Merge tag 'arc-v3.10-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96
97 /* NOTE:
98 * Implementing inode permission operations in /proc is almost
99 * certainly an error. Permission checks need to happen during
100 * each system call not at open time. The reason is that most of
101 * what we wish to check for permissions in /proc varies at runtime.
102 *
103 * The classic example of a problem is opening file descriptors
104 * in /proc for a task before it execs a suid executable.
105 */
106
107 struct pid_entry {
108 char *name;
109 int len;
110 umode_t mode;
111 const struct inode_operations *iop;
112 const struct file_operations *fop;
113 union proc_op op;
114 };
115
116 #define NOD(NAME, MODE, IOP, FOP, OP) { \
117 .name = (NAME), \
118 .len = sizeof(NAME) - 1, \
119 .mode = MODE, \
120 .iop = IOP, \
121 .fop = FOP, \
122 .op = OP, \
123 }
124
125 #define DIR(NAME, MODE, iops, fops) \
126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link) \
128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
129 &proc_pid_link_inode_operations, NULL, \
130 { .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops) \
132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define INF(NAME, MODE, read) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_info_file_operations, \
136 { .proc_read = read } )
137 #define ONE(NAME, MODE, show) \
138 NOD(NAME, (S_IFREG|(MODE)), \
139 NULL, &proc_single_file_operations, \
140 { .proc_show = show } )
141
142 /*
143 * Count the number of hardlinks for the pid_entry table, excluding the .
144 * and .. links.
145 */
146 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
147 unsigned int n)
148 {
149 unsigned int i;
150 unsigned int count;
151
152 count = 0;
153 for (i = 0; i < n; ++i) {
154 if (S_ISDIR(entries[i].mode))
155 ++count;
156 }
157
158 return count;
159 }
160
161 static int get_task_root(struct task_struct *task, struct path *root)
162 {
163 int result = -ENOENT;
164
165 task_lock(task);
166 if (task->fs) {
167 get_fs_root(task->fs, root);
168 result = 0;
169 }
170 task_unlock(task);
171 return result;
172 }
173
174 static int proc_cwd_link(struct dentry *dentry, struct path *path)
175 {
176 struct task_struct *task = get_proc_task(dentry->d_inode);
177 int result = -ENOENT;
178
179 if (task) {
180 task_lock(task);
181 if (task->fs) {
182 get_fs_pwd(task->fs, path);
183 result = 0;
184 }
185 task_unlock(task);
186 put_task_struct(task);
187 }
188 return result;
189 }
190
191 static int proc_root_link(struct dentry *dentry, struct path *path)
192 {
193 struct task_struct *task = get_proc_task(dentry->d_inode);
194 int result = -ENOENT;
195
196 if (task) {
197 result = get_task_root(task, path);
198 put_task_struct(task);
199 }
200 return result;
201 }
202
203 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
204 {
205 int res = 0;
206 unsigned int len;
207 struct mm_struct *mm = get_task_mm(task);
208 if (!mm)
209 goto out;
210 if (!mm->arg_end)
211 goto out_mm; /* Shh! No looking before we're done */
212
213 len = mm->arg_end - mm->arg_start;
214
215 if (len > PAGE_SIZE)
216 len = PAGE_SIZE;
217
218 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
219
220 // If the nul at the end of args has been overwritten, then
221 // assume application is using setproctitle(3).
222 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
223 len = strnlen(buffer, res);
224 if (len < res) {
225 res = len;
226 } else {
227 len = mm->env_end - mm->env_start;
228 if (len > PAGE_SIZE - res)
229 len = PAGE_SIZE - res;
230 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
231 res = strnlen(buffer, res);
232 }
233 }
234 out_mm:
235 mmput(mm);
236 out:
237 return res;
238 }
239
240 static int proc_pid_auxv(struct task_struct *task, char *buffer)
241 {
242 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
243 int res = PTR_ERR(mm);
244 if (mm && !IS_ERR(mm)) {
245 unsigned int nwords = 0;
246 do {
247 nwords += 2;
248 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
249 res = nwords * sizeof(mm->saved_auxv[0]);
250 if (res > PAGE_SIZE)
251 res = PAGE_SIZE;
252 memcpy(buffer, mm->saved_auxv, res);
253 mmput(mm);
254 }
255 return res;
256 }
257
258
259 #ifdef CONFIG_KALLSYMS
260 /*
261 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
262 * Returns the resolved symbol. If that fails, simply return the address.
263 */
264 static int proc_pid_wchan(struct task_struct *task, char *buffer)
265 {
266 unsigned long wchan;
267 char symname[KSYM_NAME_LEN];
268
269 wchan = get_wchan(task);
270
271 if (lookup_symbol_name(wchan, symname) < 0)
272 if (!ptrace_may_access(task, PTRACE_MODE_READ))
273 return 0;
274 else
275 return sprintf(buffer, "%lu", wchan);
276 else
277 return sprintf(buffer, "%s", symname);
278 }
279 #endif /* CONFIG_KALLSYMS */
280
281 static int lock_trace(struct task_struct *task)
282 {
283 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
284 if (err)
285 return err;
286 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
287 mutex_unlock(&task->signal->cred_guard_mutex);
288 return -EPERM;
289 }
290 return 0;
291 }
292
293 static void unlock_trace(struct task_struct *task)
294 {
295 mutex_unlock(&task->signal->cred_guard_mutex);
296 }
297
298 #ifdef CONFIG_STACKTRACE
299
300 #define MAX_STACK_TRACE_DEPTH 64
301
302 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
303 struct pid *pid, struct task_struct *task)
304 {
305 struct stack_trace trace;
306 unsigned long *entries;
307 int err;
308 int i;
309
310 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
311 if (!entries)
312 return -ENOMEM;
313
314 trace.nr_entries = 0;
315 trace.max_entries = MAX_STACK_TRACE_DEPTH;
316 trace.entries = entries;
317 trace.skip = 0;
318
319 err = lock_trace(task);
320 if (!err) {
321 save_stack_trace_tsk(task, &trace);
322
323 for (i = 0; i < trace.nr_entries; i++) {
324 seq_printf(m, "[<%pK>] %pS\n",
325 (void *)entries[i], (void *)entries[i]);
326 }
327 unlock_trace(task);
328 }
329 kfree(entries);
330
331 return err;
332 }
333 #endif
334
335 #ifdef CONFIG_SCHEDSTATS
336 /*
337 * Provides /proc/PID/schedstat
338 */
339 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
340 {
341 return sprintf(buffer, "%llu %llu %lu\n",
342 (unsigned long long)task->se.sum_exec_runtime,
343 (unsigned long long)task->sched_info.run_delay,
344 task->sched_info.pcount);
345 }
346 #endif
347
348 #ifdef CONFIG_LATENCYTOP
349 static int lstats_show_proc(struct seq_file *m, void *v)
350 {
351 int i;
352 struct inode *inode = m->private;
353 struct task_struct *task = get_proc_task(inode);
354
355 if (!task)
356 return -ESRCH;
357 seq_puts(m, "Latency Top version : v0.1\n");
358 for (i = 0; i < 32; i++) {
359 struct latency_record *lr = &task->latency_record[i];
360 if (lr->backtrace[0]) {
361 int q;
362 seq_printf(m, "%i %li %li",
363 lr->count, lr->time, lr->max);
364 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
365 unsigned long bt = lr->backtrace[q];
366 if (!bt)
367 break;
368 if (bt == ULONG_MAX)
369 break;
370 seq_printf(m, " %ps", (void *)bt);
371 }
372 seq_putc(m, '\n');
373 }
374
375 }
376 put_task_struct(task);
377 return 0;
378 }
379
380 static int lstats_open(struct inode *inode, struct file *file)
381 {
382 return single_open(file, lstats_show_proc, inode);
383 }
384
385 static ssize_t lstats_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *offs)
387 {
388 struct task_struct *task = get_proc_task(file_inode(file));
389
390 if (!task)
391 return -ESRCH;
392 clear_all_latency_tracing(task);
393 put_task_struct(task);
394
395 return count;
396 }
397
398 static const struct file_operations proc_lstats_operations = {
399 .open = lstats_open,
400 .read = seq_read,
401 .write = lstats_write,
402 .llseek = seq_lseek,
403 .release = single_release,
404 };
405
406 #endif
407
408 #ifdef CONFIG_CGROUPS
409 static int cgroup_open(struct inode *inode, struct file *file)
410 {
411 struct pid *pid = PROC_I(inode)->pid;
412 return single_open(file, proc_cgroup_show, pid);
413 }
414
415 static const struct file_operations proc_cgroup_operations = {
416 .open = cgroup_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = single_release,
420 };
421 #endif
422
423 #ifdef CONFIG_PROC_PID_CPUSET
424
425 static int cpuset_open(struct inode *inode, struct file *file)
426 {
427 struct pid *pid = PROC_I(inode)->pid;
428 return single_open(file, proc_cpuset_show, pid);
429 }
430
431 static const struct file_operations proc_cpuset_operations = {
432 .open = cpuset_open,
433 .read = seq_read,
434 .llseek = seq_lseek,
435 .release = single_release,
436 };
437 #endif
438
439 static int proc_oom_score(struct task_struct *task, char *buffer)
440 {
441 unsigned long totalpages = totalram_pages + total_swap_pages;
442 unsigned long points = 0;
443
444 read_lock(&tasklist_lock);
445 if (pid_alive(task))
446 points = oom_badness(task, NULL, NULL, totalpages) *
447 1000 / totalpages;
448 read_unlock(&tasklist_lock);
449 return sprintf(buffer, "%lu\n", points);
450 }
451
452 struct limit_names {
453 char *name;
454 char *unit;
455 };
456
457 static const struct limit_names lnames[RLIM_NLIMITS] = {
458 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
459 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
460 [RLIMIT_DATA] = {"Max data size", "bytes"},
461 [RLIMIT_STACK] = {"Max stack size", "bytes"},
462 [RLIMIT_CORE] = {"Max core file size", "bytes"},
463 [RLIMIT_RSS] = {"Max resident set", "bytes"},
464 [RLIMIT_NPROC] = {"Max processes", "processes"},
465 [RLIMIT_NOFILE] = {"Max open files", "files"},
466 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
467 [RLIMIT_AS] = {"Max address space", "bytes"},
468 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
469 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
470 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
471 [RLIMIT_NICE] = {"Max nice priority", NULL},
472 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
473 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
474 };
475
476 /* Display limits for a process */
477 static int proc_pid_limits(struct task_struct *task, char *buffer)
478 {
479 unsigned int i;
480 int count = 0;
481 unsigned long flags;
482 char *bufptr = buffer;
483
484 struct rlimit rlim[RLIM_NLIMITS];
485
486 if (!lock_task_sighand(task, &flags))
487 return 0;
488 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
489 unlock_task_sighand(task, &flags);
490
491 /*
492 * print the file header
493 */
494 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
495 "Limit", "Soft Limit", "Hard Limit", "Units");
496
497 for (i = 0; i < RLIM_NLIMITS; i++) {
498 if (rlim[i].rlim_cur == RLIM_INFINITY)
499 count += sprintf(&bufptr[count], "%-25s %-20s ",
500 lnames[i].name, "unlimited");
501 else
502 count += sprintf(&bufptr[count], "%-25s %-20lu ",
503 lnames[i].name, rlim[i].rlim_cur);
504
505 if (rlim[i].rlim_max == RLIM_INFINITY)
506 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
507 else
508 count += sprintf(&bufptr[count], "%-20lu ",
509 rlim[i].rlim_max);
510
511 if (lnames[i].unit)
512 count += sprintf(&bufptr[count], "%-10s\n",
513 lnames[i].unit);
514 else
515 count += sprintf(&bufptr[count], "\n");
516 }
517
518 return count;
519 }
520
521 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
522 static int proc_pid_syscall(struct task_struct *task, char *buffer)
523 {
524 long nr;
525 unsigned long args[6], sp, pc;
526 int res = lock_trace(task);
527 if (res)
528 return res;
529
530 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
531 res = sprintf(buffer, "running\n");
532 else if (nr < 0)
533 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
534 else
535 res = sprintf(buffer,
536 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
537 nr,
538 args[0], args[1], args[2], args[3], args[4], args[5],
539 sp, pc);
540 unlock_trace(task);
541 return res;
542 }
543 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
544
545 /************************************************************************/
546 /* Here the fs part begins */
547 /************************************************************************/
548
549 /* permission checks */
550 static int proc_fd_access_allowed(struct inode *inode)
551 {
552 struct task_struct *task;
553 int allowed = 0;
554 /* Allow access to a task's file descriptors if it is us or we
555 * may use ptrace attach to the process and find out that
556 * information.
