ocfs2: Disable orphan scanning for local and hard-ro mounts
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "quota.h"
52
53 #include "buffer_head_io.h"
54
55 DEFINE_SPINLOCK(trans_inc_lock);
56
57 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
58
59 static int ocfs2_force_read_journal(struct inode *inode);
60 static int ocfs2_recover_node(struct ocfs2_super *osb,
61 int node_num, int slot_num);
62 static int __ocfs2_recovery_thread(void *arg);
63 static int ocfs2_commit_cache(struct ocfs2_super *osb);
64 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
65 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
66 int dirty, int replayed);
67 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
68 int slot_num);
69 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
70 int slot);
71 static int ocfs2_commit_thread(void *arg);
72 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
73 int slot_num,
74 struct ocfs2_dinode *la_dinode,
75 struct ocfs2_dinode *tl_dinode,
76 struct ocfs2_quota_recovery *qrec);
77
78 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
79 {
80 return __ocfs2_wait_on_mount(osb, 0);
81 }
82
83 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
84 {
85 return __ocfs2_wait_on_mount(osb, 1);
86 }
87
88 /*
89 * This replay_map is to track online/offline slots, so we could recover
90 * offline slots during recovery and mount
91 */
92
93 enum ocfs2_replay_state {
94 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
95 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
96 REPLAY_DONE /* Replay was already queued */
97 };
98
99 struct ocfs2_replay_map {
100 unsigned int rm_slots;
101 enum ocfs2_replay_state rm_state;
102 unsigned char rm_replay_slots[0];
103 };
104
105 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
106 {
107 if (!osb->replay_map)
108 return;
109
110 /* If we've already queued the replay, we don't have any more to do */
111 if (osb->replay_map->rm_state == REPLAY_DONE)
112 return;
113
114 osb->replay_map->rm_state = state;
115 }
116
117 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
118 {
119 struct ocfs2_replay_map *replay_map;
120 int i, node_num;
121
122 /* If replay map is already set, we don't do it again */
123 if (osb->replay_map)
124 return 0;
125
126 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
127 (osb->max_slots * sizeof(char)), GFP_KERNEL);
128
129 if (!replay_map) {
130 mlog_errno(-ENOMEM);
131 return -ENOMEM;
132 }
133
134 spin_lock(&osb->osb_lock);
135
136 replay_map->rm_slots = osb->max_slots;
137 replay_map->rm_state = REPLAY_UNNEEDED;
138
139 /* set rm_replay_slots for offline slot(s) */
140 for (i = 0; i < replay_map->rm_slots; i++) {
141 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
142 replay_map->rm_replay_slots[i] = 1;
143 }
144
145 osb->replay_map = replay_map;
146 spin_unlock(&osb->osb_lock);
147 return 0;
148 }
149
150 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
151 {
152 struct ocfs2_replay_map *replay_map = osb->replay_map;
153 int i;
154
155 if (!replay_map)
156 return;
157
158 if (replay_map->rm_state != REPLAY_NEEDED)
159 return;
160
161 for (i = 0; i < replay_map->rm_slots; i++)
162 if (replay_map->rm_replay_slots[i])
163 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
164 NULL, NULL);
165 replay_map->rm_state = REPLAY_DONE;
166 }
167
168 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
169 {
170 struct ocfs2_replay_map *replay_map = osb->replay_map;
171
172 if (!osb->replay_map)
173 return;
174
175 kfree(replay_map);
176 osb->replay_map = NULL;
177 }
178
179 int ocfs2_recovery_init(struct ocfs2_super *osb)
180 {
181 struct ocfs2_recovery_map *rm;
182
183 mutex_init(&osb->recovery_lock);
184 osb->disable_recovery = 0;
185 osb->recovery_thread_task = NULL;
186 init_waitqueue_head(&osb->recovery_event);
187
188 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
189 osb->max_slots * sizeof(unsigned int),
190 GFP_KERNEL);
191 if (!rm) {
192 mlog_errno(-ENOMEM);
193 return -ENOMEM;
194 }
195
196 rm->rm_entries = (unsigned int *)((char *)rm +
197 sizeof(struct ocfs2_recovery_map));
198 osb->recovery_map = rm;
199
200 return 0;
201 }
202
203 /* we can't grab the goofy sem lock from inside wait_event, so we use
204 * memory barriers to make sure that we'll see the null task before
205 * being woken up */
206 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
207 {
208 mb();
209 return osb->recovery_thread_task != NULL;
210 }
211
212 void ocfs2_recovery_exit(struct ocfs2_super *osb)
213 {
214 struct ocfs2_recovery_map *rm;
215
216 /* disable any new recovery threads and wait for any currently
217 * running ones to exit. Do this before setting the vol_state. */
218 mutex_lock(&osb->recovery_lock);
219 osb->disable_recovery = 1;
220 mutex_unlock(&osb->recovery_lock);
221 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
222
223 /* At this point, we know that no more recovery threads can be
224 * launched, so wait for any recovery completion work to
225 * complete. */
226 flush_workqueue(ocfs2_wq);
227
228 /*
229 * Now that recovery is shut down, and the osb is about to be
230 * freed, the osb_lock is not taken here.
231 */
232 rm = osb->recovery_map;
233 /* XXX: Should we bug if there are dirty entries? */
234
235 kfree(rm);
236 }
237
238 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
239 unsigned int node_num)
240 {
241 int i;
242 struct ocfs2_recovery_map *rm = osb->recovery_map;
243
244 assert_spin_locked(&osb->osb_lock);
245
246 for (i = 0; i < rm->rm_used; i++) {
247 if (rm->rm_entries[i] == node_num)
248 return 1;
249 }
250
251 return 0;
252 }
253
254 /* Behaves like test-and-set. Returns the previous value */
255 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
256 unsigned int node_num)
257 {
258 struct ocfs2_recovery_map *rm = osb->recovery_map;
259
260 spin_lock(&osb->osb_lock);
261 if (__ocfs2_recovery_map_test(osb, node_num)) {
262 spin_unlock(&osb->osb_lock);
263 return 1;
264 }
265
266 /* XXX: Can this be exploited? Not from o2dlm... */
267 BUG_ON(rm->rm_used >= osb->max_slots);
268
269 rm->rm_entries[rm->rm_used] = node_num;
270 rm->rm_used++;
271 spin_unlock(&osb->osb_lock);
272
273 return 0;
274 }
275
276 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
277 unsigned int node_num)
278 {
279 int i;
280 struct ocfs2_recovery_map *rm = osb->recovery_map;
281
282 spin_lock(&osb->osb_lock);
283
284 for (i = 0; i < rm->rm_used; i++) {
285 if (rm->rm_entries[i] == node_num)
286 break;
287 }
288
289 if (i < rm->rm_used) {
290 /* XXX: be careful with the pointer math */
291 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
292 (rm->rm_used - i - 1) * sizeof(unsigned int));
293 rm->rm_used--;
294 }
295
296 spin_unlock(&osb->osb_lock);
297 }
298
299 static int ocfs2_commit_cache(struct ocfs2_super *osb)
300 {
301 int status = 0;
302 unsigned int flushed;
303 unsigned long old_id;
304 struct ocfs2_journal *journal = NULL;
305
306 mlog_entry_void();
307
308 journal = osb->journal;
309
310 /* Flush all pending commits and checkpoint the journal. */
311 down_write(&journal->j_trans_barrier);
312
313 if (atomic_read(&journal->j_num_trans) == 0) {
314 up_write(&journal->j_trans_barrier);
315 mlog(0, "No transactions for me to flush!\n");
316 goto finally;
317 }
318
319 jbd2_journal_lock_updates(journal->j_journal);
320 status = jbd2_journal_flush(journal->j_journal);
321 jbd2_journal_unlock_updates(journal->j_journal);
322 if (status < 0) {
323 up_write(&journal->j_trans_barrier);
324 mlog_errno(status);
325 goto finally;
326 }
327
328 old_id = ocfs2_inc_trans_id(journal);
329
330 flushed = atomic_read(&journal->j_num_trans);
331 atomic_set(&journal->j_num_trans, 0);
332 up_write(&journal->j_trans_barrier);
333
334 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 journal->j_trans_id, flushed);
336
337 ocfs2_wake_downconvert_thread(osb);
