Merge tag 'renesas-soc-r8a7790-for-v3.10' of git://git.kernel.org/pub/scm/linux/kerne...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfsd / nfscache.c
1 /*
2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
4 *
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
7 *
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9 */
10
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <net/checksum.h>
15
16 #include "nfsd.h"
17 #include "cache.h"
18
19 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
20
21 #define HASHSIZE 64
22
23 static struct hlist_head * cache_hash;
24 static struct list_head lru_head;
25 static struct kmem_cache *drc_slab;
26 static unsigned int num_drc_entries;
27 static unsigned int max_drc_entries;
28
29 /*
30 * Calculate the hash index from an XID.
31 */
32 static inline u32 request_hash(u32 xid)
33 {
34 u32 h = xid;
35 h ^= (xid >> 24);
36 return h & (HASHSIZE-1);
37 }
38
39 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
40 static void cache_cleaner_func(struct work_struct *unused);
41 static int nfsd_reply_cache_shrink(struct shrinker *shrink,
42 struct shrink_control *sc);
43
44 struct shrinker nfsd_reply_cache_shrinker = {
45 .shrink = nfsd_reply_cache_shrink,
46 .seeks = 1,
47 };
48
49 /*
50 * locking for the reply cache:
51 * A cache entry is "single use" if c_state == RC_INPROG
52 * Otherwise, it when accessing _prev or _next, the lock must be held.
53 */
54 static DEFINE_SPINLOCK(cache_lock);
55 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
56
57 /*
58 * Put a cap on the size of the DRC based on the amount of available
59 * low memory in the machine.
60 *
61 * 64MB: 8192
62 * 128MB: 11585
63 * 256MB: 16384
64 * 512MB: 23170
65 * 1GB: 32768
66 * 2GB: 46340
67 * 4GB: 65536
68 * 8GB: 92681
69 * 16GB: 131072
70 *
71 * ...with a hard cap of 256k entries. In the worst case, each entry will be
72 * ~1k, so the above numbers should give a rough max of the amount of memory
73 * used in k.
74 */
75 static unsigned int
76 nfsd_cache_size_limit(void)
77 {
78 unsigned int limit;
79 unsigned long low_pages = totalram_pages - totalhigh_pages;
80
81 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
82 return min_t(unsigned int, limit, 256*1024);
83 }
84
85 static struct svc_cacherep *
86 nfsd_reply_cache_alloc(void)
87 {
88 struct svc_cacherep *rp;
89
90 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
91 if (rp) {
92 rp->c_state = RC_UNUSED;
93 rp->c_type = RC_NOCACHE;
94 INIT_LIST_HEAD(&rp->c_lru);
95 INIT_HLIST_NODE(&rp->c_hash);
96 }
97 return rp;
98 }
99
100 static void
101 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
102 {
103 if (rp->c_type == RC_REPLBUFF)
104 kfree(rp->c_replvec.iov_base);
105 if (!hlist_unhashed(&rp->c_hash))
106 hlist_del(&rp->c_hash);
107 list_del(&rp->c_lru);
108 --num_drc_entries;
109 kmem_cache_free(drc_slab, rp);
110 }
111
112 static void
113 nfsd_reply_cache_free(struct svc_cacherep *rp)
114 {
115 spin_lock(&cache_lock);
116 nfsd_reply_cache_free_locked(rp);
117 spin_unlock(&cache_lock);
118 }
119
120 int nfsd_reply_cache_init(void)
121 {
122 INIT_LIST_HEAD(&lru_head);
123 max_drc_entries = nfsd_cache_size_limit();
124 num_drc_entries = 0;
125
126 register_shrinker(&nfsd_reply_cache_shrinker);
127 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
128 0, 0, NULL);
129 if (!drc_slab)
130 goto out_nomem;
131
132 cache_hash = kcalloc(HASHSIZE, sizeof(struct hlist_head), GFP_KERNEL);
133 if (!cache_hash)
134 goto out_nomem;
135
136 return 0;
137 out_nomem:
138 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
139 nfsd_reply_cache_shutdown();
140 return -ENOMEM;
141 }
142
143 void nfsd_reply_cache_shutdown(void)
144 {
145 struct svc_cacherep *rp;
146
147 unregister_shrinker(&nfsd_reply_cache_shrinker);
148 cancel_delayed_work_sync(&cache_cleaner);
149
150 while (!list_empty(&lru_head)) {
151 rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
152 nfsd_reply_cache_free_locked(rp);
153 }
154
155 kfree (cache_hash);
156 cache_hash = NULL;
157
158 if (drc_slab) {
159 kmem_cache_destroy(drc_slab);
160 drc_slab = NULL;
161 }
162 }
163
164 /*
165 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
166 * not already scheduled.