557 */
558 task = get_proc_task(inode);
559 if (task) {
560 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
561 put_task_struct(task);
562 }
563 return allowed;
564 }
565
566 int proc_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 int error;
569 struct inode *inode = dentry->d_inode;
570
571 if (attr->ia_valid & ATTR_MODE)
572 return -EPERM;
573
574 error = inode_change_ok(inode, attr);
575 if (error)
576 return error;
577
578 setattr_copy(inode, attr);
579 mark_inode_dirty(inode);
580 return 0;
581 }
582
583 /*
584 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
585 * or euid/egid (for hide_pid_min=2)?
586 */
587 static bool has_pid_permissions(struct pid_namespace *pid,
588 struct task_struct *task,
589 int hide_pid_min)
590 {
591 if (pid->hide_pid < hide_pid_min)
592 return true;
593 if (in_group_p(pid->pid_gid))
594 return true;
595 return ptrace_may_access(task, PTRACE_MODE_READ);
596 }
597
598
599 static int proc_pid_permission(struct inode *inode, int mask)
600 {
601 struct pid_namespace *pid = inode->i_sb->s_fs_info;
602 struct task_struct *task;
603 bool has_perms;
604
605 task = get_proc_task(inode);
606 if (!task)
607 return -ESRCH;
608 has_perms = has_pid_permissions(pid, task, 1);
609 put_task_struct(task);
610
611 if (!has_perms) {
612 if (pid->hide_pid == 2) {
613 /*
614 * Let's make getdents(), stat(), and open()
615 * consistent with each other. If a process
616 * may not stat() a file, it shouldn't be seen
617 * in procfs at all.
618 */
619 return -ENOENT;
620 }
621
622 return -EPERM;
623 }
624 return generic_permission(inode, mask);
625 }
626
627
628
629 static const struct inode_operations proc_def_inode_operations = {
630 .setattr = proc_setattr,
631 };
632
633 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
634
635 static ssize_t proc_info_read(struct file * file, char __user * buf,
636 size_t count, loff_t *ppos)
637 {
638 struct inode * inode = file_inode(file);
639 unsigned long page;
640 ssize_t length;
641 struct task_struct *task = get_proc_task(inode);
642
643 length = -ESRCH;
644 if (!task)
645 goto out_no_task;
646
647 if (count > PROC_BLOCK_SIZE)
648 count = PROC_BLOCK_SIZE;
649
650 length = -ENOMEM;
651 if (!(page = __get_free_page(GFP_TEMPORARY)))
652 goto out;
653
654 length = PROC_I(inode)->op.proc_read(task, (char*)page);
655
656 if (length >= 0)
657 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
658 free_page(page);
659 out:
660 put_task_struct(task);
661 out_no_task:
662 return length;
663 }
664
665 static const struct file_operations proc_info_file_operations = {
666 .read = proc_info_read,
667 .llseek = generic_file_llseek,
668 };
669
670 static int proc_single_show(struct seq_file *m, void *v)
671 {
672 struct inode *inode = m->private;
673 struct pid_namespace *ns;
674 struct pid *pid;
675 struct task_struct *task;
676 int ret;
677
678 ns = inode->i_sb->s_fs_info;
679 pid = proc_pid(inode);
680 task = get_pid_task(pid, PIDTYPE_PID);
681 if (!task)
682 return -ESRCH;
683
684 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
685
686 put_task_struct(task);
687 return ret;
688 }
689
690 static int proc_single_open(struct inode *inode, struct file *filp)
691 {
692 return single_open(filp, proc_single_show, inode);
693 }
694
695 static const struct file_operations proc_single_file_operations = {
696 .open = proc_single_open,
697 .read = seq_read,
698 .llseek = seq_lseek,
699 .release = single_release,
700 };
701
702 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
703 {
704 struct task_struct *task = get_proc_task(file_inode(file));
705 struct mm_struct *mm;
706
707 if (!task)
708 return -ESRCH;
709
710 mm = mm_access(task, mode);
711 put_task_struct(task);
712
713 if (IS_ERR(mm))
714 return PTR_ERR(mm);
715
716 if (mm) {
717 /* ensure this mm_struct can't be freed */
718 atomic_inc(&mm->mm_count);
719 /* but do not pin its memory */
720 mmput(mm);
721 }
722
723 file->private_data = mm;
724
725 return 0;
726 }
727
728 static int mem_open(struct inode *inode, struct file *file)
729 {
730 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
731
732 /* OK to pass negative loff_t, we can catch out-of-range */
733 file->f_mode |= FMODE_UNSIGNED_OFFSET;
734
735 return ret;
736 }
737
738 static ssize_t mem_rw(struct file *file, char __user *buf,
739 size_t count, loff_t *ppos, int write)
740 {
741 struct mm_struct *mm = file->private_data;
742 unsigned long addr = *ppos;
743 ssize_t copied;
744 char *page;
745
746 if (!mm)
747 return 0;
748
749 page = (char *)__get_free_page(GFP_TEMPORARY);
750 if (!page)
751 return -ENOMEM;
752
753 copied = 0;
754 if (!atomic_inc_not_zero(&mm->mm_users))
755 goto free;
756
757 while (count > 0) {
758 int this_len = min_t(int, count, PAGE_SIZE);
759
760 if (write && copy_from_user(page, buf, this_len)) {
761 copied = -EFAULT;
762 break;
763 }
764
765 this_len = access_remote_vm(mm, addr, page, this_len, write);
766 if (!this_len) {
767 if (!copied)
768 copied = -EIO;
769 break;
770 }
771
772 if (!write && copy_to_user(buf, page, this_len)) {
773 copied = -EFAULT;
774 break;
775 }
776
777 buf += this_len;
778 addr += this_len;
779 copied += this_len;
780 count -= this_len;
781 }
782 *ppos = addr;
783
784 mmput(mm);
785 free:
786 free_page((unsigned long) page);
787 return copied;
788 }
789
790 static ssize_t mem_read(struct file *file, char __user *buf,
791 size_t count, loff_t *ppos)
792 {
793 return mem_rw(file, buf, count, ppos, 0);
794 }
795
796 static ssize_t mem_write(struct file *file, const char __user *buf,
797 size_t count, loff_t *ppos)
798 {
799 return mem_rw(file, (char __user*)buf, count, ppos, 1);
800 }
801
802 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
803 {
804 switch (orig) {
805 case 0:
806 file->f_pos = offset;
807 break;
808 case 1:
809 file->f_pos += offset;
810 break;
811 default:
812 return -EINVAL;
813 }
814 force_successful_syscall_return();
815 return file->f_pos;
816 }
817
818 static int mem_release(struct inode *inode, struct file *file)
819 {
820 struct mm_struct *mm = file->private_data;
821 if (mm)
822 mmdrop(mm);
823 return 0;
824 }
825
826 static const struct file_operations proc_mem_operations = {
827 .llseek = mem_lseek,
828 .read = mem_read,
829 .write = mem_write,
830 .open = mem_open,
831 .release = mem_release,
832 };
833
834 static int environ_open(struct inode *inode, struct file *file)
835 {
836 return __mem_open(inode, file, PTRACE_MODE_READ);
837 }
838
839 static ssize_t environ_read(struct file *file, char __user *buf,
840 size_t count, loff_t *ppos)
841 {
842 char *page;
843 unsigned long src = *ppos;
844 int ret = 0;
845 struct mm_struct *mm = file->private_data;
846
847 if (!mm)
848 return 0;
849
850 page = (char *)__get_free_page(GFP_TEMPORARY);
851 if (!page)
852 return -ENOMEM;
853
854 ret = 0;
855 if (!atomic_inc_not_zero(&mm->mm_users))
856 goto free;
857 while (count > 0) {
858 size_t this_len, max_len;
859 int retval;
860
861 if (src >= (mm->env_end - mm->env_start))
862 break;
863
864 this_len = mm->env_end - (mm->env_start + src);
865
866 max_len = min_t(size_t, PAGE_SIZE, count);
867 this_len = min(max_len, this_len);
868
869 retval = access_remote_vm(mm, (mm->env_start + src),
870 page, this_len, 0);
871
872 if (retval <= 0) {
873 ret = retval;
874 break;
875 }
876
877 if (copy_to_user(buf, page, retval)) {
878 ret = -EFAULT;
879 break;
880 }
881
882 ret += retval;
883 src += retval;
884 buf += retval;
885 count -= retval;
886 }
887 *ppos = src;
888 mmput(mm);
889
890 free:
891 free_page((unsigned long) page);
892 return ret;
893 }
894
895 static const struct file_operations proc_environ_operations = {
896 .open = environ_open,
897 .read = environ_read,
898 .llseek = generic_file_llseek,
899 .release = mem_release,
900 };
901
902 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
903 loff_t *ppos)
904 {
905 struct task_struct *task = get_proc_task(file_inode(file));
906 char buffer[PROC_NUMBUF];
907 int oom_adj = OOM_ADJUST_MIN;
908 size_t len;
909 unsigned long flags;
910
911 if (!task)
912 return -ESRCH;
913 if (lock_task_sighand(task, &flags)) {
914 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
915 oom_adj = OOM_ADJUST_MAX;
916 else
917 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
918 OOM_SCORE_ADJ_MAX;
919 unlock_task_sighand(task, &flags);
920 }
921 put_task_struct(task);
922 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
923 return simple_read_from_buffer(buf, count, ppos, buffer, len);
924 }
925
926 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
927 size_t count, loff_t *ppos)
928 {
929 struct task_struct *task;
930 char buffer[PROC_NUMBUF];
931 int oom_adj;
932 unsigned long flags;
933 int err;
934
935 memset(buffer, 0, sizeof(buffer));
936 if (count > sizeof(buffer) - 1)
937 count = sizeof(buffer) - 1;
938 if (copy_from_user(buffer, buf, count)) {
939 err = -EFAULT;
940 goto out;
941 }
942
943 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
944 if (err)
945 goto out;
946 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
947 oom_adj != OOM_DISABLE) {
948 err = -EINVAL;
949 goto out;
950 }
951
952 task = get_proc_task(file_inode(file));
953 if (!task) {
954 err = -ESRCH;
955 goto out;
956 }
957
958 task_lock(task);
959 if (!task->mm) {
960 err = -EINVAL;
961 goto err_task_lock;
962 }
963
964 if (!lock_task_sighand(task, &flags)) {
965 err = -ESRCH;
966 goto err_task_lock;
967 }
968
969 /*
970 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
971 * value is always attainable.
