NFS: Ensure that we update the readdir filp->f_pos correctly
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_readdir(struct file *, void *, filldir_t);
48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50 static int nfs_mkdir(struct inode *, struct dentry *, int);
51 static int nfs_rmdir(struct inode *, struct dentry *);
52 static int nfs_unlink(struct inode *, struct dentry *);
53 static int nfs_symlink(struct inode *, struct dentry *, const char *);
54 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56 static int nfs_rename(struct inode *, struct dentry *,
57 struct inode *, struct dentry *);
58 static int nfs_fsync_dir(struct file *, int);
59 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 static void nfs_readdir_clear_array(struct page*);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .readdir = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_release,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct inode_operations nfs_dir_inode_operations = {
72 .create = nfs_create,
73 .lookup = nfs_lookup,
74 .link = nfs_link,
75 .unlink = nfs_unlink,
76 .symlink = nfs_symlink,
77 .mkdir = nfs_mkdir,
78 .rmdir = nfs_rmdir,
79 .mknod = nfs_mknod,
80 .rename = nfs_rename,
81 .permission = nfs_permission,
82 .getattr = nfs_getattr,
83 .setattr = nfs_setattr,
84 };
85
86 const struct address_space_operations nfs_dir_aops = {
87 .freepage = nfs_readdir_clear_array,
88 };
89
90 #ifdef CONFIG_NFS_V3
91 const struct inode_operations nfs3_dir_inode_operations = {
92 .create = nfs_create,
93 .lookup = nfs_lookup,
94 .link = nfs_link,
95 .unlink = nfs_unlink,
96 .symlink = nfs_symlink,
97 .mkdir = nfs_mkdir,
98 .rmdir = nfs_rmdir,
99 .mknod = nfs_mknod,
100 .rename = nfs_rename,
101 .permission = nfs_permission,
102 .getattr = nfs_getattr,
103 .setattr = nfs_setattr,
104 .listxattr = nfs3_listxattr,
105 .getxattr = nfs3_getxattr,
106 .setxattr = nfs3_setxattr,
107 .removexattr = nfs3_removexattr,
108 };
109 #endif /* CONFIG_NFS_V3 */
110
111 #ifdef CONFIG_NFS_V4
112
113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115 const struct inode_operations nfs4_dir_inode_operations = {
116 .create = nfs_open_create,
117 .lookup = nfs_atomic_lookup,
118 .link = nfs_link,
119 .unlink = nfs_unlink,
120 .symlink = nfs_symlink,
121 .mkdir = nfs_mkdir,
122 .rmdir = nfs_rmdir,
123 .mknod = nfs_mknod,
124 .rename = nfs_rename,
125 .permission = nfs_permission,
126 .getattr = nfs_getattr,
127 .setattr = nfs_setattr,
128 .getxattr = generic_getxattr,
129 .setxattr = generic_setxattr,
130 .listxattr = generic_listxattr,
131 .removexattr = generic_removexattr,
132 };
133
134 #endif /* CONFIG_NFS_V4 */
135
136 /*
137 * Open file
138 */
139 static int
140 nfs_opendir(struct inode *inode, struct file *filp)
141 {
142 int res;
143
144 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
145 filp->f_path.dentry->d_parent->d_name.name,
146 filp->f_path.dentry->d_name.name);
147
148 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
149
150 /* Call generic open code in order to cache credentials */
151 res = nfs_open(inode, filp);
152 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
153 /* This is a mountpoint, so d_revalidate will never
154 * have been called, so we need to refresh the
155 * inode (for close-open consistency) ourselves.
156 */
157 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
158 }
159 return res;
160 }
161
162 struct nfs_cache_array_entry {
163 u64 cookie;
164 u64 ino;
165 struct qstr string;
166 unsigned char d_type;
167 };
168
169 struct nfs_cache_array {
170 unsigned int size;
171 int eof_index;
172 u64 last_cookie;
173 struct nfs_cache_array_entry array[0];
174 };
175
176 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
177 typedef struct {
178 struct file *file;
179 struct page *page;
180 unsigned long page_index;
181 u64 *dir_cookie;
182 u64 last_cookie;
183 loff_t current_index;
184 decode_dirent_t decode;
185
186 unsigned long timestamp;
187 unsigned long gencount;
188 unsigned int cache_entry_index;
189 unsigned int plus:1;
190 unsigned int eof:1;
191 } nfs_readdir_descriptor_t;
192
193 /*
194 * The caller is responsible for calling nfs_readdir_release_array(page)
195 */
196 static
197 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
198 {
199 void *ptr;
200 if (page == NULL)
201 return ERR_PTR(-EIO);
202 ptr = kmap(page);
203 if (ptr == NULL)
204 return ERR_PTR(-ENOMEM);
205 return ptr;
206 }
207
208 static
209 void nfs_readdir_release_array(struct page *page)
210 {
211 kunmap(page);
212 }
213
214 /*
215 * we are freeing strings created by nfs_add_to_readdir_array()
216 */
217 static
218 void nfs_readdir_clear_array(struct page *page)
219 {
220 struct nfs_cache_array *array;
221 int i;
222
223 array = kmap_atomic(page, KM_USER0);
224 for (i = 0; i < array->size; i++)
225 kfree(array->array[i].string.name);
226 kunmap_atomic(array, KM_USER0);
227 }
228
229 /*
230 * the caller is responsible for freeing qstr.name
231 * when called by nfs_readdir_add_to_array, the strings will be freed in
232 * nfs_clear_readdir_array()
233 */
234 static
235 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
236 {
237 string->len = len;
238 string->name = kmemdup(name, len, GFP_KERNEL);
239 if (string->name == NULL)
240 return -ENOMEM;
241 /*
242 * Avoid a kmemleak false positive. The pointer to the name is stored
243 * in a page cache page which kmemleak does not scan.