338 wake_up(&journal->j_checkpointed);
339 finally:
340 mlog_exit(status);
341 return status;
342 }
343
344 /* pass it NULL and it will allocate a new handle object for you. If
345 * you pass it a handle however, it may still return error, in which
346 * case it has free'd the passed handle for you. */
347 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
348 {
349 journal_t *journal = osb->journal->j_journal;
350 handle_t *handle;
351
352 BUG_ON(!osb || !osb->journal->j_journal);
353
354 if (ocfs2_is_hard_readonly(osb))
355 return ERR_PTR(-EROFS);
356
357 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
358 BUG_ON(max_buffs <= 0);
359
360 /* Nested transaction? Just return the handle... */
361 if (journal_current_handle())
362 return jbd2_journal_start(journal, max_buffs);
363
364 down_read(&osb->journal->j_trans_barrier);
365
366 handle = jbd2_journal_start(journal, max_buffs);
367 if (IS_ERR(handle)) {
368 up_read(&osb->journal->j_trans_barrier);
369
370 mlog_errno(PTR_ERR(handle));
371
372 if (is_journal_aborted(journal)) {
373 ocfs2_abort(osb->sb, "Detected aborted journal");
374 handle = ERR_PTR(-EROFS);
375 }
376 } else {
377 if (!ocfs2_mount_local(osb))
378 atomic_inc(&(osb->journal->j_num_trans));
379 }
380
381 return handle;
382 }
383
384 int ocfs2_commit_trans(struct ocfs2_super *osb,
385 handle_t *handle)
386 {
387 int ret, nested;
388 struct ocfs2_journal *journal = osb->journal;
389
390 BUG_ON(!handle);
391
392 nested = handle->h_ref > 1;
393 ret = jbd2_journal_stop(handle);
394 if (ret < 0)
395 mlog_errno(ret);
396
397 if (!nested)
398 up_read(&journal->j_trans_barrier);
399
400 return ret;
401 }
402
403 /*
404 * 'nblocks' is what you want to add to the current
405 * transaction. extend_trans will either extend the current handle by
406 * nblocks, or commit it and start a new one with nblocks credits.
407 *
408 * This might call jbd2_journal_restart() which will commit dirty buffers
409 * and then restart the transaction. Before calling
410 * ocfs2_extend_trans(), any changed blocks should have been
411 * dirtied. After calling it, all blocks which need to be changed must
412 * go through another set of journal_access/journal_dirty calls.
413 *
414 * WARNING: This will not release any semaphores or disk locks taken
415 * during the transaction, so make sure they were taken *before*
416 * start_trans or we'll have ordering deadlocks.
417 *
418 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
419 * good because transaction ids haven't yet been recorded on the
420 * cluster locks associated with this handle.
421 */
422 int ocfs2_extend_trans(handle_t *handle, int nblocks)
423 {
424 int status;
425
426 BUG_ON(!handle);
427 BUG_ON(!nblocks);
428
429 mlog_entry_void();
430
431 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
432
433 #ifdef CONFIG_OCFS2_DEBUG_FS
434 status = 1;
435 #else
436 status = jbd2_journal_extend(handle, nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
440 }
441 #endif
442
443 if (status > 0) {
444 mlog(0,
445 "jbd2_journal_extend failed, trying "
446 "jbd2_journal_restart\n");
447 status = jbd2_journal_restart(handle, nblocks);
448 if (status < 0) {
449 mlog_errno(status);
450 goto bail;
451 }
452 }
453
454 status = 0;
455 bail:
456
457 mlog_exit(status);
458 return status;
459 }
460
461 struct ocfs2_triggers {
462 struct jbd2_buffer_trigger_type ot_triggers;
463 int ot_offset;
464 };
465
466 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
467 {
468 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
469 }
470
471 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
472 struct buffer_head *bh,
473 void *data, size_t size)
474 {
475 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
476
477 /*
478 * We aren't guaranteed to have the superblock here, so we
479 * must unconditionally compute the ecc data.
480 * __ocfs2_journal_access() will only set the triggers if
481 * metaecc is enabled.
482 */
483 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
484 }
485
486 /*
487 * Quota blocks have their own trigger because the struct ocfs2_block_check
488 * offset depends on the blocksize.
489 */
490 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
491 struct buffer_head *bh,
492 void *data, size_t size)
493 {
494 struct ocfs2_disk_dqtrailer *dqt =
495 ocfs2_block_dqtrailer(size, data);
496
497 /*
498 * We aren't guaranteed to have the superblock here, so we
499 * must unconditionally compute the ecc data.
500 * __ocfs2_journal_access() will only set the triggers if
501 * metaecc is enabled.
502 */
503 ocfs2_block_check_compute(data, size, &dqt->dq_check);
504 }
505
506 /*
507 * Directory blocks also have their own trigger because the
508 * struct ocfs2_block_check offset depends on the blocksize.
509 */
510 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
513 {
514 struct ocfs2_dir_block_trailer *trailer =
515 ocfs2_dir_trailer_from_size(size, data);
516
517 /*
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
522 */
523 ocfs2_block_check_compute(data, size, &trailer->db_check);
524 }
525
526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
527 struct buffer_head *bh)
528 {
529 mlog(ML_ERROR,
530 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
531 "bh->b_blocknr = %llu\n",
532 (unsigned long)bh,
533 (unsigned long long)bh->b_blocknr);
534
535 /* We aren't guaranteed to have the superblock here - but if we
536 * don't, it'll just crash. */
537 ocfs2_error(bh->b_assoc_map->host->i_sb,
538 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
539 }
540
541 static struct ocfs2_triggers di_triggers = {
542 .ot_triggers = {
543 .t_commit = ocfs2_commit_trigger,
544 .t_abort = ocfs2_abort_trigger,
545 },
546 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
547 };
548
549 static struct ocfs2_triggers eb_triggers = {
550 .ot_triggers = {
551 .t_commit = ocfs2_commit_trigger,
552 .t_abort = ocfs2_abort_trigger,
553 },
554 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
555 };
556
557 static struct ocfs2_triggers gd_triggers = {
558 .ot_triggers = {
559 .t_commit = ocfs2_commit_trigger,
560 .t_abort = ocfs2_abort_trigger,
561 },
562 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
563 };
564
565 static struct ocfs2_triggers db_triggers = {
566 .ot_triggers = {
567 .t_commit = ocfs2_db_commit_trigger,
568 .t_abort = ocfs2_abort_trigger,
569 },
570 };
571
572 static struct ocfs2_triggers xb_triggers = {
573 .ot_triggers = {
574 .t_commit = ocfs2_commit_trigger,
575 .t_abort = ocfs2_abort_trigger,
576 },
577 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
578 };
579
580 static struct ocfs2_triggers dq_triggers = {
581 .ot_triggers = {
582 .t_commit = ocfs2_dq_commit_trigger,
583 .t_abort = ocfs2_abort_trigger,
584 },
585 };
586
587 static struct ocfs2_triggers dr_triggers = {
588 .ot_triggers = {
589 .t_commit = ocfs2_commit_trigger,
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
593 };
594
595 static struct ocfs2_triggers dl_triggers = {
596 .ot_triggers = {
597 .t_commit = ocfs2_commit_trigger,
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
601 };
602
603 static int __ocfs2_journal_access(handle_t *handle,
604 struct inode *inode,
605 struct buffer_head *bh,
606 struct ocfs2_triggers *triggers,
607 int type)
608 {
609 int status;
610
611 BUG_ON(!inode);
612 BUG_ON(!handle);
613 BUG_ON(!bh);
614
615 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
616 (unsigned long long)bh->b_blocknr, type,
617 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
618 "OCFS2_JOURNAL_ACCESS_CREATE" :
619 "OCFS2_JOURNAL_ACCESS_WRITE",
620 bh->b_size);
621
622 /* we can safely remove this assertion after testing. */
623 if (!buffer_uptodate(bh)) {
624 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
625 mlog(ML_ERROR, "b_blocknr=%llu\n",
626 (unsigned long long)bh->b_blocknr);
627 BUG();
628 }
629