972 */
973 if (oom_adj == OOM_ADJUST_MAX)
974 oom_adj = OOM_SCORE_ADJ_MAX;
975 else
976 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
977
978 if (oom_adj < task->signal->oom_score_adj &&
979 !capable(CAP_SYS_RESOURCE)) {
980 err = -EACCES;
981 goto err_sighand;
982 }
983
984 /*
985 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
986 * /proc/pid/oom_score_adj instead.
987 */
988 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
989 current->comm, task_pid_nr(current), task_pid_nr(task),
990 task_pid_nr(task));
991
992 task->signal->oom_score_adj = oom_adj;
993 trace_oom_score_adj_update(task);
994 err_sighand:
995 unlock_task_sighand(task, &flags);
996 err_task_lock:
997 task_unlock(task);
998 put_task_struct(task);
999 out:
1000 return err < 0 ? err : count;
1001 }
1002
1003 static const struct file_operations proc_oom_adj_operations = {
1004 .read = oom_adj_read,
1005 .write = oom_adj_write,
1006 .llseek = generic_file_llseek,
1007 };
1008
1009 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1010 size_t count, loff_t *ppos)
1011 {
1012 struct task_struct *task = get_proc_task(file_inode(file));
1013 char buffer[PROC_NUMBUF];
1014 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1015 unsigned long flags;
1016 size_t len;
1017
1018 if (!task)
1019 return -ESRCH;
1020 if (lock_task_sighand(task, &flags)) {
1021 oom_score_adj = task->signal->oom_score_adj;
1022 unlock_task_sighand(task, &flags);
1023 }
1024 put_task_struct(task);
1025 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1026 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1027 }
1028
1029 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1030 size_t count, loff_t *ppos)
1031 {
1032 struct task_struct *task;
1033 char buffer[PROC_NUMBUF];
1034 unsigned long flags;
1035 int oom_score_adj;
1036 int err;
1037
1038 memset(buffer, 0, sizeof(buffer));
1039 if (count > sizeof(buffer) - 1)
1040 count = sizeof(buffer) - 1;
1041 if (copy_from_user(buffer, buf, count)) {
1042 err = -EFAULT;
1043 goto out;
1044 }
1045
1046 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1047 if (err)
1048 goto out;
1049 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1050 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1051 err = -EINVAL;
1052 goto out;
1053 }
1054
1055 task = get_proc_task(file_inode(file));
1056 if (!task) {
1057 err = -ESRCH;
1058 goto out;
1059 }
1060
1061 task_lock(task);
1062 if (!task->mm) {
1063 err = -EINVAL;
1064 goto err_task_lock;
1065 }
1066
1067 if (!lock_task_sighand(task, &flags)) {
1068 err = -ESRCH;
1069 goto err_task_lock;
1070 }
1071
1072 if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1073 !capable(CAP_SYS_RESOURCE)) {
1074 err = -EACCES;
1075 goto err_sighand;
1076 }
1077
1078 task->signal->oom_score_adj = (short)oom_score_adj;
1079 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1080 task->signal->oom_score_adj_min = (short)oom_score_adj;
1081 trace_oom_score_adj_update(task);
1082
1083 err_sighand:
1084 unlock_task_sighand(task, &flags);
1085 err_task_lock:
1086 task_unlock(task);
1087 put_task_struct(task);
1088 out:
1089 return err < 0 ? err : count;
1090 }
1091
1092 static const struct file_operations proc_oom_score_adj_operations = {
1093 .read = oom_score_adj_read,
1094 .write = oom_score_adj_write,
1095 .llseek = default_llseek,
1096 };
1097
1098 #ifdef CONFIG_AUDITSYSCALL
1099 #define TMPBUFLEN 21
1100 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1101 size_t count, loff_t *ppos)
1102 {
1103 struct inode * inode = file_inode(file);
1104 struct task_struct *task = get_proc_task(inode);
1105 ssize_t length;
1106 char tmpbuf[TMPBUFLEN];
1107
1108 if (!task)
1109 return -ESRCH;
1110 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1111 from_kuid(file->f_cred->user_ns,
1112 audit_get_loginuid(task)));
1113 put_task_struct(task);
1114 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1115 }
1116
1117 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1118 size_t count, loff_t *ppos)
1119 {
1120 struct inode * inode = file_inode(file);
1121 char *page, *tmp;
1122 ssize_t length;
1123 uid_t loginuid;
1124 kuid_t kloginuid;
1125
1126 rcu_read_lock();
1127 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1128 rcu_read_unlock();
1129 return -EPERM;
1130 }
1131 rcu_read_unlock();
1132
1133 if (count >= PAGE_SIZE)
1134 count = PAGE_SIZE - 1;
1135
1136 if (*ppos != 0) {
1137 /* No partial writes. */
1138 return -EINVAL;
1139 }
1140 page = (char*)__get_free_page(GFP_TEMPORARY);
1141 if (!page)
1142 return -ENOMEM;
1143 length = -EFAULT;
1144 if (copy_from_user(page, buf, count))
1145 goto out_free_page;
1146
1147 page[count] = '\0';
1148 loginuid = simple_strtoul(page, &tmp, 10);
1149 if (tmp == page) {
1150 length = -EINVAL;
1151 goto out_free_page;
1152
1153 }
1154 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1155 if (!uid_valid(kloginuid)) {
1156 length = -EINVAL;
1157 goto out_free_page;
1158 }
1159
1160 length = audit_set_loginuid(kloginuid);
1161 if (likely(length == 0))
1162 length = count;
1163
1164 out_free_page:
1165 free_page((unsigned long) page);
1166 return length;
1167 }
1168
1169 static const struct file_operations proc_loginuid_operations = {
1170 .read = proc_loginuid_read,
1171 .write = proc_loginuid_write,
1172 .llseek = generic_file_llseek,
1173 };
1174
1175 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1176 size_t count, loff_t *ppos)
1177 {
1178 struct inode * inode = file_inode(file);
1179 struct task_struct *task = get_proc_task(inode);
1180 ssize_t length;
1181 char tmpbuf[TMPBUFLEN];
1182
1183 if (!task)
1184 return -ESRCH;
1185 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1186 audit_get_sessionid(task));
1187 put_task_struct(task);
1188 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1189 }
1190
1191 static const struct file_operations proc_sessionid_operations = {
1192 .read = proc_sessionid_read,
1193 .llseek = generic_file_llseek,
1194 };
1195 #endif
1196
1197 #ifdef CONFIG_FAULT_INJECTION
1198 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1199 size_t count, loff_t *ppos)
1200 {
1201 struct task_struct *task = get_proc_task(file_inode(file));
1202 char buffer[PROC_NUMBUF];
1203 size_t len;
1204 int make_it_fail;
1205
1206 if (!task)
1207 return -ESRCH;
1208 make_it_fail = task->make_it_fail;
1209 put_task_struct(task);
1210
1211 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1212
1213 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1214 }
1215
1216 static ssize_t proc_fault_inject_write(struct file * file,
1217 const char __user * buf, size_t count, loff_t *ppos)
1218 {
1219 struct task_struct *task;
1220 char buffer[PROC_NUMBUF], *end;
1221 int make_it_fail;
1222
1223 if (!capable(CAP_SYS_RESOURCE))
1224 return -EPERM;
1225 memset(buffer, 0, sizeof(buffer));
1226 if (count > sizeof(buffer) - 1)
1227 count = sizeof(buffer) - 1;
1228 if (copy_from_user(buffer, buf, count))
1229 return -EFAULT;
1230 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1231 if (*end)
1232 return -EINVAL;
1233 task = get_proc_task(file_inode(file));
1234 if (!task)
1235 return -ESRCH;
1236 task->make_it_fail = make_it_fail;
1237 put_task_struct(task);
1238
1239 return count;
1240 }
1241
1242 static const struct file_operations proc_fault_inject_operations = {
1243 .read = proc_fault_inject_read,
1244 .write = proc_fault_inject_write,
1245 .llseek = generic_file_llseek,
1246 };
1247 #endif
1248
1249
1250 #ifdef CONFIG_SCHED_DEBUG
1251 /*
1252 * Print out various scheduling related per-task fields:
1253 */
1254 static int sched_show(struct seq_file *m, void *v)
1255 {
1256 struct inode *inode = m->private;
1257 struct task_struct *p;
1258
1259 p = get_proc_task(inode);
1260 if (!p)
1261 return -ESRCH;
1262 proc_sched_show_task(p, m);
1263
1264 put_task_struct(p);
1265
1266 return 0;
1267 }
1268
1269 static ssize_t
1270 sched_write(struct file *file, const char __user *buf,
1271 size_t count, loff_t *offset)
1272 {
1273 struct inode *inode = file_inode(file);
1274 struct task_struct *p;
1275
1276 p = get_proc_task(inode);
1277 if (!p)
1278 return -ESRCH;
1279 proc_sched_set_task(p);
1280
1281 put_task_struct(p);
1282
1283 return count;
1284 }
1285
1286 static int sched_open(struct inode *inode, struct file *filp)
1287 {
1288 return single_open(filp, sched_show, inode);
1289 }
1290
1291 static const struct file_operations proc_pid_sched_operations = {
1292 .open = sched_open,
1293 .read = seq_read,
1294 .write = sched_write,
1295 .llseek = seq_lseek,
1296 .release = single_release,
1297 };
1298
1299 #endif
1300
1301 #ifdef CONFIG_SCHED_AUTOGROUP
1302 /*
1303 * Print out autogroup related information:
1304 */
1305 static int sched_autogroup_show(struct seq_file *m, void *v)
1306 {
1307 struct inode *inode = m->private;
1308 struct task_struct *p;
1309
1310 p = get_proc_task(inode);
1311 if (!p)
1312 return -ESRCH;
1313 proc_sched_autogroup_show_task(p, m);
1314
1315 put_task_struct(p);
1316
1317 return 0;
1318 }
1319
1320 static ssize_t
1321 sched_autogroup_write(struct file *file, const char __user *buf,
1322 size_t count, loff_t *offset)
1323 {
1324 struct inode *inode = file_inode(file);
1325 struct task_struct *p;
1326 char buffer[PROC_NUMBUF];
1327 int nice;
1328 int err;
1329
1330 memset(buffer, 0, sizeof(buffer));
1331 if (count > sizeof(buffer) - 1)
1332 count = sizeof(buffer) - 1;
1333 if (copy_from_user(buffer, buf, count))
1334 return -EFAULT;
1335
1336 err = kstrtoint(strstrip(buffer), 0, &nice);
1337 if (err < 0)
1338 return err;
1339
1340 p = get_proc_task(inode);
1341 if (!p)
1342 return -ESRCH;
1343
1344 err = proc_sched_autogroup_set_nice(p, nice);
1345 if (err)
1346 count = err;
1347
1348 put_task_struct(p);
1349
1350 return count;
1351 }