244 */
245 kmemleak_not_leak(string->name);
246 string->hash = full_name_hash(name, len);
247 return 0;
248 }
249
250 static
251 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
252 {
253 struct nfs_cache_array *array = nfs_readdir_get_array(page);
254 struct nfs_cache_array_entry *cache_entry;
255 int ret;
256
257 if (IS_ERR(array))
258 return PTR_ERR(array);
259
260 cache_entry = &array->array[array->size];
261
262 /* Check that this entry lies within the page bounds */
263 ret = -ENOSPC;
264 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
265 goto out;
266
267 cache_entry->cookie = entry->prev_cookie;
268 cache_entry->ino = entry->ino;
269 cache_entry->d_type = entry->d_type;
270 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
271 if (ret)
272 goto out;
273 array->last_cookie = entry->cookie;
274 array->size++;
275 if (entry->eof != 0)
276 array->eof_index = array->size;
277 out:
278 nfs_readdir_release_array(page);
279 return ret;
280 }
281
282 static
283 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
284 {
285 loff_t diff = desc->file->f_pos - desc->current_index;
286 unsigned int index;
287
288 if (diff < 0)
289 goto out_eof;
290 if (diff >= array->size) {
291 if (array->eof_index >= 0)
292 goto out_eof;
293 return -EAGAIN;
294 }
295
296 index = (unsigned int)diff;
297 *desc->dir_cookie = array->array[index].cookie;
298 desc->cache_entry_index = index;
299 return 0;
300 out_eof:
301 desc->eof = 1;
302 return -EBADCOOKIE;
303 }
304
305 static
306 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
307 {
308 int i;
309 int status = -EAGAIN;
310
311 for (i = 0; i < array->size; i++) {
312 if (array->array[i].cookie == *desc->dir_cookie) {
313 desc->file->f_pos = desc->current_index + i;
314 desc->cache_entry_index = i;
315 return 0;
316 }
317 }
318 if (array->eof_index >= 0) {
319 status = -EBADCOOKIE;
320 if (*desc->dir_cookie == array->last_cookie)
321 desc->eof = 1;
322 }
323 return status;
324 }
325
326 static
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
328 {
329 struct nfs_cache_array *array;
330 int status;
331
332 array = nfs_readdir_get_array(desc->page);
333 if (IS_ERR(array)) {
334 status = PTR_ERR(array);
335 goto out;
336 }
337
338 if (*desc->dir_cookie == 0)
339 status = nfs_readdir_search_for_pos(array, desc);
340 else
341 status = nfs_readdir_search_for_cookie(array, desc);
342
343 if (status == -EAGAIN) {
344 desc->last_cookie = array->last_cookie;
345 desc->current_index += array->size;
346 desc->page_index++;
347 }
348 nfs_readdir_release_array(desc->page);
349 out:
350 return status;
351 }
352
353 /* Fill a page with xdr information before transferring to the cache page */
354 static
355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
356 struct nfs_entry *entry, struct file *file, struct inode *inode)
357 {
358 struct rpc_cred *cred = nfs_file_cred(file);
359 unsigned long timestamp, gencount;
360 int error;
361
362 again:
363 timestamp = jiffies;
364 gencount = nfs_inc_attr_generation_counter();
365 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
366 NFS_SERVER(inode)->dtsize, desc->plus);
367 if (error < 0) {
368 /* We requested READDIRPLUS, but the server doesn't grok it */
369 if (error == -ENOTSUPP && desc->plus) {
370 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
371 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
372 desc->plus = 0;
373 goto again;
374 }
375 goto error;
376 }
377 desc->timestamp = timestamp;
378 desc->gencount = gencount;
379 error:
380 return error;
381 }
382
383 static int xdr_decode(nfs_readdir_descriptor_t *desc,
384 struct nfs_entry *entry, struct xdr_stream *xdr)
385 {
386 int error;
387
388 error = desc->decode(xdr, entry, desc->plus);
389 if (error)
390 return error;
391 entry->fattr->time_start = desc->timestamp;
392 entry->fattr->gencount = desc->gencount;
393 return 0;
394 }
395
396 static
397 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
398 {
399 if (dentry->d_inode == NULL)
400 goto different;
401 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
402 goto different;
403 return 1;
404 different:
405 return 0;
406 }
407
408 static
409 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
410 {
411 struct qstr filename = {
412 .len = entry->len,
413 .name = entry->name,
414 };
415 struct dentry *dentry;
416 struct dentry *alias;
417 struct inode *dir = parent->d_inode;
418 struct inode *inode;
419
420 if (filename.name[0] == '.') {
421 if (filename.len == 1)
422 return;
423 if (filename.len == 2 && filename.name[1] == '.')
424 return;
425 }
426 filename.hash = full_name_hash(filename.name, filename.len);
427
428 dentry = d_lookup(parent, &filename);
429 if (dentry != NULL) {
430 if (nfs_same_file(dentry, entry)) {
431 nfs_refresh_inode(dentry->d_inode, entry->fattr);
432 goto out;
433 } else {
434 d_drop(dentry);
435 dput(dentry);
436 }
437 }
438
439 dentry = d_alloc(parent, &filename);
440 if (dentry == NULL)
441 return;
442
443 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
444 if (IS_ERR(inode))
445 goto out;
446
447 alias = d_materialise_unique(dentry, inode);
448 if (IS_ERR(alias))
449 goto out;
450 else if (alias) {
451 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
452 dput(alias);
453 } else
454 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
455
456 out:
457 dput(dentry);
458 }
459
460 /* Perform conversion from xdr to cache array */
461 static
462 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
463 struct page **xdr_pages, struct page *page, unsigned int buflen)
464 {
465 struct xdr_stream stream;
466 struct xdr_buf buf = {
467 .pages = xdr_pages,
468 .page_len = buflen,
469 .buflen = buflen,
470 .len = buflen,
471 };
472 struct page *scratch;
473 struct nfs_cache_array *array;
474 unsigned int count = 0;
475 int status;
476
477 scratch = alloc_page(GFP_KERNEL);
478 if (scratch == NULL)
479 return -ENOMEM;
480
481 xdr_init_decode(&stream, &buf, NULL);
482 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
483
484 do {
485 status = xdr_decode(desc, entry, &stream);
486 if (status != 0) {
487 if (status == -EAGAIN)
488 status = 0;
489 break;
490 }
491
492 count++;
493
494 if (desc->plus != 0)
495 nfs_prime_dcache(desc->file->f_path.dentry, entry);
496
497 status = nfs_readdir_add_to_array(entry, page);
498 if (status != 0)
499 break;
500 } while (!entry->eof);
501
502 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
503 array = nfs_readdir_get_array(page);
504 if (!IS_ERR(array)) {
505 array->eof_index = array->size;
506 status = 0;
507 nfs_readdir_release_array(page);
508 } else
509 status = PTR_ERR(array);
510 }
511
512 put_page(scratch);
513 return status;
514 }
515
516 static
517 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
518 {
519 unsigned int i;
520 for (i = 0; i < npages; i++)
521 put_page(pages[i]);
522 }
523
524 static
525 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
526 unsigned int npages)
527 {
528 nfs_readdir_free_pagearray(pages, npages);
529 }
530
531 /*
532 * nfs_readdir_large_page will allocate pages that must be freed with a call
533 * to nfs_readdir_free_large_page
534 */
535 static
536 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
537 {
538 unsigned int i;
539
540 for (i = 0; i < npages; i++) {
541 struct page *page = alloc_page(GFP_KERNEL);
542 if (page == NULL)
543 goto out_freepages;
544 pages[i] = page;
545 }
546 return 0;
547
548 out_freepages:
549 nfs_readdir_free_pagearray(pages, i);
550 return -ENOMEM;
551 }
552
553 static
554 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
555 {
556 struct page *pages[NFS_MAX_READDIR_PAGES];
557 void *pages_ptr = NULL;
558 struct nfs_entry entry;
559 struct file *file = desc->file;
560 struct nfs_cache_array *array;
561 int status = -ENOMEM;
562 unsigned int array_size = ARRAY_SIZE(pages);
563
564 entry.prev_cookie = 0;
565 entry.cookie = desc->last_cookie;
566 entry.eof = 0;
567 entry.fh = nfs_alloc_fhandle();
568 entry.fattr = nfs_alloc_fattr();
569 entry.server = NFS_SERVER(inode);
570 if (entry.fh == NULL || entry.fattr == NULL)
571 goto out;
572
573 array = nfs_readdir_get_array(page);
574 if (IS_ERR(array)) {
575 status = PTR_ERR(array);
576 goto out;
577 }
578 memset(array, 0, sizeof(struct nfs_cache_array));
579 array->eof_index = -1;
580
581 status = nfs_readdir_large_page(pages, array_size);
582 if (status < 0)
583 goto out_release_array;
584 do {
585 unsigned int pglen;
586 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
587
588 if (status < 0)
589 break;
590 pglen = status;
591 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
592 if (status < 0) {
593 if (status == -ENOSPC)
594 status = 0;
595 break;
596 }
597 } while (array->eof_index < 0);
598
599 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
600 out_release_array:
601 nfs_readdir_release_array(page);
602 out:
603 nfs_free_fattr(entry.fattr);
604 nfs_free_fhandle(entry.fh);
605 return status;
606 }
607
608 /*
609 * Now we cache directories properly, by converting xdr information
610 * to an array that can be used for lookups later. This results in
611 * fewer cache pages, since we can store more information on each page.
