include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/rcupdate.h>
67 #include <linux/kallsyms.h>
68 #include <linux/stacktrace.h>
69 #include <linux/resource.h>
70 #include <linux/module.h>
71 #include <linux/mount.h>
72 #include <linux/security.h>
73 #include <linux/ptrace.h>
74 #include <linux/tracehook.h>
75 #include <linux/cgroup.h>
76 #include <linux/cpuset.h>
77 #include <linux/audit.h>
78 #include <linux/poll.h>
79 #include <linux/nsproxy.h>
80 #include <linux/oom.h>
81 #include <linux/elf.h>
82 #include <linux/pid_namespace.h>
83 #include <linux/fs_struct.h>
84 #include <linux/slab.h>
85 #include "internal.h"
86
87 /* NOTE:
88 * Implementing inode permission operations in /proc is almost
89 * certainly an error. Permission checks need to happen during
90 * each system call not at open time. The reason is that most of
91 * what we wish to check for permissions in /proc varies at runtime.
92 *
93 * The classic example of a problem is opening file descriptors
94 * in /proc for a task before it execs a suid executable.
95 */
96
97 struct pid_entry {
98 char *name;
99 int len;
100 mode_t mode;
101 const struct inode_operations *iop;
102 const struct file_operations *fop;
103 union proc_op op;
104 };
105
106 #define NOD(NAME, MODE, IOP, FOP, OP) { \
107 .name = (NAME), \
108 .len = sizeof(NAME) - 1, \
109 .mode = MODE, \
110 .iop = IOP, \
111 .fop = FOP, \
112 .op = OP, \
113 }
114
115 #define DIR(NAME, MODE, iops, fops) \
116 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
117 #define LNK(NAME, get_link) \
118 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
119 &proc_pid_link_inode_operations, NULL, \
120 { .proc_get_link = get_link } )
121 #define REG(NAME, MODE, fops) \
122 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
123 #define INF(NAME, MODE, read) \
124 NOD(NAME, (S_IFREG|(MODE)), \
125 NULL, &proc_info_file_operations, \
126 { .proc_read = read } )
127 #define ONE(NAME, MODE, show) \
128 NOD(NAME, (S_IFREG|(MODE)), \
129 NULL, &proc_single_file_operations, \
130 { .proc_show = show } )
131
132 /*
133 * Count the number of hardlinks for the pid_entry table, excluding the .
134 * and .. links.
135 */
136 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
137 unsigned int n)
138 {
139 unsigned int i;
140 unsigned int count;
141
142 count = 0;
143 for (i = 0; i < n; ++i) {
144 if (S_ISDIR(entries[i].mode))
145 ++count;
146 }
147
148 return count;
149 }
150
151 static int get_fs_path(struct task_struct *task, struct path *path, bool root)
152 {
153 struct fs_struct *fs;
154 int result = -ENOENT;
155
156 task_lock(task);
157 fs = task->fs;
158 if (fs) {
159 read_lock(&fs->lock);
160 *path = root ? fs->root : fs->pwd;
161 path_get(path);
162 read_unlock(&fs->lock);
163 result = 0;
164 }
165 task_unlock(task);
166 return result;
167 }
168
169 static int get_nr_threads(struct task_struct *tsk)
170 {
171 unsigned long flags;
172 int count = 0;
173
174 if (lock_task_sighand(tsk, &flags)) {
175 count = atomic_read(&tsk->signal->count);
176 unlock_task_sighand(tsk, &flags);
177 }
178 return count;
179 }
180
181 static int proc_cwd_link(struct inode *inode, struct path *path)
182 {
183 struct task_struct *task = get_proc_task(inode);
184 int result = -ENOENT;
185
186 if (task) {
187 result = get_fs_path(task, path, 0);
188 put_task_struct(task);
189 }
190 return result;
191 }
192
193 static int proc_root_link(struct inode *inode, struct path *path)
194 {
195 struct task_struct *task = get_proc_task(inode);
196 int result = -ENOENT;
197
198 if (task) {
199 result = get_fs_path(task, path, 1);
200 put_task_struct(task);
201 }
202 return result;
203 }
204
205 /*
206 * Return zero if current may access user memory in @task, -error if not.
207 */
208 static int check_mem_permission(struct task_struct *task)
209 {
210 /*
211 * A task can always look at itself, in case it chooses
212 * to use system calls instead of load instructions.
213 */
214 if (task == current)
215 return 0;
216
217 /*
218 * If current is actively ptrace'ing, and would also be
219 * permitted to freshly attach with ptrace now, permit it.
220 */
221 if (task_is_stopped_or_traced(task)) {
222 int match;
223 rcu_read_lock();
224 match = (tracehook_tracer_task(task) == current);
225 rcu_read_unlock();
226 if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
227 return 0;
228 }
229
230 /*
231 * Noone else is allowed.
232 */
233 return -EPERM;
234 }
235
236 struct mm_struct *mm_for_maps(struct task_struct *task)
237 {
238 struct mm_struct *mm;
239
240 if (mutex_lock_killable(&task->cred_guard_mutex))
241 return NULL;
242
243 mm = get_task_mm(task);
244 if (mm && mm != current->mm &&
245 !ptrace_may_access(task, PTRACE_MODE_READ)) {
246 mmput(mm);
247 mm = NULL;
248 }
249 mutex_unlock(&task->cred_guard_mutex);
250
251 return mm;
252 }
253
254 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
255 {
256 int res = 0;
257 unsigned int len;
258 struct mm_struct *mm = get_task_mm(task);
259 if (!mm)
260 goto out;
261 if (!mm->arg_end)
262 goto out_mm; /* Shh! No looking before we're done */
263
264 len = mm->arg_end - mm->arg_start;
265
266 if (len > PAGE_SIZE)
267 len = PAGE_SIZE;
268
269 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
270
271 // If the nul at the end of args has been overwritten, then
272 // assume application is using setproctitle(3).
273 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
274 len = strnlen(buffer, res);
275 if (len < res) {
276 res = len;
277 } else {
278 len = mm->env_end - mm->env_start;
279 if (len > PAGE_SIZE - res)
280 len = PAGE_SIZE - res;
281 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
282 res = strnlen(buffer, res);
283 }
284 }
285 out_mm:
286 mmput(mm);
287 out:
288 return res;
289 }
290
291 static int proc_pid_auxv(struct task_struct *task, char *buffer)
292 {
293 int res = 0;
294 struct mm_struct *mm = get_task_mm(task);
295 if (mm) {
296 unsigned int nwords = 0;
297 do {
298 nwords += 2;
299 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
300 res = nwords * sizeof(mm->saved_auxv[0]);
301 if (res > PAGE_SIZE)
302 res = PAGE_SIZE;
303 memcpy(buffer, mm->saved_auxv, res);
304 mmput(mm);
305 }
306 return res;
307 }
308
309
310 #ifdef CONFIG_KALLSYMS
311 /*
312 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
313 * Returns the resolved symbol. If that fails, simply return the address.
314 */
315 static int proc_pid_wchan(struct task_struct *task, char *buffer)
316 {
317 unsigned long wchan;
318 char symname[KSYM_NAME_LEN];
319
320 wchan = get_wchan(task);
321
322 if (lookup_symbol_name(wchan, symname) < 0)
323 if (!ptrace_may_access(task, PTRACE_MODE_READ))
324 return 0;
325 else
326 return sprintf(buffer, "%lu", wchan);
327 else
328 return sprintf(buffer, "%s", symname);
329 }
330 #endif /* CONFIG_KALLSYMS */
331
332 #ifdef CONFIG_STACKTRACE
333
334 #define MAX_STACK_TRACE_DEPTH 64
335
336 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
337 struct pid *pid, struct task_struct *task)
338 {
339 struct stack_trace trace;
340 unsigned long *entries;
341 int i;
342
343 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
344 if (!entries)
345 return -ENOMEM;
346
347 trace.nr_entries = 0;
348 trace.max_entries = MAX_STACK_TRACE_DEPTH;
349 trace.entries = entries;
350 trace.skip = 0;
351 save_stack_trace_tsk(task, &trace);
352
353 for (i = 0; i < trace.nr_entries; i++) {
354 seq_printf(m, "[<%p>] %pS\n",
355 (void *)entries[i], (void *)entries[i]);
356 }
357 kfree(entries);
358
359 return 0;
360 }
361 #endif
362
363 #ifdef CONFIG_SCHEDSTATS
364 /*
365 * Provides /proc/PID/schedstat
366 */
367 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
368 {
369 return sprintf(buffer, "%llu %llu %lu\n",
370 (unsigned long long)task->se.sum_exec_runtime,
371 (unsigned long long)task->sched_info.run_delay,
372 task->sched_info.pcount);
373 }
374 #endif
375
376 #ifdef CONFIG_LATENCYTOP
377 static int lstats_show_proc(struct seq_file *m, void *v)
378 {
379 int i;
380 struct inode *inode = m->private;
381 struct task_struct *task = get_proc_task(inode);
382
383 if (!task)
384 return -ESRCH;
385 seq_puts(m, "Latency Top version : v0.1\n");
386 for (i = 0; i < 32; i++) {
387 if (task->latency_record[i].backtrace[0]) {
388 int q;
389 seq_printf(m, "%i %li %li ",
390 task->latency_record[i].count,
391 task->latency_record[i].time,
392 task->latency_record[i].max);
393 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
394 char sym[KSYM_SYMBOL_LEN];
395 char *c;
396 if (!task->latency_record[i].backtrace[q])
397 break;
398 if (task->latency_record[i].backtrace[q] == ULONG_MAX)
399 break;
400 sprint_symbol(sym, task->latency_record[i].backtrace[q]);
401 c = strchr(sym, '+');
402 if (c)
403 *c = 0;
404 seq_printf(m, "%s ", sym);
405 }
406 seq_printf(m, "\n");
407 }
408
409 }
410 put_task_struct(task);
411 return 0;
412 }
413
414 static int lstats_open(struct inode *inode, struct file *file)
415 {
416 return single_open(file, lstats_show_proc, inode);
417 }
418
419 static ssize_t lstats_write(struct file *file, const char __user *buf,
420 size_t count, loff_t *offs)
421 {
422 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
423
424 if (!task)
425 return -ESRCH;
426 clear_all_latency_tracing(task);
427 put_task_struct(task);
428
429 return count;
430 }
431
432 static const struct file_operations proc_lstats_operations = {
433 .open = lstats_open,
434 .read = seq_read,
435 .write = lstats_write,
436 .llseek = seq_lseek,
437 .release = single_release,
438 };
439
440 #endif
441
442 /* The badness from the OOM killer */
443 unsigned long badness(struct task_struct *p, unsigned long uptime);
444 static int proc_oom_score(struct task_struct *task, char *buffer)
445 {
446 unsigned long points;
447 struct timespec uptime;
448
449 do_posix_clock_monotonic_gettime(&uptime);
450 read_lock(&tasklist_lock);
451 points = badness(task->group_leader, uptime.tv_sec);
452 read_unlock(&tasklist_lock);
453 return sprintf(buffer, "%lu\n", points);
454 }
455
456 struct limit_names {
457 char *name;
458 char *unit;
459 };
460
461 static const struct limit_names lnames[RLIM_NLIMITS] = {
462 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
463 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
464 [RLIMIT_DATA] = {"Max data size", "bytes"},
465 [RLIMIT_STACK] = {"Max stack size", "bytes"},
466 [RLIMIT_CORE] = {"Max core file size", "bytes"},
467 [RLIMIT_RSS] = {"Max resident set", "bytes"},
468 [RLIMIT_NPROC] = {"Max processes", "processes"},
469 [RLIMIT_NOFILE] = {"Max open files", "files"},
470 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
471 [RLIMIT_AS] = {"Max address space", "bytes"},
472 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
473 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
474 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
475 [RLIMIT_NICE] = {"Max nice priority", NULL},
476 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
477 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
478 };
479
480 /* Display limits for a process */
481 static int proc_pid_limits(struct task_struct *task, char *buffer)
482 {
483 unsigned int i;
484 int count = 0;
485 unsigned long flags;
486 char *bufptr = buffer;
487
488 struct rlimit rlim[RLIM_NLIMITS];
489
490 if (!lock_task_sighand(task, &flags))
491 return 0;
492 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
493 unlock_task_sighand(task, &flags);
494
495 /*
496 * print the file header
497 */
498 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
499 "Limit", "Soft Limit", "Hard Limit", "Units");
500
501 for (i = 0; i < RLIM_NLIMITS; i++) {
502 if (rlim[i].rlim_cur == RLIM_INFINITY)
503 count += sprintf(&bufptr[count], "%-25s %-20s ",
504 lnames[i].name, "unlimited");
505 else
506 count += sprintf(&bufptr[count], "%-25s %-20lu ",
507 lnames[i].name, rlim[i].rlim_cur);
508
509 if (rlim[i].rlim_max == RLIM_INFINITY)
510 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
511 else
512 count += sprintf(&bufptr[count], "%-20lu ",
513 rlim[i].rlim_max);
514
515 if (lnames[i].unit)
516 count += sprintf(&bufptr[count], "%-10s\n",
517 lnames[i].unit);
518 else
519 count += sprintf(&bufptr[count], "\n");
520 }
521
522 return count;
523 }
524
525 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
526 static int proc_pid_syscall(struct task_struct *task, char *buffer)
527 {
528 long nr;
529 unsigned long args[6], sp, pc;
530
531 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
532 return sprintf(buffer, "running\n");
533
534 if (nr < 0)
535 return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
536
537 return sprintf(buffer,
538 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
539 nr,
540 args[0], args[1], args[2], args[3], args[4], args[5],
541 sp, pc);
542 }
543 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
544
545 /************************************************************************/
546 /* Here the fs part begins */
547 /************************************************************************/
548
549 /* permission checks */
550 static int proc_fd_access_allowed(struct inode *inode)
551 {
552 struct task_struct *task;
553 int allowed = 0;
554 /* Allow access to a task's file descriptors if it is us or we
555 * may use ptrace attach to the process and find out that
556 * information.