630 /* Set the current transaction information on the inode so
631 * that the locking code knows whether it can drop it's locks
632 * on this inode or not. We're protected from the commit
633 * thread updating the current transaction id until
634 * ocfs2_commit_trans() because ocfs2_start_trans() took
635 * j_trans_barrier for us. */
636 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
637
638 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
639 switch (type) {
640 case OCFS2_JOURNAL_ACCESS_CREATE:
641 case OCFS2_JOURNAL_ACCESS_WRITE:
642 status = jbd2_journal_get_write_access(handle, bh);
643 break;
644
645 case OCFS2_JOURNAL_ACCESS_UNDO:
646 status = jbd2_journal_get_undo_access(handle, bh);
647 break;
648
649 default:
650 status = -EINVAL;
651 mlog(ML_ERROR, "Uknown access type!\n");
652 }
653 if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
654 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
655 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
656
657 if (status < 0)
658 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
659 status, type);
660
661 mlog_exit(status);
662 return status;
663 }
664
665 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
666 struct buffer_head *bh, int type)
667 {
668 return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
669 type);
670 }
671
672 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
673 struct buffer_head *bh, int type)
674 {
675 return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
676 type);
677 }
678
679 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
680 struct buffer_head *bh, int type)
681 {
682 return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
683 type);
684 }
685
686 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
687 struct buffer_head *bh, int type)
688 {
689 return __ocfs2_journal_access(handle, inode, bh, &db_triggers,
690 type);
691 }
692
693 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
694 struct buffer_head *bh, int type)
695 {
696 return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
697 type);
698 }
699
700 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
701 struct buffer_head *bh, int type)
702 {
703 return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
704 type);
705 }
706
707 int ocfs2_journal_access_dr(handle_t *handle, struct inode *inode,
708 struct buffer_head *bh, int type)
709 {
710 return __ocfs2_journal_access(handle, inode, bh, &dr_triggers,
711 type);
712 }
713
714 int ocfs2_journal_access_dl(handle_t *handle, struct inode *inode,
715 struct buffer_head *bh, int type)
716 {
717 return __ocfs2_journal_access(handle, inode, bh, &dl_triggers,
718 type);
719 }
720
721 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
722 struct buffer_head *bh, int type)
723 {
724 return __ocfs2_journal_access(handle, inode, bh, NULL, type);
725 }
726
727 int ocfs2_journal_dirty(handle_t *handle,
728 struct buffer_head *bh)
729 {
730 int status;
731
732 mlog_entry("(bh->b_blocknr=%llu)\n",
733 (unsigned long long)bh->b_blocknr);
734
735 status = jbd2_journal_dirty_metadata(handle, bh);
736 if (status < 0)
737 mlog(ML_ERROR, "Could not dirty metadata buffer. "
738 "(bh->b_blocknr=%llu)\n",
739 (unsigned long long)bh->b_blocknr);
740
741 mlog_exit(status);
742 return status;
743 }
744
745 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
746
747 void ocfs2_set_journal_params(struct ocfs2_super *osb)
748 {
749 journal_t *journal = osb->journal->j_journal;
750 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
751
752 if (osb->osb_commit_interval)
753 commit_interval = osb->osb_commit_interval;
754
755 spin_lock(&journal->j_state_lock);
756 journal->j_commit_interval = commit_interval;
757 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
758 journal->j_flags |= JBD2_BARRIER;
759 else
760 journal->j_flags &= ~JBD2_BARRIER;
761 spin_unlock(&journal->j_state_lock);
762 }
763
764 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
765 {
766 int status = -1;
767 struct inode *inode = NULL; /* the journal inode */
768 journal_t *j_journal = NULL;
769 struct ocfs2_dinode *di = NULL;
770 struct buffer_head *bh = NULL;
771 struct ocfs2_super *osb;
772 int inode_lock = 0;
773
774 mlog_entry_void();
775
776 BUG_ON(!journal);
777
778 osb = journal->j_osb;
779
780 /* already have the inode for our journal */
781 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
782 osb->slot_num);
783 if (inode == NULL) {
784 status = -EACCES;
785 mlog_errno(status);
786 goto done;
787 }
788 if (is_bad_inode(inode)) {
789 mlog(ML_ERROR, "access error (bad inode)\n");
790 iput(inode);
791 inode = NULL;
792 status = -EACCES;
793 goto done;
794 }
795
796 SET_INODE_JOURNAL(inode);
797 OCFS2_I(inode)->ip_open_count++;
798
799 /* Skip recovery waits here - journal inode metadata never
800 * changes in a live cluster so it can be considered an
801 * exception to the rule. */
802 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
803 if (status < 0) {
804 if (status != -ERESTARTSYS)
805 mlog(ML_ERROR, "Could not get lock on journal!\n");
806 goto done;
807 }
808
809 inode_lock = 1;
810 di = (struct ocfs2_dinode *)bh->b_data;
811
812 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
813 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
814 inode->i_size);
815 status = -EINVAL;
816 goto done;
817 }
818
819 mlog(0, "inode->i_size = %lld\n", inode->i_size);
820 mlog(0, "inode->i_blocks = %llu\n",
821 (unsigned long long)inode->i_blocks);
822 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
823
824 /* call the kernels journal init function now */
825 j_journal = jbd2_journal_init_inode(inode);
826 if (j_journal == NULL) {
827 mlog(ML_ERROR, "Linux journal layer error\n");
828 status = -EINVAL;
829 goto done;
830 }
831
832 mlog(0, "Returned from jbd2_journal_init_inode\n");
833 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
834
835 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
836 OCFS2_JOURNAL_DIRTY_FL);
837
838 journal->j_journal = j_journal;
839 journal->j_inode = inode;
840 journal->j_bh = bh;
841
842 ocfs2_set_journal_params(osb);
843
844 journal->j_state = OCFS2_JOURNAL_LOADED;
845
846 status = 0;
847 done:
848 if (status < 0) {
849 if (inode_lock)
850 ocfs2_inode_unlock(inode, 1);
851 brelse(bh);
852 if (inode) {
853 OCFS2_I(inode)->ip_open_count--;
854 iput(inode);
855 }
856 }
857
858 mlog_exit(status);
859 return status;
860 }
861
862 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
863 {
864 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
865 }
866
867 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
868 {
869 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
870 }
871
872 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
873 int dirty, int replayed)
874 {
875 int status;
876 unsigned int flags;
877 struct ocfs2_journal *journal = osb->journal;
878 struct buffer_head *bh = journal->j_bh;
879 struct ocfs2_dinode *fe;
880
881 mlog_entry_void();
882
883 fe = (struct ocfs2_dinode *)bh->b_data;
884
885 /* The journal bh on the osb always comes from ocfs2_journal_init()
886 * and was validated there inside ocfs2_inode_lock_full(). It's a
887 * code bug if we mess it up. */
888 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
889
890 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
891 if (dirty)
892 flags |= OCFS2_JOURNAL_DIRTY_FL;
893 else
894 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
895 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
896
897 if (replayed)
898 ocfs2_bump_recovery_generation(fe);
899
900 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
901 status = ocfs2_write_block(osb, bh, journal->j_inode);
902 if (status < 0)
903 mlog_errno(status);
904
905 mlog_exit(status);
906 return status;
907 }
908
909 /*
910 * If the journal has been kmalloc'd it needs to be freed after this
911 * call.