612 * We only need to convert from xdr once so future lookups are much simpler
613 */
614 static
615 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
616 {
617 struct inode *inode = desc->file->f_path.dentry->d_inode;
618 int ret;
619
620 ret = nfs_readdir_xdr_to_array(desc, page, inode);
621 if (ret < 0)
622 goto error;
623 SetPageUptodate(page);
624
625 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
626 /* Should never happen */
627 nfs_zap_mapping(inode, inode->i_mapping);
628 }
629 unlock_page(page);
630 return 0;
631 error:
632 unlock_page(page);
633 return ret;
634 }
635
636 static
637 void cache_page_release(nfs_readdir_descriptor_t *desc)
638 {
639 if (!desc->page->mapping)
640 nfs_readdir_clear_array(desc->page);
641 page_cache_release(desc->page);
642 desc->page = NULL;
643 }
644
645 static
646 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
647 {
648 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
649 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
650 }
651
652 /*
653 * Returns 0 if desc->dir_cookie was found on page desc->page_index
654 */
655 static
656 int find_cache_page(nfs_readdir_descriptor_t *desc)
657 {
658 int res;
659
660 desc->page = get_cache_page(desc);
661 if (IS_ERR(desc->page))
662 return PTR_ERR(desc->page);
663
664 res = nfs_readdir_search_array(desc);
665 if (res != 0)
666 cache_page_release(desc);
667 return res;
668 }
669
670 /* Search for desc->dir_cookie from the beginning of the page cache */
671 static inline
672 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
673 {
674 int res;
675
676 if (desc->page_index == 0) {
677 desc->current_index = 0;
678 desc->last_cookie = 0;
679 }
680 do {
681 res = find_cache_page(desc);
682 } while (res == -EAGAIN);
683 return res;
684 }
685
686 /*
687 * Once we've found the start of the dirent within a page: fill 'er up...
688 */
689 static
690 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
691 filldir_t filldir)
692 {
693 struct file *file = desc->file;
694 int i = 0;
695 int res = 0;
696 struct nfs_cache_array *array = NULL;
697
698 array = nfs_readdir_get_array(desc->page);
699 if (IS_ERR(array)) {
700 res = PTR_ERR(array);
701 goto out;
702 }
703
704 for (i = desc->cache_entry_index; i < array->size; i++) {
705 struct nfs_cache_array_entry *ent;
706
707 ent = &array->array[i];
708 if (filldir(dirent, ent->string.name, ent->string.len,
709 file->f_pos, nfs_compat_user_ino64(ent->ino),
710 ent->d_type) < 0) {
711 desc->eof = 1;
712 break;
713 }
714 file->f_pos++;
715 if (i < (array->size-1))
716 *desc->dir_cookie = array->array[i+1].cookie;
717 else
718 *desc->dir_cookie = array->last_cookie;
719 }
720 if (array->eof_index >= 0)
721 desc->eof = 1;
722
723 nfs_readdir_release_array(desc->page);
724 out:
725 cache_page_release(desc);
726 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
727 (unsigned long long)*desc->dir_cookie, res);
728 return res;
729 }
730
731 /*
732 * If we cannot find a cookie in our cache, we suspect that this is
733 * because it points to a deleted file, so we ask the server to return
734 * whatever it thinks is the next entry. We then feed this to filldir.
735 * If all goes well, we should then be able to find our way round the
736 * cache on the next call to readdir_search_pagecache();
737 *
738 * NOTE: we cannot add the anonymous page to the pagecache because
739 * the data it contains might not be page aligned. Besides,
740 * we should already have a complete representation of the
741 * directory in the page cache by the time we get here.
742 */
743 static inline
744 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
745 filldir_t filldir)
746 {
747 struct page *page = NULL;
748 int status;
749 struct inode *inode = desc->file->f_path.dentry->d_inode;
750
751 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
752 (unsigned long long)*desc->dir_cookie);
753
754 page = alloc_page(GFP_HIGHUSER);
755 if (!page) {
756 status = -ENOMEM;
757 goto out;
758 }
759
760 desc->page_index = 0;
761 desc->last_cookie = *desc->dir_cookie;
762 desc->page = page;
763
764 status = nfs_readdir_xdr_to_array(desc, page, inode);
765 if (status < 0)
766 goto out_release;
767
768 status = nfs_do_filldir(desc, dirent, filldir);
769
770 out:
771 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
772 __func__, status);
773 return status;
774 out_release:
775 cache_page_release(desc);
776 goto out;
777 }
778
779 /* The file offset position represents the dirent entry number. A
780 last cookie cache takes care of the common case of reading the
781 whole directory.
782 */
783 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
784 {
785 struct dentry *dentry = filp->f_path.dentry;
786 struct inode *inode = dentry->d_inode;
787 nfs_readdir_descriptor_t my_desc,
788 *desc = &my_desc;
789 int res;
790
791 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
792 dentry->d_parent->d_name.name, dentry->d_name.name,
793 (long long)filp->f_pos);
794 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
795
796 /*
797 * filp->f_pos points to the dirent entry number.
798 * *desc->dir_cookie has the cookie for the next entry. We have
799 * to either find the entry with the appropriate number or
800 * revalidate the cookie.
801 */
802 memset(desc, 0, sizeof(*desc));
803
804 desc->file = filp;
805 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
806 desc->decode = NFS_PROTO(inode)->decode_dirent;
807 desc->plus = NFS_USE_READDIRPLUS(inode);
808
809 nfs_block_sillyrename(dentry);
810 res = nfs_revalidate_mapping(inode, filp->f_mapping);
811 if (res < 0)
812 goto out;
813
814 do {
815 res = readdir_search_pagecache(desc);
816
817 if (res == -EBADCOOKIE) {
818 res = 0;
819 /* This means either end of directory */
820 if (*desc->dir_cookie && desc->eof == 0) {
821 /* Or that the server has 'lost' a cookie */
822 res = uncached_readdir(desc, dirent, filldir);
823 if (res == 0)
824 continue;
825 }
826 break;
827 }
828 if (res == -ETOOSMALL && desc->plus) {
829 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
830 nfs_zap_caches(inode);
831 desc->page_index = 0;
832 desc->plus = 0;
833 desc->eof = 0;
834 continue;
835 }
836 if (res < 0)
837 break;
838
839 res = nfs_do_filldir(desc, dirent, filldir);
840 if (res < 0)
841 break;
842 } while (!desc->eof);
843 out:
844 nfs_unblock_sillyrename(dentry);
845 if (res > 0)
846 res = 0;
847 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
848 dentry->d_parent->d_name.name, dentry->d_name.name,
849 res);
850 return res;
851 }
852
853 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
854 {
855 struct dentry *dentry = filp->f_path.dentry;
856 struct inode *inode = dentry->d_inode;
857
858 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
859 dentry->d_parent->d_name.name,
860 dentry->d_name.name,
861 offset, origin);
862
863 mutex_lock(&inode->i_mutex);
864 switch (origin) {
865 case 1:
866 offset += filp->f_pos;
867 case 0:
868 if (offset >= 0)
869 break;
870 default:
871 offset = -EINVAL;
872 goto out;
873 }
874 if (offset != filp->f_pos) {
875 filp->f_pos = offset;
876 nfs_file_open_context(filp)->dir_cookie = 0;
877 }
878 out:
879 mutex_unlock(&inode->i_mutex);
880 return offset;
881 }
882
883 /*
884 * All directory operations under NFS are synchronous, so fsync()
885 * is a dummy operation.
886 */
887 static int nfs_fsync_dir(struct file *filp, int datasync)
888 {
889 struct dentry *dentry = filp->f_path.dentry;
890
891 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
892 dentry->d_parent->d_name.name, dentry->d_name.name,
893 datasync);
894
895 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
896 return 0;
897 }
898
899 /**
900 * nfs_force_lookup_revalidate - Mark the directory as having changed
901 * @dir - pointer to directory inode
902 *
903 * This forces the revalidation code in nfs_lookup_revalidate() to do a
904 * full lookup on all child dentries of 'dir' whenever a change occurs
905 * on the server that might have invalidated our dcache.
906 *
907 * The caller should be holding dir->i_lock
908 */
909 void nfs_force_lookup_revalidate(struct inode *dir)
910 {
911 NFS_I(dir)->cache_change_attribute++;
912 }
913
914 /*
915 * A check for whether or not the parent directory has changed.
916 * In the case it has, we assume that the dentries are untrustworthy
917 * and may need to be looked up again.