557 */
558 task = get_proc_task(inode);
559 if (task) {
560 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
561 put_task_struct(task);
562 }
563 return allowed;
564 }
565
566 static int proc_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 int error;
569 struct inode *inode = dentry->d_inode;
570
571 if (attr->ia_valid & ATTR_MODE)
572 return -EPERM;
573
574 error = inode_change_ok(inode, attr);
575 if (!error)
576 error = inode_setattr(inode, attr);
577 return error;
578 }
579
580 static const struct inode_operations proc_def_inode_operations = {
581 .setattr = proc_setattr,
582 };
583
584 static int mounts_open_common(struct inode *inode, struct file *file,
585 const struct seq_operations *op)
586 {
587 struct task_struct *task = get_proc_task(inode);
588 struct nsproxy *nsp;
589 struct mnt_namespace *ns = NULL;
590 struct path root;
591 struct proc_mounts *p;
592 int ret = -EINVAL;
593
594 if (task) {
595 rcu_read_lock();
596 nsp = task_nsproxy(task);
597 if (nsp) {
598 ns = nsp->mnt_ns;
599 if (ns)
600 get_mnt_ns(ns);
601 }
602 rcu_read_unlock();
603 if (ns && get_fs_path(task, &root, 1) == 0)
604 ret = 0;
605 put_task_struct(task);
606 }
607
608 if (!ns)
609 goto err;
610 if (ret)
611 goto err_put_ns;
612
613 ret = -ENOMEM;
614 p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
615 if (!p)
616 goto err_put_path;
617
618 file->private_data = &p->m;
619 ret = seq_open(file, op);
620 if (ret)
621 goto err_free;
622
623 p->m.private = p;
624 p->ns = ns;
625 p->root = root;
626 p->event = ns->event;
627
628 return 0;
629
630 err_free:
631 kfree(p);
632 err_put_path:
633 path_put(&root);
634 err_put_ns:
635 put_mnt_ns(ns);
636 err:
637 return ret;
638 }
639
640 static int mounts_release(struct inode *inode, struct file *file)
641 {
642 struct proc_mounts *p = file->private_data;
643 path_put(&p->root);
644 put_mnt_ns(p->ns);
645 return seq_release(inode, file);
646 }
647
648 static unsigned mounts_poll(struct file *file, poll_table *wait)
649 {
650 struct proc_mounts *p = file->private_data;
651 unsigned res = POLLIN | POLLRDNORM;
652
653 poll_wait(file, &p->ns->poll, wait);
654 if (mnt_had_events(p))
655 res |= POLLERR | POLLPRI;
656
657 return res;
658 }
659
660 static int mounts_open(struct inode *inode, struct file *file)
661 {
662 return mounts_open_common(inode, file, &mounts_op);
663 }
664
665 static const struct file_operations proc_mounts_operations = {
666 .open = mounts_open,
667 .read = seq_read,
668 .llseek = seq_lseek,
669 .release = mounts_release,
670 .poll = mounts_poll,
671 };
672
673 static int mountinfo_open(struct inode *inode, struct file *file)
674 {
675 return mounts_open_common(inode, file, &mountinfo_op);
676 }
677
678 static const struct file_operations proc_mountinfo_operations = {
679 .open = mountinfo_open,
680 .read = seq_read,
681 .llseek = seq_lseek,
682 .release = mounts_release,
683 .poll = mounts_poll,
684 };
685
686 static int mountstats_open(struct inode *inode, struct file *file)
687 {
688 return mounts_open_common(inode, file, &mountstats_op);
689 }
690
691 static const struct file_operations proc_mountstats_operations = {
692 .open = mountstats_open,
693 .read = seq_read,
694 .llseek = seq_lseek,
695 .release = mounts_release,
696 };
697
698 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
699
700 static ssize_t proc_info_read(struct file * file, char __user * buf,
701 size_t count, loff_t *ppos)
702 {
703 struct inode * inode = file->f_path.dentry->d_inode;
704 unsigned long page;
705 ssize_t length;
706 struct task_struct *task = get_proc_task(inode);
707
708 length = -ESRCH;
709 if (!task)
710 goto out_no_task;
711
712 if (count > PROC_BLOCK_SIZE)
713 count = PROC_BLOCK_SIZE;
714
715 length = -ENOMEM;
716 if (!(page = __get_free_page(GFP_TEMPORARY)))
717 goto out;
718
719 length = PROC_I(inode)->op.proc_read(task, (char*)page);
720
721 if (length >= 0)
722 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
723 free_page(page);
724 out:
725 put_task_struct(task);
726 out_no_task:
727 return length;
728 }
729
730 static const struct file_operations proc_info_file_operations = {
731 .read = proc_info_read,
732 };
733
734 static int proc_single_show(struct seq_file *m, void *v)
735 {
736 struct inode *inode = m->private;
737 struct pid_namespace *ns;
738 struct pid *pid;
739 struct task_struct *task;
740 int ret;
741
742 ns = inode->i_sb->s_fs_info;
743 pid = proc_pid(inode);
744 task = get_pid_task(pid, PIDTYPE_PID);
745 if (!task)
746 return -ESRCH;
747
748 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
749
750 put_task_struct(task);
751 return ret;
752 }
753
754 static int proc_single_open(struct inode *inode, struct file *filp)
755 {
756 int ret;
757 ret = single_open(filp, proc_single_show, NULL);
758 if (!ret) {
759 struct seq_file *m = filp->private_data;
760
761 m->private = inode;
762 }
763 return ret;
764 }
765
766 static const struct file_operations proc_single_file_operations = {
767 .open = proc_single_open,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
771 };
772
773 static int mem_open(struct inode* inode, struct file* file)
774 {
775 file->private_data = (void*)((long)current->self_exec_id);
776 return 0;
777 }
778
779 static ssize_t mem_read(struct file * file, char __user * buf,
780 size_t count, loff_t *ppos)
781 {
782 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
783 char *page;
784 unsigned long src = *ppos;
785 int ret = -ESRCH;
786 struct mm_struct *mm;
787
788 if (!task)
789 goto out_no_task;
790
791 if (check_mem_permission(task))
792 goto out;
793
794 ret = -ENOMEM;
795 page = (char *)__get_free_page(GFP_TEMPORARY);
796 if (!page)
797 goto out;
798
799 ret = 0;
800
801 mm = get_task_mm(task);
802 if (!mm)
803 goto out_free;
804
805 ret = -EIO;
806
807 if (file->private_data != (void*)((long)current->self_exec_id))
808 goto out_put;
809
810 ret = 0;
811
812 while (count > 0) {
813 int this_len, retval;
814
815 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
816 retval = access_process_vm(task, src, page, this_len, 0);
817 if (!retval || check_mem_permission(task)) {
818 if (!ret)
819 ret = -EIO;
820 break;
821 }
822
823 if (copy_to_user(buf, page, retval)) {
824 ret = -EFAULT;
825 break;
826 }
827
828 ret += retval;
829 src += retval;
830 buf += retval;
831 count -= retval;
832 }
833 *ppos = src;
834
835 out_put:
836 mmput(mm);
837 out_free:
838 free_page((unsigned long) page);
839 out:
840 put_task_struct(task);
841 out_no_task:
842 return ret;
843 }
844
845 #define mem_write NULL
846
847 #ifndef mem_write
848 /* This is a security hazard */
849 static ssize_t mem_write(struct file * file, const char __user *buf,
850 size_t count, loff_t *ppos)
851 {
852 int copied;
853 char *page;
854 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
855 unsigned long dst = *ppos;
856
857 copied = -ESRCH;
858 if (!task)
859 goto out_no_task;
860
861 if (check_mem_permission(task))
862 goto out;
863
864 copied = -ENOMEM;
865 page = (char *)__get_free_page(GFP_TEMPORARY);
866 if (!page)
867 goto out;
868
869 copied = 0;
870 while (count > 0) {
871 int this_len, retval;
872
873 this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
874 if (copy_from_user(page, buf, this_len)) {
875 copied = -EFAULT;
876 break;
877 }
878 retval = access_process_vm(task, dst, page, this_len, 1);
879 if (!retval) {
880 if (!copied)
881 copied = -EIO;
882 break;
883 }
884 copied += retval;
885 buf += retval;
886 dst += retval;
887 count -= retval;
888 }
889 *ppos = dst;
890 free_page((unsigned long) page);
891 out:
892 put_task_struct(task);
893 out_no_task:
894 return copied;
895 }
896 #endif
897
898 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
899 {
900 switch (orig) {
901 case 0:
902 file->f_pos = offset;
903 break;
904 case 1:
905 file->f_pos += offset;
906 break;
907 default:
908 return -EINVAL;
909 }
910 force_successful_syscall_return();
911 return file->f_pos;
912 }
913
914 static const struct file_operations proc_mem_operations = {
915 .llseek = mem_lseek,
916 .read = mem_read,
917 .write = mem_write,
918 .open = mem_open,
919 };
920
921 static ssize_t environ_read(struct file *file, char __user *buf,
922 size_t count, loff_t *ppos)
923 {
924 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
925 char *page;
926 unsigned long src = *ppos;
927 int ret = -ESRCH;
928 struct mm_struct *mm;
929
930 if (!task)
931 goto out_no_task;
932
933 if (!ptrace_may_access(task, PTRACE_MODE_READ))
934 goto out;
935
936 ret = -ENOMEM;
937 page = (char *)__get_free_page(GFP_TEMPORARY);
938 if (!page)
939 goto out;
940
941 ret = 0;
942
943 mm = get_task_mm(task);
944 if (!mm)
945 goto out_free;
946
947 while (count > 0) {
948 int this_len, retval, max_len;
949
950 this_len = mm->env_end - (mm->env_start + src);
951
952 if (this_len <= 0)
953 break;
954
955 max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
956 this_len = (this_len > max_len) ? max_len : this_len;
957
958 retval = access_process_vm(task, (mm->env_start + src),
959 page, this_len, 0);
960
961 if (retval <= 0) {
962 ret = retval;
963 break;
964 }
965
966 if (copy_to_user(buf, page, retval)) {
