fs, proc: introduce /proc/<pid>/task/<tid>/children entry
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / proc / array.c
1 /*
2 * linux/fs/proc/array.c
3 *
4 * Copyright (C) 1992 by Linus Torvalds
5 * based on ideas by Darren Senn
6 *
7 * Fixes:
8 * Michael. K. Johnson: stat,statm extensions.
9 * <johnsonm@stolaf.edu>
10 *
11 * Pauline Middelink : Made cmdline,envline only break at '\0's, to
12 * make sure SET_PROCTITLE works. Also removed
13 * bad '!' which forced address recalculation for
14 * EVERY character on the current page.
15 * <middelin@polyware.iaf.nl>
16 *
17 * Danny ter Haar : added cpuinfo
18 * <dth@cistron.nl>
19 *
20 * Alessandro Rubini : profile extension.
21 * <rubini@ipvvis.unipv.it>
22 *
23 * Jeff Tranter : added BogoMips field to cpuinfo
24 * <Jeff_Tranter@Mitel.COM>
25 *
26 * Bruno Haible : remove 4K limit for the maps file
27 * <haible@ma2s2.mathematik.uni-karlsruhe.de>
28 *
29 * Yves Arrouye : remove removal of trailing spaces in get_array.
30 * <Yves.Arrouye@marin.fdn.fr>
31 *
32 * Jerome Forissier : added per-CPU time information to /proc/stat
33 * and /proc/<pid>/cpu extension
34 * <forissier@isia.cma.fr>
35 * - Incorporation and non-SMP safe operation
36 * of forissier patch in 2.1.78 by
37 * Hans Marcus <crowbar@concepts.nl>
38 *
39 * aeb@cwi.nl : /proc/partitions
40 *
41 *
42 * Alan Cox : security fixes.
43 * <alan@lxorguk.ukuu.org.uk>
44 *
45 * Al Viro : safe handling of mm_struct
46 *
47 * Gerhard Wichert : added BIGMEM support
48 * Siemens AG <Gerhard.Wichert@pdb.siemens.de>
49 *
50 * Al Viro & Jeff Garzik : moved most of the thing into base.c and
51 * : proc_misc.c. The rest may eventually go into
52 * : base.c too.
53 */
54
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/time.h>
58 #include <linux/kernel.h>
59 #include <linux/kernel_stat.h>
60 #include <linux/tty.h>
61 #include <linux/string.h>
62 #include <linux/mman.h>
63 #include <linux/proc_fs.h>
64 #include <linux/ioport.h>
65 #include <linux/uaccess.h>
66 #include <linux/io.h>
67 #include <linux/mm.h>
68 #include <linux/hugetlb.h>
69 #include <linux/pagemap.h>
70 #include <linux/swap.h>
71 #include <linux/smp.h>
72 #include <linux/signal.h>
73 #include <linux/highmem.h>
74 #include <linux/file.h>
75 #include <linux/fdtable.h>
76 #include <linux/times.h>
77 #include <linux/cpuset.h>
78 #include <linux/rcupdate.h>
79 #include <linux/delayacct.h>
80 #include <linux/seq_file.h>
81 #include <linux/pid_namespace.h>
82 #include <linux/ptrace.h>
83 #include <linux/tracehook.h>
84 #include <linux/user_namespace.h>
85
86 #include <asm/pgtable.h>
87 #include <asm/processor.h>
88 #include "internal.h"
89
90 static inline void task_name(struct seq_file *m, struct task_struct *p)
91 {
92 int i;
93 char *buf, *end;
94 char *name;
95 char tcomm[sizeof(p->comm)];
96
97 get_task_comm(tcomm, p);
98
99 seq_puts(m, "Name:\t");
100 end = m->buf + m->size;
101 buf = m->buf + m->count;
102 name = tcomm;
103 i = sizeof(tcomm);
104 while (i && (buf < end)) {
105 unsigned char c = *name;
106 name++;
107 i--;
108 *buf = c;
109 if (!c)
110 break;
111 if (c == '\\') {
112 buf++;
113 if (buf < end)
114 *buf++ = c;
115 continue;
116 }
117 if (c == '\n') {
118 *buf++ = '\\';
119 if (buf < end)
120 *buf++ = 'n';
121 continue;
122 }
123 buf++;
124 }
125 m->count = buf - m->buf;
126 seq_putc(m, '\n');
127 }
128
129 /*
130 * The task state array is a strange "bitmap" of
131 * reasons to sleep. Thus "running" is zero, and
132 * you can test for combinations of others with
133 * simple bit tests.