918 */
919 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
920 {
921 if (IS_ROOT(dentry))
922 return 1;
923 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
924 return 0;
925 if (!nfs_verify_change_attribute(dir, dentry->d_time))
926 return 0;
927 /* Revalidate nfsi->cache_change_attribute before we declare a match */
928 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
929 return 0;
930 if (!nfs_verify_change_attribute(dir, dentry->d_time))
931 return 0;
932 return 1;
933 }
934
935 /*
936 * Return the intent data that applies to this particular path component
937 *
938 * Note that the current set of intents only apply to the very last
939 * component of the path.
940 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
941 */
942 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
943 unsigned int mask)
944 {
945 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
946 return 0;
947 return nd->flags & mask;
948 }
949
950 /*
951 * Use intent information to check whether or not we're going to do
952 * an O_EXCL create using this path component.
953 */
954 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
955 {
956 if (NFS_PROTO(dir)->version == 2)
957 return 0;
958 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
959 }
960
961 /*
962 * Inode and filehandle revalidation for lookups.
963 *
964 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
965 * or if the intent information indicates that we're about to open this
966 * particular file and the "nocto" mount flag is not set.
967 *
968 */
969 static inline
970 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
971 {
972 struct nfs_server *server = NFS_SERVER(inode);
973
974 if (IS_AUTOMOUNT(inode))
975 return 0;
976 if (nd != NULL) {
977 /* VFS wants an on-the-wire revalidation */
978 if (nd->flags & LOOKUP_REVAL)
979 goto out_force;
980 /* This is an open(2) */
981 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
982 !(server->flags & NFS_MOUNT_NOCTO) &&
983 (S_ISREG(inode->i_mode) ||
984 S_ISDIR(inode->i_mode)))
985 goto out_force;
986 return 0;
987 }
988 return nfs_revalidate_inode(server, inode);
989 out_force:
990 return __nfs_revalidate_inode(server, inode);
991 }
992
993 /*
994 * We judge how long we want to trust negative
995 * dentries by looking at the parent inode mtime.
996 *
997 * If parent mtime has changed, we revalidate, else we wait for a
998 * period corresponding to the parent's attribute cache timeout value.
999 */
1000 static inline
1001 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1002 struct nameidata *nd)
1003 {
1004 /* Don't revalidate a negative dentry if we're creating a new file */
1005 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1006 return 0;
1007 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1008 return 1;
1009 return !nfs_check_verifier(dir, dentry);
1010 }
1011
1012 /*
1013 * This is called every time the dcache has a lookup hit,
1014 * and we should check whether we can really trust that
1015 * lookup.
1016 *
1017 * NOTE! The hit can be a negative hit too, don't assume
1018 * we have an inode!
1019 *
1020 * If the parent directory is seen to have changed, we throw out the
1021 * cached dentry and do a new lookup.
1022 */
1023 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1024 {
1025 struct inode *dir;
1026 struct inode *inode;
1027 struct dentry *parent;
1028 struct nfs_fh *fhandle = NULL;
1029 struct nfs_fattr *fattr = NULL;
1030 int error;
1031
1032 if (nd->flags & LOOKUP_RCU)
1033 return -ECHILD;
1034
1035 parent = dget_parent(dentry);
1036 dir = parent->d_inode;
1037 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1038 inode = dentry->d_inode;
1039
1040 if (!inode) {
1041 if (nfs_neg_need_reval(dir, dentry, nd))
1042 goto out_bad;
1043 goto out_valid;
1044 }
1045
1046 if (is_bad_inode(inode)) {
1047 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1048 __func__, dentry->d_parent->d_name.name,
1049 dentry->d_name.name);
1050 goto out_bad;
1051 }
1052
1053 if (nfs_have_delegation(inode, FMODE_READ))
1054 goto out_set_verifier;
1055
1056 /* Force a full look up iff the parent directory has changed */
1057 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1058 if (nfs_lookup_verify_inode(inode, nd))
1059 goto out_zap_parent;
1060 goto out_valid;
1061 }
1062
1063 if (NFS_STALE(inode))
1064 goto out_bad;
1065
1066 error = -ENOMEM;
1067 fhandle = nfs_alloc_fhandle();
1068 fattr = nfs_alloc_fattr();
1069 if (fhandle == NULL || fattr == NULL)
1070 goto out_error;
1071
1072 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1073 if (error)
1074 goto out_bad;
1075 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1076 goto out_bad;
1077 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1078 goto out_bad;
1079
1080 nfs_free_fattr(fattr);
1081 nfs_free_fhandle(fhandle);
1082 out_set_verifier:
1083 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1084 out_valid:
1085 dput(parent);
1086 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1087 __func__, dentry->d_parent->d_name.name,
1088 dentry->d_name.name);
1089 return 1;
1090 out_zap_parent:
1091 nfs_zap_caches(dir);
1092 out_bad:
1093 nfs_mark_for_revalidate(dir);
1094 if (inode && S_ISDIR(inode->i_mode)) {
1095 /* Purge readdir caches. */
1096 nfs_zap_caches(inode);
1097 /* If we have submounts, don't unhash ! */
1098 if (have_submounts(dentry))
1099 goto out_valid;
1100 if (dentry->d_flags & DCACHE_DISCONNECTED)
1101 goto out_valid;
1102 shrink_dcache_parent(dentry);
1103 }
1104 d_drop(dentry);
1105 nfs_free_fattr(fattr);
1106 nfs_free_fhandle(fhandle);
1107 dput(parent);
1108 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1109 __func__, dentry->d_parent->d_name.name,
1110 dentry->d_name.name);
1111 return 0;
1112 out_error:
1113 nfs_free_fattr(fattr);
1114 nfs_free_fhandle(fhandle);
1115 dput(parent);
1116 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1117 __func__, dentry->d_parent->d_name.name,
1118 dentry->d_name.name, error);
1119 return error;
1120 }
1121
1122 /*
1123 * This is called from dput() when d_count is going to 0.
1124 */
1125 static int nfs_dentry_delete(const struct dentry *dentry)
1126 {
1127 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1128 dentry->d_parent->d_name.name, dentry->d_name.name,
1129 dentry->d_flags);
1130
1131 /* Unhash any dentry with a stale inode */
1132 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1133 return 1;
1134
1135 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1136 /* Unhash it, so that ->d_iput() would be called */
1137 return 1;
1138 }
1139 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1140 /* Unhash it, so that ancestors of killed async unlink
1141 * files will be cleaned up during umount */
1142 return 1;
1143 }
1144 return 0;
1145
1146 }
1147
1148 static void nfs_drop_nlink(struct inode *inode)
1149 {
1150 spin_lock(&inode->i_lock);
1151 if (inode->i_nlink > 0)
1152 drop_nlink(inode);
1153 spin_unlock(&inode->i_lock);
1154 }
1155
1156 /*
1157 * Called when the dentry loses inode.
1158 * We use it to clean up silly-renamed files.
1159 */
1160 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1161 {
1162 if (S_ISDIR(inode->i_mode))
1163 /* drop any readdir cache as it could easily be old */
1164 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1165
1166 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1167 drop_nlink(inode);
1168 nfs_complete_unlink(dentry, inode);
1169 }
1170 iput(inode);
1171 }
1172
1173 const struct dentry_operations nfs_dentry_operations = {
1174 .d_revalidate = nfs_lookup_revalidate,
1175 .d_delete = nfs_dentry_delete,
1176 .d_iput = nfs_dentry_iput,
1177 .d_automount = nfs_d_automount,
1178 };
1179
1180 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1181 {
1182 struct dentry *res;
1183 struct dentry *parent;
1184 struct inode *inode = NULL;
1185 struct nfs_fh *fhandle = NULL;
1186 struct nfs_fattr *fattr = NULL;
1187 int error;
1188
1189 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1190 dentry->d_parent->d_name.name, dentry->d_name.name);
1191 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1192
1193 res = ERR_PTR(-ENAMETOOLONG);
1194 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1195 goto out;
1196
1197 /*
1198 * If we're doing an exclusive create, optimize away the lookup
1199 * but don't hash the dentry.