167 */
168 static void
169 lru_put_end(struct svc_cacherep *rp)
170 {
171 rp->c_timestamp = jiffies;
172 list_move_tail(&rp->c_lru, &lru_head);
173 schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
174 }
175
176 /*
177 * Move a cache entry from one hash list to another
178 */
179 static void
180 hash_refile(struct svc_cacherep *rp)
181 {
182 hlist_del_init(&rp->c_hash);
183 hlist_add_head(&rp->c_hash, cache_hash + request_hash(rp->c_xid));
184 }
185
186 static inline bool
187 nfsd_cache_entry_expired(struct svc_cacherep *rp)
188 {
189 return rp->c_state != RC_INPROG &&
190 time_after(jiffies, rp->c_timestamp + RC_EXPIRE);
191 }
192
193 /*
194 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
195 * Also prune the oldest ones when the total exceeds the max number of entries.
196 */
197 static void
198 prune_cache_entries(void)
199 {
200 struct svc_cacherep *rp, *tmp;
201
202 list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
203 if (!nfsd_cache_entry_expired(rp) &&
204 num_drc_entries <= max_drc_entries)
205 break;
206 nfsd_reply_cache_free_locked(rp);
207 }
208
209 /*
210 * Conditionally rearm the job. If we cleaned out the list, then
211 * cancel any pending run (since there won't be any work to do).
212 * Otherwise, we rearm the job or modify the existing one to run in
213 * RC_EXPIRE since we just ran the pruner.
214 */
215 if (list_empty(&lru_head))
216 cancel_delayed_work(&cache_cleaner);
217 else
218 mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
219 }
220
221 static void
222 cache_cleaner_func(struct work_struct *unused)
223 {
224 spin_lock(&cache_lock);
225 prune_cache_entries();
226 spin_unlock(&cache_lock);
227 }
228
229 static int
230 nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc)
231 {
232 unsigned int num;
233
234 spin_lock(&cache_lock);
235 if (sc->nr_to_scan)
236 prune_cache_entries();
237 num = num_drc_entries;
238 spin_unlock(&cache_lock);
239
240 return num;
241 }
242
243 /*
244 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
245 */
246 static __wsum
247 nfsd_cache_csum(struct svc_rqst *rqstp)
248 {
249 int idx;
250 unsigned int base;
251 __wsum csum;
252 struct xdr_buf *buf = &rqstp->rq_arg;
253 const unsigned char *p = buf->head[0].iov_base;
254 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
255 RC_CSUMLEN);
256 size_t len = min(buf->head[0].iov_len, csum_len);
257
258 /* rq_arg.head first */
259 csum = csum_partial(p, len, 0);
260 csum_len -= len;
261
262 /* Continue into page array */
263 idx = buf->page_base / PAGE_SIZE;
264 base = buf->page_base & ~PAGE_MASK;
265 while (csum_len) {
266 p = page_address(buf->pages[idx]) + base;
267 len = min_t(size_t, PAGE_SIZE - base, csum_len);
268 csum = csum_partial(p, len, csum);
269 csum_len -= len;
270 base = 0;
271 ++idx;
272 }
273 return csum;
274 }
275
276 /*
277 * Search the request hash for an entry that matches the given rqstp.