1352
1353 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1354 {
1355 int ret;
1356
1357 ret = single_open(filp, sched_autogroup_show, NULL);
1358 if (!ret) {
1359 struct seq_file *m = filp->private_data;
1360
1361 m->private = inode;
1362 }
1363 return ret;
1364 }
1365
1366 static const struct file_operations proc_pid_sched_autogroup_operations = {
1367 .open = sched_autogroup_open,
1368 .read = seq_read,
1369 .write = sched_autogroup_write,
1370 .llseek = seq_lseek,
1371 .release = single_release,
1372 };
1373
1374 #endif /* CONFIG_SCHED_AUTOGROUP */
1375
1376 static ssize_t comm_write(struct file *file, const char __user *buf,
1377 size_t count, loff_t *offset)
1378 {
1379 struct inode *inode = file_inode(file);
1380 struct task_struct *p;
1381 char buffer[TASK_COMM_LEN];
1382 const size_t maxlen = sizeof(buffer) - 1;
1383
1384 memset(buffer, 0, sizeof(buffer));
1385 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1386 return -EFAULT;
1387
1388 p = get_proc_task(inode);
1389 if (!p)
1390 return -ESRCH;
1391
1392 if (same_thread_group(current, p))
1393 set_task_comm(p, buffer);
1394 else
1395 count = -EINVAL;
1396
1397 put_task_struct(p);
1398
1399 return count;
1400 }
1401
1402 static int comm_show(struct seq_file *m, void *v)
1403 {
1404 struct inode *inode = m->private;
1405 struct task_struct *p;
1406
1407 p = get_proc_task(inode);
1408 if (!p)
1409 return -ESRCH;
1410
1411 task_lock(p);
1412 seq_printf(m, "%s\n", p->comm);
1413 task_unlock(p);
1414
1415 put_task_struct(p);
1416
1417 return 0;
1418 }
1419
1420 static int comm_open(struct inode *inode, struct file *filp)
1421 {
1422 return single_open(filp, comm_show, inode);
1423 }
1424
1425 static const struct file_operations proc_pid_set_comm_operations = {
1426 .open = comm_open,
1427 .read = seq_read,
1428 .write = comm_write,
1429 .llseek = seq_lseek,
1430 .release = single_release,
1431 };
1432
1433 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1434 {
1435 struct task_struct *task;
1436 struct mm_struct *mm;
1437 struct file *exe_file;
1438
1439 task = get_proc_task(dentry->d_inode);
1440 if (!task)
1441 return -ENOENT;
1442 mm = get_task_mm(task);
1443 put_task_struct(task);
1444 if (!mm)
1445 return -ENOENT;
1446 exe_file = get_mm_exe_file(mm);
1447 mmput(mm);
1448 if (exe_file) {
1449 *exe_path = exe_file->f_path;
1450 path_get(&exe_file->f_path);
1451 fput(exe_file);
1452 return 0;
1453 } else
1454 return -ENOENT;
1455 }
1456
1457 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1458 {
1459 struct inode *inode = dentry->d_inode;
1460 struct path path;
1461 int error = -EACCES;
1462
1463 /* Are we allowed to snoop on the tasks file descriptors? */
1464 if (!proc_fd_access_allowed(inode))
1465 goto out;
1466
1467 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1468 if (error)
1469 goto out;
1470
1471 nd_jump_link(nd, &path);
1472 return NULL;
1473 out:
1474 return ERR_PTR(error);
1475 }
1476
1477 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1478 {
1479 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1480 char *pathname;
1481 int len;
1482
1483 if (!tmp)
1484 return -ENOMEM;
1485
1486 pathname = d_path(path, tmp, PAGE_SIZE);
1487 len = PTR_ERR(pathname);
1488 if (IS_ERR(pathname))
1489 goto out;
1490 len = tmp + PAGE_SIZE - 1 - pathname;
1491
1492 if (len > buflen)
1493 len = buflen;
1494 if (copy_to_user(buffer, pathname, len))
1495 len = -EFAULT;
1496 out:
1497 free_page((unsigned long)tmp);
1498 return len;
1499 }
1500
1501 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1502 {
1503 int error = -EACCES;
1504 struct inode *inode = dentry->d_inode;
1505 struct path path;
1506
1507 /* Are we allowed to snoop on the tasks file descriptors? */
1508 if (!proc_fd_access_allowed(inode))
1509 goto out;
1510
1511 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1512 if (error)
1513 goto out;
1514
1515 error = do_proc_readlink(&path, buffer, buflen);
1516 path_put(&path);
1517 out:
1518 return error;
1519 }
1520
1521 const struct inode_operations proc_pid_link_inode_operations = {
1522 .readlink = proc_pid_readlink,
1523 .follow_link = proc_pid_follow_link,
1524 .setattr = proc_setattr,
1525 };
1526
1527
1528 /* building an inode */
1529
1530 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1531 {
1532 struct inode * inode;
1533 struct proc_inode *ei;
1534 const struct cred *cred;
1535
1536 /* We need a new inode */
1537
1538 inode = new_inode(sb);
1539 if (!inode)
1540 goto out;
1541
1542 /* Common stuff */
1543 ei = PROC_I(inode);
1544 inode->i_ino = get_next_ino();
1545 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1546 inode->i_op = &proc_def_inode_operations;
1547
1548 /*
1549 * grab the reference to task.
1550 */
1551 ei->pid = get_task_pid(task, PIDTYPE_PID);
1552 if (!ei->pid)
1553 goto out_unlock;
1554
1555 if (task_dumpable(task)) {
1556 rcu_read_lock();
1557 cred = __task_cred(task);
1558 inode->i_uid = cred->euid;
1559 inode->i_gid = cred->egid;
1560 rcu_read_unlock();
1561 }
1562 security_task_to_inode(task, inode);
1563
1564 out:
1565 return inode;
1566
1567 out_unlock:
1568 iput(inode);
1569 return NULL;
1570 }
1571
1572 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1573 {
1574 struct inode *inode = dentry->d_inode;
1575 struct task_struct *task;
1576 const struct cred *cred;
1577 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1578
1579 generic_fillattr(inode, stat);
1580
1581 rcu_read_lock();
1582 stat->uid = GLOBAL_ROOT_UID;
1583 stat->gid = GLOBAL_ROOT_GID;
1584 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1585 if (task) {
1586 if (!has_pid_permissions(pid, task, 2)) {
1587 rcu_read_unlock();
1588 /*
1589 * This doesn't prevent learning whether PID exists,
1590 * it only makes getattr() consistent with readdir().
1591 */
1592 return -ENOENT;
1593 }
1594 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1595 task_dumpable(task)) {
1596 cred = __task_cred(task);
1597 stat->uid = cred->euid;
1598 stat->gid = cred->egid;
1599 }
1600 }
1601 rcu_read_unlock();
1602 return 0;
1603 }
1604
1605 /* dentry stuff */
1606
1607 /*
1608 * Exceptional case: normally we are not allowed to unhash a busy
1609 * directory. In this case, however, we can do it - no aliasing problems
1610 * due to the way we treat inodes.
1611 *
1612 * Rewrite the inode's ownerships here because the owning task may have
1613 * performed a setuid(), etc.
1614 *
1615 * Before the /proc/pid/status file was created the only way to read
1616 * the effective uid of a /process was to stat /proc/pid. Reading
1617 * /proc/pid/status is slow enough that procps and other packages
1618 * kept stating /proc/pid. To keep the rules in /proc simple I have
1619 * made this apply to all per process world readable and executable
1620 * directories.
1621 */
1622 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1623 {
1624 struct inode *inode;
1625 struct task_struct *task;
1626 const struct cred *cred;
1627
1628 if (flags & LOOKUP_RCU)
1629 return -ECHILD;
1630
1631 inode = dentry->d_inode;
1632 task = get_proc_task(inode);
1633
1634 if (task) {
1635 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1636 task_dumpable(task)) {
1637 rcu_read_lock();
1638 cred = __task_cred(task);
1639 inode->i_uid = cred->euid;
1640 inode->i_gid = cred->egid;
1641 rcu_read_unlock();
1642 } else {
1643 inode->i_uid = GLOBAL_ROOT_UID;
1644 inode->i_gid = GLOBAL_ROOT_GID;
1645 }
1646 inode->i_mode &= ~(S_ISUID | S_ISGID);
1647 security_task_to_inode(task, inode);
1648 put_task_struct(task);
1649 return 1;
1650 }
1651 d_drop(dentry);
1652 return 0;
1653 }
1654
1655 int pid_delete_dentry(const struct dentry *dentry)
1656 {
1657 /* Is the task we represent dead?
1658 * If so, then don't put the dentry on the lru list,
1659 * kill it immediately.
1660 */
1661 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1662 }
1663
1664 const struct dentry_operations pid_dentry_operations =
1665 {
1666 .d_revalidate = pid_revalidate,
1667 .d_delete = pid_delete_dentry,
1668 };
1669
1670 /* Lookups */
1671
1672 /*
1673 * Fill a directory entry.
1674 *
1675 * If possible create the dcache entry and derive our inode number and
1676 * file type from dcache entry.
1677 *
1678 * Since all of the proc inode numbers are dynamically generated, the inode
1679 * numbers do not exist until the inode is cache. This means creating the
1680 * the dcache entry in readdir is necessary to keep the inode numbers
1681 * reported by readdir in sync with the inode numbers reported
1682 * by stat.
1683 */
1684 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1685 const char *name, int len,
1686 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1687 {
1688 struct dentry *child, *dir = filp->f_path.dentry;
1689 struct inode *inode;
1690 struct qstr qname;
1691 ino_t ino = 0;
1692 unsigned type = DT_UNKNOWN;
1693
1694 qname.name = name;
1695 qname.len = len;
1696 qname.hash = full_name_hash(name, len);
1697
1698 child = d_lookup(dir, &qname);
1699 if (!child) {
1700 struct dentry *new;
1701 new = d_alloc(dir, &qname);
1702 if (new) {
1703 child = instantiate(dir->d_inode, new, task, ptr);
1704 if (child)
1705 dput(new);
1706 else
1707 child = new;
1708 }
1709 }
1710 if (!child || IS_ERR(child) || !child->d_inode)
1711 goto end_instantiate;
1712 inode = child->d_inode;
1713 if (inode) {
1714 ino = inode->i_ino;
1715 type = inode->i_mode >> 12;
1716 }
1717 dput(child);
1718 end_instantiate:
1719 if (!ino)
1720 ino = find_inode_number(dir, &qname);
1721 if (!ino)
1722 ino = 1;
1723 return filldir(dirent, name, len, filp->f_pos, ino, type);
1724 }
1725
1726 #ifdef CONFIG_CHECKPOINT_RESTORE
1727
1728 /*
1729 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1730 * which represent vma start and end addresses.