1200 */
1201 if (nfs_is_exclusive_create(dir, nd)) {
1202 d_instantiate(dentry, NULL);
1203 res = NULL;
1204 goto out;
1205 }
1206
1207 res = ERR_PTR(-ENOMEM);
1208 fhandle = nfs_alloc_fhandle();
1209 fattr = nfs_alloc_fattr();
1210 if (fhandle == NULL || fattr == NULL)
1211 goto out;
1212
1213 parent = dentry->d_parent;
1214 /* Protect against concurrent sillydeletes */
1215 nfs_block_sillyrename(parent);
1216 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1217 if (error == -ENOENT)
1218 goto no_entry;
1219 if (error < 0) {
1220 res = ERR_PTR(error);
1221 goto out_unblock_sillyrename;
1222 }
1223 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1224 res = ERR_CAST(inode);
1225 if (IS_ERR(res))
1226 goto out_unblock_sillyrename;
1227
1228 no_entry:
1229 res = d_materialise_unique(dentry, inode);
1230 if (res != NULL) {
1231 if (IS_ERR(res))
1232 goto out_unblock_sillyrename;
1233 dentry = res;
1234 }
1235 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1236 out_unblock_sillyrename:
1237 nfs_unblock_sillyrename(parent);
1238 out:
1239 nfs_free_fattr(fattr);
1240 nfs_free_fhandle(fhandle);
1241 return res;
1242 }
1243
1244 #ifdef CONFIG_NFS_V4
1245 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1246
1247 const struct dentry_operations nfs4_dentry_operations = {
1248 .d_revalidate = nfs_open_revalidate,
1249 .d_delete = nfs_dentry_delete,
1250 .d_iput = nfs_dentry_iput,
1251 .d_automount = nfs_d_automount,
1252 };
1253
1254 /*
1255 * Use intent information to determine whether we need to substitute
1256 * the NFSv4-style stateful OPEN for the LOOKUP call
1257 */
1258 static int is_atomic_open(struct nameidata *nd)
1259 {
1260 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1261 return 0;
1262 /* NFS does not (yet) have a stateful open for directories */
1263 if (nd->flags & LOOKUP_DIRECTORY)
1264 return 0;
1265 /* Are we trying to write to a read only partition? */
1266 if (__mnt_is_readonly(nd->path.mnt) &&
1267 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1268 return 0;
1269 return 1;
1270 }
1271
1272 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1273 {
1274 struct path path = {
1275 .mnt = nd->path.mnt,
1276 .dentry = dentry,
1277 };
1278 struct nfs_open_context *ctx;
1279 struct rpc_cred *cred;
1280 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1281
1282 cred = rpc_lookup_cred();
1283 if (IS_ERR(cred))
1284 return ERR_CAST(cred);
1285 ctx = alloc_nfs_open_context(&path, cred, fmode);
1286 put_rpccred(cred);
1287 if (ctx == NULL)
1288 return ERR_PTR(-ENOMEM);
1289 return ctx;
1290 }
1291
1292 static int do_open(struct inode *inode, struct file *filp)
1293 {
1294 nfs_fscache_set_inode_cookie(inode, filp);
1295 return 0;
1296 }
1297
1298 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1299 {
1300 struct file *filp;
1301 int ret = 0;
1302
1303 /* If the open_intent is for execute, we have an extra check to make */
1304 if (ctx->mode & FMODE_EXEC) {
1305 ret = nfs_may_open(ctx->path.dentry->d_inode,
1306 ctx->cred,
1307 nd->intent.open.flags);
1308 if (ret < 0)
1309 goto out;
1310 }
1311 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1312 if (IS_ERR(filp))
1313 ret = PTR_ERR(filp);
1314 else
1315 nfs_file_set_open_context(filp, ctx);
1316 out:
1317 put_nfs_open_context(ctx);
1318 return ret;
1319 }
1320
1321 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1322 {
1323 struct nfs_open_context *ctx;
1324 struct iattr attr;
1325 struct dentry *res = NULL;
1326 struct inode *inode;
1327 int open_flags;
1328 int err;
1329
1330 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1331 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1332
1333 /* Check that we are indeed trying to open this file */
1334 if (!is_atomic_open(nd))
1335 goto no_open;
1336
1337 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1338 res = ERR_PTR(-ENAMETOOLONG);
1339 goto out;
1340 }
1341
1342 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1343 * the dentry. */
1344 if (nd->flags & LOOKUP_EXCL) {
1345 d_instantiate(dentry, NULL);
1346 goto out;
1347 }
1348
1349 ctx = nameidata_to_nfs_open_context(dentry, nd);
1350 res = ERR_CAST(ctx);
1351 if (IS_ERR(ctx))
1352 goto out;
1353
1354 open_flags = nd->intent.open.flags;
1355 if (nd->flags & LOOKUP_CREATE) {
1356 attr.ia_mode = nd->intent.open.create_mode;
1357 attr.ia_valid = ATTR_MODE;
1358 attr.ia_mode &= ~current_umask();
1359 } else {
1360 open_flags &= ~(O_EXCL | O_CREAT);
1361 attr.ia_valid = 0;
1362 }
1363
1364 /* Open the file on the server */
1365 nfs_block_sillyrename(dentry->d_parent);
1366 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1367 if (IS_ERR(inode)) {
1368 nfs_unblock_sillyrename(dentry->d_parent);
1369 put_nfs_open_context(ctx);
1370 switch (PTR_ERR(inode)) {
1371 /* Make a negative dentry */
1372 case -ENOENT:
1373 d_add(dentry, NULL);
1374 res = NULL;
1375 goto out;
1376 /* This turned out not to be a regular file */
1377 case -ENOTDIR:
1378 goto no_open;
1379 case -ELOOP:
1380 if (!(nd->intent.open.flags & O_NOFOLLOW))
1381 goto no_open;
1382 /* case -EISDIR: */
1383 /* case -EINVAL: */
1384 default:
1385 res = ERR_CAST(inode);
1386 goto out;
1387 }
1388 }
1389 res = d_add_unique(dentry, inode);
1390 nfs_unblock_sillyrename(dentry->d_parent);
1391 if (res != NULL) {
1392 dput(ctx->path.dentry);
1393 ctx->path.dentry = dget(res);
1394 dentry = res;
1395 }
1396 err = nfs_intent_set_file(nd, ctx);
1397 if (err < 0) {
1398 if (res != NULL)
1399 dput(res);
1400 return ERR_PTR(err);
1401 }
1402 out:
1403 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1404 return res;
1405 no_open:
1406 return nfs_lookup(dir, dentry, nd);
1407 }
1408
1409 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1410 {
1411 struct dentry *parent = NULL;
1412 struct inode *inode;
1413 struct inode *dir;
1414 struct nfs_open_context *ctx;
1415 int openflags, ret = 0;
1416
1417 if (nd->flags & LOOKUP_RCU)
1418 return -ECHILD;
1419
1420 inode = dentry->d_inode;
1421 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1422 goto no_open;
1423
1424 parent = dget_parent(dentry);
1425 dir = parent->d_inode;
1426
1427 /* We can't create new files in nfs_open_revalidate(), so we
1428 * optimize away revalidation of negative dentries.
1429 */
1430 if (inode == NULL) {
1431 if (!nfs_neg_need_reval(dir, dentry, nd))
1432 ret = 1;
1433 goto out;
1434 }
1435
1436 /* NFS only supports OPEN on regular files */
1437 if (!S_ISREG(inode->i_mode))
1438 goto no_open_dput;
1439 openflags = nd->intent.open.flags;
1440 /* We cannot do exclusive creation on a positive dentry */
1441 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1442 goto no_open_dput;
1443 /* We can't create new files, or truncate existing ones here */
1444 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1445
1446 ctx = nameidata_to_nfs_open_context(dentry, nd);
1447 ret = PTR_ERR(ctx);
1448 if (IS_ERR(ctx))
1449 goto out;
1450 /*
1451 * Note: we're not holding inode->i_mutex and so may be racing with
1452 * operations that change the directory. We therefore save the
1453 * change attribute *before* we do the RPC call.