967 ret = -EFAULT;
968 break;
969 }
970
971 ret += retval;
972 src += retval;
973 buf += retval;
974 count -= retval;
975 }
976 *ppos = src;
977
978 mmput(mm);
979 out_free:
980 free_page((unsigned long) page);
981 out:
982 put_task_struct(task);
983 out_no_task:
984 return ret;
985 }
986
987 static const struct file_operations proc_environ_operations = {
988 .read = environ_read,
989 };
990
991 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
992 size_t count, loff_t *ppos)
993 {
994 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
995 char buffer[PROC_NUMBUF];
996 size_t len;
997 int oom_adjust = OOM_DISABLE;
998 unsigned long flags;
999
1000 if (!task)
1001 return -ESRCH;
1002
1003 if (lock_task_sighand(task, &flags)) {
1004 oom_adjust = task->signal->oom_adj;
1005 unlock_task_sighand(task, &flags);
1006 }
1007
1008 put_task_struct(task);
1009
1010 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
1011
1012 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1013 }
1014
1015 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
1016 size_t count, loff_t *ppos)
1017 {
1018 struct task_struct *task;
1019 char buffer[PROC_NUMBUF];
1020 long oom_adjust;
1021 unsigned long flags;
1022 int err;
1023
1024 memset(buffer, 0, sizeof(buffer));
1025 if (count > sizeof(buffer) - 1)
1026 count = sizeof(buffer) - 1;
1027 if (copy_from_user(buffer, buf, count))
1028 return -EFAULT;
1029
1030 err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
1031 if (err)
1032 return -EINVAL;
1033 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
1034 oom_adjust != OOM_DISABLE)
1035 return -EINVAL;
1036
1037 task = get_proc_task(file->f_path.dentry->d_inode);
1038 if (!task)
1039 return -ESRCH;
1040 if (!lock_task_sighand(task, &flags)) {
1041 put_task_struct(task);
1042 return -ESRCH;
1043 }
1044
1045 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
1046 unlock_task_sighand(task, &flags);
1047 put_task_struct(task);
1048 return -EACCES;
1049 }
1050
1051 task->signal->oom_adj = oom_adjust;
1052
1053 unlock_task_sighand(task, &flags);
1054 put_task_struct(task);
1055
1056 return count;
1057 }
1058
1059 static const struct file_operations proc_oom_adjust_operations = {
1060 .read = oom_adjust_read,
1061 .write = oom_adjust_write,
1062 };
1063
1064 #ifdef CONFIG_AUDITSYSCALL
1065 #define TMPBUFLEN 21
1066 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1067 size_t count, loff_t *ppos)
1068 {
1069 struct inode * inode = file->f_path.dentry->d_inode;
1070 struct task_struct *task = get_proc_task(inode);
1071 ssize_t length;
1072 char tmpbuf[TMPBUFLEN];
1073
1074 if (!task)
1075 return -ESRCH;
1076 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1077 audit_get_loginuid(task));
1078 put_task_struct(task);
1079 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1080 }
1081
1082 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1083 size_t count, loff_t *ppos)
1084 {
1085 struct inode * inode = file->f_path.dentry->d_inode;
1086 char *page, *tmp;
1087 ssize_t length;
1088 uid_t loginuid;
1089
1090 if (!capable(CAP_AUDIT_CONTROL))
1091 return -EPERM;
1092
1093 rcu_read_lock();
1094 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1095 rcu_read_unlock();
1096 return -EPERM;
1097 }
1098 rcu_read_unlock();
1099
1100 if (count >= PAGE_SIZE)
1101 count = PAGE_SIZE - 1;
1102
1103 if (*ppos != 0) {
1104 /* No partial writes. */
1105 return -EINVAL;
1106 }
1107 page = (char*)__get_free_page(GFP_TEMPORARY);
1108 if (!page)
1109 return -ENOMEM;
1110 length = -EFAULT;
1111 if (copy_from_user(page, buf, count))
1112 goto out_free_page;
1113
1114 page[count] = '\0';
1115 loginuid = simple_strtoul(page, &tmp, 10);
1116 if (tmp == page) {
1117 length = -EINVAL;
1118 goto out_free_page;
1119
1120 }
1121 length = audit_set_loginuid(current, loginuid);
1122 if (likely(length == 0))
1123 length = count;
1124
1125 out_free_page:
1126 free_page((unsigned long) page);
1127 return length;
1128 }
1129
1130 static const struct file_operations proc_loginuid_operations = {
1131 .read = proc_loginuid_read,
1132 .write = proc_loginuid_write,
1133 };
1134
1135 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1136 size_t count, loff_t *ppos)
1137 {
1138 struct inode * inode = file->f_path.dentry->d_inode;
1139 struct task_struct *task = get_proc_task(inode);
1140 ssize_t length;
1141 char tmpbuf[TMPBUFLEN];
1142
1143 if (!task)
1144 return -ESRCH;
1145 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1146 audit_get_sessionid(task));
1147 put_task_struct(task);
1148 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1149 }
1150
1151 static const struct file_operations proc_sessionid_operations = {
1152 .read = proc_sessionid_read,
1153 };
1154 #endif
1155
1156 #ifdef CONFIG_FAULT_INJECTION
1157 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1158 size_t count, loff_t *ppos)
1159 {
1160 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1161 char buffer[PROC_NUMBUF];
1162 size_t len;
1163 int make_it_fail;
1164
1165 if (!task)
1166 return -ESRCH;
1167 make_it_fail = task->make_it_fail;
1168 put_task_struct(task);
1169
1170 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1171
1172 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1173 }
1174
1175 static ssize_t proc_fault_inject_write(struct file * file,
1176 const char __user * buf, size_t count, loff_t *ppos)
1177 {
1178 struct task_struct *task;
1179 char buffer[PROC_NUMBUF], *end;
1180 int make_it_fail;
1181
1182 if (!capable(CAP_SYS_RESOURCE))
1183 return -EPERM;
1184 memset(buffer, 0, sizeof(buffer));
1185 if (count > sizeof(buffer) - 1)
1186 count = sizeof(buffer) - 1;
1187 if (copy_from_user(buffer, buf, count))
1188 return -EFAULT;
1189 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1190 if (*end)
1191 return -EINVAL;
1192 task = get_proc_task(file->f_dentry->d_inode);
1193 if (!task)
1194 return -ESRCH;
1195 task->make_it_fail = make_it_fail;
1196 put_task_struct(task);
1197
1198 return count;
1199 }
1200
1201 static const struct file_operations proc_fault_inject_operations = {
1202 .read = proc_fault_inject_read,
1203 .write = proc_fault_inject_write,
1204 };
1205 #endif
1206
1207
1208 #ifdef CONFIG_SCHED_DEBUG
1209 /*
1210 * Print out various scheduling related per-task fields:
1211 */
1212 static int sched_show(struct seq_file *m, void *v)
1213 {
1214 struct inode *inode = m->private;
1215 struct task_struct *p;
1216
1217 p = get_proc_task(inode);
1218 if (!p)
1219 return -ESRCH;
1220 proc_sched_show_task(p, m);
1221
1222 put_task_struct(p);
1223
1224 return 0;
1225 }
1226
1227 static ssize_t
1228 sched_write(struct file *file, const char __user *buf,
1229 size_t count, loff_t *offset)
1230 {
1231 struct inode *inode = file->f_path.dentry->d_inode;
1232 struct task_struct *p;
1233
1234 p = get_proc_task(inode);
1235 if (!p)
1236 return -ESRCH;
1237 proc_sched_set_task(p);
1238
1239 put_task_struct(p);
1240
1241 return count;
1242 }
1243
1244 static int sched_open(struct inode *inode, struct file *filp)
1245 {
1246 int ret;
1247
1248 ret = single_open(filp, sched_show, NULL);
1249 if (!ret) {
1250 struct seq_file *m = filp->private_data;
1251
1252 m->private = inode;
1253 }
1254 return ret;
1255 }
1256
1257 static const struct file_operations proc_pid_sched_operations = {
1258 .open = sched_open,
1259 .read = seq_read,
1260 .write = sched_write,
1261 .llseek = seq_lseek,
1262 .release = single_release,
1263 };
1264
1265 #endif
1266
1267 static ssize_t comm_write(struct file *file, const char __user *buf,
1268 size_t count, loff_t *offset)
1269 {
1270 struct inode *inode = file->f_path.dentry->d_inode;
1271 struct task_struct *p;
1272 char buffer[TASK_COMM_LEN];
1273
1274 memset(buffer, 0, sizeof(buffer));
1275 if (count > sizeof(buffer) - 1)
1276 count = sizeof(buffer) - 1;
1277 if (copy_from_user(buffer, buf, count))
1278 return -EFAULT;
1279
1280 p = get_proc_task(inode);
1281 if (!p)
1282 return -ESRCH;
1283
1284 if (same_thread_group(current, p))
1285 set_task_comm(p, buffer);
1286 else
1287 count = -EINVAL;
1288
1289 put_task_struct(p);
1290
1291 return count;
1292 }
1293
1294 static int comm_show(struct seq_file *m, void *v)
1295 {
1296 struct inode *inode = m->private;
1297 struct task_struct *p;
1298
1299 p = get_proc_task(inode);
1300 if (!p)
1301 return -ESRCH;
1302
1303 task_lock(p);
1304 seq_printf(m, "%s\n", p->comm);
1305 task_unlock(p);
1306
1307 put_task_struct(p);
1308
1309 return 0;
1310 }
1311
1312 static int comm_open(struct inode *inode, struct file *filp)
1313 {
1314 int ret;
1315
1316 ret = single_open(filp, comm_show, NULL);
1317 if (!ret) {
1318 struct seq_file *m = filp->private_data;
1319
1320 m->private = inode;
1321 }
1322 return ret;
1323 }
1324
1325 static const struct file_operations proc_pid_set_comm_operations = {
1326 .open = comm_open,
1327 .read = seq_read,
1328 .write = comm_write,
1329 .llseek = seq_lseek,
1330 .release = single_release,
1331 };
1332
1333 /*
1334 * We added or removed a vma mapping the executable. The vmas are only mapped
1335 * during exec and are not mapped with the mmap system call.