912 */
913 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
914 {
915 struct ocfs2_journal *journal = NULL;
916 int status = 0;
917 struct inode *inode = NULL;
918 int num_running_trans = 0;
919
920 mlog_entry_void();
921
922 BUG_ON(!osb);
923
924 journal = osb->journal;
925 if (!journal)
926 goto done;
927
928 inode = journal->j_inode;
929
930 if (journal->j_state != OCFS2_JOURNAL_LOADED)
931 goto done;
932
933 /* need to inc inode use count - jbd2_journal_destroy will iput. */
934 if (!igrab(inode))
935 BUG();
936
937 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
938 if (num_running_trans > 0)
939 mlog(0, "Shutting down journal: must wait on %d "
940 "running transactions!\n",
941 num_running_trans);
942
943 /* Do a commit_cache here. It will flush our journal, *and*
944 * release any locks that are still held.
945 * set the SHUTDOWN flag and release the trans lock.
946 * the commit thread will take the trans lock for us below. */
947 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
948
949 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
950 * drop the trans_lock (which we want to hold until we
951 * completely destroy the journal. */
952 if (osb->commit_task) {
953 /* Wait for the commit thread */
954 mlog(0, "Waiting for ocfs2commit to exit....\n");
955 kthread_stop(osb->commit_task);
956 osb->commit_task = NULL;
957 }
958
959 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
960
961 if (ocfs2_mount_local(osb)) {
962 jbd2_journal_lock_updates(journal->j_journal);
963 status = jbd2_journal_flush(journal->j_journal);
964 jbd2_journal_unlock_updates(journal->j_journal);
965 if (status < 0)
966 mlog_errno(status);
967 }
968
969 if (status == 0) {
970 /*
971 * Do not toggle if flush was unsuccessful otherwise
972 * will leave dirty metadata in a "clean" journal
973 */
974 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
975 if (status < 0)
976 mlog_errno(status);
977 }
978
979 /* Shutdown the kernel journal system */
980 jbd2_journal_destroy(journal->j_journal);
981 journal->j_journal = NULL;
982
983 OCFS2_I(inode)->ip_open_count--;
984
985 /* unlock our journal */
986 ocfs2_inode_unlock(inode, 1);
987
988 brelse(journal->j_bh);
989 journal->j_bh = NULL;
990
991 journal->j_state = OCFS2_JOURNAL_FREE;
992
993 // up_write(&journal->j_trans_barrier);
994 done:
995 if (inode)
996 iput(inode);
997 mlog_exit_void();
998 }
999
1000 static void ocfs2_clear_journal_error(struct super_block *sb,
1001 journal_t *journal,
1002 int slot)
1003 {
1004 int olderr;
1005
1006 olderr = jbd2_journal_errno(journal);
1007 if (olderr) {
1008 mlog(ML_ERROR, "File system error %d recorded in "
1009 "journal %u.\n", olderr, slot);
1010 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1011 sb->s_id);
1012
1013 jbd2_journal_ack_err(journal);
1014 jbd2_journal_clear_err(journal);
1015 }
1016 }
1017
1018 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1019 {
1020 int status = 0;
1021 struct ocfs2_super *osb;
1022
1023 mlog_entry_void();
1024
1025 BUG_ON(!journal);
1026
1027 osb = journal->j_osb;
1028
1029 status = jbd2_journal_load(journal->j_journal);
1030 if (status < 0) {
1031 mlog(ML_ERROR, "Failed to load journal!\n");
1032 goto done;
1033 }
1034
1035 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1036
1037 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1038 if (status < 0) {
1039 mlog_errno(status);
1040 goto done;
1041 }
1042
1043 /* Launch the commit thread */
1044 if (!local) {
1045 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1046 "ocfs2cmt");
1047 if (IS_ERR(osb->commit_task)) {
1048 status = PTR_ERR(osb->commit_task);
1049 osb->commit_task = NULL;
1050 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1051 "error=%d", status);
1052 goto done;
1053 }
1054 } else
1055 osb->commit_task = NULL;
1056
1057 done:
1058 mlog_exit(status);
1059 return status;
1060 }
1061
1062
1063 /* 'full' flag tells us whether we clear out all blocks or if we just
1064 * mark the journal clean */
1065 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1066 {
1067 int status;
1068
1069 mlog_entry_void();
1070
1071 BUG_ON(!journal);
1072
1073 status = jbd2_journal_wipe(journal->j_journal, full);
1074 if (status < 0) {
1075 mlog_errno(status);
1076 goto bail;
1077 }
1078
1079 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1080 if (status < 0)
1081 mlog_errno(status);
1082
1083 bail:
1084 mlog_exit(status);
1085 return status;
1086 }
1087
1088 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1089 {
1090 int empty;
1091 struct ocfs2_recovery_map *rm = osb->recovery_map;
1092
1093 spin_lock(&osb->osb_lock);
1094 empty = (rm->rm_used == 0);
1095 spin_unlock(&osb->osb_lock);
1096
1097 return empty;
1098 }
1099
1100 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1101 {
1102 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1103 }
1104
1105 /*
1106 * JBD Might read a cached version of another nodes journal file. We
1107 * don't want this as this file changes often and we get no
1108 * notification on those changes. The only way to be sure that we've
1109 * got the most up to date version of those blocks then is to force
1110 * read them off disk. Just searching through the buffer cache won't
1111 * work as there may be pages backing this file which are still marked
1112 * up to date. We know things can't change on this file underneath us
1113 * as we have the lock by now :)
1114 */
1115 static int ocfs2_force_read_journal(struct inode *inode)
1116 {
1117 int status = 0;
1118 int i;
1119 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1120 #define CONCURRENT_JOURNAL_FILL 32ULL
1121 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1122
1123 mlog_entry_void();
1124
1125 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1126
1127 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1128 v_blkno = 0;
1129 while (v_blkno < num_blocks) {
1130 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1131 &p_blkno, &p_blocks, NULL);
1132 if (status < 0) {
1133 mlog_errno(status);
1134 goto bail;
1135 }
1136
1137 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1138 p_blocks = CONCURRENT_JOURNAL_FILL;
1139
1140 /* We are reading journal data which should not
1141 * be put in the uptodate cache */
1142 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1143 p_blkno, p_blocks, bhs);
1144 if (status < 0) {
1145 mlog_errno(status);
1146 goto bail;
1147 }
1148
1149 for(i = 0; i < p_blocks; i++) {
1150 brelse(bhs[i]);
1151 bhs[i] = NULL;
1152 }
1153
1154 v_blkno += p_blocks;
1155 }
1156
1157 bail:
1158 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1159 brelse(bhs[i]);
1160 mlog_exit(status);
1161 return status;
1162 }
1163
1164 struct ocfs2_la_recovery_item {
1165 struct list_head lri_list;
1166 int lri_slot;
1167 struct ocfs2_dinode *lri_la_dinode;
1168 struct ocfs2_dinode *lri_tl_dinode;
1169 struct ocfs2_quota_recovery *lri_qrec;
1170 };
1171
1172 /* Does the second half of the recovery process. By this point, the
1173 * node is marked clean and can actually be considered recovered,
1174 * hence it's no longer in the recovery map, but there's still some
1175 * cleanup we can do which shouldn't happen within the recovery thread
1176 * as locking in that context becomes very difficult if we are to take
1177 * recovering nodes into account.
1178 *
1179 * NOTE: This function can and will sleep on recovery of other nodes
1180 * during cluster locking, just like any other ocfs2 process.