1454 */
1455 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1456 if (IS_ERR(inode)) {
1457 ret = PTR_ERR(inode);
1458 switch (ret) {
1459 case -EPERM:
1460 case -EACCES:
1461 case -EDQUOT:
1462 case -ENOSPC:
1463 case -EROFS:
1464 goto out_put_ctx;
1465 default:
1466 goto out_drop;
1467 }
1468 }
1469 iput(inode);
1470 if (inode != dentry->d_inode)
1471 goto out_drop;
1472
1473 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1474 ret = nfs_intent_set_file(nd, ctx);
1475 if (ret >= 0)
1476 ret = 1;
1477 out:
1478 dput(parent);
1479 return ret;
1480 out_drop:
1481 d_drop(dentry);
1482 ret = 0;
1483 out_put_ctx:
1484 put_nfs_open_context(ctx);
1485 goto out;
1486
1487 no_open_dput:
1488 dput(parent);
1489 no_open:
1490 return nfs_lookup_revalidate(dentry, nd);
1491 }
1492
1493 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1494 struct nameidata *nd)
1495 {
1496 struct nfs_open_context *ctx = NULL;
1497 struct iattr attr;
1498 int error;
1499 int open_flags = 0;
1500
1501 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1502 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1503
1504 attr.ia_mode = mode;
1505 attr.ia_valid = ATTR_MODE;
1506
1507 if ((nd->flags & LOOKUP_CREATE) != 0) {
1508 open_flags = nd->intent.open.flags;
1509
1510 ctx = nameidata_to_nfs_open_context(dentry, nd);
1511 error = PTR_ERR(ctx);
1512 if (IS_ERR(ctx))
1513 goto out_err_drop;
1514 }
1515
1516 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1517 if (error != 0)
1518 goto out_put_ctx;
1519 if (ctx != NULL) {
1520 error = nfs_intent_set_file(nd, ctx);
1521 if (error < 0)
1522 goto out_err;
1523 }
1524 return 0;
1525 out_put_ctx:
1526 if (ctx != NULL)
1527 put_nfs_open_context(ctx);
1528 out_err_drop:
1529 d_drop(dentry);
1530 out_err:
1531 return error;
1532 }
1533
1534 #endif /* CONFIG_NFSV4 */
1535
1536 /*
1537 * Code common to create, mkdir, and mknod.
1538 */
1539 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1540 struct nfs_fattr *fattr)
1541 {
1542 struct dentry *parent = dget_parent(dentry);
1543 struct inode *dir = parent->d_inode;
1544 struct inode *inode;
1545 int error = -EACCES;
1546
1547 d_drop(dentry);
1548
1549 /* We may have been initialized further down */
1550 if (dentry->d_inode)
1551 goto out;
1552 if (fhandle->size == 0) {
1553 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1554 if (error)
1555 goto out_error;
1556 }
1557 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1558 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1559 struct nfs_server *server = NFS_SB(dentry->d_sb);
1560 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1561 if (error < 0)
1562 goto out_error;
1563 }
1564 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1565 error = PTR_ERR(inode);
1566 if (IS_ERR(inode))
1567 goto out_error;
1568 d_add(dentry, inode);
1569 out:
1570 dput(parent);
1571 return 0;
1572 out_error:
1573 nfs_mark_for_revalidate(dir);
1574 dput(parent);
1575 return error;
1576 }
1577
1578 /*
1579 * Following a failed create operation, we drop the dentry rather
1580 * than retain a negative dentry. This avoids a problem in the event
1581 * that the operation succeeded on the server, but an error in the
1582 * reply path made it appear to have failed.
1583 */
1584 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1585 struct nameidata *nd)
1586 {
1587 struct iattr attr;
1588 int error;
1589 int open_flags = 0;
1590
1591 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1592 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1593
1594 attr.ia_mode = mode;
1595 attr.ia_valid = ATTR_MODE;
1596
1597 if ((nd->flags & LOOKUP_CREATE) != 0)
1598 open_flags = nd->intent.open.flags;
1599
1600 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1601 if (error != 0)
1602 goto out_err;
1603 return 0;
1604 out_err:
1605 d_drop(dentry);
1606 return error;
1607 }
1608
1609 /*
1610 * See comments for nfs_proc_create regarding failed operations.
1611 */
1612 static int
1613 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1614 {
1615 struct iattr attr;
1616 int status;
1617
1618 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1619 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1620
1621 if (!new_valid_dev(rdev))
1622 return -EINVAL;
1623
1624 attr.ia_mode = mode;
1625 attr.ia_valid = ATTR_MODE;
1626
1627 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1628 if (status != 0)
1629 goto out_err;
1630 return 0;
1631 out_err:
1632 d_drop(dentry);
1633 return status;
1634 }
1635
1636 /*
1637 * See comments for nfs_proc_create regarding failed operations.
1638 */
1639 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1640 {
1641 struct iattr attr;
1642 int error;
1643
1644 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1645 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1646
1647 attr.ia_valid = ATTR_MODE;
1648 attr.ia_mode = mode | S_IFDIR;
1649
1650 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1651 if (error != 0)
1652 goto out_err;
1653 return 0;
1654 out_err:
1655 d_drop(dentry);
1656 return error;
1657 }
1658
1659 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1660 {
1661 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1662 d_delete(dentry);
1663 }
1664
1665 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1666 {
1667 int error;
1668
1669 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1670 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1671
1672 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1673 /* Ensure the VFS deletes this inode */
1674 if (error == 0 && dentry->d_inode != NULL)
1675 clear_nlink(dentry->d_inode);
1676 else if (error == -ENOENT)
1677 nfs_dentry_handle_enoent(dentry);
1678
1679 return error;
1680 }
1681
1682 /*
1683 * Remove a file after making sure there are no pending writes,
1684 * and after checking that the file has only one user.
1685 *
1686 * We invalidate the attribute cache and free the inode prior to the operation
1687 * to avoid possible races if the server reuses the inode.
1688 */
1689 static int nfs_safe_remove(struct dentry *dentry)
1690 {
1691 struct inode *dir = dentry->d_parent->d_inode;
1692 struct inode *inode = dentry->d_inode;
1693 int error = -EBUSY;
1694
1695 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1696 dentry->d_parent->d_name.name, dentry->d_name.name);
1697
1698 /* If the dentry was sillyrenamed, we simply call d_delete() */
1699 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1700 error = 0;
1701 goto out;
1702 }
1703
1704 if (inode != NULL) {
1705 nfs_inode_return_delegation(inode);
1706 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1707 /* The VFS may want to delete this inode */
1708 if (error == 0)
1709 nfs_drop_nlink(inode);
1710 nfs_mark_for_revalidate(inode);
1711 } else
1712 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1713 if (error == -ENOENT)
1714 nfs_dentry_handle_enoent(dentry);
1715 out:
1716 return error;
1717 }
1718
1719 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1720 * belongs to an active ".nfs..." file and we return -EBUSY.
1721 *
1722 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1723 */
1724 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1725 {
1726 int error;
1727 int need_rehash = 0;
1728
1729 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1730 dir->i_ino, dentry->d_name.name);
1731
1732 spin_lock(&dentry->d_lock);
1733 if (dentry->d_count > 1) {
1734 spin_unlock(&dentry->d_lock);
1735 /* Start asynchronous writeout of the inode */
1736 write_inode_now(dentry->d_inode, 0);
1737 error = nfs_sillyrename(dir, dentry);
1738 return error;
1739 }
1740 if (!d_unhashed(dentry)) {
1741 __d_drop(dentry);
1742 need_rehash = 1;
1743 }
1744 spin_unlock(&dentry->d_lock);
1745 error = nfs_safe_remove(dentry);
1746 if (!error || error == -ENOENT) {
1747 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1748 } else if (need_rehash)
1749 d_rehash(dentry);
1750 return error;
1751 }
1752
1753 /*
1754 * To create a symbolic link, most file systems instantiate a new inode,
1755 * add a page to it containing the path, then write it out to the disk
1756 * using prepare_write/commit_write.