1731 */
1732 static int dname_to_vma_addr(struct dentry *dentry,
1733 unsigned long *start, unsigned long *end)
1734 {
1735 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1736 return -EINVAL;
1737
1738 return 0;
1739 }
1740
1741 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1742 {
1743 unsigned long vm_start, vm_end;
1744 bool exact_vma_exists = false;
1745 struct mm_struct *mm = NULL;
1746 struct task_struct *task;
1747 const struct cred *cred;
1748 struct inode *inode;
1749 int status = 0;
1750
1751 if (flags & LOOKUP_RCU)
1752 return -ECHILD;
1753
1754 if (!capable(CAP_SYS_ADMIN)) {
1755 status = -EPERM;
1756 goto out_notask;
1757 }
1758
1759 inode = dentry->d_inode;
1760 task = get_proc_task(inode);
1761 if (!task)
1762 goto out_notask;
1763
1764 mm = mm_access(task, PTRACE_MODE_READ);
1765 if (IS_ERR_OR_NULL(mm))
1766 goto out;
1767
1768 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1769 down_read(&mm->mmap_sem);
1770 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1771 up_read(&mm->mmap_sem);
1772 }
1773
1774 mmput(mm);
1775
1776 if (exact_vma_exists) {
1777 if (task_dumpable(task)) {
1778 rcu_read_lock();
1779 cred = __task_cred(task);
1780 inode->i_uid = cred->euid;
1781 inode->i_gid = cred->egid;
1782 rcu_read_unlock();
1783 } else {
1784 inode->i_uid = GLOBAL_ROOT_UID;
1785 inode->i_gid = GLOBAL_ROOT_GID;
1786 }
1787 security_task_to_inode(task, inode);
1788 status = 1;
1789 }
1790
1791 out:
1792 put_task_struct(task);
1793
1794 out_notask:
1795 if (status <= 0)
1796 d_drop(dentry);
1797
1798 return status;
1799 }
1800
1801 static const struct dentry_operations tid_map_files_dentry_operations = {
1802 .d_revalidate = map_files_d_revalidate,
1803 .d_delete = pid_delete_dentry,
1804 };
1805
1806 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1807 {
1808 unsigned long vm_start, vm_end;
1809 struct vm_area_struct *vma;
1810 struct task_struct *task;
1811 struct mm_struct *mm;
1812 int rc;
1813
1814 rc = -ENOENT;
1815 task = get_proc_task(dentry->d_inode);
1816 if (!task)
1817 goto out;
1818
1819 mm = get_task_mm(task);
1820 put_task_struct(task);
1821 if (!mm)
1822 goto out;
1823
1824 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1825 if (rc)
1826 goto out_mmput;
1827
1828 down_read(&mm->mmap_sem);
1829 vma = find_exact_vma(mm, vm_start, vm_end);
1830 if (vma && vma->vm_file) {
1831 *path = vma->vm_file->f_path;
1832 path_get(path);
1833 rc = 0;
1834 }
1835 up_read(&mm->mmap_sem);
1836
1837 out_mmput:
1838 mmput(mm);
1839 out:
1840 return rc;
1841 }
1842
1843 struct map_files_info {
1844 fmode_t mode;
1845 unsigned long len;
1846 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1847 };
1848
1849 static struct dentry *
1850 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1851 struct task_struct *task, const void *ptr)
1852 {
1853 fmode_t mode = (fmode_t)(unsigned long)ptr;
1854 struct proc_inode *ei;
1855 struct inode *inode;
1856
1857 inode = proc_pid_make_inode(dir->i_sb, task);
1858 if (!inode)
1859 return ERR_PTR(-ENOENT);
1860
1861 ei = PROC_I(inode);
1862 ei->op.proc_get_link = proc_map_files_get_link;
1863
1864 inode->i_op = &proc_pid_link_inode_operations;
1865 inode->i_size = 64;
1866 inode->i_mode = S_IFLNK;
1867
1868 if (mode & FMODE_READ)
1869 inode->i_mode |= S_IRUSR;
1870 if (mode & FMODE_WRITE)
1871 inode->i_mode |= S_IWUSR;
1872
1873 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1874 d_add(dentry, inode);
1875
1876 return NULL;
1877 }
1878
1879 static struct dentry *proc_map_files_lookup(struct inode *dir,
1880 struct dentry *dentry, unsigned int flags)
1881 {
1882 unsigned long vm_start, vm_end;
1883 struct vm_area_struct *vma;
1884 struct task_struct *task;
1885 struct dentry *result;
1886 struct mm_struct *mm;
1887
1888 result = ERR_PTR(-EPERM);
1889 if (!capable(CAP_SYS_ADMIN))
1890 goto out;
1891
1892 result = ERR_PTR(-ENOENT);
1893 task = get_proc_task(dir);
1894 if (!task)
1895 goto out;
1896
1897 result = ERR_PTR(-EACCES);
1898 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1899 goto out_put_task;
1900
1901 result = ERR_PTR(-ENOENT);
1902 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1903 goto out_put_task;
1904
1905 mm = get_task_mm(task);
1906 if (!mm)
1907 goto out_put_task;
1908
1909 down_read(&mm->mmap_sem);
1910 vma = find_exact_vma(mm, vm_start, vm_end);
1911 if (!vma)
1912 goto out_no_vma;
1913
1914 if (vma->vm_file)
1915 result = proc_map_files_instantiate(dir, dentry, task,
1916 (void *)(unsigned long)vma->vm_file->f_mode);
1917
1918 out_no_vma:
1919 up_read(&mm->mmap_sem);
1920 mmput(mm);
1921 out_put_task:
1922 put_task_struct(task);
1923 out:
1924 return result;
1925 }
1926
1927 static const struct inode_operations proc_map_files_inode_operations = {
1928 .lookup = proc_map_files_lookup,
1929 .permission = proc_fd_permission,
1930 .setattr = proc_setattr,
1931 };
1932
1933 static int
1934 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1935 {
1936 struct dentry *dentry = filp->f_path.dentry;
1937 struct inode *inode = dentry->d_inode;
1938 struct vm_area_struct *vma;
1939 struct task_struct *task;
1940 struct mm_struct *mm;
1941 ino_t ino;
1942 int ret;
1943
1944 ret = -EPERM;
1945 if (!capable(CAP_SYS_ADMIN))
1946 goto out;
1947
1948 ret = -ENOENT;
1949 task = get_proc_task(inode);
1950 if (!task)
1951 goto out;
1952
1953 ret = -EACCES;
1954 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1955 goto out_put_task;
1956
1957 ret = 0;
1958 switch (filp->f_pos) {
1959 case 0:
1960 ino = inode->i_ino;
1961 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1962 goto out_put_task;
1963 filp->f_pos++;
1964 case 1:
1965 ino = parent_ino(dentry);
1966 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1967 goto out_put_task;
1968 filp->f_pos++;
1969 default:
1970 {
1971 unsigned long nr_files, pos, i;
1972 struct flex_array *fa = NULL;
1973 struct map_files_info info;
1974 struct map_files_info *p;
1975
1976 mm = get_task_mm(task);
1977 if (!mm)
1978 goto out_put_task;
1979 down_read(&mm->mmap_sem);
1980
1981 nr_files = 0;
1982
1983 /*
1984 * We need two passes here:
1985 *
1986 * 1) Collect vmas of mapped files with mmap_sem taken
1987 * 2) Release mmap_sem and instantiate entries
1988 *
1989 * otherwise we get lockdep complained, since filldir()
1990 * routine might require mmap_sem taken in might_fault().
1991 */
1992
1993 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1994 if (vma->vm_file && ++pos > filp->f_pos)
1995 nr_files++;
1996 }
1997
1998 if (nr_files) {
1999 fa = flex_array_alloc(sizeof(info), nr_files,
2000 GFP_KERNEL);
2001 if (!fa || flex_array_prealloc(fa, 0, nr_files,
2002 GFP_KERNEL)) {
2003 ret = -ENOMEM;
2004 if (fa)
2005 flex_array_free(fa);
2006 up_read(&mm->mmap_sem);
2007 mmput(mm);
2008 goto out_put_task;
2009 }
2010 for (i = 0, vma = mm->mmap, pos = 2; vma;
2011 vma = vma->vm_next) {
2012 if (!vma->vm_file)
2013 continue;
2014 if (++pos <= filp->f_pos)
2015 continue;
2016
2017 info.mode = vma->vm_file->f_mode;
2018 info.len = snprintf(info.name,
2019 sizeof(info.name), "%lx-%lx",
2020 vma->vm_start, vma->vm_end);
2021 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2022 BUG();
2023 }
2024 }
2025 up_read(&mm->mmap_sem);
2026
2027 for (i = 0; i < nr_files; i++) {
2028 p = flex_array_get(fa, i);
2029 ret = proc_fill_cache(filp, dirent, filldir,
2030 p->name, p->len,
2031 proc_map_files_instantiate,
2032 task,
2033 (void *)(unsigned long)p->mode);
2034 if (ret)
2035 break;
2036 filp->f_pos++;
2037 }
2038 if (fa)
2039 flex_array_free(fa);
2040 mmput(mm);
2041 }
2042 }
2043
2044 out_put_task:
2045 put_task_struct(task);
2046 out:
2047 return ret;
2048 }
2049
2050 static const struct file_operations proc_map_files_operations = {
2051 .read = generic_read_dir,
2052 .readdir = proc_map_files_readdir,
2053 .llseek = default_llseek,
2054 };
2055
2056 struct timers_private {
2057 struct pid *pid;
2058 struct task_struct *task;
2059 struct sighand_struct *sighand;
2060 struct pid_namespace *ns;
2061 unsigned long flags;
2062 };
2063
2064 static void *timers_start(struct seq_file *m, loff_t *pos)
2065 {
2066 struct timers_private *tp = m->private;
2067
2068 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2069 if (!tp->task)
2070 return ERR_PTR(-ESRCH);
2071
2072 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2073 if (!tp->sighand)
2074 return ERR_PTR(-ESRCH);
2075
2076 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2077 }
2078
2079 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2080 {
2081 struct timers_private *tp = m->private;
2082 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2083 }
2084
2085 static void timers_stop(struct seq_file *m, void *v)
2086 {
2087 struct timers_private *tp = m->private;
2088
2089 if (tp->sighand) {
2090 unlock_task_sighand(tp->task, &tp->flags);
2091 tp->sighand = NULL;
2092 }
2093
2094 if (tp->task) {
2095 put_task_struct(tp->task);
2096 tp->task = NULL;
2097 }
2098 }
2099
2100 static int show_timer(struct seq_file *m, void *v)
2101 {
2102 struct k_itimer *timer;
2103 struct timers_private *tp = m->private;
2104 int notify;
2105 static char *nstr[] = {
2106 [SIGEV_SIGNAL] = "signal",
2107 [SIGEV_NONE] = "none",
2108 [SIGEV_THREAD] = "thread",
2109 };
2110
2111 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2112 notify = timer->it_sigev_notify;
2113
2114 seq_printf(m, "ID: %d\n", timer->it_id);
2115 seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2116 timer->sigq->info.si_value.sival_ptr);
2117 seq_printf(m, "notify: %s/%s.%d\n",
2118 nstr[notify & ~SIGEV_THREAD_ID],
2119 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2120 pid_nr_ns(timer->it_pid, tp->ns));
2121
2122 return 0;
2123 }
2124
2125 static const struct seq_operations proc_timers_seq_ops = {
2126 .start = timers_start,
2127 .next = timers_next,
2128 .stop = timers_stop,
2129 .show = show_timer,
2130 };
2131
2132 static int proc_timers_open(struct inode *inode, struct file *file)
2133 {
2134 struct timers_private *tp;
2135
2136 tp = __seq_open_private(file, &proc_timers_seq_ops,
2137 sizeof(struct timers_private));
2138 if (!tp)
2139 return -ENOMEM;
2140
2141 tp->pid = proc_pid(inode);
2142 tp->ns = inode->i_sb->s_fs_info;
2143 return 0;
2144 }
2145
2146 static const struct file_operations proc_timers_operations = {
2147 .open = proc_timers_open,
2148 .read = seq_read,
2149 .llseek = seq_lseek,
2150 .release = seq_release_private,
2151 };
2152 #endif /* CONFIG_CHECKPOINT_RESTORE */
2153
2154 static struct dentry *proc_pident_instantiate(struct inode *dir,
2155 struct dentry *dentry, struct task_struct *task, const void *ptr)
2156 {
2157 const struct pid_entry *p = ptr;
2158 struct inode *inode;
2159 struct proc_inode *ei;
2160 struct dentry *error = ERR_PTR(-ENOENT);
2161
2162 inode = proc_pid_make_inode(dir->i_sb, task);
2163 if (!inode)
2164 goto out;
2165
2166 ei = PROC_I(inode);
2167 inode->i_mode = p->mode;
2168 if (S_ISDIR(inode->i_mode))
2169 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2170 if (p->iop)
2171 inode->i_op = p->iop;
2172 if (p->fop)
2173 inode->i_fop = p->fop;
2174 ei->op = p->op;
2175 d_set_d_op(dentry, &pid_dentry_operations);
2176 d_add(dentry, inode);
2177 /* Close the race of the process dying before we return the dentry */
2178 if (pid_revalidate(dentry, 0))
2179 error = NULL;
2180 out:
2181 return error;
2182 }
2183
2184 static struct dentry *proc_pident_lookup(struct inode *dir,
2185 struct dentry *dentry,
2186 const struct pid_entry *ents,
2187 unsigned int nents)
2188 {
2189 struct dentry *error;
2190 struct task_struct *task = get_proc_task(dir);
2191 const struct pid_entry *p, *last;
2192
2193 error = ERR_PTR(-ENOENT);
2194
2195 if (!task)
2196 goto out_no_task;
2197
2198 /*
2199 * Yes, it does not scale. And it should not. Don't add
2200 * new entries into /proc/<tgid>/ without very good reasons.