1181 */
1182 void ocfs2_complete_recovery(struct work_struct *work)
1183 {
1184 int ret;
1185 struct ocfs2_journal *journal =
1186 container_of(work, struct ocfs2_journal, j_recovery_work);
1187 struct ocfs2_super *osb = journal->j_osb;
1188 struct ocfs2_dinode *la_dinode, *tl_dinode;
1189 struct ocfs2_la_recovery_item *item, *n;
1190 struct ocfs2_quota_recovery *qrec;
1191 LIST_HEAD(tmp_la_list);
1192
1193 mlog_entry_void();
1194
1195 mlog(0, "completing recovery from keventd\n");
1196
1197 spin_lock(&journal->j_lock);
1198 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1199 spin_unlock(&journal->j_lock);
1200
1201 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1202 list_del_init(&item->lri_list);
1203
1204 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1205
1206 ocfs2_wait_on_quotas(osb);
1207
1208 la_dinode = item->lri_la_dinode;
1209 if (la_dinode) {
1210 mlog(0, "Clean up local alloc %llu\n",
1211 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1212
1213 ret = ocfs2_complete_local_alloc_recovery(osb,
1214 la_dinode);
1215 if (ret < 0)
1216 mlog_errno(ret);
1217
1218 kfree(la_dinode);
1219 }
1220
1221 tl_dinode = item->lri_tl_dinode;
1222 if (tl_dinode) {
1223 mlog(0, "Clean up truncate log %llu\n",
1224 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1225
1226 ret = ocfs2_complete_truncate_log_recovery(osb,
1227 tl_dinode);
1228 if (ret < 0)
1229 mlog_errno(ret);
1230
1231 kfree(tl_dinode);
1232 }
1233
1234 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1235 if (ret < 0)
1236 mlog_errno(ret);
1237
1238 qrec = item->lri_qrec;
1239 if (qrec) {
1240 mlog(0, "Recovering quota files");
1241 ret = ocfs2_finish_quota_recovery(osb, qrec,
1242 item->lri_slot);
1243 if (ret < 0)
1244 mlog_errno(ret);
1245 /* Recovery info is already freed now */
1246 }
1247
1248 kfree(item);
1249 }
1250
1251 mlog(0, "Recovery completion\n");
1252 mlog_exit_void();
1253 }
1254
1255 /* NOTE: This function always eats your references to la_dinode and
1256 * tl_dinode, either manually on error, or by passing them to
1257 * ocfs2_complete_recovery */
1258 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1259 int slot_num,
1260 struct ocfs2_dinode *la_dinode,
1261 struct ocfs2_dinode *tl_dinode,
1262 struct ocfs2_quota_recovery *qrec)
1263 {
1264 struct ocfs2_la_recovery_item *item;
1265
1266 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1267 if (!item) {
1268 /* Though we wish to avoid it, we are in fact safe in
1269 * skipping local alloc cleanup as fsck.ocfs2 is more
1270 * than capable of reclaiming unused space. */
1271 if (la_dinode)
1272 kfree(la_dinode);
1273
1274 if (tl_dinode)
1275 kfree(tl_dinode);
1276
1277 if (qrec)
1278 ocfs2_free_quota_recovery(qrec);
1279
1280 mlog_errno(-ENOMEM);
1281 return;
1282 }
1283
1284 INIT_LIST_HEAD(&item->lri_list);
1285 item->lri_la_dinode = la_dinode;
1286 item->lri_slot = slot_num;
1287 item->lri_tl_dinode = tl_dinode;
1288 item->lri_qrec = qrec;
1289
1290 spin_lock(&journal->j_lock);
1291 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1292 queue_work(ocfs2_wq, &journal->j_recovery_work);
1293 spin_unlock(&journal->j_lock);
1294 }
1295
1296 /* Called by the mount code to queue recovery the last part of
1297 * recovery for it's own and offline slot(s). */
1298 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1299 {
1300 struct ocfs2_journal *journal = osb->journal;
1301
1302 /* No need to queue up our truncate_log as regular cleanup will catch
1303 * that */
1304 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1305 osb->local_alloc_copy, NULL, NULL);
1306 ocfs2_schedule_truncate_log_flush(osb, 0);
1307
1308 osb->local_alloc_copy = NULL;
1309 osb->dirty = 0;
1310
1311 /* queue to recover orphan slots for all offline slots */
1312 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1313 ocfs2_queue_replay_slots(osb);
1314 ocfs2_free_replay_slots(osb);
1315 }
1316
1317 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1318 {
1319 if (osb->quota_rec) {
1320 ocfs2_queue_recovery_completion(osb->journal,
1321 osb->slot_num,
1322 NULL,
1323 NULL,
1324 osb->quota_rec);
1325 osb->quota_rec = NULL;
1326 }
1327 }
1328
1329 static int __ocfs2_recovery_thread(void *arg)
1330 {
1331 int status, node_num, slot_num;
1332 struct ocfs2_super *osb = arg;
1333 struct ocfs2_recovery_map *rm = osb->recovery_map;
1334 int *rm_quota = NULL;
1335 int rm_quota_used = 0, i;
1336 struct ocfs2_quota_recovery *qrec;
1337
1338 mlog_entry_void();
1339
1340 status = ocfs2_wait_on_mount(osb);
1341 if (status < 0) {
1342 goto bail;
1343 }
1344
1345 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1346 if (!rm_quota) {
1347 status = -ENOMEM;
1348 goto bail;
1349 }
1350 restart:
1351 status = ocfs2_super_lock(osb, 1);
1352 if (status < 0) {
1353 mlog_errno(status);
1354 goto bail;
1355 }
1356
1357 status = ocfs2_compute_replay_slots(osb);
1358 if (status < 0)
1359 mlog_errno(status);
1360
1361 /* queue recovery for our own slot */
1362 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1363 NULL, NULL);
1364
1365 spin_lock(&osb->osb_lock);
1366 while (rm->rm_used) {
1367 /* It's always safe to remove entry zero, as we won't
1368 * clear it until ocfs2_recover_node() has succeeded. */
1369 node_num = rm->rm_entries[0];
1370 spin_unlock(&osb->osb_lock);
1371 mlog(0, "checking node %d\n", node_num);
1372 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1373 if (slot_num == -ENOENT) {
1374 status = 0;
1375 mlog(0, "no slot for this node, so no recovery"
1376 "required.\n");
1377 goto skip_recovery;
1378 }
1379 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1380
1381 /* It is a bit subtle with quota recovery. We cannot do it
1382 * immediately because we have to obtain cluster locks from
1383 * quota files and we also don't want to just skip it because
1384 * then quota usage would be out of sync until some node takes
1385 * the slot. So we remember which nodes need quota recovery
1386 * and when everything else is done, we recover quotas. */
1387 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1388 if (i == rm_quota_used)
1389 rm_quota[rm_quota_used++] = slot_num;
1390
1391 status = ocfs2_recover_node(osb, node_num, slot_num);
1392 skip_recovery:
1393 if (!status) {
1394 ocfs2_recovery_map_clear(osb, node_num);
1395 } else {
1396 mlog(ML_ERROR,
1397 "Error %d recovering node %d on device (%u,%u)!\n",
1398 status, node_num,
1399 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1400 mlog(ML_ERROR, "Volume requires unmount.\n");
1401 }
1402
1403 spin_lock(&osb->osb_lock);
1404 }
1405 spin_unlock(&osb->osb_lock);
1406 mlog(0, "All nodes recovered\n");
1407
1408 /* Refresh all journal recovery generations from disk */
1409 status = ocfs2_check_journals_nolocks(osb);
1410 status = (status == -EROFS) ? 0 : status;
1411 if (status < 0)
1412 mlog_errno(status);
1413
1414 /* Now it is right time to recover quotas... We have to do this under
1415 * superblock lock so that noone can start using the slot (and crash)
1416 * before we recover it */
1417 for (i = 0; i < rm_quota_used; i++) {
1418 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1419 if (IS_ERR(qrec)) {
1420 status = PTR_ERR(qrec);
1421 mlog_errno(status);
1422 continue;
1423 }
1424 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1425 NULL, NULL, qrec);