134 */
135 static const char * const task_state_array[] = {
136 "R (running)", /* 0 */
137 "S (sleeping)", /* 1 */
138 "D (disk sleep)", /* 2 */
139 "T (stopped)", /* 4 */
140 "t (tracing stop)", /* 8 */
141 "Z (zombie)", /* 16 */
142 "X (dead)", /* 32 */
143 "x (dead)", /* 64 */
144 "K (wakekill)", /* 128 */
145 "W (waking)", /* 256 */
146 };
147
148 static inline const char *get_task_state(struct task_struct *tsk)
149 {
150 unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state;
151 const char * const *p = &task_state_array[0];
152
153 BUILD_BUG_ON(1 + ilog2(TASK_STATE_MAX) != ARRAY_SIZE(task_state_array));
154
155 while (state) {
156 p++;
157 state >>= 1;
158 }
159 return *p;
160 }
161
162 static inline void task_state(struct seq_file *m, struct pid_namespace *ns,
163 struct pid *pid, struct task_struct *p)
164 {
165 struct user_namespace *user_ns = current_user_ns();
166 struct group_info *group_info;
167 int g;
168 struct fdtable *fdt = NULL;
169 const struct cred *cred;
170 pid_t ppid, tpid;
171
172 rcu_read_lock();
173 ppid = pid_alive(p) ?
174 task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0;
175 tpid = 0;
176 if (pid_alive(p)) {
177 struct task_struct *tracer = ptrace_parent(p);
178 if (tracer)
179 tpid = task_pid_nr_ns(tracer, ns);
180 }
181 cred = get_task_cred(p);
182 seq_printf(m,
183 "State:\t%s\n"
184 "Tgid:\t%d\n"
185 "Pid:\t%d\n"
186 "PPid:\t%d\n"
187 "TracerPid:\t%d\n"
188 "Uid:\t%d\t%d\t%d\t%d\n"
189 "Gid:\t%d\t%d\t%d\t%d\n",
190 get_task_state(p),
191 task_tgid_nr_ns(p, ns),
192 pid_nr_ns(pid, ns),
193 ppid, tpid,
194 from_kuid_munged(user_ns, cred->uid),
195 from_kuid_munged(user_ns, cred->euid),
196 from_kuid_munged(user_ns, cred->suid),
197 from_kuid_munged(user_ns, cred->fsuid),
198 from_kgid_munged(user_ns, cred->gid),
199 from_kgid_munged(user_ns, cred->egid),
200 from_kgid_munged(user_ns, cred->sgid),
201 from_kgid_munged(user_ns, cred->fsgid));
202
203 task_lock(p);
204 if (p->files)
205 fdt = files_fdtable(p->files);
206 seq_printf(m,
207 "FDSize:\t%d\n"
208 "Groups:\t",
209 fdt ? fdt->max_fds : 0);
210 rcu_read_unlock();
211
212 group_info = cred->group_info;
213 task_unlock(p);
214
215 for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++)
216 seq_printf(m, "%d ",
217 from_kgid_munged(user_ns, GROUP_AT(group_info, g)));
218 put_cred(cred);
219
220 seq_putc(m, '\n');
221 }
222
223 static void render_sigset_t(struct seq_file *m, const char *header,
224 sigset_t *set)
225 {
226 int i;
227
228 seq_puts(m, header);
229
230 i = _NSIG;
231 do {
232 int x = 0;
233
234 i -= 4;
235 if (sigismember(set, i+1)) x |= 1;
236 if (sigismember(set, i+2)) x |= 2;
237 if (sigismember(set, i+3)) x |= 4;
238 if (sigismember(set, i+4)) x |= 8;
239 seq_printf(m, "%x", x);
240 } while (i >= 4);
241
242 seq_putc(m, '\n');
243 }
244
245 static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign,
246 sigset_t *catch)
247 {
248 struct k_sigaction *k;
249 int i;
250
251 k = p->sighand->action;
252 for (i = 1; i <= _NSIG; ++i, ++k) {
253 if (k->sa.sa_handler == SIG_IGN)
254 sigaddset(ign, i);
255 else if (k->sa.sa_handler != SIG_DFL)
256 sigaddset(catch, i);
257 }
258 }
259
260 static inline void task_sig(struct seq_file *m, struct task_struct *p)