2201 */
2202 last = &ents[nents - 1];
2203 for (p = ents; p <= last; p++) {
2204 if (p->len != dentry->d_name.len)
2205 continue;
2206 if (!memcmp(dentry->d_name.name, p->name, p->len))
2207 break;
2208 }
2209 if (p > last)
2210 goto out;
2211
2212 error = proc_pident_instantiate(dir, dentry, task, p);
2213 out:
2214 put_task_struct(task);
2215 out_no_task:
2216 return error;
2217 }
2218
2219 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2220 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2221 {
2222 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2223 proc_pident_instantiate, task, p);
2224 }
2225
2226 static int proc_pident_readdir(struct file *filp,
2227 void *dirent, filldir_t filldir,
2228 const struct pid_entry *ents, unsigned int nents)
2229 {
2230 int i;
2231 struct dentry *dentry = filp->f_path.dentry;
2232 struct inode *inode = dentry->d_inode;
2233 struct task_struct *task = get_proc_task(inode);
2234 const struct pid_entry *p, *last;
2235 ino_t ino;
2236 int ret;
2237
2238 ret = -ENOENT;
2239 if (!task)
2240 goto out_no_task;
2241
2242 ret = 0;
2243 i = filp->f_pos;
2244 switch (i) {
2245 case 0:
2246 ino = inode->i_ino;
2247 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2248 goto out;
2249 i++;
2250 filp->f_pos++;
2251 /* fall through */
2252 case 1:
2253 ino = parent_ino(dentry);
2254 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2255 goto out;
2256 i++;
2257 filp->f_pos++;
2258 /* fall through */
2259 default:
2260 i -= 2;
2261 if (i >= nents) {
2262 ret = 1;
2263 goto out;
2264 }
2265 p = ents + i;
2266 last = &ents[nents - 1];
2267 while (p <= last) {
2268 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2269 goto out;
2270 filp->f_pos++;
2271 p++;
2272 }
2273 }
2274
2275 ret = 1;
2276 out:
2277 put_task_struct(task);
2278 out_no_task:
2279 return ret;
2280 }
2281
2282 #ifdef CONFIG_SECURITY
2283 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2284 size_t count, loff_t *ppos)
2285 {
2286 struct inode * inode = file_inode(file);
2287 char *p = NULL;
2288 ssize_t length;
2289 struct task_struct *task = get_proc_task(inode);
2290
2291 if (!task)
2292 return -ESRCH;
2293
2294 length = security_getprocattr(task,
2295 (char*)file->f_path.dentry->d_name.name,
2296 &p);
2297 put_task_struct(task);
2298 if (length > 0)
2299 length = simple_read_from_buffer(buf, count, ppos, p, length);
2300 kfree(p);
2301 return length;
2302 }
2303
2304 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2305 size_t count, loff_t *ppos)
2306 {
2307 struct inode * inode = file_inode(file);
2308 char *page;
2309 ssize_t length;
2310 struct task_struct *task = get_proc_task(inode);
2311
2312 length = -ESRCH;
2313 if (!task)
2314 goto out_no_task;
2315 if (count > PAGE_SIZE)
2316 count = PAGE_SIZE;
2317
2318 /* No partial writes. */
2319 length = -EINVAL;
2320 if (*ppos != 0)
2321 goto out;
2322
2323 length = -ENOMEM;
2324 page = (char*)__get_free_page(GFP_TEMPORARY);
2325 if (!page)
2326 goto out;
2327
2328 length = -EFAULT;
2329 if (copy_from_user(page, buf, count))
2330 goto out_free;
2331
2332 /* Guard against adverse ptrace interaction */
2333 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2334 if (length < 0)
2335 goto out_free;
2336
2337 length = security_setprocattr(task,
2338 (char*)file->f_path.dentry->d_name.name,
2339 (void*)page, count);
2340 mutex_unlock(&task->signal->cred_guard_mutex);
2341 out_free:
2342 free_page((unsigned long) page);
2343 out:
2344 put_task_struct(task);
2345 out_no_task:
2346 return length;
2347 }
2348
2349 static const struct file_operations proc_pid_attr_operations = {
2350 .read = proc_pid_attr_read,
2351 .write = proc_pid_attr_write,
2352 .llseek = generic_file_llseek,
2353 };
2354
2355 static const struct pid_entry attr_dir_stuff[] = {
2356 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2357 REG("prev", S_IRUGO, proc_pid_attr_operations),
2358 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2359 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2360 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2361 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2362 };
2363
2364 static int proc_attr_dir_readdir(struct file * filp,
2365 void * dirent, filldir_t filldir)
2366 {
2367 return proc_pident_readdir(filp,dirent,filldir,
2368 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2369 }
2370
2371 static const struct file_operations proc_attr_dir_operations = {
2372 .read = generic_read_dir,
2373 .readdir = proc_attr_dir_readdir,
2374 .llseek = default_llseek,
2375 };
2376
2377 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2378 struct dentry *dentry, unsigned int flags)
2379 {
2380 return proc_pident_lookup(dir, dentry,
2381 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2382 }
2383
2384 static const struct inode_operations proc_attr_dir_inode_operations = {
2385 .lookup = proc_attr_dir_lookup,
2386 .getattr = pid_getattr,
2387 .setattr = proc_setattr,
2388 };
2389
2390 #endif
2391
2392 #ifdef CONFIG_ELF_CORE
2393 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2394 size_t count, loff_t *ppos)
2395 {
2396 struct task_struct *task = get_proc_task(file_inode(file));
2397 struct mm_struct *mm;
2398 char buffer[PROC_NUMBUF];
2399 size_t len;
2400 int ret;
2401
2402 if (!task)
2403 return -ESRCH;
2404
2405 ret = 0;
2406 mm = get_task_mm(task);
2407 if (mm) {
2408 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2409 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2410 MMF_DUMP_FILTER_SHIFT));
2411 mmput(mm);
2412 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2413 }
2414
2415 put_task_struct(task);
2416
2417 return ret;
2418 }
2419
2420 static ssize_t proc_coredump_filter_write(struct file *file,
2421 const char __user *buf,
2422 size_t count,
2423 loff_t *ppos)
2424 {
2425 struct task_struct *task;
2426 struct mm_struct *mm;
2427 char buffer[PROC_NUMBUF], *end;
2428 unsigned int val;
2429 int ret;
2430 int i;
2431 unsigned long mask;
2432
2433 ret = -EFAULT;
2434 memset(buffer, 0, sizeof(buffer));
2435 if (count > sizeof(buffer) - 1)
2436 count = sizeof(buffer) - 1;
2437 if (copy_from_user(buffer, buf, count))
2438 goto out_no_task;
2439
2440 ret = -EINVAL;
2441 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2442 if (*end == '\n')
2443 end++;
2444 if (end - buffer == 0)
2445 goto out_no_task;
2446
2447 ret = -ESRCH;
2448 task = get_proc_task(file_inode(file));
2449 if (!task)
2450 goto out_no_task;
2451
2452 ret = end - buffer;
2453 mm = get_task_mm(task);
2454 if (!mm)
2455 goto out_no_mm;
2456
2457 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2458 if (val & mask)
2459 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2460 else
2461 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2462 }
2463
2464 mmput(mm);
2465 out_no_mm:
2466 put_task_struct(task);
2467 out_no_task:
2468 return ret;
2469 }
2470
2471 static const struct file_operations proc_coredump_filter_operations = {
2472 .read = proc_coredump_filter_read,
2473 .write = proc_coredump_filter_write,
2474 .llseek = generic_file_llseek,
2475 };
2476 #endif
2477
2478 #ifdef CONFIG_TASK_IO_ACCOUNTING
2479 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2480 {
2481 struct task_io_accounting acct = task->ioac;
2482 unsigned long flags;
2483 int result;
2484
2485 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2486 if (result)
2487 return result;
2488
2489 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2490 result = -EACCES;
2491 goto out_unlock;
2492 }
2493
2494 if (whole && lock_task_sighand(task, &flags)) {
2495 struct task_struct *t = task;
2496
2497 task_io_accounting_add(&acct, &task->signal->ioac);
2498 while_each_thread(task, t)
2499 task_io_accounting_add(&acct, &t->ioac);
2500
2501 unlock_task_sighand(task, &flags);
2502 }
2503 result = sprintf(buffer,
2504 "rchar: %llu\n"
2505 "wchar: %llu\n"
2506 "syscr: %llu\n"
2507 "syscw: %llu\n"
2508 "read_bytes: %llu\n"
2509 "write_bytes: %llu\n"
2510 "cancelled_write_bytes: %llu\n",
2511 (unsigned long long)acct.rchar,
2512 (unsigned long long)acct.wchar,
2513 (unsigned long long)acct.syscr,
2514 (unsigned long long)acct.syscw,
2515 (unsigned long long)acct.read_bytes,
2516 (unsigned long long)acct.write_bytes,
2517 (unsigned long long)acct.cancelled_write_bytes);
2518 out_unlock:
2519 mutex_unlock(&task->signal->cred_guard_mutex);
2520 return result;
2521 }
2522
2523 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2524 {
2525 return do_io_accounting(task, buffer, 0);
2526 }
2527
2528 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2529 {
2530 return do_io_accounting(task, buffer, 1);
2531 }
2532 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2533
2534 #ifdef CONFIG_USER_NS
2535 static int proc_id_map_open(struct inode *inode, struct file *file,
2536 struct seq_operations *seq_ops)
2537 {
2538 struct user_namespace *ns = NULL;
2539 struct task_struct *task;
2540 struct seq_file *seq;
2541 int ret = -EINVAL;
2542
2543 task = get_proc_task(inode);
2544 if (task) {
2545 rcu_read_lock();
2546 ns = get_user_ns(task_cred_xxx(task, user_ns));
2547 rcu_read_unlock();
2548 put_task_struct(task);
2549 }
2550 if (!ns)
2551 goto err;
2552
2553 ret = seq_open(file, seq_ops);
2554 if (ret)
2555 goto err_put_ns;
2556
2557 seq = file->private_data;
2558 seq->private = ns;
2559
2560 return 0;
2561 err_put_ns:
2562 put_user_ns(ns);
2563 err:
2564 return ret;
2565 }
2566
2567 static int proc_id_map_release(struct inode *inode, struct file *file)
2568 {
2569 struct seq_file *seq = file->private_data;
2570 struct user_namespace *ns = seq->private;
2571 put_user_ns(ns);
2572 return seq_release(inode, file);
2573 }
2574
2575 static int proc_uid_map_open(struct inode *inode, struct file *file)
2576 {
2577 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2578 }
2579
2580 static int proc_gid_map_open(struct inode *inode, struct file *file)
2581 {
2582 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2583 }
2584
2585 static int proc_projid_map_open(struct inode *inode, struct file *file)
2586 {
2587 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2588 }
2589
2590 static const struct file_operations proc_uid_map_operations = {
2591 .open = proc_uid_map_open,
2592 .write = proc_uid_map_write,
2593 .read = seq_read,
2594 .llseek = seq_lseek,
2595 .release = proc_id_map_release,
2596 };
2597
2598 static const struct file_operations proc_gid_map_operations = {