1426 }
1427
1428 ocfs2_super_unlock(osb, 1);
1429
1430 /* queue recovery for offline slots */
1431 ocfs2_queue_replay_slots(osb);
1432
1433 bail:
1434 mutex_lock(&osb->recovery_lock);
1435 if (!status && !ocfs2_recovery_completed(osb)) {
1436 mutex_unlock(&osb->recovery_lock);
1437 goto restart;
1438 }
1439
1440 ocfs2_free_replay_slots(osb);
1441 osb->recovery_thread_task = NULL;
1442 mb(); /* sync with ocfs2_recovery_thread_running */
1443 wake_up(&osb->recovery_event);
1444
1445 mutex_unlock(&osb->recovery_lock);
1446
1447 if (rm_quota)
1448 kfree(rm_quota);
1449
1450 mlog_exit(status);
1451 /* no one is callint kthread_stop() for us so the kthread() api
1452 * requires that we call do_exit(). And it isn't exported, but
1453 * complete_and_exit() seems to be a minimal wrapper around it. */
1454 complete_and_exit(NULL, status);
1455 return status;
1456 }
1457
1458 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1459 {
1460 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1461 node_num, osb->node_num);
1462
1463 mutex_lock(&osb->recovery_lock);
1464 if (osb->disable_recovery)
1465 goto out;
1466
1467 /* People waiting on recovery will wait on
1468 * the recovery map to empty. */
1469 if (ocfs2_recovery_map_set(osb, node_num))
1470 mlog(0, "node %d already in recovery map.\n", node_num);
1471
1472 mlog(0, "starting recovery thread...\n");
1473
1474 if (osb->recovery_thread_task)
1475 goto out;
1476
1477 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1478 "ocfs2rec");
1479 if (IS_ERR(osb->recovery_thread_task)) {
1480 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1481 osb->recovery_thread_task = NULL;
1482 }
1483
1484 out:
1485 mutex_unlock(&osb->recovery_lock);
1486 wake_up(&osb->recovery_event);
1487
1488 mlog_exit_void();
1489 }
1490
1491 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1492 int slot_num,
1493 struct buffer_head **bh,
1494 struct inode **ret_inode)
1495 {
1496 int status = -EACCES;
1497 struct inode *inode = NULL;
1498
1499 BUG_ON(slot_num >= osb->max_slots);
1500
1501 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1502 slot_num);
1503 if (!inode || is_bad_inode(inode)) {
1504 mlog_errno(status);
1505 goto bail;
1506 }
1507 SET_INODE_JOURNAL(inode);
1508
1509 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1510 if (status < 0) {
1511 mlog_errno(status);
1512 goto bail;
1513 }
1514
1515 status = 0;
1516
1517 bail:
1518 if (inode) {
1519 if (status || !ret_inode)
1520 iput(inode);
1521 else
1522 *ret_inode = inode;
1523 }
1524 return status;
1525 }
1526
1527 /* Does the actual journal replay and marks the journal inode as
1528 * clean. Will only replay if the journal inode is marked dirty. */
1529 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1530 int node_num,
1531 int slot_num)
1532 {
1533 int status;
1534 int got_lock = 0;
1535 unsigned int flags;
1536 struct inode *inode = NULL;
1537 struct ocfs2_dinode *fe;
1538 journal_t *journal = NULL;
1539 struct buffer_head *bh = NULL;
1540 u32 slot_reco_gen;
1541
1542 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1543 if (status) {
1544 mlog_errno(status);
1545 goto done;
1546 }
1547
1548 fe = (struct ocfs2_dinode *)bh->b_data;
1549 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1550 brelse(bh);
1551 bh = NULL;
1552
1553 /*
1554 * As the fs recovery is asynchronous, there is a small chance that
1555 * another node mounted (and recovered) the slot before the recovery
1556 * thread could get the lock. To handle that, we dirty read the journal
1557 * inode for that slot to get the recovery generation. If it is
1558 * different than what we expected, the slot has been recovered.
1559 * If not, it needs recovery.
1560 */
1561 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1562 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1563 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1564 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1565 status = -EBUSY;
1566 goto done;
1567 }
1568
1569 /* Continue with recovery as the journal has not yet been recovered */
1570
1571 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1572 if (status < 0) {
1573 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1574 if (status != -ERESTARTSYS)
1575 mlog(ML_ERROR, "Could not lock journal!\n");
1576 goto done;
1577 }
1578 got_lock = 1;
1579
1580 fe = (struct ocfs2_dinode *) bh->b_data;
1581
1582 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1583 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1584
1585 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1586 mlog(0, "No recovery required for node %d\n", node_num);
1587 /* Refresh recovery generation for the slot */
1588 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1589 goto done;
1590 }
1591
1592 /* we need to run complete recovery for offline orphan slots */
1593 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1594
1595 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1596 node_num, slot_num,
1597 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1598
1599 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1600
1601 status = ocfs2_force_read_journal(inode);
1602 if (status < 0) {
1603 mlog_errno(status);
1604 goto done;
1605 }
1606
1607 mlog(0, "calling journal_init_inode\n");
1608 journal = jbd2_journal_init_inode(inode);
1609 if (journal == NULL) {
1610 mlog(ML_ERROR, "Linux journal layer error\n");
1611 status = -EIO;
1612 goto done;
1613 }
1614
1615 status = jbd2_journal_load(journal);
1616 if (status < 0) {
1617 mlog_errno(status);
1618 if (!igrab(inode))
1619 BUG();
1620 jbd2_journal_destroy(journal);
1621 goto done;
1622 }
1623
1624 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1625
1626 /* wipe the journal */
1627 mlog(0, "flushing the journal.\n");
1628 jbd2_journal_lock_updates(journal);
1629 status = jbd2_journal_flush(journal);
1630 jbd2_journal_unlock_updates(journal);
1631 if (status < 0)
1632 mlog_errno(status);
1633
1634 /* This will mark the node clean */
1635 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1636 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1637 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1638
1639 /* Increment recovery generation to indicate successful recovery */
1640 ocfs2_bump_recovery_generation(fe);
1641 osb->slot_recovery_generations[slot_num] =
1642 ocfs2_get_recovery_generation(fe);
1643
1644 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1645 status = ocfs2_write_block(osb, bh, inode);
1646 if (status < 0)
1647 mlog_errno(status);
1648
1649 if (!igrab(inode))
1650 BUG();
1651
1652 jbd2_journal_destroy(journal);
1653
1654 done:
1655 /* drop the lock on this nodes journal */
1656 if (got_lock)
1657 ocfs2_inode_unlock(inode, 1);
1658
1659 if (inode)
1660 iput(inode);
1661
1662 brelse(bh);
1663
1664 mlog_exit(status);
1665 return status;
1666 }
1667
1668 /*
1669 * Do the most important parts of node recovery:
1670 * - Replay it's journal
1671 * - Stamp a clean local allocator file
1672 * - Stamp a clean truncate log
1673 * - Mark the node clean
1674 *
1675 * If this function completes without error, a node in OCFS2 can be
1676 * said to have been safely recovered. As a result, failure during the
1677 * second part of a nodes recovery process (local alloc recovery) is
1678 * far less concerning.