1336 * Callers must hold down_write() on the mm's mmap_sem for these
1337 */
1338 void added_exe_file_vma(struct mm_struct *mm)
1339 {
1340 mm->num_exe_file_vmas++;
1341 }
1342
1343 void removed_exe_file_vma(struct mm_struct *mm)
1344 {
1345 mm->num_exe_file_vmas--;
1346 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
1347 fput(mm->exe_file);
1348 mm->exe_file = NULL;
1349 }
1350
1351 }
1352
1353 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1354 {
1355 if (new_exe_file)
1356 get_file(new_exe_file);
1357 if (mm->exe_file)
1358 fput(mm->exe_file);
1359 mm->exe_file = new_exe_file;
1360 mm->num_exe_file_vmas = 0;
1361 }
1362
1363 struct file *get_mm_exe_file(struct mm_struct *mm)
1364 {
1365 struct file *exe_file;
1366
1367 /* We need mmap_sem to protect against races with removal of
1368 * VM_EXECUTABLE vmas */
1369 down_read(&mm->mmap_sem);
1370 exe_file = mm->exe_file;
1371 if (exe_file)
1372 get_file(exe_file);
1373 up_read(&mm->mmap_sem);
1374 return exe_file;
1375 }
1376
1377 void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
1378 {
1379 /* It's safe to write the exe_file pointer without exe_file_lock because
1380 * this is called during fork when the task is not yet in /proc */
1381 newmm->exe_file = get_mm_exe_file(oldmm);
1382 }
1383
1384 static int proc_exe_link(struct inode *inode, struct path *exe_path)
1385 {
1386 struct task_struct *task;
1387 struct mm_struct *mm;
1388 struct file *exe_file;
1389
1390 task = get_proc_task(inode);
1391 if (!task)
1392 return -ENOENT;
1393 mm = get_task_mm(task);
1394 put_task_struct(task);
1395 if (!mm)
1396 return -ENOENT;
1397 exe_file = get_mm_exe_file(mm);
1398 mmput(mm);
1399 if (exe_file) {
1400 *exe_path = exe_file->f_path;
1401 path_get(&exe_file->f_path);
1402 fput(exe_file);
1403 return 0;
1404 } else
1405 return -ENOENT;
1406 }
1407
1408 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1409 {
1410 struct inode *inode = dentry->d_inode;
1411 int error = -EACCES;
1412
1413 /* We don't need a base pointer in the /proc filesystem */
1414 path_put(&nd->path);
1415
1416 /* Are we allowed to snoop on the tasks file descriptors? */
1417 if (!proc_fd_access_allowed(inode))
1418 goto out;
1419
1420 error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
1421 out:
1422 return ERR_PTR(error);
1423 }
1424
1425 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1426 {
1427 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1428 char *pathname;
1429 int len;
1430
1431 if (!tmp)
1432 return -ENOMEM;
1433
1434 pathname = d_path(path, tmp, PAGE_SIZE);
1435 len = PTR_ERR(pathname);
1436 if (IS_ERR(pathname))
1437 goto out;
1438 len = tmp + PAGE_SIZE - 1 - pathname;
1439
1440 if (len > buflen)
1441 len = buflen;
1442 if (copy_to_user(buffer, pathname, len))
1443 len = -EFAULT;
1444 out:
1445 free_page((unsigned long)tmp);
1446 return len;
1447 }
1448
1449 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1450 {
1451 int error = -EACCES;
1452 struct inode *inode = dentry->d_inode;
1453 struct path path;
1454
1455 /* Are we allowed to snoop on the tasks file descriptors? */
1456 if (!proc_fd_access_allowed(inode))
1457 goto out;
1458
1459 error = PROC_I(inode)->op.proc_get_link(inode, &path);
1460 if (error)
1461 goto out;
1462
1463 error = do_proc_readlink(&path, buffer, buflen);
1464 path_put(&path);
1465 out:
1466 return error;
1467 }
1468
1469 static const struct inode_operations proc_pid_link_inode_operations = {
1470 .readlink = proc_pid_readlink,
1471 .follow_link = proc_pid_follow_link,
1472 .setattr = proc_setattr,
1473 };
1474
1475
1476 /* building an inode */
1477
1478 static int task_dumpable(struct task_struct *task)
1479 {
1480 int dumpable = 0;
1481 struct mm_struct *mm;
1482
1483 task_lock(task);
1484 mm = task->mm;
1485 if (mm)
1486 dumpable = get_dumpable(mm);
1487 task_unlock(task);
1488 if(dumpable == 1)
1489 return 1;
1490 return 0;
1491 }
1492
1493
1494 static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1495 {
1496 struct inode * inode;
1497 struct proc_inode *ei;
1498 const struct cred *cred;
1499
1500 /* We need a new inode */
1501
1502 inode = new_inode(sb);
1503 if (!inode)
1504 goto out;
1505
1506 /* Common stuff */
1507 ei = PROC_I(inode);
1508 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1509 inode->i_op = &proc_def_inode_operations;
1510
1511 /*
1512 * grab the reference to task.
1513 */
1514 ei->pid = get_task_pid(task, PIDTYPE_PID);
1515 if (!ei->pid)
1516 goto out_unlock;
1517
1518 if (task_dumpable(task)) {
1519 rcu_read_lock();
1520 cred = __task_cred(task);
1521 inode->i_uid = cred->euid;
1522 inode->i_gid = cred->egid;
1523 rcu_read_unlock();
1524 }
1525 security_task_to_inode(task, inode);
1526
1527 out:
1528 return inode;
1529
1530 out_unlock:
1531 iput(inode);
1532 return NULL;
1533 }
1534
1535 static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1536 {
1537 struct inode *inode = dentry->d_inode;
1538 struct task_struct *task;
1539 const struct cred *cred;
1540
1541 generic_fillattr(inode, stat);
1542
1543 rcu_read_lock();
1544 stat->uid = 0;
1545 stat->gid = 0;
1546 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1547 if (task) {
1548 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1549 task_dumpable(task)) {
1550 cred = __task_cred(task);
1551 stat->uid = cred->euid;
1552 stat->gid = cred->egid;
1553 }
1554 }
1555 rcu_read_unlock();
1556 return 0;
1557 }
1558
1559 /* dentry stuff */
1560
1561 /*
1562 * Exceptional case: normally we are not allowed to unhash a busy
1563 * directory. In this case, however, we can do it - no aliasing problems
1564 * due to the way we treat inodes.
1565 *
1566 * Rewrite the inode's ownerships here because the owning task may have
1567 * performed a setuid(), etc.
1568 *
1569 * Before the /proc/pid/status file was created the only way to read
1570 * the effective uid of a /process was to stat /proc/pid. Reading
1571 * /proc/pid/status is slow enough that procps and other packages
1572 * kept stating /proc/pid. To keep the rules in /proc simple I have
1573 * made this apply to all per process world readable and executable
1574 * directories.
1575 */
1576 static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1577 {
1578 struct inode *inode = dentry->d_inode;
1579 struct task_struct *task = get_proc_task(inode);
1580 const struct cred *cred;
1581
1582 if (task) {
1583 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1584 task_dumpable(task)) {
1585 rcu_read_lock();
1586 cred = __task_cred(task);
1587 inode->i_uid = cred->euid;
1588 inode->i_gid = cred->egid;
1589 rcu_read_unlock();
1590 } else {
1591 inode->i_uid = 0;
1592 inode->i_gid = 0;
1593 }
1594 inode->i_mode &= ~(S_ISUID | S_ISGID);
1595 security_task_to_inode(task, inode);
1596 put_task_struct(task);
1597 return 1;
1598 }
1599 d_drop(dentry);
1600 return 0;
1601 }
1602
1603 static int pid_delete_dentry(struct dentry * dentry)
1604 {
1605 /* Is the task we represent dead?
1606 * If so, then don't put the dentry on the lru list,
1607 * kill it immediately.
1608 */
1609 return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1610 }
1611
1612 static const struct dentry_operations pid_dentry_operations =
1613 {
1614 .d_revalidate = pid_revalidate,
1615 .d_delete = pid_delete_dentry,
1616 };
1617
1618 /* Lookups */
1619
1620 typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
1621 struct task_struct *, const void *);
1622
1623 /*
1624 * Fill a directory entry.
1625 *
1626 * If possible create the dcache entry and derive our inode number and
1627 * file type from dcache entry.
1628 *
1629 * Since all of the proc inode numbers are dynamically generated, the inode
1630 * numbers do not exist until the inode is cache. This means creating the
1631 * the dcache entry in readdir is necessary to keep the inode numbers
1632 * reported by readdir in sync with the inode numbers reported
1633 * by stat.
1634 */
1635 static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1636 char *name, int len,
1637 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1638 {
1639 struct dentry *child, *dir = filp->f_path.dentry;
1640 struct inode *inode;
1641 struct qstr qname;
1642 ino_t ino = 0;
1643 unsigned type = DT_UNKNOWN;
1644
1645 qname.name = name;
1646 qname.len = len;
1647 qname.hash = full_name_hash(name, len);
1648
1649 child = d_lookup(dir, &qname);
1650 if (!child) {
1651 struct dentry *new;
1652 new = d_alloc(dir, &qname);
1653 if (new) {
1654 child = instantiate(dir->d_inode, new, task, ptr);
1655 if (child)
1656 dput(new);
1657 else
1658 child = new;
1659 }
1660 }
1661 if (!child || IS_ERR(child) || !child->d_inode)
1662 goto end_instantiate;
1663 inode = child->d_inode;
1664 if (inode) {
1665 ino = inode->i_ino;
1666 type = inode->i_mode >> 12;
1667 }
1668 dput(child);
1669 end_instantiate:
1670 if (!ino)
1671 ino = find_inode_number(dir, &qname);
1672 if (!ino)
1673 ino = 1;
1674 return filldir(dirent, name, len, filp->f_pos, ino, type);
1675 }
1676
1677 static unsigned name_to_int(struct dentry *dentry)
1678 {
1679 const char *name = dentry->d_name.name;
1680 int len = dentry->d_name.len;
1681 unsigned n = 0;
1682
1683 if (len > 1 && *name == '0')
1684 goto out;
1685 while (len-- > 0) {
1686 unsigned c = *name++ - '0';
1687 if (c > 9)
1688 goto out;
1689 if (n >= (~0U-9)/10)
1690 goto out;
1691 n *= 10;
1692 n += c;
1693 }
1694 return n;
1695 out:
1696 return ~0U;
1697 }
1698
1699 #define PROC_FDINFO_MAX 64
1700
1701 static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1702 {
1703 struct task_struct *task = get_proc_task(inode);
1704 struct files_struct *files = NULL;
1705 struct file *file;
1706 int fd = proc_fd(inode);
1707
1708 if (task) {
1709 files = get_files_struct(task);
1710 put_task_struct(task);
1711 }
1712 if (files) {
1713 /*
1714 * We are not taking a ref to the file structure, so we must
1715 * hold ->file_lock.