261 {
262 unsigned long flags;
263 sigset_t pending, shpending, blocked, ignored, caught;
264 int num_threads = 0;
265 unsigned long qsize = 0;
266 unsigned long qlim = 0;
267
268 sigemptyset(&pending);
269 sigemptyset(&shpending);
270 sigemptyset(&blocked);
271 sigemptyset(&ignored);
272 sigemptyset(&caught);
273
274 if (lock_task_sighand(p, &flags)) {
275 pending = p->pending.signal;
276 shpending = p->signal->shared_pending.signal;
277 blocked = p->blocked;
278 collect_sigign_sigcatch(p, &ignored, &caught);
279 num_threads = get_nr_threads(p);
280 rcu_read_lock(); /* FIXME: is this correct? */
281 qsize = atomic_read(&__task_cred(p)->user->sigpending);
282 rcu_read_unlock();
283 qlim = task_rlimit(p, RLIMIT_SIGPENDING);
284 unlock_task_sighand(p, &flags);
285 }
286
287 seq_printf(m, "Threads:\t%d\n", num_threads);
288 seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim);
289
290 /* render them all */
291 render_sigset_t(m, "SigPnd:\t", &pending);
292 render_sigset_t(m, "ShdPnd:\t", &shpending);
293 render_sigset_t(m, "SigBlk:\t", &blocked);
294 render_sigset_t(m, "SigIgn:\t", &ignored);
295 render_sigset_t(m, "SigCgt:\t", &caught);
296 }
297
298 static void render_cap_t(struct seq_file *m, const char *header,
299 kernel_cap_t *a)
300 {
301 unsigned __capi;
302
303 seq_puts(m, header);
304 CAP_FOR_EACH_U32(__capi) {
305 seq_printf(m, "%08x",
306 a->cap[(_KERNEL_CAPABILITY_U32S-1) - __capi]);
307 }
308 seq_putc(m, '\n');
309 }
310
311 static inline void task_cap(struct seq_file *m, struct task_struct *p)
312 {
313 const struct cred *cred;
314 kernel_cap_t cap_inheritable, cap_permitted, cap_effective, cap_bset;
315
316 rcu_read_lock();
317 cred = __task_cred(p);
318 cap_inheritable = cred->cap_inheritable;
319 cap_permitted = cred->cap_permitted;
320 cap_effective = cred->cap_effective;
321 cap_bset = cred->cap_bset;
322 rcu_read_unlock();
323
324 render_cap_t(m, "CapInh:\t", &cap_inheritable);
325 render_cap_t(m, "CapPrm:\t", &cap_permitted);
326 render_cap_t(m, "CapEff:\t", &cap_effective);
327 render_cap_t(m, "CapBnd:\t", &cap_bset);
328 }
329
330 static inline void task_context_switch_counts(struct seq_file *m,
331 struct task_struct *p)
332 {
333 seq_printf(m, "voluntary_ctxt_switches:\t%lu\n"
334 "nonvoluntary_ctxt_switches:\t%lu\n",
335 p->nvcsw,
336 p->nivcsw);
337 }
338
339 static void task_cpus_allowed(struct seq_file *m, struct task_struct *task)
340 {
341 seq_puts(m, "Cpus_allowed:\t");
342 seq_cpumask(m, &task->cpus_allowed);
343 seq_putc(m, '\n');
344 seq_puts(m, "Cpus_allowed_list:\t");
345 seq_cpumask_list(m, &task->cpus_allowed);
346 seq_putc(m, '\n');
347 }
348
349 int proc_pid_status(struct seq_file *m, struct pid_namespace *ns,
350 struct pid *pid, struct task_struct *task)
351 {
352 struct mm_struct *mm = get_task_mm(task);
353
354 task_name(m, task);
355 task_state(m, ns, pid, task);
356
357 if (mm) {
358 task_mem(m, mm);
359 mmput(mm);
360 }
361 task_sig(m, task);
362 task_cap(m, task);
363 task_cpus_allowed(m, task);
364 cpuset_task_status_allowed(m, task);
365 task_context_switch_counts(m, task);
366 return 0;
367 }
368
369 static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
370 struct pid *pid, struct task_struct *task, int whole)