278 * Must be called with cache_lock held. Returns the found entry or
279 * NULL on failure.
280 */
281 static struct svc_cacherep *
282 nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum)
283 {
284 struct svc_cacherep *rp;
285 struct hlist_head *rh;
286 __be32 xid = rqstp->rq_xid;
287 u32 proto = rqstp->rq_prot,
288 vers = rqstp->rq_vers,
289 proc = rqstp->rq_proc;
290
291 rh = &cache_hash[request_hash(xid)];
292 hlist_for_each_entry(rp, rh, c_hash) {
293 if (xid == rp->c_xid && proc == rp->c_proc &&
294 proto == rp->c_prot && vers == rp->c_vers &&
295 rqstp->rq_arg.len == rp->c_len && csum == rp->c_csum &&
296 rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) &&
297 rpc_get_port(svc_addr(rqstp)) == rpc_get_port((struct sockaddr *)&rp->c_addr))
298 return rp;
299 }
300 return NULL;
301 }
302
303 /*
304 * Try to find an entry matching the current call in the cache. When none
305 * is found, we try to grab the oldest expired entry off the LRU list. If
306 * a suitable one isn't there, then drop the cache_lock and allocate a
307 * new one, then search again in case one got inserted while this thread
308 * didn't hold the lock.
309 */
310 int
311 nfsd_cache_lookup(struct svc_rqst *rqstp)
312 {
313 struct svc_cacherep *rp, *found;
314 __be32 xid = rqstp->rq_xid;
315 u32 proto = rqstp->rq_prot,
316 vers = rqstp->rq_vers,
317 proc = rqstp->rq_proc;
318 __wsum csum;
319 unsigned long age;
320 int type = rqstp->rq_cachetype;
321 int rtn;
322
323 rqstp->rq_cacherep = NULL;
324 if (type == RC_NOCACHE) {
325 nfsdstats.rcnocache++;
326 return RC_DOIT;
327 }
328
329 csum = nfsd_cache_csum(rqstp);
330
331 spin_lock(&cache_lock);
332 rtn = RC_DOIT;
333
334 rp = nfsd_cache_search(rqstp, csum);
335 if (rp)
336 goto found_entry;
337
338 /* Try to use the first entry on the LRU */
339 if (!list_empty(&lru_head)) {
340 rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru);
341 if (nfsd_cache_entry_expired(rp) ||
342 num_drc_entries >= max_drc_entries) {
343 lru_put_end(rp);
344 prune_cache_entries();
345 goto setup_entry;
346 }
347 }
348
349 /* Drop the lock and allocate a new entry */
350 spin_unlock(&cache_lock);
351 rp = nfsd_reply_cache_alloc();
352 if (!rp) {
353 dprintk("nfsd: unable to allocate DRC entry!\n");
354 return RC_DOIT;
355 }
356 spin_lock(&cache_lock);
357 ++num_drc_entries;
358
359 /*
360 * Must search again just in case someone inserted one
361 * after we dropped the lock above.
362 */
363 found = nfsd_cache_search(rqstp, csum);
364 if (found) {
365 nfsd_reply_cache_free_locked(rp);
366 rp = found;
367 goto found_entry;
368 }
369
370 /*
371 * We're keeping the one we just allocated. Are we now over the
372 * limit? Prune one off the tip of the LRU in trade for the one we
373 * just allocated if so.