1716 */
1717 spin_lock(&files->file_lock);
1718 file = fcheck_files(files, fd);
1719 if (file) {
1720 if (path) {
1721 *path = file->f_path;
1722 path_get(&file->f_path);
1723 }
1724 if (info)
1725 snprintf(info, PROC_FDINFO_MAX,
1726 "pos:\t%lli\n"
1727 "flags:\t0%o\n",
1728 (long long) file->f_pos,
1729 file->f_flags);
1730 spin_unlock(&files->file_lock);
1731 put_files_struct(files);
1732 return 0;
1733 }
1734 spin_unlock(&files->file_lock);
1735 put_files_struct(files);
1736 }
1737 return -ENOENT;
1738 }
1739
1740 static int proc_fd_link(struct inode *inode, struct path *path)
1741 {
1742 return proc_fd_info(inode, path, NULL);
1743 }
1744
1745 static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1746 {
1747 struct inode *inode = dentry->d_inode;
1748 struct task_struct *task = get_proc_task(inode);
1749 int fd = proc_fd(inode);
1750 struct files_struct *files;
1751 const struct cred *cred;
1752
1753 if (task) {
1754 files = get_files_struct(task);
1755 if (files) {
1756 rcu_read_lock();
1757 if (fcheck_files(files, fd)) {
1758 rcu_read_unlock();
1759 put_files_struct(files);
1760 if (task_dumpable(task)) {
1761 rcu_read_lock();
1762 cred = __task_cred(task);
1763 inode->i_uid = cred->euid;
1764 inode->i_gid = cred->egid;
1765 rcu_read_unlock();
1766 } else {
1767 inode->i_uid = 0;
1768 inode->i_gid = 0;
1769 }
1770 inode->i_mode &= ~(S_ISUID | S_ISGID);
1771 security_task_to_inode(task, inode);
1772 put_task_struct(task);
1773 return 1;
1774 }
1775 rcu_read_unlock();
1776 put_files_struct(files);
1777 }
1778 put_task_struct(task);
1779 }
1780 d_drop(dentry);
1781 return 0;
1782 }
1783
1784 static const struct dentry_operations tid_fd_dentry_operations =
1785 {
1786 .d_revalidate = tid_fd_revalidate,
1787 .d_delete = pid_delete_dentry,
1788 };
1789
1790 static struct dentry *proc_fd_instantiate(struct inode *dir,
1791 struct dentry *dentry, struct task_struct *task, const void *ptr)
1792 {
1793 unsigned fd = *(const unsigned *)ptr;
1794 struct file *file;
1795 struct files_struct *files;
1796 struct inode *inode;
1797 struct proc_inode *ei;
1798 struct dentry *error = ERR_PTR(-ENOENT);
1799
1800 inode = proc_pid_make_inode(dir->i_sb, task);
1801 if (!inode)
1802 goto out;
1803 ei = PROC_I(inode);
1804 ei->fd = fd;
1805 files = get_files_struct(task);
1806 if (!files)
1807 goto out_iput;
1808 inode->i_mode = S_IFLNK;
1809
1810 /*
1811 * We are not taking a ref to the file structure, so we must
1812 * hold ->file_lock.
1813 */
1814 spin_lock(&files->file_lock);
1815 file = fcheck_files(files, fd);
1816 if (!file)
1817 goto out_unlock;
1818 if (file->f_mode & FMODE_READ)
1819 inode->i_mode |= S_IRUSR | S_IXUSR;
1820 if (file->f_mode & FMODE_WRITE)
1821 inode->i_mode |= S_IWUSR | S_IXUSR;
1822 spin_unlock(&files->file_lock);
1823 put_files_struct(files);
1824
1825 inode->i_op = &proc_pid_link_inode_operations;
1826 inode->i_size = 64;
1827 ei->op.proc_get_link = proc_fd_link;
1828 dentry->d_op = &tid_fd_dentry_operations;
1829 d_add(dentry, inode);
1830 /* Close the race of the process dying before we return the dentry */
1831 if (tid_fd_revalidate(dentry, NULL))
1832 error = NULL;
1833
1834 out:
1835 return error;
1836 out_unlock:
1837 spin_unlock(&files->file_lock);
1838 put_files_struct(files);
1839 out_iput:
1840 iput(inode);
1841 goto out;
1842 }
1843
1844 static struct dentry *proc_lookupfd_common(struct inode *dir,
1845 struct dentry *dentry,
1846 instantiate_t instantiate)
1847 {
1848 struct task_struct *task = get_proc_task(dir);
1849 unsigned fd = name_to_int(dentry);
1850 struct dentry *result = ERR_PTR(-ENOENT);
1851
1852 if (!task)
1853 goto out_no_task;
1854 if (fd == ~0U)
1855 goto out;
1856
1857 result = instantiate(dir, dentry, task, &fd);
1858 out:
1859 put_task_struct(task);
1860 out_no_task:
1861 return result;
1862 }
1863
1864 static int proc_readfd_common(struct file * filp, void * dirent,
1865 filldir_t filldir, instantiate_t instantiate)
1866 {
1867 struct dentry *dentry = filp->f_path.dentry;
1868 struct inode *inode = dentry->d_inode;
1869 struct task_struct *p = get_proc_task(inode);
1870 unsigned int fd, ino;
1871 int retval;
1872 struct files_struct * files;
1873
1874 retval = -ENOENT;
1875 if (!p)
1876 goto out_no_task;
1877 retval = 0;
1878
1879 fd = filp->f_pos;
1880 switch (fd) {
1881 case 0:
1882 if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1883 goto out;
1884 filp->f_pos++;
1885 case 1:
1886 ino = parent_ino(dentry);
1887 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1888 goto out;
1889 filp->f_pos++;
1890 default:
1891 files = get_files_struct(p);
1892 if (!files)
1893 goto out;
1894 rcu_read_lock();
1895 for (fd = filp->f_pos-2;
1896 fd < files_fdtable(files)->max_fds;
1897 fd++, filp->f_pos++) {
1898 char name[PROC_NUMBUF];
1899 int len;
1900
1901 if (!fcheck_files(files, fd))
1902 continue;
1903 rcu_read_unlock();
1904
1905 len = snprintf(name, sizeof(name), "%d", fd);
1906 if (proc_fill_cache(filp, dirent, filldir,
1907 name, len, instantiate,
1908 p, &fd) < 0) {
1909 rcu_read_lock();
1910 break;
1911 }
1912 rcu_read_lock();
1913 }
1914 rcu_read_unlock();
1915 put_files_struct(files);
1916 }
1917 out:
1918 put_task_struct(p);
1919 out_no_task:
1920 return retval;
1921 }
1922
1923 static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1924 struct nameidata *nd)
1925 {
1926 return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1927 }
1928
1929 static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1930 {
1931 return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1932 }
1933
1934 static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1935 size_t len, loff_t *ppos)
1936 {
1937 char tmp[PROC_FDINFO_MAX];
1938 int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1939 if (!err)
1940 err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1941 return err;
1942 }
1943
1944 static const struct file_operations proc_fdinfo_file_operations = {
1945 .open = nonseekable_open,
1946 .read = proc_fdinfo_read,
1947 };
1948
1949 static const struct file_operations proc_fd_operations = {
1950 .read = generic_read_dir,
1951 .readdir = proc_readfd,
1952 };
1953
1954 /*
1955 * /proc/pid/fd needs a special permission handler so that a process can still
1956 * access /proc/self/fd after it has executed a setuid().
1957 */
1958 static int proc_fd_permission(struct inode *inode, int mask)
1959 {
1960 int rv;
1961
1962 rv = generic_permission(inode, mask, NULL);
1963 if (rv == 0)
1964 return 0;
1965 if (task_pid(current) == proc_pid(inode))
1966 rv = 0;
1967 return rv;
1968 }
1969
1970 /*
1971 * proc directories can do almost nothing..
1972 */
1973 static const struct inode_operations proc_fd_inode_operations = {
1974 .lookup = proc_lookupfd,
1975 .permission = proc_fd_permission,
1976 .setattr = proc_setattr,
1977 };
1978
1979 static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
1980 struct dentry *dentry, struct task_struct *task, const void *ptr)
1981 {
1982 unsigned fd = *(unsigned *)ptr;
1983 struct inode *inode;
1984 struct proc_inode *ei;
1985 struct dentry *error = ERR_PTR(-ENOENT);
1986
1987 inode = proc_pid_make_inode(dir->i_sb, task);
1988 if (!inode)
1989 goto out;
1990 ei = PROC_I(inode);
1991 ei->fd = fd;
1992 inode->i_mode = S_IFREG | S_IRUSR;
1993 inode->i_fop = &proc_fdinfo_file_operations;
1994 dentry->d_op = &tid_fd_dentry_operations;
1995 d_add(dentry, inode);
1996 /* Close the race of the process dying before we return the dentry */
1997 if (tid_fd_revalidate(dentry, NULL))
1998 error = NULL;
1999
2000 out:
2001 return error;
2002 }
2003
2004 static struct dentry *proc_lookupfdinfo(struct inode *dir,
2005 struct dentry *dentry,
2006 struct nameidata *nd)
2007 {
2008 return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
2009 }
2010
2011 static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2012 {
2013 return proc_readfd_common(filp, dirent, filldir,
2014 proc_fdinfo_instantiate);
2015 }
2016
2017 static const struct file_operations proc_fdinfo_operations = {
2018 .read = generic_read_dir,
2019 .readdir = proc_readfdinfo,
2020 };
2021
2022 /*
2023 * proc directories can do almost nothing..
2024 */
2025 static const struct inode_operations proc_fdinfo_inode_operations = {
2026 .lookup = proc_lookupfdinfo,
2027 .setattr = proc_setattr,
2028 };
2029
2030
2031 static struct dentry *proc_pident_instantiate(struct inode *dir,
2032 struct dentry *dentry, struct task_struct *task, const void *ptr)
2033 {
2034 const struct pid_entry *p = ptr;
2035 struct inode *inode;
2036 struct proc_inode *ei;
2037 struct dentry *error = ERR_PTR(-ENOENT);
2038
2039 inode = proc_pid_make_inode(dir->i_sb, task);
2040 if (!inode)
2041 goto out;
2042
2043 ei = PROC_I(inode);
2044 inode->i_mode = p->mode;
2045 if (S_ISDIR(inode->i_mode))
2046 inode->i_nlink = 2; /* Use getattr to fix if necessary */
2047 if (p->iop)
2048 inode->i_op = p->iop;
2049 if (p->fop)
2050 inode->i_fop = p->fop;
2051 ei->op = p->op;
2052 dentry->d_op = &pid_dentry_operations;
2053 d_add(dentry, inode);
2054 /* Close the race of the process dying before we return the dentry */
2055 if (pid_revalidate(dentry, NULL))
2056 error = NULL;
2057 out:
2058 return error;
2059 }
2060
2061 static struct dentry *proc_pident_lookup(struct inode *dir,
2062 struct dentry *dentry,
2063 const struct pid_entry *ents,
2064 unsigned int nents)
2065 {
2066 struct dentry *error;
2067 struct task_struct *task = get_proc_task(dir);
2068 const struct pid_entry *p, *last;
2069
2070 error = ERR_PTR(-ENOENT);
2071
2072 if (!task)
2073 goto out_no_task;
2074
2075 /*
2076 * Yes, it does not scale. And it should not. Don't add
2077 * new entries into /proc/<tgid>/ without very good reasons.