1757 *
1758 * Unfortunately the NFS client can't create the in-core inode first
1759 * because it needs a file handle to create an in-core inode (see
1760 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1761 * symlink request has completed on the server.
1762 *
1763 * So instead we allocate a raw page, copy the symname into it, then do
1764 * the SYMLINK request with the page as the buffer. If it succeeds, we
1765 * now have a new file handle and can instantiate an in-core NFS inode
1766 * and move the raw page into its mapping.
1767 */
1768 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1769 {
1770 struct pagevec lru_pvec;
1771 struct page *page;
1772 char *kaddr;
1773 struct iattr attr;
1774 unsigned int pathlen = strlen(symname);
1775 int error;
1776
1777 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1778 dir->i_ino, dentry->d_name.name, symname);
1779
1780 if (pathlen > PAGE_SIZE)
1781 return -ENAMETOOLONG;
1782
1783 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1784 attr.ia_valid = ATTR_MODE;
1785
1786 page = alloc_page(GFP_HIGHUSER);
1787 if (!page)
1788 return -ENOMEM;
1789
1790 kaddr = kmap_atomic(page, KM_USER0);
1791 memcpy(kaddr, symname, pathlen);
1792 if (pathlen < PAGE_SIZE)
1793 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1794 kunmap_atomic(kaddr, KM_USER0);
1795
1796 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1797 if (error != 0) {
1798 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1799 dir->i_sb->s_id, dir->i_ino,
1800 dentry->d_name.name, symname, error);
1801 d_drop(dentry);
1802 __free_page(page);
1803 return error;
1804 }
1805
1806 /*
1807 * No big deal if we can't add this page to the page cache here.
1808 * READLINK will get the missing page from the server if needed.
1809 */
1810 pagevec_init(&lru_pvec, 0);
1811 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1812 GFP_KERNEL)) {
1813 pagevec_add(&lru_pvec, page);
1814 pagevec_lru_add_file(&lru_pvec);
1815 SetPageUptodate(page);
1816 unlock_page(page);
1817 } else
1818 __free_page(page);
1819
1820 return 0;
1821 }
1822
1823 static int
1824 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1825 {
1826 struct inode *inode = old_dentry->d_inode;
1827 int error;
1828
1829 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1830 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1831 dentry->d_parent->d_name.name, dentry->d_name.name);
1832
1833 nfs_inode_return_delegation(inode);
1834
1835 d_drop(dentry);
1836 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1837 if (error == 0) {
1838 ihold(inode);
1839 d_add(dentry, inode);
1840 }
1841 return error;
1842 }
1843
1844 /*
1845 * RENAME
1846 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1847 * different file handle for the same inode after a rename (e.g. when
1848 * moving to a different directory). A fail-safe method to do so would
1849 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1850 * rename the old file using the sillyrename stuff. This way, the original
1851 * file in old_dir will go away when the last process iput()s the inode.
1852 *
1853 * FIXED.
1854 *
1855 * It actually works quite well. One needs to have the possibility for
1856 * at least one ".nfs..." file in each directory the file ever gets
1857 * moved or linked to which happens automagically with the new
1858 * implementation that only depends on the dcache stuff instead of
1859 * using the inode layer
1860 *
1861 * Unfortunately, things are a little more complicated than indicated
1862 * above. For a cross-directory move, we want to make sure we can get
1863 * rid of the old inode after the operation. This means there must be
1864 * no pending writes (if it's a file), and the use count must be 1.
1865 * If these conditions are met, we can drop the dentries before doing
1866 * the rename.
1867 */
1868 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1869 struct inode *new_dir, struct dentry *new_dentry)
1870 {
1871 struct inode *old_inode = old_dentry->d_inode;
1872 struct inode *new_inode = new_dentry->d_inode;
1873 struct dentry *dentry = NULL, *rehash = NULL;
1874 int error = -EBUSY;
1875
1876 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1877 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1878 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1879 new_dentry->d_count);
1880
1881 /*
1882 * For non-directories, check whether the target is busy and if so,
1883 * make a copy of the dentry and then do a silly-rename. If the
1884 * silly-rename succeeds, the copied dentry is hashed and becomes
1885 * the new target.
1886 */
1887 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1888 /*
1889 * To prevent any new references to the target during the
1890 * rename, we unhash the dentry in advance.
1891 */
1892 if (!d_unhashed(new_dentry)) {
1893 d_drop(new_dentry);
1894 rehash = new_dentry;
1895 }
1896
1897 if (new_dentry->d_count > 2) {
1898 int err;
1899
1900 /* copy the target dentry's name */
1901 dentry = d_alloc(new_dentry->d_parent,
1902 &new_dentry->d_name);
1903 if (!dentry)
1904 goto out;
1905
1906 /* silly-rename the existing target ... */
1907 err = nfs_sillyrename(new_dir, new_dentry);
1908 if (err)
1909 goto out;
1910
1911 new_dentry = dentry;
1912 rehash = NULL;
1913 new_inode = NULL;
1914 }
1915 }
1916
1917 nfs_inode_return_delegation(old_inode);
1918 if (new_inode != NULL)
1919 nfs_inode_return_delegation(new_inode);
1920
1921 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1922 new_dir, &new_dentry->d_name);
1923 nfs_mark_for_revalidate(old_inode);
1924 out:
1925 if (rehash)
1926 d_rehash(rehash);
1927 if (!error) {
1928 if (new_inode != NULL)
1929 nfs_drop_nlink(new_inode);
1930 d_move(old_dentry, new_dentry);
1931 nfs_set_verifier(new_dentry,
1932 nfs_save_change_attribute(new_dir));
1933 } else if (error == -ENOENT)
1934 nfs_dentry_handle_enoent(old_dentry);
1935
1936 /* new dentry created? */
1937 if (dentry)
1938 dput(dentry);
1939 return error;
1940 }
1941
1942 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1943 static LIST_HEAD(nfs_access_lru_list);
1944 static atomic_long_t nfs_access_nr_entries;
1945
1946 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1947 {
1948 put_rpccred(entry->cred);
1949 kfree(entry);
1950 smp_mb__before_atomic_dec();
1951 atomic_long_dec(&nfs_access_nr_entries);
1952 smp_mb__after_atomic_dec();
1953 }
1954
1955 static void nfs_access_free_list(struct list_head *head)
1956 {
1957 struct nfs_access_entry *cache;
1958
1959 while (!list_empty(head)) {
1960 cache = list_entry(head->next, struct nfs_access_entry, lru);
1961 list_del(&cache->lru);
1962 nfs_access_free_entry(cache);
1963 }
1964 }
1965
1966 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1967 {
1968 LIST_HEAD(head);
1969 struct nfs_inode *nfsi, *next;
1970 struct nfs_access_entry *cache;
1971
1972 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1973 return (nr_to_scan == 0) ? 0 : -1;
1974
1975 spin_lock(&nfs_access_lru_lock);
1976 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1977 struct inode *inode;
1978
1979 if (nr_to_scan-- == 0)
1980 break;
1981 inode = &nfsi->vfs_inode;
1982 spin_lock(&inode->i_lock);
1983 if (list_empty(&nfsi->access_cache_entry_lru))
1984 goto remove_lru_entry;
1985 cache = list_entry(nfsi->access_cache_entry_lru.next,
1986 struct nfs_access_entry, lru);
1987 list_move(&cache->lru, &head);
1988 rb_erase(&cache->rb_node, &nfsi->access_cache);
1989 if (!list_empty(&nfsi->access_cache_entry_lru))
1990 list_move_tail(&nfsi->access_cache_inode_lru,
1991 &nfs_access_lru_list);
1992 else {
1993 remove_lru_entry:
1994 list_del_init(&nfsi->access_cache_inode_lru);
