 #ifdef CONFIG_SECURITY
3036 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3037 #endif
3038 #ifdef CONFIG_KALLSYMS
3039 INF("wchan", S_IRUGO, proc_pid_wchan),
3040 #endif
3041 #ifdef CONFIG_STACKTRACE
3042 ONE("stack", S_IRUGO, proc_pid_stack),
3043 #endif
3044 #ifdef CONFIG_SCHEDSTATS
3045 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3046 #endif
3047 #ifdef CONFIG_LATENCYTOP
3048 REG("latency", S_IRUGO, proc_lstats_operations),
3049 #endif
3050 #ifdef CONFIG_PROC_PID_CPUSET
3051 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3052 #endif
3053 #ifdef CONFIG_CGROUPS
3054 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3055 #endif
3056 INF("oom_score", S_IRUGO, proc_oom_score),
3057 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3058 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3059 #ifdef CONFIG_AUDITSYSCALL
3060 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3061 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3062 #endif
3063 #ifdef CONFIG_FAULT_INJECTION
3064 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3065 #endif
3066 #ifdef CONFIG_TASK_IO_ACCOUNTING
3067 INF("io", S_IRUSR, proc_tid_io_accounting),
3068 #endif
3069 #ifdef CONFIG_HARDWALL
3070 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3071 #endif
3072 #ifdef CONFIG_USER_NS
3073 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3074 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3075 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3076 #endif
3077 };
3078
3079 static int proc_tid_base_readdir(struct file * filp,
3080 void * dirent, filldir_t filldir)
3081 {
3082 return proc_pident_readdir(filp,dirent,filldir,
3083 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3084 }
3085
3086 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3087 {
3088 return proc_pident_lookup(dir, dentry,
3089 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3090 }
3091
3092 static const struct file_operations proc_tid_base_operations = {
3093 .read = generic_read_dir,
3094 .readdir = proc_tid_base_readdir,
3095 .llseek = default_llseek,
3096 };
3097
3098 static const struct inode_operations proc_tid_base_inode_operations = {
3099 .lookup = proc_tid_base_lookup,
3100 .getattr = pid_getattr,
3101 .setattr = proc_setattr,
3102 };
3103
3104 static struct dentry *proc_task_instantiate(struct inode *dir,
3105 struct dentry *dentry, struct task_struct *task, const void *ptr)
3106 {
3107 struct dentry *error = ERR_PTR(-ENOENT);
3108 struct inode *inode;
3109 inode = proc_pid_make_inode(dir->i_sb, task);
3110
3111 if (!inode)
3112 goto out;
3113 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3114 inode->i_op = &proc_tid_base_inode_operations;
3115 inode->i_fop = &proc_tid_base_operations;
3116 inode->i_flags|=S_IMMUTABLE;
3117
3118 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3119 ARRAY_SIZE(tid_base_stuff)));
3120
3121 d_set_d_op(dentry, &pid_dentry_operations);
3122
3123 d_add(dentry, inode);
3124 /* Close the race of the process dying before we return the dentry */
3125 if (pid_revalidate(dentry, 0))
3126 error = NULL;
3127 out:
3128 return error;
3129 }
3130
3131 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3132 {
3133 struct dentry *result = ERR_PTR(-ENOENT);
3134 struct task_struct *task;
3135 struct task_struct *leader = get_proc_task(dir);
3136 unsigned tid;
3137 struct pid_namespace *ns;
3138
3139 if (!leader)
3140 goto out_no_task;
3141
3142 tid = name_to_int(dentry);
3143 if (tid == ~0U)
3144 goto out;
3145
3146 ns = dentry->d_sb->s_fs_info;
3147 rcu_read_lock();
3148 task = find_task_by_pid_ns(tid, ns);
3149 if (task)
3150 get_task_struct(task);
3151 rcu_read_unlock();
3152 if (!task)
3153 goto out;
3154 if (!same_thread_group(leader, task))
3155 goto out_drop_task;
3156
3157 result = proc_task_instantiate(dir, dentry, task, NULL);
3158 out_drop_task:
3159 put_task_struct(task);
3160 out:
3161 put_task_struct(leader);
3162 out_no_task:
3163 return result;
3164 }
3165
3166 /*
3167 * Find the first tid of a thread group to return to user space.
3168 *
3169 * Usually this is just the thread group leader, but if the users
3170 * buffer was too small or there was a seek into the middle of the
3171 * directory we have more work todo.
3172 *
3173 * In the case of a short read we start with find_task_by_pid.
3174 *
3175 * In the case of a seek we start with the leader and walk nr
3176 * threads past it.