2599 .open = proc_gid_map_open,
2600 .write = proc_gid_map_write,
2601 .read = seq_read,
2602 .llseek = seq_lseek,
2603 .release = proc_id_map_release,
2604 };
2605
2606 static const struct file_operations proc_projid_map_operations = {
2607 .open = proc_projid_map_open,
2608 .write = proc_projid_map_write,
2609 .read = seq_read,
2610 .llseek = seq_lseek,
2611 .release = proc_id_map_release,
2612 };
2613 #endif /* CONFIG_USER_NS */
2614
2615 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2616 struct pid *pid, struct task_struct *task)
2617 {
2618 int err = lock_trace(task);
2619 if (!err) {
2620 seq_printf(m, "%08x\n", task->personality);
2621 unlock_trace(task);
2622 }
2623 return err;
2624 }
2625
2626 /*
2627 * Thread groups
2628 */
2629 static const struct file_operations proc_task_operations;
2630 static const struct inode_operations proc_task_inode_operations;
2631
2632 static const struct pid_entry tgid_base_stuff[] = {
2633 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2634 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2635 #ifdef CONFIG_CHECKPOINT_RESTORE
2636 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2637 #endif
2638 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2639 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2640 #ifdef CONFIG_NET
2641 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2642 #endif
2643 REG("environ", S_IRUSR, proc_environ_operations),
2644 INF("auxv", S_IRUSR, proc_pid_auxv),
2645 ONE("status", S_IRUGO, proc_pid_status),
2646 ONE("personality", S_IRUGO, proc_pid_personality),
2647 INF("limits", S_IRUGO, proc_pid_limits),
2648 #ifdef CONFIG_SCHED_DEBUG
2649 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2650 #endif
2651 #ifdef CONFIG_SCHED_AUTOGROUP
2652 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2653 #endif
2654 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2655 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2656 INF("syscall", S_IRUGO, proc_pid_syscall),
2657 #endif
2658 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2659 ONE("stat", S_IRUGO, proc_tgid_stat),
2660 ONE("statm", S_IRUGO, proc_pid_statm),
2661 REG("maps", S_IRUGO, proc_pid_maps_operations),
2662 #ifdef CONFIG_NUMA
2663 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2664 #endif
2665 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2666 LNK("cwd", proc_cwd_link),
2667 LNK("root", proc_root_link),
2668 LNK("exe", proc_exe_link),
2669 REG("mounts", S_IRUGO, proc_mounts_operations),
2670 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2671 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2672 #ifdef CONFIG_PROC_PAGE_MONITOR
2673 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2674 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2675 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2676 #endif
2677 #ifdef CONFIG_SECURITY
2678 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2679 #endif
2680 #ifdef CONFIG_KALLSYMS
2681 INF("wchan", S_IRUGO, proc_pid_wchan),
2682 #endif
2683 #ifdef CONFIG_STACKTRACE
2684 ONE("stack", S_IRUGO, proc_pid_stack),
2685 #endif
2686 #ifdef CONFIG_SCHEDSTATS
2687 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2688 #endif
2689 #ifdef CONFIG_LATENCYTOP
2690 REG("latency", S_IRUGO, proc_lstats_operations),
2691 #endif
2692 #ifdef CONFIG_PROC_PID_CPUSET
2693 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2694 #endif
2695 #ifdef CONFIG_CGROUPS
2696 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2697 #endif
2698 INF("oom_score", S_IRUGO, proc_oom_score),
2699 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2700 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2701 #ifdef CONFIG_AUDITSYSCALL
2702 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2703 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2704 #endif
2705 #ifdef CONFIG_FAULT_INJECTION
2706 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2707 #endif
2708 #ifdef CONFIG_ELF_CORE
2709 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2710 #endif
2711 #ifdef CONFIG_TASK_IO_ACCOUNTING
2712 INF("io", S_IRUSR, proc_tgid_io_accounting),
2713 #endif
2714 #ifdef CONFIG_HARDWALL
2715 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2716 #endif
2717 #ifdef CONFIG_USER_NS
2718 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2719 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2720 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2721 #endif
2722 #ifdef CONFIG_CHECKPOINT_RESTORE
2723 REG("timers", S_IRUGO, proc_timers_operations),
2724 #endif
2725 };
2726
2727 static int proc_tgid_base_readdir(struct file * filp,
2728 void * dirent, filldir_t filldir)
2729 {
2730 return proc_pident_readdir(filp,dirent,filldir,
2731 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2732 }
2733
2734 static const struct file_operations proc_tgid_base_operations = {
2735 .read = generic_read_dir,
2736 .readdir = proc_tgid_base_readdir,
2737 .llseek = default_llseek,
2738 };
2739
2740 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2741 {
2742 return proc_pident_lookup(dir, dentry,
2743 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2744 }
2745
2746 static const struct inode_operations proc_tgid_base_inode_operations = {
2747 .lookup = proc_tgid_base_lookup,
2748 .getattr = pid_getattr,
2749 .setattr = proc_setattr,
2750 .permission = proc_pid_permission,
2751 };
2752
2753 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2754 {
2755 struct dentry *dentry, *leader, *dir;
2756 char buf[PROC_NUMBUF];
2757 struct qstr name;
2758
2759 name.name = buf;
2760 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2761 /* no ->d_hash() rejects on procfs */
2762 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2763 if (dentry) {
2764 shrink_dcache_parent(dentry);
2765 d_drop(dentry);
2766 dput(dentry);
2767 }
2768
2769 name.name = buf;
2770 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2771 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2772 if (!leader)
2773 goto out;
2774
2775 name.name = "task";
2776 name.len = strlen(name.name);
2777 dir = d_hash_and_lookup(leader, &name);
2778 if (!dir)
2779 goto out_put_leader;
2780
2781 name.name = buf;
2782 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2783 dentry = d_hash_and_lookup(dir, &name);
2784 if (dentry) {
2785 shrink_dcache_parent(dentry);
2786 d_drop(dentry);
2787 dput(dentry);
2788 }
2789
2790 dput(dir);
2791 out_put_leader:
2792 dput(leader);
2793 out:
2794 return;
2795 }
2796
2797 /**
2798 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2799 * @task: task that should be flushed.
2800 *
2801 * When flushing dentries from proc, one needs to flush them from global
2802 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2803 * in. This call is supposed to do all of this job.
2804 *
2805 * Looks in the dcache for
2806 * /proc/@pid
2807 * /proc/@tgid/task/@pid
2808 * if either directory is present flushes it and all of it'ts children
2809 * from the dcache.
2810 *
2811 * It is safe and reasonable to cache /proc entries for a task until
2812 * that task exits. After that they just clog up the dcache with
2813 * useless entries, possibly causing useful dcache entries to be
2814 * flushed instead. This routine is proved to flush those useless
2815 * dcache entries at process exit time.
2816 *
2817 * NOTE: This routine is just an optimization so it does not guarantee
2818 * that no dcache entries will exist at process exit time it
2819 * just makes it very unlikely that any will persist.
2820 */
2821
2822 void proc_flush_task(struct task_struct *task)
2823 {
2824 int i;
2825 struct pid *pid, *tgid;
2826 struct upid *upid;
2827
2828 pid = task_pid(task);
2829 tgid = task_tgid(task);
2830
2831 for (i = 0; i <= pid->level; i++) {
2832 upid = &pid->numbers[i];
2833 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2834 tgid->numbers[i].nr);
2835 }
2836 }
2837
2838 static struct dentry *proc_pid_instantiate(struct inode *dir,
2839 struct dentry * dentry,
2840 struct task_struct *task, const void *ptr)
2841 {
2842 struct dentry *error = ERR_PTR(-ENOENT);
2843 struct inode *inode;
2844
2845 inode = proc_pid_make_inode(dir->i_sb, task);
2846 if (!inode)
2847 goto out;
2848
2849 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2850 inode->i_op = &proc_tgid_base_inode_operations;
2851 inode->i_fop = &proc_tgid_base_operations;
2852 inode->i_flags|=S_IMMUTABLE;
2853
2854 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2855 ARRAY_SIZE(tgid_base_stuff)));
2856
2857 d_set_d_op(dentry, &pid_dentry_operations);
2858
2859 d_add(dentry, inode);
2860 /* Close the race of the process dying before we return the dentry */
2861 if (pid_revalidate(dentry, 0))
2862 error = NULL;
2863 out:
2864 return error;
2865 }
2866
2867 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2868 {
2869 struct dentry *result = NULL;
2870 struct task_struct *task;
2871 unsigned tgid;
2872 struct pid_namespace *ns;
2873
2874 tgid = name_to_int(dentry);
2875 if (tgid == ~0U)
2876 goto out;
2877
2878 ns = dentry->d_sb->s_fs_info;
2879 rcu_read_lock();
2880 task = find_task_by_pid_ns(tgid, ns);
2881 if (task)
2882 get_task_struct(task);
2883 rcu_read_unlock();
2884 if (!task)
2885 goto out;
2886
2887 result = proc_pid_instantiate(dir, dentry, task, NULL);
2888 put_task_struct(task);
2889 out:
2890 return result;
2891 }
2892
2893 /*
2894 * Find the first task with tgid >= tgid
2895 *
2896 */
2897 struct tgid_iter {
2898 unsigned int tgid;
2899 struct task_struct *task;
2900 };
2901 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2902 {
2903 struct pid *pid;
2904
2905 if (iter.task)
2906 put_task_struct(iter.task);
2907 rcu_read_lock();
2908 retry:
2909 iter.task = NULL;
2910 pid = find_ge_pid(iter.tgid, ns);
2911 if (pid) {
2912 iter.tgid = pid_nr_ns(pid, ns);
2913 iter.task = pid_task(pid, PIDTYPE_PID);
2914 /* What we to know is if the pid we have find is the
2915 * pid of a thread_group_leader. Testing for task
2916 * being a thread_group_leader is the obvious thing
2917 * todo but there is a window when it fails, due to
2918 * the pid transfer logic in de_thread.
2919 *
2920 * So we perform the straight forward test of seeing
2921 * if the pid we have found is the pid of a thread
2922 * group leader, and don't worry if the task we have
2923 * found doesn't happen to be a thread group leader.
2924 * As we don't care in the case of readdir.