371 {
372 unsigned long vsize, eip, esp, wchan = ~0UL;
373 int priority, nice;
374 int tty_pgrp = -1, tty_nr = 0;
375 sigset_t sigign, sigcatch;
376 char state;
377 pid_t ppid = 0, pgid = -1, sid = -1;
378 int num_threads = 0;
379 int permitted;
380 struct mm_struct *mm;
381 unsigned long long start_time;
382 unsigned long cmin_flt = 0, cmaj_flt = 0;
383 unsigned long min_flt = 0, maj_flt = 0;
384 cputime_t cutime, cstime, utime, stime;
385 cputime_t cgtime, gtime;
386 unsigned long rsslim = 0;
387 char tcomm[sizeof(task->comm)];
388 unsigned long flags;
389
390 state = *get_task_state(task);
391 vsize = eip = esp = 0;
392 permitted = ptrace_may_access(task, PTRACE_MODE_READ | PTRACE_MODE_NOAUDIT);
393 mm = get_task_mm(task);
394 if (mm) {
395 vsize = task_vsize(mm);
396 if (permitted) {
397 eip = KSTK_EIP(task);
398 esp = KSTK_ESP(task);
399 }
400 }
401
402 get_task_comm(tcomm, task);
403
404 sigemptyset(&sigign);
405 sigemptyset(&sigcatch);
406 cutime = cstime = utime = stime = 0;
407 cgtime = gtime = 0;
408
409 if (lock_task_sighand(task, &flags)) {
410 struct signal_struct *sig = task->signal;
411
412 if (sig->tty) {
413 struct pid *pgrp = tty_get_pgrp(sig->tty);
414 tty_pgrp = pid_nr_ns(pgrp, ns);
415 put_pid(pgrp);
416 tty_nr = new_encode_dev(tty_devnum(sig->tty));
417 }
418
419 num_threads = get_nr_threads(task);
420 collect_sigign_sigcatch(task, &sigign, &sigcatch);
421
422 cmin_flt = sig->cmin_flt;
423 cmaj_flt = sig->cmaj_flt;
424 cutime = sig->cutime;
425 cstime = sig->cstime;
426 cgtime = sig->cgtime;
427 rsslim = ACCESS_ONCE(sig->rlim[RLIMIT_RSS].rlim_cur);
428
429 /* add up live thread stats at the group level */
430 if (whole) {
431 struct task_struct *t = task;
432 do {
433 min_flt += t->min_flt;
434 maj_flt += t->maj_flt;
435 gtime += t->gtime;
436 t = next_thread(t);
437 } while (t != task);
438
439 min_flt += sig->min_flt;
440 maj_flt += sig->maj_flt;
441 thread_group_times(task, &utime, &stime);
442 gtime += sig->gtime;
443 }
444
445 sid = task_session_nr_ns(task, ns);
446 ppid = task_tgid_nr_ns(task->real_parent, ns);
447 pgid = task_pgrp_nr_ns(task, ns);
448
449 unlock_task_sighand(task, &flags);
450 }
451
452 if (permitted && (!whole || num_threads < 2))
453 wchan = get_wchan(task);
454 if (!whole) {
455 min_flt = task->min_flt;
456 maj_flt = task->maj_flt;
457 task_times(task, &utime, &stime);
458 gtime = task->gtime;
459 }
460
461 /* scale priority and nice values from timeslices to -20..20 */
462 /* to make it look like a "normal" Unix priority/nice value */
463 priority = task_prio(task);
464 nice = task_nice(task);
465
466 /* Temporary variable needed for gcc-2.96 */
467 /* convert timespec -> nsec*/
468 start_time =
469 (unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC
470 + task->real_start_time.tv_nsec;
471 /* convert nsec -> ticks */
472 start_time = nsec_to_clock_t(start_time);
473
474 seq_printf(m, "%d (%s) %c", pid_nr_ns(pid, ns), tcomm, state);
475 seq_put_decimal_ll(m, ' ', ppid);
476 seq_put_decimal_ll(m, ' ', pgid);
477 seq_put_decimal_ll(m, ' ', sid);
478 seq_put_decimal_ll(m, ' ', tty_nr);
479 seq_put_decimal_ll(m, ' ', tty_pgrp);
480 seq_put_decimal_ull(m, ' ', task->flags);
481 seq_put_decimal_ull(m, ' ', min_flt);