1679 */
1680 static int ocfs2_recover_node(struct ocfs2_super *osb,
1681 int node_num, int slot_num)
1682 {
1683 int status = 0;
1684 struct ocfs2_dinode *la_copy = NULL;
1685 struct ocfs2_dinode *tl_copy = NULL;
1686
1687 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1688 node_num, slot_num, osb->node_num);
1689
1690 /* Should not ever be called to recover ourselves -- in that
1691 * case we should've called ocfs2_journal_load instead. */
1692 BUG_ON(osb->node_num == node_num);
1693
1694 status = ocfs2_replay_journal(osb, node_num, slot_num);
1695 if (status < 0) {
1696 if (status == -EBUSY) {
1697 mlog(0, "Skipping recovery for slot %u (node %u) "
1698 "as another node has recovered it\n", slot_num,
1699 node_num);
1700 status = 0;
1701 goto done;
1702 }
1703 mlog_errno(status);
1704 goto done;
1705 }
1706
1707 /* Stamp a clean local alloc file AFTER recovering the journal... */
1708 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1709 if (status < 0) {
1710 mlog_errno(status);
1711 goto done;
1712 }
1713
1714 /* An error from begin_truncate_log_recovery is not
1715 * serious enough to warrant halting the rest of
1716 * recovery. */
1717 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1718 if (status < 0)
1719 mlog_errno(status);
1720
1721 /* Likewise, this would be a strange but ultimately not so
1722 * harmful place to get an error... */
1723 status = ocfs2_clear_slot(osb, slot_num);
1724 if (status < 0)
1725 mlog_errno(status);
1726
1727 /* This will kfree the memory pointed to by la_copy and tl_copy */
1728 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1729 tl_copy, NULL);
1730
1731 status = 0;
1732 done:
1733
1734 mlog_exit(status);
1735 return status;
1736 }
1737
1738 /* Test node liveness by trylocking his journal. If we get the lock,
1739 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1740 * still alive (we couldn't get the lock) and < 0 on error. */
1741 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1742 int slot_num)
1743 {
1744 int status, flags;
1745 struct inode *inode = NULL;
1746
1747 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1748 slot_num);
1749 if (inode == NULL) {
1750 mlog(ML_ERROR, "access error\n");
1751 status = -EACCES;
1752 goto bail;
1753 }
1754 if (is_bad_inode(inode)) {
1755 mlog(ML_ERROR, "access error (bad inode)\n");
1756 iput(inode);
1757 inode = NULL;
1758 status = -EACCES;
1759 goto bail;
1760 }
1761 SET_INODE_JOURNAL(inode);
1762
1763 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1764 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1765 if (status < 0) {
1766 if (status != -EAGAIN)
1767 mlog_errno(status);
1768 goto bail;
1769 }
1770
1771 ocfs2_inode_unlock(inode, 1);
1772 bail:
1773 if (inode)
1774 iput(inode);
1775
1776 return status;
1777 }
1778
1779 /* Call this underneath ocfs2_super_lock. It also assumes that the
1780 * slot info struct has been updated from disk. */
1781 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1782 {
1783 unsigned int node_num;
1784 int status, i;
1785 u32 gen;
1786 struct buffer_head *bh = NULL;
1787 struct ocfs2_dinode *di;
1788
1789 /* This is called with the super block cluster lock, so we
1790 * know that the slot map can't change underneath us. */
1791
1792 for (i = 0; i < osb->max_slots; i++) {
1793 /* Read journal inode to get the recovery generation */
1794 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1795 if (status) {
1796 mlog_errno(status);
1797 goto bail;
1798 }
1799 di = (struct ocfs2_dinode *)bh->b_data;
1800 gen = ocfs2_get_recovery_generation(di);
1801 brelse(bh);
1802 bh = NULL;
1803
1804 spin_lock(&osb->osb_lock);
1805 osb->slot_recovery_generations[i] = gen;
1806
1807 mlog(0, "Slot %u recovery generation is %u\n", i,
1808 osb->slot_recovery_generations[i]);
1809
1810 if (i == osb->slot_num) {
1811 spin_unlock(&osb->osb_lock);
1812 continue;
1813 }
1814
1815 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1816 if (status == -ENOENT) {
1817 spin_unlock(&osb->osb_lock);
1818 continue;
1819 }
1820
1821 if (__ocfs2_recovery_map_test(osb, node_num)) {
1822 spin_unlock(&osb->osb_lock);
1823 continue;
1824 }
1825 spin_unlock(&osb->osb_lock);
1826
1827 /* Ok, we have a slot occupied by another node which
1828 * is not in the recovery map. We trylock his journal
1829 * file here to test if he's alive. */
1830 status = ocfs2_trylock_journal(osb, i);
1831 if (!status) {
1832 /* Since we're called from mount, we know that
1833 * the recovery thread can't race us on
1834 * setting / checking the recovery bits. */
1835 ocfs2_recovery_thread(osb, node_num);
1836 } else if ((status < 0) && (status != -EAGAIN)) {
1837 mlog_errno(status);
1838 goto bail;
1839 }
1840 }
1841
1842 status = 0;
1843 bail:
1844 mlog_exit(status);
1845 return status;
1846 }
1847
1848 /*
1849 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1850 * randomness to the timeout to minimize multple nodes firing the timer at the
1851 * same time.
1852 */
1853 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1854 {
1855 unsigned long time;
1856
1857 get_random_bytes(&time, sizeof(time));
1858 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1859 return msecs_to_jiffies(time);
1860 }
1861
1862 /*
1863 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1864 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1865 * is done to catch any orphans that are left over in orphan directories.
1866 *
1867 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1868 * seconds. It gets an EX lock on os_lockres and checks sequence number
1869 * stored in LVB. If the sequence number has changed, it means some other
1870 * node has done the scan. This node skips the scan and tracks the
1871 * sequence number. If the sequence number didn't change, it means a scan
1872 * hasn't happened. The node queues a scan and increments the
1873 * sequence number in the LVB.
1874 */
1875 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1876 {
1877 struct ocfs2_orphan_scan *os;
1878 int status, i;
1879 u32 seqno = 0;
1880
1881 os = &osb->osb_orphan_scan;
1882
1883 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1884 goto out;
1885
1886 status = ocfs2_orphan_scan_lock(osb, &seqno);
1887 if (status < 0) {
1888 if (status != -EAGAIN)
1889 mlog_errno(status);
1890 goto out;
1891 }
1892
1893 /* Do no queue the tasks if the volume is being umounted */
1894 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1895 goto unlock;
1896
1897 if (os->os_seqno != seqno) {
1898 os->os_seqno = seqno;
1899 goto unlock;
1900 }
1901
1902 for (i = 0; i < osb->max_slots; i++)
1903 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1904 NULL);
1905 /*
1906 * We queued a recovery on orphan slots, increment the sequence
1907 * number and update LVB so other node will skip the scan for a while
1908 */
1909 seqno++;
1910 os->os_count++;
1911 os->os_scantime = CURRENT_TIME;
1912 unlock:
1913 ocfs2_orphan_scan_unlock(osb, seqno);
1914 out:
1915 return;
1916 }
1917
1918 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1919 void ocfs2_orphan_scan_work(struct work_struct *work)
1920 {
1921 struct ocfs2_orphan_scan *os;
1922 struct ocfs2_super *osb;
1923
1924 os = container_of(work, struct ocfs2_orphan_scan,
1925 os_orphan_scan_work.work);
1926 osb = os->os_osb;
1927
1928 mutex_lock(&os->os_lock);
1929 ocfs2_queue_orphan_scan(osb);
1930 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1931 schedule_delayed_work(&os->os_orphan_scan_work,
1932 ocfs2_orphan_scan_timeout());
1933 mutex_unlock(&os->os_lock);
1934 }
1935
1936 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1937 {
1938 struct ocfs2_orphan_scan *os;
1939
1940 os = &osb->osb_orphan_scan;
1941 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1942 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1943 mutex_lock(&os->os_lock);
1944 cancel_delayed_work(&os->os_orphan_scan_work);
1945 mutex_unlock(&os->os_lock);
1946 }
1947 }
1948
1949 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1950 {
1951 struct ocfs2_orphan_scan *os;
1952
1953 os = &osb->osb_orphan_scan;
1954 os->os_osb = osb;
1955 os->os_count = 0;
1956 os->os_seqno = 0;
1957 os->os_scantime = CURRENT_TIME;
1958 mutex_init(&os->os_lock);
1959 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1960