374 */
375 if (num_drc_entries >= max_drc_entries)
376 nfsd_reply_cache_free_locked(list_first_entry(&lru_head,
377 struct svc_cacherep, c_lru));
378
379 setup_entry:
380 nfsdstats.rcmisses++;
381 rqstp->rq_cacherep = rp;
382 rp->c_state = RC_INPROG;
383 rp->c_xid = xid;
384 rp->c_proc = proc;
385 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
386 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
387 rp->c_prot = proto;
388 rp->c_vers = vers;
389 rp->c_len = rqstp->rq_arg.len;
390 rp->c_csum = csum;
391
392 hash_refile(rp);
393 lru_put_end(rp);
394
395 /* release any buffer */
396 if (rp->c_type == RC_REPLBUFF) {
397 kfree(rp->c_replvec.iov_base);
398 rp->c_replvec.iov_base = NULL;
399 }
400 rp->c_type = RC_NOCACHE;
401 out:
402 spin_unlock(&cache_lock);
403 return rtn;
404
405 found_entry:
406 nfsdstats.rchits++;
407 /* We found a matching entry which is either in progress or done. */
408 age = jiffies - rp->c_timestamp;
409 lru_put_end(rp);
410
411 rtn = RC_DROPIT;
412 /* Request being processed or excessive rexmits */
413 if (rp->c_state == RC_INPROG || age < RC_DELAY)
414 goto out;
415
416 /* From the hall of fame of impractical attacks:
417 * Is this a user who tries to snoop on the cache? */
418 rtn = RC_DOIT;
419 if (!rqstp->rq_secure && rp->c_secure)
420 goto out;
421
422 /* Compose RPC reply header */
423 switch (rp->c_type) {
424 case RC_NOCACHE:
425 break;
426 case RC_REPLSTAT:
427 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
428 rtn = RC_REPLY;
429 break;
430 case RC_REPLBUFF:
431 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
432 goto out; /* should not happen */
433 rtn = RC_REPLY;
434 break;
435 default:
436 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
437 nfsd_reply_cache_free_locked(rp);
438 }
439
440 goto out;
441 }
442
443 /*
444 * Update a cache entry. This is called from nfsd_dispatch when
445 * the procedure has been executed and the complete reply is in
446 * rqstp->rq_res.
447 *
448 * We're copying around data here rather than swapping buffers because
449 * the toplevel loop requires max-sized buffers, which would be a waste
450 * of memory for a cache with a max reply size of 100 bytes (diropokres).
451 *
452 * If we should start to use different types of cache entries tailored
453 * specifically for attrstat and fh's, we may save even more space.
454 *
455 * Also note that a cachetype of RC_NOCACHE can legally be passed when
456 * nfsd failed to encode a reply that otherwise would have been cached.
457 * In this case, nfsd_cache_update is called with statp == NULL.
458 */
459 void
460 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
461 {
462 struct svc_cacherep *rp = rqstp->rq_cacherep;
463 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
464 int len;
465
466 if (!rp)
467 return;
468
469 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
470 len >>= 2;
471
472 /* Don't cache excessive amounts of data and XDR failures */
473 if (!statp || len > (256 >> 2)) {
474 nfsd_reply_cache_free(rp);
475 return;
476 }
477
478 switch (cachetype) {
479 case RC_REPLSTAT:
480 if (len != 1)
481 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
482 rp->c_replstat = *statp;
483 break;
484 case RC_REPLBUFF:
485 cachv = &rp->c_replvec;
486 cachv->iov_base = kmalloc(len << 2, GFP_KERNEL);
487 if (!cachv->iov_base) {
488 nfsd_reply_cache_free(rp);
489 return;
490 }
491 cachv->iov_len = len << 2;
492 memcpy(cachv->iov_base, statp, len << 2);
493 break;
494 case RC_NOCACHE:
495 nfsd_reply_cache_free(rp);
496 return;
497 }
498 spin_lock(&cache_lock);
499 lru_put_end(rp);
500 rp->c_secure = rqstp->rq_secure;
501 rp->c_type = cachetype;
502 rp->c_state = RC_DONE;
503 spin_unlock(&cache_lock);
504 return;
505 }
506
507 /*
508 * Copy cached reply to current reply buffer. Should always fit.
509 * FIXME as reply is in a page, we should just attach the page, and
510 * keep a refcount....
511 */
512 static int
513 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
514 {
515 struct kvec *vec = &rqstp->rq_res.head[0];
516
517 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
518 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
519 data->iov_len);
520 return 0;
521 }
522 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
523 vec->iov_len += data->iov_len;
524 return 1;
525 }