2078 */
2079 last = &ents[nents - 1];
2080 for (p = ents; p <= last; p++) {
2081 if (p->len != dentry->d_name.len)
2082 continue;
2083 if (!memcmp(dentry->d_name.name, p->name, p->len))
2084 break;
2085 }
2086 if (p > last)
2087 goto out;
2088
2089 error = proc_pident_instantiate(dir, dentry, task, p);
2090 out:
2091 put_task_struct(task);
2092 out_no_task:
2093 return error;
2094 }
2095
2096 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2097 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2098 {
2099 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2100 proc_pident_instantiate, task, p);
2101 }
2102
2103 static int proc_pident_readdir(struct file *filp,
2104 void *dirent, filldir_t filldir,
2105 const struct pid_entry *ents, unsigned int nents)
2106 {
2107 int i;
2108 struct dentry *dentry = filp->f_path.dentry;
2109 struct inode *inode = dentry->d_inode;
2110 struct task_struct *task = get_proc_task(inode);
2111 const struct pid_entry *p, *last;
2112 ino_t ino;
2113 int ret;
2114
2115 ret = -ENOENT;
2116 if (!task)
2117 goto out_no_task;
2118
2119 ret = 0;
2120 i = filp->f_pos;
2121 switch (i) {
2122 case 0:
2123 ino = inode->i_ino;
2124 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2125 goto out;
2126 i++;
2127 filp->f_pos++;
2128 /* fall through */
2129 case 1:
2130 ino = parent_ino(dentry);
2131 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2132 goto out;
2133 i++;
2134 filp->f_pos++;
2135 /* fall through */
2136 default:
2137 i -= 2;
2138 if (i >= nents) {
2139 ret = 1;
2140 goto out;
2141 }
2142 p = ents + i;
2143 last = &ents[nents - 1];
2144 while (p <= last) {
2145 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2146 goto out;
2147 filp->f_pos++;
2148 p++;
2149 }
2150 }
2151
2152 ret = 1;
2153 out:
2154 put_task_struct(task);
2155 out_no_task:
2156 return ret;
2157 }
2158
2159 #ifdef CONFIG_SECURITY
2160 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2161 size_t count, loff_t *ppos)
2162 {
2163 struct inode * inode = file->f_path.dentry->d_inode;
2164 char *p = NULL;
2165 ssize_t length;
2166 struct task_struct *task = get_proc_task(inode);
2167
2168 if (!task)
2169 return -ESRCH;
2170
2171 length = security_getprocattr(task,
2172 (char*)file->f_path.dentry->d_name.name,
2173 &p);
2174 put_task_struct(task);
2175 if (length > 0)
2176 length = simple_read_from_buffer(buf, count, ppos, p, length);
2177 kfree(p);
2178 return length;
2179 }
2180
2181 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2182 size_t count, loff_t *ppos)
2183 {
2184 struct inode * inode = file->f_path.dentry->d_inode;
2185 char *page;
2186 ssize_t length;
2187 struct task_struct *task = get_proc_task(inode);
2188
2189 length = -ESRCH;
2190 if (!task)
2191 goto out_no_task;
2192 if (count > PAGE_SIZE)
2193 count = PAGE_SIZE;
2194
2195 /* No partial writes. */
2196 length = -EINVAL;
2197 if (*ppos != 0)
2198 goto out;
2199
2200 length = -ENOMEM;
2201 page = (char*)__get_free_page(GFP_TEMPORARY);
2202 if (!page)
2203 goto out;
2204
2205 length = -EFAULT;
2206 if (copy_from_user(page, buf, count))
2207 goto out_free;
2208
2209 /* Guard against adverse ptrace interaction */
2210 length = mutex_lock_interruptible(&task->cred_guard_mutex);
2211 if (length < 0)
2212 goto out_free;
2213
2214 length = security_setprocattr(task,
2215 (char*)file->f_path.dentry->d_name.name,
2216 (void*)page, count);
2217 mutex_unlock(&task->cred_guard_mutex);
2218 out_free:
2219 free_page((unsigned long) page);
2220 out:
2221 put_task_struct(task);
2222 out_no_task:
2223 return length;
2224 }
2225
2226 static const struct file_operations proc_pid_attr_operations = {
2227 .read = proc_pid_attr_read,
2228 .write = proc_pid_attr_write,
2229 };
2230
2231 static const struct pid_entry attr_dir_stuff[] = {
2232 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2233 REG("prev", S_IRUGO, proc_pid_attr_operations),
2234 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2235 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2236 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2237 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2238 };
2239
2240 static int proc_attr_dir_readdir(struct file * filp,
2241 void * dirent, filldir_t filldir)
2242 {
2243 return proc_pident_readdir(filp,dirent,filldir,
2244 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2245 }
2246
2247 static const struct file_operations proc_attr_dir_operations = {
2248 .read = generic_read_dir,
2249 .readdir = proc_attr_dir_readdir,
2250 };
2251
2252 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2253 struct dentry *dentry, struct nameidata *nd)
2254 {
2255 return proc_pident_lookup(dir, dentry,
2256 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2257 }
2258
2259 static const struct inode_operations proc_attr_dir_inode_operations = {
2260 .lookup = proc_attr_dir_lookup,
2261 .getattr = pid_getattr,
2262 .setattr = proc_setattr,
2263 };
2264
2265 #endif
2266
2267 #ifdef CONFIG_ELF_CORE
2268 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2269 size_t count, loff_t *ppos)
2270 {
2271 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2272 struct mm_struct *mm;
2273 char buffer[PROC_NUMBUF];
2274 size_t len;
2275 int ret;
2276
2277 if (!task)
2278 return -ESRCH;
2279
2280 ret = 0;
2281 mm = get_task_mm(task);
2282 if (mm) {
2283 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2284 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2285 MMF_DUMP_FILTER_SHIFT));
2286 mmput(mm);
2287 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2288 }
2289
2290 put_task_struct(task);
2291
2292 return ret;
2293 }
2294
2295 static ssize_t proc_coredump_filter_write(struct file *file,
2296 const char __user *buf,
2297 size_t count,
2298 loff_t *ppos)
2299 {
2300 struct task_struct *task;
2301 struct mm_struct *mm;
2302 char buffer[PROC_NUMBUF], *end;
2303 unsigned int val;
2304 int ret;
2305 int i;
2306 unsigned long mask;
2307
2308 ret = -EFAULT;
2309 memset(buffer, 0, sizeof(buffer));
2310 if (count > sizeof(buffer) - 1)
2311 count = sizeof(buffer) - 1;
2312 if (copy_from_user(buffer, buf, count))
2313 goto out_no_task;
2314
2315 ret = -EINVAL;
2316 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2317 if (*end == '\n')
2318 end++;
2319 if (end - buffer == 0)
2320 goto out_no_task;
2321
2322 ret = -ESRCH;
2323 task = get_proc_task(file->f_dentry->d_inode);
2324 if (!task)
2325 goto out_no_task;
2326
2327 ret = end - buffer;
2328 mm = get_task_mm(task);
2329 if (!mm)
2330 goto out_no_mm;
2331
2332 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2333 if (val & mask)
2334 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2335 else
2336 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2337 }
2338
2339 mmput(mm);
2340 out_no_mm:
2341 put_task_struct(task);
2342 out_no_task:
2343 return ret;
2344 }
2345
2346 static const struct file_operations proc_coredump_filter_operations = {
2347 .read = proc_coredump_filter_read,
2348 .write = proc_coredump_filter_write,
2349 };
2350 #endif
2351
2352 /*
2353 * /proc/self:
2354 */
2355 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2356 int buflen)
2357 {
2358 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2359 pid_t tgid = task_tgid_nr_ns(current, ns);
2360 char tmp[PROC_NUMBUF];
2361 if (!tgid)
2362 return -ENOENT;
2363 sprintf(tmp, "%d", tgid);
2364 return vfs_readlink(dentry,buffer,buflen,tmp);
2365 }
2366
2367 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2368 {
2369 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2370 pid_t tgid = task_tgid_nr_ns(current, ns);
2371 char *name = ERR_PTR(-ENOENT);
2372 if (tgid) {
2373 name = __getname();
2374 if (!name)
2375 name = ERR_PTR(-ENOMEM);
2376 else
2377 sprintf(name, "%d", tgid);
2378 }
2379 nd_set_link(nd, name);
2380 return NULL;
2381 }
2382
2383 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2384 void *cookie)
2385 {
2386 char *s = nd_get_link(nd);
2387 if (!IS_ERR(s))
2388 __putname(s);
2389 }
2390
2391 static const struct inode_operations proc_self_inode_operations = {
2392 .readlink = proc_self_readlink,
2393 .follow_link = proc_self_follow_link,
2394 .put_link = proc_self_put_link,
2395 };
2396
2397 /*
2398 * proc base
2399 *
2400 * These are the directory entries in the root directory of /proc
2401 * that properly belong to the /proc filesystem, as they describe
2402 * describe something that is process related.
2403 */
2404 static const struct pid_entry proc_base_stuff[] = {
2405 NOD("self", S_IFLNK|S_IRWXUGO,
2406 &proc_self_inode_operations, NULL, {}),
2407 };
2408
2409 /*
2410 * Exceptional case: normally we are not allowed to unhash a busy
2411 * directory. In this case, however, we can do it - no aliasing problems
2412 * due to the way we treat inodes.
2413 */
2414 static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
2415 {
2416 struct inode *inode = dentry->d_inode;
2417 struct task_struct *task = get_proc_task(inode);
2418 if (task) {
2419 put_task_struct(task);
2420 return 1;
2421 }
2422 d_drop(dentry);
2423 return 0;
2424 }
2425
2426 static const struct dentry_operations proc_base_dentry_operations =
2427 {
2428 .d_revalidate = proc_base_revalidate,
2429 .d_delete = pid_delete_dentry,
2430 };
2431
2432 static struct dentry *proc_base_instantiate(struct inode *dir,
2433 struct dentry *dentry, struct task_struct *task, const void *ptr)
2434 {
2435 const struct pid_entry *p = ptr;
2436 struct inode *inode;
2437 struct proc_inode *ei;
2438 struct dentry *error = ERR_PTR(-EINVAL);
2439
2440 /* Allocate the inode */
2441 error = ERR_PTR(-ENOMEM);
2442 inode = new_inode(dir->i_sb);
2443 if (!inode)
2444 goto out;
2445
2446 /* Initialize the inode */
2447 ei = PROC_I(inode);
2448 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2449
2450 /*
2451 * grab the reference to the task.