1961 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1962 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1963 else {
1964 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1965 schedule_delayed_work(&os->os_orphan_scan_work,
1966 ocfs2_orphan_scan_timeout());
1967 }
1968 }
1969
1970 struct ocfs2_orphan_filldir_priv {
1971 struct inode *head;
1972 struct ocfs2_super *osb;
1973 };
1974
1975 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1976 loff_t pos, u64 ino, unsigned type)
1977 {
1978 struct ocfs2_orphan_filldir_priv *p = priv;
1979 struct inode *iter;
1980
1981 if (name_len == 1 && !strncmp(".", name, 1))
1982 return 0;
1983 if (name_len == 2 && !strncmp("..", name, 2))
1984 return 0;
1985
1986 /* Skip bad inodes so that recovery can continue */
1987 iter = ocfs2_iget(p->osb, ino,
1988 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1989 if (IS_ERR(iter))
1990 return 0;
1991
1992 mlog(0, "queue orphan %llu\n",
1993 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1994 /* No locking is required for the next_orphan queue as there
1995 * is only ever a single process doing orphan recovery. */
1996 OCFS2_I(iter)->ip_next_orphan = p->head;
1997 p->head = iter;
1998
1999 return 0;
2000 }
2001
2002 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2003 int slot,
2004 struct inode **head)
2005 {
2006 int status;
2007 struct inode *orphan_dir_inode = NULL;
2008 struct ocfs2_orphan_filldir_priv priv;
2009 loff_t pos = 0;
2010
2011 priv.osb = osb;
2012 priv.head = *head;
2013
2014 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2015 ORPHAN_DIR_SYSTEM_INODE,
2016 slot);
2017 if (!orphan_dir_inode) {
2018 status = -ENOENT;
2019 mlog_errno(status);
2020 return status;
2021 }
2022
2023 mutex_lock(&orphan_dir_inode->i_mutex);
2024 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2025 if (status < 0) {
2026 mlog_errno(status);
2027 goto out;
2028 }
2029
2030 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2031 ocfs2_orphan_filldir);
2032 if (status) {
2033 mlog_errno(status);
2034 goto out_cluster;
2035 }
2036
2037 *head = priv.head;
2038
2039 out_cluster:
2040 ocfs2_inode_unlock(orphan_dir_inode, 0);
2041 out:
2042 mutex_unlock(&orphan_dir_inode->i_mutex);
2043 iput(orphan_dir_inode);
2044 return status;
2045 }
2046
2047 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2048 int slot)
2049 {
2050 int ret;
2051
2052 spin_lock(&osb->osb_lock);
2053 ret = !osb->osb_orphan_wipes[slot];
2054 spin_unlock(&osb->osb_lock);
2055 return ret;
2056 }
2057
2058 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2059 int slot)
2060 {
2061 spin_lock(&osb->osb_lock);
2062 /* Mark ourselves such that new processes in delete_inode()
2063 * know to quit early. */
2064 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2065 while (osb->osb_orphan_wipes[slot]) {
2066 /* If any processes are already in the middle of an
2067 * orphan wipe on this dir, then we need to wait for
2068 * them. */
2069 spin_unlock(&osb->osb_lock);
2070 wait_event_interruptible(osb->osb_wipe_event,
2071 ocfs2_orphan_recovery_can_continue(osb, slot));
2072 spin_lock(&osb->osb_lock);
2073 }
2074 spin_unlock(&osb->osb_lock);
2075 }
2076
2077 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2078 int slot)
2079 {
2080 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2081 }
2082
2083 /*
2084 * Orphan recovery. Each mounted node has it's own orphan dir which we
2085 * must run during recovery. Our strategy here is to build a list of
2086 * the inodes in the orphan dir and iget/iput them. The VFS does
2087 * (most) of the rest of the work.
2088 *
2089 * Orphan recovery can happen at any time, not just mount so we have a
2090 * couple of extra considerations.
2091 *
2092 * - We grab as many inodes as we can under the orphan dir lock -
2093 * doing iget() outside the orphan dir risks getting a reference on
2094 * an invalid inode.
2095 * - We must be sure not to deadlock with other processes on the
2096 * system wanting to run delete_inode(). This can happen when they go
2097 * to lock the orphan dir and the orphan recovery process attempts to
2098 * iget() inside the orphan dir lock. This can be avoided by
2099 * advertising our state to ocfs2_delete_inode().
2100 */
2101 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2102 int slot)
2103 {
2104 int ret = 0;
2105 struct inode *inode = NULL;
2106 struct inode *iter;
2107 struct ocfs2_inode_info *oi;
2108
2109 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2110
2111 ocfs2_mark_recovering_orphan_dir(osb, slot);
2112 ret = ocfs2_queue_orphans(osb, slot, &inode);
2113 ocfs2_clear_recovering_orphan_dir(osb, slot);
2114
2115 /* Error here should be noted, but we want to continue with as
2116 * many queued inodes as we've got. */
2117 if (ret)
2118 mlog_errno(ret);
2119
2120 while (inode) {
2121 oi = OCFS2_I(inode);
2122 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2123
2124 iter = oi->ip_next_orphan;
2125
2126 spin_lock(&oi->ip_lock);
2127 /* The remote delete code may have set these on the
2128 * assumption that the other node would wipe them
2129 * successfully. If they are still in the node's
2130 * orphan dir, we need to reset that state. */
2131 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2132
2133 /* Set the proper information to get us going into
2134 * ocfs2_delete_inode. */
2135 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2136 spin_unlock(&oi->ip_lock);
2137
2138 iput(inode);
2139
2140 inode = iter;
2141 }
2142
2143 return ret;
2144 }
2145
2146 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2147 {
2148 /* This check is good because ocfs2 will wait on our recovery
2149 * thread before changing it to something other than MOUNTED
2150 * or DISABLED. */
2151 wait_event(osb->osb_mount_event,
2152 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2153 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2154 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2155
2156 /* If there's an error on mount, then we may never get to the
2157 * MOUNTED flag, but this is set right before
2158 * dismount_volume() so we can trust it. */
2159 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2160 mlog(0, "mount error, exiting!\n");
2161 return -EBUSY;
2162 }
2163
2164 return 0;
2165 }
2166
2167 static int ocfs2_commit_thread(void *arg)
2168 {
2169 int status;
2170 struct ocfs2_super *osb = arg;
2171 struct ocfs2_journal *journal = osb->journal;
2172
2173 /* we can trust j_num_trans here because _should_stop() is only set in
2174 * shutdown and nobody other than ourselves should be able to start
2175 * transactions. committing on shutdown might take a few iterations
2176 * as final transactions put deleted inodes on the list */
2177 while (!(kthread_should_stop() &&
2178 atomic_read(&journal->j_num_trans) == 0)) {
2179
2180 wait_event_interruptible(osb->checkpoint_event,
2181 atomic_read(&journal->j_num_trans)
2182 || kthread_should_stop());
2183
2184 status = ocfs2_commit_cache(osb);
2185 if (status < 0)
2186 mlog_errno(status);
2187
2188 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2189 mlog(ML_KTHREAD,
2190 "commit_thread: %u transactions pending on "
2191 "shutdown\n",
2192 atomic_read(&journal->j_num_trans));
2193 }
2194 }
2195
2196 return 0;
2197 }
2198
2199 /* Reads all the journal inodes without taking any cluster locks. Used
2200 * for hard readonly access to determine whether any journal requires
2201 * recovery. Also used to refresh the recovery generation numbers after
2202 * a journal has been recovered by another node.
2203 */
2204 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2205 {
2206 int ret = 0;
2207 unsigned int slot;
2208 struct buffer_head *di_bh = NULL;
2209 struct ocfs2_dinode *di;
2210 int journal_dirty = 0;
2211
2212 for(slot = 0; slot < osb->max_slots; slot++) {
2213 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2214 if (ret) {
2215 mlog_errno(ret);
2216 goto out;
2217 }
2218
2219 di = (struct ocfs2_dinode *) di_bh->b_data;
2220
2221 osb->slot_recovery_generations[slot] =
2222 ocfs2_get_recovery_generation(di);
2223
2224 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2225 OCFS2_JOURNAL_DIRTY_FL)
2226 journal_dirty = 1;
2227
2228 brelse(di_bh);
2229 di_bh = NULL;
2230 }
2231
2232 out:
2233 if (journal_dirty)
2234 ret = -EROFS;
2235 return ret;
2236 }