1995 smp_mb__before_clear_bit();
1996 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1997 smp_mb__after_clear_bit();
1998 }
1999 spin_unlock(&inode->i_lock);
2000 }
2001 spin_unlock(&nfs_access_lru_lock);
2002 nfs_access_free_list(&head);
2003 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2004 }
2005
2006 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2007 {
2008 struct rb_root *root_node = &nfsi->access_cache;
2009 struct rb_node *n;
2010 struct nfs_access_entry *entry;
2011
2012 /* Unhook entries from the cache */
2013 while ((n = rb_first(root_node)) != NULL) {
2014 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2015 rb_erase(n, root_node);
2016 list_move(&entry->lru, head);
2017 }
2018 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2019 }
2020
2021 void nfs_access_zap_cache(struct inode *inode)
2022 {
2023 LIST_HEAD(head);
2024
2025 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2026 return;
2027 /* Remove from global LRU init */
2028 spin_lock(&nfs_access_lru_lock);
2029 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2030 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2031
2032 spin_lock(&inode->i_lock);
2033 __nfs_access_zap_cache(NFS_I(inode), &head);
2034 spin_unlock(&inode->i_lock);
2035 spin_unlock(&nfs_access_lru_lock);
2036 nfs_access_free_list(&head);
2037 }
2038
2039 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2040 {
2041 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2042 struct nfs_access_entry *entry;
2043
2044 while (n != NULL) {
2045 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2046
2047 if (cred < entry->cred)
2048 n = n->rb_left;
2049 else if (cred > entry->cred)
2050 n = n->rb_right;
2051 else
2052 return entry;
2053 }
2054 return NULL;
2055 }
2056
2057 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2058 {
2059 struct nfs_inode *nfsi = NFS_I(inode);
2060 struct nfs_access_entry *cache;
2061 int err = -ENOENT;
2062
2063 spin_lock(&inode->i_lock);
2064 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2065 goto out_zap;
2066 cache = nfs_access_search_rbtree(inode, cred);
2067 if (cache == NULL)
2068 goto out;
2069 if (!nfs_have_delegated_attributes(inode) &&
2070 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2071 goto out_stale;
2072 res->jiffies = cache->jiffies;
2073 res->cred = cache->cred;
2074 res->mask = cache->mask;
2075 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2076 err = 0;
2077 out:
2078 spin_unlock(&inode->i_lock);
2079 return err;
2080 out_stale:
2081 rb_erase(&cache->rb_node, &nfsi->access_cache);
2082 list_del(&cache->lru);
2083 spin_unlock(&inode->i_lock);
2084 nfs_access_free_entry(cache);
2085 return -ENOENT;
2086 out_zap:
2087 spin_unlock(&inode->i_lock);
2088 nfs_access_zap_cache(inode);
2089 return -ENOENT;
2090 }
2091
2092 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2093 {
2094 struct nfs_inode *nfsi = NFS_I(inode);
2095 struct rb_root *root_node = &nfsi->access_cache;
2096 struct rb_node **p = &root_node->rb_node;
2097 struct rb_node *parent = NULL;
2098 struct nfs_access_entry *entry;
2099
2100 spin_lock(&inode->i_lock);
2101 while (*p != NULL) {
2102 parent = *p;
2103 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2104
2105 if (set->cred < entry->cred)
2106 p = &parent->rb_left;
2107 else if (set->cred > entry->cred)
2108 p = &parent->rb_right;
2109 else
2110 goto found;
2111 }
2112 rb_link_node(&set->rb_node, parent, p);
2113 rb_insert_color(&set->rb_node, root_node);
2114 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2115 spin_unlock(&inode->i_lock);
2116 return;
2117 found:
2118 rb_replace_node(parent, &set->rb_node, root_node);
2119 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2120 list_del(&entry->lru);
2121 spin_unlock(&inode->i_lock);
2122 nfs_access_free_entry(entry);
2123 }
2124
2125 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2126 {
2127 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2128 if (cache == NULL)
2129 return;
2130 RB_CLEAR_NODE(&cache->rb_node);
2131 cache->jiffies = set->jiffies;
2132 cache->cred = get_rpccred(set->cred);
2133 cache->mask = set->mask;
2134
2135 nfs_access_add_rbtree(inode, cache);
2136
2137 /* Update accounting */
2138 smp_mb__before_atomic_inc();
2139 atomic_long_inc(&nfs_access_nr_entries);
2140 smp_mb__after_atomic_inc();
2141
2142 /* Add inode to global LRU list */
2143 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2144 spin_lock(&nfs_access_lru_lock);
2145 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2146 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2147 &nfs_access_lru_list);
2148 spin_unlock(&nfs_access_lru_lock);
2149 }
2150 }
2151
2152 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2153 {
2154 struct nfs_access_entry cache;
2155 int status;
2156
2157 status = nfs_access_get_cached(inode, cred, &cache);
2158 if (status == 0)
2159 goto out;
2160
2161 /* Be clever: ask server to check for all possible rights */
2162 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2163 cache.cred = cred;
2164 cache.jiffies = jiffies;
2165 status = NFS_PROTO(inode)->access(inode, &cache);
2166 if (status != 0) {
2167 if (status == -ESTALE) {
2168 nfs_zap_caches(inode);
2169 if (!S_ISDIR(inode->i_mode))
2170 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2171 }
2172 return status;
2173 }
2174 nfs_access_add_cache(inode, &cache);
2175 out:
2176 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2177 return 0;
2178 return -EACCES;
2179 }
2180
2181 static int nfs_open_permission_mask(int openflags)
2182 {
2183 int mask = 0;
2184
2185 if (openflags & FMODE_READ)
2186 mask |= MAY_READ;
2187 if (openflags & FMODE_WRITE)
2188 mask |= MAY_WRITE;
2189 if (openflags & FMODE_EXEC)
2190 mask |= MAY_EXEC;
2191 return mask;
2192 }
2193
2194 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2195 {
2196 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2197 }
2198
2199 int nfs_permission(struct inode *inode, int mask, unsigned int flags)
2200 {
2201 struct rpc_cred *cred;
2202 int res = 0;
2203
2204 if (flags & IPERM_FLAG_RCU)
2205 return -ECHILD;
2206
2207 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2208
2209 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2210 goto out;
2211 /* Is this sys_access() ? */
2212 if (mask & (MAY_ACCESS | MAY_CHDIR))
2213 goto force_lookup;
2214
2215 switch (inode->i_mode & S_IFMT) {
2216 case S_IFLNK:
2217 goto out;
2218 case S_IFREG:
2219 /* NFSv4 has atomic_open... */
2220 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2221 && (mask & MAY_OPEN)
2222 && !(mask & MAY_EXEC))
2223 goto out;
2224 break;
2225 case S_IFDIR:
2226 /*
2227 * Optimize away all write operations, since the server
2228 * will check permissions when we perform the op.
2229 */
2230 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2231 goto out;
2232 }
2233
2234 force_lookup:
2235 if (!NFS_PROTO(inode)->access)
2236 goto out_notsup;
2237
2238 cred = rpc_lookup_cred();
2239 if (!IS_ERR(cred)) {
2240 res = nfs_do_access(inode, cred, mask);
2241 put_rpccred(cred);
2242 } else
2243 res = PTR_ERR(cred);
2244 out:
2245 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2246 res = -EACCES;
2247
2248 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2249 inode->i_sb->s_id, inode->i_ino, mask, res);
2250 return res;
2251 out_notsup:
2252 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2253 if (res == 0)
2254 res = generic_permission(inode, mask, flags, NULL);
2255 goto out;
2256 }
2257
2258 /*
2259 * Local variables:
2260 * version-control: t
2261 * kept-new-versions: 5
2262 * End:
2263 */