2452 */
2453 ei->pid = get_task_pid(task, PIDTYPE_PID);
2454 if (!ei->pid)
2455 goto out_iput;
2456
2457 inode->i_mode = p->mode;
2458 if (S_ISDIR(inode->i_mode))
2459 inode->i_nlink = 2;
2460 if (S_ISLNK(inode->i_mode))
2461 inode->i_size = 64;
2462 if (p->iop)
2463 inode->i_op = p->iop;
2464 if (p->fop)
2465 inode->i_fop = p->fop;
2466 ei->op = p->op;
2467 dentry->d_op = &proc_base_dentry_operations;
2468 d_add(dentry, inode);
2469 error = NULL;
2470 out:
2471 return error;
2472 out_iput:
2473 iput(inode);
2474 goto out;
2475 }
2476
2477 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2478 {
2479 struct dentry *error;
2480 struct task_struct *task = get_proc_task(dir);
2481 const struct pid_entry *p, *last;
2482
2483 error = ERR_PTR(-ENOENT);
2484
2485 if (!task)
2486 goto out_no_task;
2487
2488 /* Lookup the directory entry */
2489 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2490 for (p = proc_base_stuff; p <= last; p++) {
2491 if (p->len != dentry->d_name.len)
2492 continue;
2493 if (!memcmp(dentry->d_name.name, p->name, p->len))
2494 break;
2495 }
2496 if (p > last)
2497 goto out;
2498
2499 error = proc_base_instantiate(dir, dentry, task, p);
2500
2501 out:
2502 put_task_struct(task);
2503 out_no_task:
2504 return error;
2505 }
2506
2507 static int proc_base_fill_cache(struct file *filp, void *dirent,
2508 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2509 {
2510 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2511 proc_base_instantiate, task, p);
2512 }
2513
2514 #ifdef CONFIG_TASK_IO_ACCOUNTING
2515 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2516 {
2517 struct task_io_accounting acct = task->ioac;
2518 unsigned long flags;
2519
2520 if (whole && lock_task_sighand(task, &flags)) {
2521 struct task_struct *t = task;
2522
2523 task_io_accounting_add(&acct, &task->signal->ioac);
2524 while_each_thread(task, t)
2525 task_io_accounting_add(&acct, &t->ioac);
2526
2527 unlock_task_sighand(task, &flags);
2528 }
2529 return sprintf(buffer,
2530 "rchar: %llu\n"
2531 "wchar: %llu\n"
2532 "syscr: %llu\n"
2533 "syscw: %llu\n"
2534 "read_bytes: %llu\n"
2535 "write_bytes: %llu\n"
2536 "cancelled_write_bytes: %llu\n",
2537 (unsigned long long)acct.rchar,
2538 (unsigned long long)acct.wchar,
2539 (unsigned long long)acct.syscr,
2540 (unsigned long long)acct.syscw,
2541 (unsigned long long)acct.read_bytes,
2542 (unsigned long long)acct.write_bytes,
2543 (unsigned long long)acct.cancelled_write_bytes);
2544 }
2545
2546 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2547 {
2548 return do_io_accounting(task, buffer, 0);
2549 }
2550
2551 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2552 {
2553 return do_io_accounting(task, buffer, 1);
2554 }
2555 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2556
2557 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2558 struct pid *pid, struct task_struct *task)
2559 {
2560 seq_printf(m, "%08x\n", task->personality);
2561 return 0;
2562 }
2563
2564 /*
2565 * Thread groups
2566 */
2567 static const struct file_operations proc_task_operations;
2568 static const struct inode_operations proc_task_inode_operations;
2569
2570 static const struct pid_entry tgid_base_stuff[] = {
2571 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2572 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2573 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2574 #ifdef CONFIG_NET
2575 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2576 #endif
2577 REG("environ", S_IRUSR, proc_environ_operations),
2578 INF("auxv", S_IRUSR, proc_pid_auxv),
2579 ONE("status", S_IRUGO, proc_pid_status),
2580 ONE("personality", S_IRUSR, proc_pid_personality),
2581 INF("limits", S_IRUSR, proc_pid_limits),
2582 #ifdef CONFIG_SCHED_DEBUG
2583 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2584 #endif
2585 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2586 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2587 INF("syscall", S_IRUSR, proc_pid_syscall),
2588 #endif
2589 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2590 ONE("stat", S_IRUGO, proc_tgid_stat),
2591 ONE("statm", S_IRUGO, proc_pid_statm),
2592 REG("maps", S_IRUGO, proc_maps_operations),
2593 #ifdef CONFIG_NUMA
2594 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2595 #endif
2596 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2597 LNK("cwd", proc_cwd_link),
2598 LNK("root", proc_root_link),
2599 LNK("exe", proc_exe_link),
2600 REG("mounts", S_IRUGO, proc_mounts_operations),
2601 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2602 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2603 #ifdef CONFIG_PROC_PAGE_MONITOR
2604 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2605 REG("smaps", S_IRUGO, proc_smaps_operations),
2606 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2607 #endif
2608 #ifdef CONFIG_SECURITY
2609 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2610 #endif
2611 #ifdef CONFIG_KALLSYMS
2612 INF("wchan", S_IRUGO, proc_pid_wchan),
2613 #endif
2614 #ifdef CONFIG_STACKTRACE
2615 ONE("stack", S_IRUSR, proc_pid_stack),
2616 #endif
2617 #ifdef CONFIG_SCHEDSTATS
2618 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2619 #endif
2620 #ifdef CONFIG_LATENCYTOP
2621 REG("latency", S_IRUGO, proc_lstats_operations),
2622 #endif
2623 #ifdef CONFIG_PROC_PID_CPUSET
2624 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2625 #endif
2626 #ifdef CONFIG_CGROUPS
2627 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2628 #endif
2629 INF("oom_score", S_IRUGO, proc_oom_score),
2630 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2631 #ifdef CONFIG_AUDITSYSCALL
2632 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2633 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2634 #endif
2635 #ifdef CONFIG_FAULT_INJECTION
2636 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2637 #endif
2638 #ifdef CONFIG_ELF_CORE
2639 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2640 #endif
2641 #ifdef CONFIG_TASK_IO_ACCOUNTING
2642 INF("io", S_IRUGO, proc_tgid_io_accounting),
2643 #endif
2644 };
2645
2646 static int proc_tgid_base_readdir(struct file * filp,
2647 void * dirent, filldir_t filldir)
2648 {
2649 return proc_pident_readdir(filp,dirent,filldir,
2650 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2651 }
2652
2653 static const struct file_operations proc_tgid_base_operations = {
2654 .read = generic_read_dir,
2655 .readdir = proc_tgid_base_readdir,
2656 };
2657
2658 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2659 return proc_pident_lookup(dir, dentry,
2660 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2661 }
2662
2663 static const struct inode_operations proc_tgid_base_inode_operations = {
2664 .lookup = proc_tgid_base_lookup,
2665 .getattr = pid_getattr,
2666 .setattr = proc_setattr,
2667 };
2668
2669 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2670 {
2671 struct dentry *dentry, *leader, *dir;
2672 char buf[PROC_NUMBUF];
2673 struct qstr name;
2674
2675 name.name = buf;
2676 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2677 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2678 if (dentry) {
2679 shrink_dcache_parent(dentry);
2680 d_drop(dentry);
2681 dput(dentry);
2682 }
2683
2684 name.name = buf;
2685 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2686 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2687 if (!leader)
2688 goto out;
2689
2690 name.name = "task";
2691 name.len = strlen(name.name);
2692 dir = d_hash_and_lookup(leader, &name);
2693 if (!dir)
2694 goto out_put_leader;
2695
2696 name.name = buf;
2697 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2698 dentry = d_hash_and_lookup(dir, &name);
2699 if (dentry) {
2700 shrink_dcache_parent(dentry);
2701 d_drop(dentry);
2702 dput(dentry);
2703 }
2704
2705 dput(dir);
2706 out_put_leader:
2707 dput(leader);
2708 out:
2709 return;
2710 }
2711
2712 /**
2713 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2714 * @task: task that should be flushed.
2715 *
2716 * When flushing dentries from proc, one needs to flush them from global
2717 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2718 * in. This call is supposed to do all of this job.
2719 *
2720 * Looks in the dcache for
2721 * /proc/@pid
2722 * /proc/@tgid/task/@pid
2723 * if either directory is present flushes it and all of it'ts children
2724 * from the dcache.
2725 *
2726 * It is safe and reasonable to cache /proc entries for a task until
2727 * that task exits. After that they just clog up the dcache with
2728 * useless entries, possibly causing useful dcache entries to be
2729 * flushed instead. This routine is proved to flush those useless
2730 * dcache entries at process exit time.
2731 *
2732 * NOTE: This routine is just an optimization so it does not guarantee
2733 * that no dcache entries will exist at process exit time it
2734 * just makes it very unlikely that any will persist.
2735 */
2736
2737 void proc_flush_task(struct task_struct *task)
2738 {
2739 int i;
2740 struct pid *pid, *tgid;
2741 struct upid *upid;
2742
2743 pid = task_pid(task);
2744 tgid = task_tgid(task);
2745
2746 for (i = 0; i <= pid->level; i++) {
2747 upid = &pid->numbers[i];
2748 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2749 tgid->numbers[i].nr);
2750 }
2751
2752 upid = &pid->numbers[pid->level];
2753 if (upid->nr == 1)
2754 pid_ns_release_proc(upid->ns);
2755 }
2756
2757 static struct dentry *proc_pid_instantiate(struct inode *dir,
2758 struct dentry * dentry,
2759 struct task_struct *task, const void *ptr)
2760 {
2761 struct dentry *error = ERR_PTR(-ENOENT);
2762 struct inode *inode;
2763
2764 inode = proc_pid_make_inode(dir->i_sb, task);
2765 if (!inode)
2766 goto out;
2767
2768 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2769 inode->i_op = &proc_tgid_base_inode_operations;
2770 inode->i_fop = &proc_tgid_base_operations;
2771 inode->i_flags|=S_IMMUTABLE;
2772
2773 inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
2774 ARRAY_SIZE(tgid_base_stuff));
2775
2776 dentry->d_op = &pid_dentry_operations;
2777
2778 d_add(dentry, inode);
2779 /* Close the race of the process dying before we return the dentry */
2780 if (pid_revalidate(dentry, NULL))
2781 error = NULL;
2782 out:
2783 return error;
2784 }
2785
2786 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
2787 {
2788 struct dentry *result = ERR_PTR(-ENOENT);
2789 struct task_struct *task;
2790 unsigned tgid;
2791 struct pid_namespace *ns;
2792
2793 result = proc_base_lookup(dir, dentry);
2794 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2795 goto out;
2796
2797 tgid = name_to_int(dentry);
2798 if (tgid == ~0U)
2799 goto out;
2800
2801 ns = dentry->d_sb->s_fs_info;
2802 rcu_read_lock();
2803 task = find_task_by_pid_ns(tgid, ns);
2804 if (task)
2805 get_task_struct(task);
2806 rcu_read_unlock();
2807 if (!task)
2808 goto out;
2809
2810 result = proc_pid_instantiate(dir, dentry, task, NULL);
2811 put_task_struct(task);
2812 out:
2813 return result;
2814 }
2815
2816 /*
2817 * Find the first task with tgid >= tgid
2818 *
2819 */
2820 struct tgid_iter {
2821 unsigned int tgid;
2822 struct task_struct *task;
2823 };
2824 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2825 {
2826 struct pid *pid;
2827
2828 if (iter.task)
2829 put_task_struct(iter.task);
2830 rcu_read_lock();
2831 retry:
2832 iter.task = NULL;
2833 pid = find_ge_pid(iter.tgid, ns);
2834 if (pid) {
2835 iter.tgid = pid_nr_ns(pid, ns);
2836 iter.task = pid_task(pid, PIDTYPE_PID);
2837 /* What we to know is if the pid we have find is the
2838 * pid of a thread_group_leader. Testing for task
2839 * being a thread_group_leader is the obvious thing
2840 * todo but there is a window when it fails, due to
2841 * the pid transfer logic in de_thread.
2842 *
2843 * So we perform the straight forward test of seeing
2844 * if the pid we have found is the pid of a thread
2845 * group leader, and don't worry if the task we have
2846 * found doesn't happen to be a thread group leader.
2847 * As we don't care in the case of readdir.