3177 */
3178 static struct task_struct *first_tid(struct task_struct *leader,
3179 int tid, int nr, struct pid_namespace *ns)
3180 {
3181 struct task_struct *pos;
3182
3183 rcu_read_lock();
3184 /* Attempt to start with the pid of a thread */
3185 if (tid && (nr > 0)) {
3186 pos = find_task_by_pid_ns(tid, ns);
3187 if (pos && (pos->group_leader == leader))
3188 goto found;
3189 }
3190
3191 /* If nr exceeds the number of threads there is nothing todo */
3192 pos = NULL;
3193 if (nr && nr >= get_nr_threads(leader))
3194 goto out;
3195
3196 /* If we haven't found our starting place yet start
3197 * with the leader and walk nr threads forward.
3198 */
3199 for (pos = leader; nr > 0; --nr) {
3200 pos = next_thread(pos);
3201 if (pos == leader) {
3202 pos = NULL;
3203 goto out;
3204 }
3205 }
3206 found:
3207 get_task_struct(pos);
3208 out:
3209 rcu_read_unlock();
3210 return pos;
3211 }
3212
3213 /*
3214 * Find the next thread in the thread list.
3215 * Return NULL if there is an error or no next thread.
3216 *
3217 * The reference to the input task_struct is released.
3218 */
3219 static struct task_struct *next_tid(struct task_struct *start)
3220 {
3221 struct task_struct *pos = NULL;
3222 rcu_read_lock();
3223 if (pid_alive(start)) {
3224 pos = next_thread(start);
3225 if (thread_group_leader(pos))
3226 pos = NULL;
3227 else
3228 get_task_struct(pos);
3229 }
3230 rcu_read_unlock();
3231 put_task_struct(start);
3232 return pos;
3233 }
3234
3235 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3236 struct task_struct *task, int tid)
3237 {
3238 char name[PROC_NUMBUF];
3239 int len = snprintf(name, sizeof(name), "%d", tid);
3240 return proc_fill_cache(filp, dirent, filldir, name, len,
3241 proc_task_instantiate, task, NULL);
3242 }
3243
3244 /* for the /proc/TGID/task/ directories */
3245 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3246 {
3247 struct dentry *dentry = filp->f_path.dentry;
3248 struct inode *inode = dentry->d_inode;
3249 struct task_struct *leader = NULL;
3250 struct task_struct *task;
3251 int retval = -ENOENT;
3252 ino_t ino;
3253 int tid;
3254 struct pid_namespace *ns;
3255
3256 task = get_proc_task(inode);
3257 if (!task)
3258 goto out_no_task;
3259 rcu_read_lock();
3260 if (pid_alive(task)) {
3261 leader = task->group_leader;
3262 get_task_struct(leader);
3263 }
3264 rcu_read_unlock();
3265 put_task_struct(task);
3266 if (!leader)
3267 goto out_no_task;
3268 retval = 0;
3269
3270 switch ((unsigned long)filp->f_pos) {
3271 case 0:
3272 ino = inode->i_ino;
3273 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3274 goto out;
3275 filp->f_pos++;
3276 /* fall through */
3277 case 1:
3278 ino = parent_ino(dentry);
3279 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3280 goto out;
3281 filp->f_pos++;
3282 /* fall through */
3283 }
3284
3285 /* f_version caches the tgid value that the last readdir call couldn't
3286 * return. lseek aka telldir automagically resets f_version to 0.
3287 */
3288 ns = filp->f_dentry->d_sb->s_fs_info;
3289 tid = (int)filp->f_version;
3290 filp->f_version = 0;
3291 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3292 task;
3293 task = next_tid(task), filp->f_pos++) {
3294 tid = task_pid_nr_ns(task, ns);
3295 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3296 /* returning this tgid failed, save it as the first
3297 * pid for the next readir call */
3298 filp->f_version = (u64)tid;
3299 put_task_struct(task);
3300 break;
3301 }
3302 }
3303 out:
3304 put_task_struct(leader);
3305 out_no_task:
3306 return retval;
3307 }
3308
3309 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3310 {
3311 struct inode *inode = dentry->d_inode;
3312 struct task_struct *p = get_proc_task(inode);
3313 generic_fillattr(inode, stat);
3314
3315 if (p) {
3316 stat->nlink += get_nr_threads(p);
3317 put_task_struct(p);
3318 }
3319
3320 return 0;
3321 }
3322
3323 static const struct inode_operations proc_task_inode_operations = {
3324 .lookup = proc_task_lookup,
3325 .getattr = proc_task_getattr,
3326 .setattr = proc_setattr,
3327 .permission = proc_pid_permission,
3328 };
3329
3330 static const struct file_operations proc_task_operations = {
3331 .read = generic_read_dir,
3332 .readdir = proc_task_readdir,
3333 .llseek = default_llseek,
3334 };