482 seq_put_decimal_ull(m, ' ', cmin_flt);
483 seq_put_decimal_ull(m, ' ', maj_flt);
484 seq_put_decimal_ull(m, ' ', cmaj_flt);
485 seq_put_decimal_ull(m, ' ', cputime_to_clock_t(utime));
486 seq_put_decimal_ull(m, ' ', cputime_to_clock_t(stime));
487 seq_put_decimal_ll(m, ' ', cputime_to_clock_t(cutime));
488 seq_put_decimal_ll(m, ' ', cputime_to_clock_t(cstime));
489 seq_put_decimal_ll(m, ' ', priority);
490 seq_put_decimal_ll(m, ' ', nice);
491 seq_put_decimal_ll(m, ' ', num_threads);
492 seq_put_decimal_ull(m, ' ', 0);
493 seq_put_decimal_ull(m, ' ', start_time);
494 seq_put_decimal_ull(m, ' ', vsize);
495 seq_put_decimal_ull(m, ' ', mm ? get_mm_rss(mm) : 0);
496 seq_put_decimal_ull(m, ' ', rsslim);
497 seq_put_decimal_ull(m, ' ', mm ? (permitted ? mm->start_code : 1) : 0);
498 seq_put_decimal_ull(m, ' ', mm ? (permitted ? mm->end_code : 1) : 0);
499 seq_put_decimal_ull(m, ' ', (permitted && mm) ? mm->start_stack : 0);
500 seq_put_decimal_ull(m, ' ', esp);
501 seq_put_decimal_ull(m, ' ', eip);
502 /* The signal information here is obsolete.
503 * It must be decimal for Linux 2.0 compatibility.
504 * Use /proc/#/status for real-time signals.
505 */
506 seq_put_decimal_ull(m, ' ', task->pending.signal.sig[0] & 0x7fffffffUL);
507 seq_put_decimal_ull(m, ' ', task->blocked.sig[0] & 0x7fffffffUL);
508 seq_put_decimal_ull(m, ' ', sigign.sig[0] & 0x7fffffffUL);
509 seq_put_decimal_ull(m, ' ', sigcatch.sig[0] & 0x7fffffffUL);
510 seq_put_decimal_ull(m, ' ', wchan);
511 seq_put_decimal_ull(m, ' ', 0);
512 seq_put_decimal_ull(m, ' ', 0);
513 seq_put_decimal_ll(m, ' ', task->exit_signal);
514 seq_put_decimal_ll(m, ' ', task_cpu(task));
515 seq_put_decimal_ull(m, ' ', task->rt_priority);
516 seq_put_decimal_ull(m, ' ', task->policy);
517 seq_put_decimal_ull(m, ' ', delayacct_blkio_ticks(task));
518 seq_put_decimal_ull(m, ' ', cputime_to_clock_t(gtime));
519 seq_put_decimal_ll(m, ' ', cputime_to_clock_t(cgtime));
520 seq_put_decimal_ull(m, ' ', (mm && permitted) ? mm->start_data : 0);
521 seq_put_decimal_ull(m, ' ', (mm && permitted) ? mm->end_data : 0);
522 seq_put_decimal_ull(m, ' ', (mm && permitted) ? mm->start_brk : 0);
523 seq_putc(m, '\n');
524 if (mm)
525 mmput(mm);
526 return 0;
527 }
528
529 int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns,
530 struct pid *pid, struct task_struct *task)
531 {
532 return do_task_stat(m, ns, pid, task, 0);
533 }
534
535 int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns,
536 struct pid *pid, struct task_struct *task)
537 {
538 return do_task_stat(m, ns, pid, task, 1);
539 }
540
541 int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns,
542 struct pid *pid, struct task_struct *task)
543 {
544 unsigned long size = 0, resident = 0, shared = 0, text = 0, data = 0;
545 struct mm_struct *mm = get_task_mm(task);
546
547 if (mm) {
548 size = task_statm(mm, &shared, &text, &data, &resident);
549 mmput(mm);
550 }
551 /*
552 * For quick read, open code by putting numbers directly
553 * expected format is
554 * seq_printf(m, "%lu %lu %lu %lu 0 %lu 0\n",
555 * size, resident, shared, text, data);
556 */
557 seq_put_decimal_ull(m, 0, size);
558 seq_put_decimal_ull(m, ' ', resident);
559 seq_put_decimal_ull(m, ' ', shared);