2925 */
2926 if (!iter.task || !has_group_leader_pid(iter.task)) {
2927 iter.tgid += 1;
2928 goto retry;
2929 }
2930 get_task_struct(iter.task);
2931 }
2932 rcu_read_unlock();
2933 return iter;
2934 }
2935
2936 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
2937
2938 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2939 struct tgid_iter iter)
2940 {
2941 char name[PROC_NUMBUF];
2942 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2943 return proc_fill_cache(filp, dirent, filldir, name, len,
2944 proc_pid_instantiate, iter.task, NULL);
2945 }
2946
2947 static int fake_filldir(void *buf, const char *name, int namelen,
2948 loff_t offset, u64 ino, unsigned d_type)
2949 {
2950 return 0;
2951 }
2952
2953 /* for the /proc/ directory itself, after non-process stuff has been done */
2954 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2955 {
2956 struct tgid_iter iter;
2957 struct pid_namespace *ns;
2958 filldir_t __filldir;
2959 loff_t pos = filp->f_pos;
2960
2961 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2962 goto out;
2963
2964 if (pos == TGID_OFFSET - 1) {
2965 if (proc_fill_cache(filp, dirent, filldir, "self", 4,
2966 NULL, NULL, NULL) < 0)
2967 goto out;
2968 iter.tgid = 0;
2969 } else {
2970 iter.tgid = pos - TGID_OFFSET;
2971 }
2972 iter.task = NULL;
2973 ns = filp->f_dentry->d_sb->s_fs_info;
2974 for (iter = next_tgid(ns, iter);
2975 iter.task;
2976 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2977 if (has_pid_permissions(ns, iter.task, 2))
2978 __filldir = filldir;
2979 else
2980 __filldir = fake_filldir;
2981
2982 filp->f_pos = iter.tgid + TGID_OFFSET;
2983 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2984 put_task_struct(iter.task);
2985 goto out;
2986 }
2987 }
2988 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2989 out:
2990 return 0;
2991 }
2992
2993 /*
2994 * Tasks
2995 */
2996 static const struct pid_entry tid_base_stuff[] = {
2997 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2998 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2999 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3000 REG("environ", S_IRUSR, proc_environ_operations),
3001 INF("auxv", S_IRUSR, proc_pid_auxv),
3002 ONE("status", S_IRUGO, proc_pid_status),
3003 ONE("personality", S_IRUGO, proc_pid_personality),
3004 INF("limits", S_IRUGO, proc_pid_limits),
3005 #ifdef CONFIG_SCHED_DEBUG
3006 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3007 #endif
3008 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3009 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3010 INF("syscall", S_IRUGO, proc_pid_syscall),
3011 #endif
3012 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3013 ONE("stat", S_IRUGO, proc_tid_stat),
3014 ONE("statm", S_IRUGO, proc_pid_statm),
3015 REG("maps", S_IRUGO, proc_tid_maps_operations),
3016 #ifdef CONFIG_CHECKPOINT_RESTORE
3017 REG("children", S_IRUGO, proc_tid_children_operations),
3018 #endif
3019 #ifdef CONFIG_NUMA
3020 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3021 #endif
3022 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3023 LNK("cwd", proc_cwd_link),
3024 LNK("root", proc_root_link),
3025 LNK("exe", proc_exe_link),
3026 REG("mounts", S_IRUGO, proc_mounts_operations),
3027 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3028 #ifdef CONFIG_PROC_PAGE_MONITOR
3029 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3030 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3031 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3032 #endif
3033 #ifdef CONFIG_SECURITY
3034 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3035 #endif
3036 #ifdef CONFIG_KALLSYMS
3037 INF("wchan", S_IRUGO, proc_pid_wchan),
3038 #endif
3039 #ifdef CONFIG_STACKTRACE
3040 ONE("stack", S_IRUGO, proc_pid_stack),
3041 #endif
3042 #ifdef CONFIG_SCHEDSTATS
3043 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3044 #endif
3045 #ifdef CONFIG_LATENCYTOP
3046 REG("latency", S_IRUGO, proc_lstats_operations),
3047 #endif
3048 #ifdef CONFIG_PROC_PID_CPUSET
3049 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3050 #endif
3051 #ifdef CONFIG_CGROUPS
3052 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3053 #endif
3054 INF("oom_score", S_IRUGO, proc_oom_score),
3055 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3056 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3057 #ifdef CONFIG_AUDITSYSCALL
3058 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3059 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3060 #endif
3061 #ifdef CONFIG_FAULT_INJECTION
3062 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3063 #endif
3064 #ifdef CONFIG_TASK_IO_ACCOUNTING
3065 INF("io", S_IRUSR, proc_tid_io_accounting),
3066 #endif
3067 #ifdef CONFIG_HARDWALL
3068 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3069 #endif
3070 #ifdef CONFIG_USER_NS
3071 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3072 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3073 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3074 #endif
3075 };
3076
3077 static int proc_tid_base_readdir(struct file * filp,
3078 void * dirent, filldir_t filldir)
3079 {
3080 return proc_pident_readdir(filp,dirent,filldir,
3081 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3082 }
3083
3084 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3085 {
3086 return proc_pident_lookup(dir, dentry,
3087 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3088 }
3089
3090 static const struct file_operations proc_tid_base_operations = {
3091 .read = generic_read_dir,
3092 .readdir = proc_tid_base_readdir,
3093 .llseek = default_llseek,
3094 };
3095
3096 static const struct inode_operations proc_tid_base_inode_operations = {
3097 .lookup = proc_tid_base_lookup,
3098 .getattr = pid_getattr,
3099 .setattr = proc_setattr,
3100 };
3101
3102 static struct dentry *proc_task_instantiate(struct inode *dir,
3103 struct dentry *dentry, struct task_struct *task, const void *ptr)
3104 {
3105 struct dentry *error = ERR_PTR(-ENOENT);
3106 struct inode *inode;
3107 inode = proc_pid_make_inode(dir->i_sb, task);
3108
3109 if (!inode)
3110 goto out;
3111 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3112 inode->i_op = &proc_tid_base_inode_operations;
3113 inode->i_fop = &proc_tid_base_operations;
3114 inode->i_flags|=S_IMMUTABLE;
3115
3116 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3117 ARRAY_SIZE(tid_base_stuff)));
3118
3119 d_set_d_op(dentry, &pid_dentry_operations);
3120
3121 d_add(dentry, inode);
3122 /* Close the race of the process dying before we return the dentry */
3123 if (pid_revalidate(dentry, 0))
3124 error = NULL;
3125 out:
3126 return error;
3127 }
3128
3129 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3130 {
3131 struct dentry *result = ERR_PTR(-ENOENT);
3132 struct task_struct *task;
3133 struct task_struct *leader = get_proc_task(dir);
3134 unsigned tid;
3135 struct pid_namespace *ns;
3136
3137 if (!leader)
3138 goto out_no_task;
3139
3140 tid = name_to_int(dentry);
3141 if (tid == ~0U)
3142 goto out;
3143
3144 ns = dentry->d_sb->s_fs_info;
3145 rcu_read_lock();
3146 task = find_task_by_pid_ns(tid, ns);
3147 if (task)
3148 get_task_struct(task);
3149 rcu_read_unlock();
3150 if (!task)
3151 goto out;
3152 if (!same_thread_group(leader, task))
3153 goto out_drop_task;
3154
3155 result = proc_task_instantiate(dir, dentry, task, NULL);
3156 out_drop_task:
3157 put_task_struct(task);
3158 out:
3159 put_task_struct(leader);
3160 out_no_task:
3161 return result;
3162 }
3163
3164 /*
3165 * Find the first tid of a thread group to return to user space.
3166 *
3167 * Usually this is just the thread group leader, but if the users
3168 * buffer was too small or there was a seek into the middle of the
3169 * directory we have more work todo.
3170 *
3171 * In the case of a short read we start with find_task_by_pid.
3172 *
3173 * In the case of a seek we start with the leader and walk nr
3174 * threads past it.
3175 */
3176 static struct task_struct *first_tid(struct task_struct *leader,
3177 int tid, int nr, struct pid_namespace *ns)
3178 {
3179 struct task_struct *pos;
3180
3181 rcu_read_lock();
3182 /* Attempt to start with the pid of a thread */
3183 if (tid && (nr > 0)) {
3184 pos = find_task_by_pid_ns(tid, ns);
3185 if (pos && (pos->group_leader == leader))
3186 goto found;
3187 }
3188
3189 /* If nr exceeds the number of threads there is nothing todo */
3190 pos = NULL;
3191 if (nr && nr >= get_nr_threads(leader))
3192 goto out;
3193
3194 /* If we haven't found our starting place yet start
3195 * with the leader and walk nr threads forward.
3196 */
3197 for (pos = leader; nr > 0; --nr) {
3198 pos = next_thread(pos);
3199 if (pos == leader) {
3200 pos = NULL;
3201 goto out;
3202 }
3203 }
3204 found:
3205 get_task_struct(pos);
3206 out:
3207 rcu_read_unlock();
3208 return pos;
3209 }
3210
3211 /*
3212 * Find the next thread in the thread list.
3213 * Return NULL if there is an error or no next thread.
3214 *
3215 * The reference to the input task_struct is released.
3216 */
3217 static struct task_struct *next_tid(struct task_struct *start)
3218 {
3219 struct task_struct *pos = NULL;
3220 rcu_read_lock();
3221 if (pid_alive(start)) {
3222 pos = next_thread(start);
3223 if (thread_group_leader(pos))
3224 pos = NULL;
3225 else
3226 get_task_struct(pos);
3227 }
3228 rcu_read_unlock();
3229 put_task_struct(start);
3230 return pos;
3231 }
3232
3233 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3234 struct task_struct *task, int tid)
3235 {
3236 char name[PROC_NUMBUF];
3237 int len = snprintf(name, sizeof(name), "%d", tid);
3238 return proc_fill_cache(filp, dirent, filldir, name, len,
3239 proc_task_instantiate, task, NULL);
3240 }
3241
3242 /* for the /proc/TGID/task/ directories */
3243 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3244 {
3245 struct dentry *dentry = filp->f_path.dentry;
3246 struct inode *inode = dentry->d_inode;
3247 struct task_struct *leader = NULL;
3248 struct task_struct *task;
3249 int retval = -ENOENT;
3250 ino_t ino;
3251 int tid;
3252 struct pid_namespace *ns;
3253
3254 task = get_proc_task(inode);
3255 if (!task)
3256 goto out_no_task;
3257 rcu_read_lock();
3258 if (pid_alive(task)) {
3259 leader = task->group_leader;
3260 get_task_struct(leader);
3261 }
3262 rcu_read_unlock();
3263 put_task_struct(task);
3264 if (!leader)
3265 goto out_no_task;
3266 retval = 0;
3267
3268 switch ((unsigned long)filp->f_pos) {
3269 case 0:
3270 ino = inode->i_ino;
3271 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3272 goto out;
3273 filp->f_pos++;
3274 /* fall through */
3275 case 1:
3276 ino = parent_ino(dentry);
3277 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3278 goto out;
3279 filp->f_pos++;
3280 /* fall through */
3281 }
3282
3283 /* f_version caches the tgid value that the last readdir call couldn't
3284 * return. lseek aka telldir automagically resets f_version to 0.
3285 */
3286 ns = filp->f_dentry->d_sb->s_fs_info;
3287 tid = (int)filp->f_version;
3288 filp->f_version = 0;
3289 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3290 task;
3291 task = next_tid(task), filp->f_pos++) {
3292 tid = task_pid_nr_ns(task, ns);
3293 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3294 /* returning this tgid failed, save it as the first
3295 * pid for the next readir call */
3296 filp->f_version = (u64)tid;
3297 put_task_struct(task);
3298 break;
3299 }
3300 }
3301 out:
3302 put_task_struct(leader);
3303 out_no_task:
3304 return retval;
3305 }
3306
3307 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3308 {
3309 struct inode *inode = dentry->d_inode;
3310 struct task_struct *p = get_proc_task(inode);
3311 generic_fillattr(inode, stat);
3312
3313 if (p) {
3314 stat->nlink += get_nr_threads(p);
3315 put_task_struct(p);
3316 }
3317
3318 return 0;
3319 }
3320
3321 static const struct inode_operations proc_task_inode_operations = {
3322 .lookup = proc_task_lookup,
3323 .getattr = proc_task_getattr,
3324 .setattr = proc_setattr,
3325 .permission = proc_pid_permission,
3326 };
3327
3328 static const struct file_operations proc_task_operations = {
3329 .read = generic_read_dir,
3330 .readdir = proc_task_readdir,
3331 .llseek = default_llseek,
3332 };