2848 */
2849 if (!iter.task || !has_group_leader_pid(iter.task)) {
2850 iter.tgid += 1;
2851 goto retry;
2852 }
2853 get_task_struct(iter.task);
2854 }
2855 rcu_read_unlock();
2856 return iter;
2857 }
2858
2859 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2860
2861 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2862 struct tgid_iter iter)
2863 {
2864 char name[PROC_NUMBUF];
2865 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2866 return proc_fill_cache(filp, dirent, filldir, name, len,
2867 proc_pid_instantiate, iter.task, NULL);
2868 }
2869
2870 /* for the /proc/ directory itself, after non-process stuff has been done */
2871 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2872 {
2873 unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2874 struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
2875 struct tgid_iter iter;
2876 struct pid_namespace *ns;
2877
2878 if (!reaper)
2879 goto out_no_task;
2880
2881 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2882 const struct pid_entry *p = &proc_base_stuff[nr];
2883 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2884 goto out;
2885 }
2886
2887 ns = filp->f_dentry->d_sb->s_fs_info;
2888 iter.task = NULL;
2889 iter.tgid = filp->f_pos - TGID_OFFSET;
2890 for (iter = next_tgid(ns, iter);
2891 iter.task;
2892 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2893 filp->f_pos = iter.tgid + TGID_OFFSET;
2894 if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
2895 put_task_struct(iter.task);
2896 goto out;
2897 }
2898 }
2899 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2900 out:
2901 put_task_struct(reaper);
2902 out_no_task:
2903 return 0;
2904 }
2905
2906 /*
2907 * Tasks
2908 */
2909 static const struct pid_entry tid_base_stuff[] = {
2910 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2911 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
2912 REG("environ", S_IRUSR, proc_environ_operations),
2913 INF("auxv", S_IRUSR, proc_pid_auxv),
2914 ONE("status", S_IRUGO, proc_pid_status),
2915 ONE("personality", S_IRUSR, proc_pid_personality),
2916 INF("limits", S_IRUSR, proc_pid_limits),
2917 #ifdef CONFIG_SCHED_DEBUG
2918 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2919 #endif
2920 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2921 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2922 INF("syscall", S_IRUSR, proc_pid_syscall),
2923 #endif
2924 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2925 ONE("stat", S_IRUGO, proc_tid_stat),
2926 ONE("statm", S_IRUGO, proc_pid_statm),
2927 REG("maps", S_IRUGO, proc_maps_operations),
2928 #ifdef CONFIG_NUMA
2929 REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
2930 #endif
2931 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2932 LNK("cwd", proc_cwd_link),
2933 LNK("root", proc_root_link),
2934 LNK("exe", proc_exe_link),
2935 REG("mounts", S_IRUGO, proc_mounts_operations),
2936 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2937 #ifdef CONFIG_PROC_PAGE_MONITOR
2938 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2939 REG("smaps", S_IRUGO, proc_smaps_operations),
2940 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2941 #endif
2942 #ifdef CONFIG_SECURITY
2943 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2944 #endif
2945 #ifdef CONFIG_KALLSYMS
2946 INF("wchan", S_IRUGO, proc_pid_wchan),
2947 #endif
2948 #ifdef CONFIG_STACKTRACE
2949 ONE("stack", S_IRUSR, proc_pid_stack),
2950 #endif
2951 #ifdef CONFIG_SCHEDSTATS
2952 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2953 #endif
2954 #ifdef CONFIG_LATENCYTOP
2955 REG("latency", S_IRUGO, proc_lstats_operations),
2956 #endif
2957 #ifdef CONFIG_PROC_PID_CPUSET
2958 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2959 #endif
2960 #ifdef CONFIG_CGROUPS
2961 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2962 #endif
2963 INF("oom_score", S_IRUGO, proc_oom_score),
2964 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2965 #ifdef CONFIG_AUDITSYSCALL
2966 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2967 REG("sessionid", S_IRUSR, proc_sessionid_operations),
2968 #endif
2969 #ifdef CONFIG_FAULT_INJECTION
2970 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2971 #endif
2972 #ifdef CONFIG_TASK_IO_ACCOUNTING
2973 INF("io", S_IRUGO, proc_tid_io_accounting),
2974 #endif
2975 };
2976
2977 static int proc_tid_base_readdir(struct file * filp,
2978 void * dirent, filldir_t filldir)
2979 {
2980 return proc_pident_readdir(filp,dirent,filldir,
2981 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2982 }
2983
2984 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
2985 return proc_pident_lookup(dir, dentry,
2986 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2987 }
2988
2989 static const struct file_operations proc_tid_base_operations = {
2990 .read = generic_read_dir,
2991 .readdir = proc_tid_base_readdir,
2992 };
2993
2994 static const struct inode_operations proc_tid_base_inode_operations = {
2995 .lookup = proc_tid_base_lookup,
2996 .getattr = pid_getattr,
2997 .setattr = proc_setattr,
2998 };
2999
3000 static struct dentry *proc_task_instantiate(struct inode *dir,
3001 struct dentry *dentry, struct task_struct *task, const void *ptr)
3002 {
3003 struct dentry *error = ERR_PTR(-ENOENT);
3004 struct inode *inode;
3005 inode = proc_pid_make_inode(dir->i_sb, task);
3006
3007 if (!inode)
3008 goto out;
3009 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3010 inode->i_op = &proc_tid_base_inode_operations;
3011 inode->i_fop = &proc_tid_base_operations;
3012 inode->i_flags|=S_IMMUTABLE;
3013
3014 inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
3015 ARRAY_SIZE(tid_base_stuff));
3016
3017 dentry->d_op = &pid_dentry_operations;
3018
3019 d_add(dentry, inode);
3020 /* Close the race of the process dying before we return the dentry */
3021 if (pid_revalidate(dentry, NULL))
3022 error = NULL;
3023 out:
3024 return error;
3025 }
3026
3027 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3028 {
3029 struct dentry *result = ERR_PTR(-ENOENT);
3030 struct task_struct *task;
3031 struct task_struct *leader = get_proc_task(dir);
3032 unsigned tid;
3033 struct pid_namespace *ns;
3034
3035 if (!leader)
3036 goto out_no_task;
3037
3038 tid = name_to_int(dentry);
3039 if (tid == ~0U)
3040 goto out;
3041
3042 ns = dentry->d_sb->s_fs_info;
3043 rcu_read_lock();
3044 task = find_task_by_pid_ns(tid, ns);
3045 if (task)
3046 get_task_struct(task);
3047 rcu_read_unlock();
3048 if (!task)
3049 goto out;
3050 if (!same_thread_group(leader, task))
3051 goto out_drop_task;
3052
3053 result = proc_task_instantiate(dir, dentry, task, NULL);
3054 out_drop_task:
3055 put_task_struct(task);
3056 out:
3057 put_task_struct(leader);
3058 out_no_task:
3059 return result;
3060 }
3061
3062 /*
3063 * Find the first tid of a thread group to return to user space.
3064 *
3065 * Usually this is just the thread group leader, but if the users
3066 * buffer was too small or there was a seek into the middle of the
3067 * directory we have more work todo.
3068 *
3069 * In the case of a short read we start with find_task_by_pid.
3070 *
3071 * In the case of a seek we start with the leader and walk nr
3072 * threads past it.
3073 */
3074 static struct task_struct *first_tid(struct task_struct *leader,
3075 int tid, int nr, struct pid_namespace *ns)
3076 {
3077 struct task_struct *pos;
3078
3079 rcu_read_lock();
3080 /* Attempt to start with the pid of a thread */
3081 if (tid && (nr > 0)) {
3082 pos = find_task_by_pid_ns(tid, ns);
3083 if (pos && (pos->group_leader == leader))
3084 goto found;
3085 }
3086
3087 /* If nr exceeds the number of threads there is nothing todo */
3088 pos = NULL;
3089 if (nr && nr >= get_nr_threads(leader))
3090 goto out;
3091
3092 /* If we haven't found our starting place yet start
3093 * with the leader and walk nr threads forward.
3094 */
3095 for (pos = leader; nr > 0; --nr) {
3096 pos = next_thread(pos);
3097 if (pos == leader) {
3098 pos = NULL;
3099 goto out;
3100 }
3101 }
3102 found:
3103 get_task_struct(pos);
3104 out:
3105 rcu_read_unlock();
3106 return pos;
3107 }
3108
3109 /*
3110 * Find the next thread in the thread list.
3111 * Return NULL if there is an error or no next thread.
3112 *
3113 * The reference to the input task_struct is released.
3114 */
3115 static struct task_struct *next_tid(struct task_struct *start)
3116 {
3117 struct task_struct *pos = NULL;
3118 rcu_read_lock();
3119 if (pid_alive(start)) {
3120 pos = next_thread(start);
3121 if (thread_group_leader(pos))
3122 pos = NULL;
3123 else
3124 get_task_struct(pos);
3125 }
3126 rcu_read_unlock();
3127 put_task_struct(start);
3128 return pos;
3129 }
3130
3131 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3132 struct task_struct *task, int tid)
3133 {
3134 char name[PROC_NUMBUF];
3135 int len = snprintf(name, sizeof(name), "%d", tid);
3136 return proc_fill_cache(filp, dirent, filldir, name, len,
3137 proc_task_instantiate, task, NULL);
3138 }
3139
3140 /* for the /proc/TGID/task/ directories */
3141 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3142 {
3143 struct dentry *dentry = filp->f_path.dentry;
3144 struct inode *inode = dentry->d_inode;
3145 struct task_struct *leader = NULL;
3146 struct task_struct *task;
3147 int retval = -ENOENT;
3148 ino_t ino;
3149 int tid;
3150 struct pid_namespace *ns;
3151
3152 task = get_proc_task(inode);
3153 if (!task)
3154 goto out_no_task;
3155 rcu_read_lock();
3156 if (pid_alive(task)) {
3157 leader = task->group_leader;
3158 get_task_struct(leader);
3159 }
3160 rcu_read_unlock();
3161 put_task_struct(task);
3162 if (!leader)
3163 goto out_no_task;
3164 retval = 0;
3165
3166 switch ((unsigned long)filp->f_pos) {
3167 case 0:
3168 ino = inode->i_ino;
3169 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3170 goto out;
3171 filp->f_pos++;
3172 /* fall through */
3173 case 1:
3174 ino = parent_ino(dentry);
3175 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3176 goto out;
3177 filp->f_pos++;
3178 /* fall through */
3179 }
3180
3181 /* f_version caches the tgid value that the last readdir call couldn't
3182 * return. lseek aka telldir automagically resets f_version to 0.
3183 */
3184 ns = filp->f_dentry->d_sb->s_fs_info;
3185 tid = (int)filp->f_version;
3186 filp->f_version = 0;
3187 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3188 task;
3189 task = next_tid(task), filp->f_pos++) {
3190 tid = task_pid_nr_ns(task, ns);
3191 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3192 /* returning this tgid failed, save it as the first
3193 * pid for the next readir call */
3194 filp->f_version = (u64)tid;
3195 put_task_struct(task);
3196 break;
3197 }
3198 }
3199 out:
3200 put_task_struct(leader);
3201 out_no_task:
3202 return retval;
3203 }
3204
3205 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3206 {
3207 struct inode *inode = dentry->d_inode;
3208 struct task_struct *p = get_proc_task(inode);
3209 generic_fillattr(inode, stat);
3210
3211 if (p) {
3212 stat->nlink += get_nr_threads(p);
3213 put_task_struct(p);
3214 }
3215
3216 return 0;
3217 }
3218
3219 static const struct inode_operations proc_task_inode_operations = {
3220 .lookup = proc_task_lookup,
3221 .getattr = proc_task_getattr,
3222 .setattr = proc_setattr,
3223 };
3224
3225 static const struct file_operations proc_task_operations = {
3226 .read = generic_read_dir,
3227 .readdir = proc_task_readdir,
3228 };