560 seq_put_decimal_ull(m, ' ', text);
561 seq_put_decimal_ull(m, ' ', 0);
562 seq_put_decimal_ull(m, ' ', data);
563 seq_put_decimal_ull(m, ' ', 0);
564 seq_putc(m, '\n');
565
566 return 0;
567 }
568
569 #ifdef CONFIG_CHECKPOINT_RESTORE
570 static struct pid *
571 get_children_pid(struct inode *inode, struct pid *pid_prev, loff_t pos)
572 {
573 struct task_struct *start, *task;
574 struct pid *pid = NULL;
575
576 read_lock(&tasklist_lock);
577
578 start = pid_task(proc_pid(inode), PIDTYPE_PID);
579 if (!start)
580 goto out;
581
582 /*
583 * Lets try to continue searching first, this gives
584 * us significant speedup on children-rich processes.
585 */
586 if (pid_prev) {
587 task = pid_task(pid_prev, PIDTYPE_PID);
588 if (task && task->real_parent == start &&
589 !(list_empty(&task->sibling))) {
590 if (list_is_last(&task->sibling, &start->children))
591 goto out;
592 task = list_first_entry(&task->sibling,
593 struct task_struct, sibling);
594 pid = get_pid(task_pid(task));
595 goto out;
596 }
597 }
598
599 /*
600 * Slow search case.
601 *
602 * We might miss some children here if children
603 * are exited while we were not holding the lock,
604 * but it was never promised to be accurate that
605 * much.
606 *
607 * "Just suppose that the parent sleeps, but N children
608 * exit after we printed their tids. Now the slow paths
609 * skips N extra children, we miss N tasks." (c)
610 *
611 * So one need to stop or freeze the leader and all
612 * its children to get a precise result.
613 */
614 list_for_each_entry(task, &start->children, sibling) {
615 if (pos-- == 0) {
616 pid = get_pid(task_pid(task));
617 break;
618 }
619 }
620
621 out:
622 read_unlock(&tasklist_lock);
623 return pid;
624 }
625
626 static int children_seq_show(struct seq_file *seq, void *v)
627 {
628 struct inode *inode = seq->private;
629 pid_t pid;
630
631 pid = pid_nr_ns(v, inode->i_sb->s_fs_info);
632 return seq_printf(seq, "%d ", pid);
633 }
634
635 static void *children_seq_start(struct seq_file *seq, loff_t *pos)
636 {
637 return get_children_pid(seq->private, NULL, *pos);
638 }
639
640 static void *children_seq_next(struct seq_file *seq, void *v, loff_t *pos)
641 {
642 struct pid *pid;
643
644 pid = get_children_pid(seq->private, v, *pos + 1);
645 put_pid(v);
646
647 ++*pos;
648 return pid;
649 }
650
651 static void children_seq_stop(struct seq_file *seq, void *v)
652 {
653 put_pid(v);
654 }
655
656 static const struct seq_operations children_seq_ops = {
657 .start = children_seq_start,
658 .next = children_seq_next,
659 .stop = children_seq_stop,
660 .show = children_seq_show,
661 };
662
663 static int children_seq_open(struct inode *inode, struct file *file)
664 {
665 struct seq_file *m;
666 int ret;
667
668 ret = seq_open(file, &children_seq_ops);
669 if (ret)
670 return ret;
671
672 m = file->private_data;
673 m->private = inode;
674
675 return ret;
676 }
677
678 int children_seq_release(struct inode *inode, struct file *file)
679 {
680 seq_release(inode, file);
681 return 0;
682 }
683
684 const struct file_operations proc_tid_children_operations = {
685 .open = children_seq_open,
686 .read = seq_read,
687 .llseek = seq_lseek,
688 .release = children_seq_release,
689 };
690 #endif /* CONFIG_CHECKPOINT_RESTORE */