make ->atomic_open() return int
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
62
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
70 };
71
72 const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
85 };
86
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
89 };
90
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
109 };
110 #endif /* CONFIG_NFS_V3 */
111
112 #ifdef CONFIG_NFS_V4
113
114 static int nfs_atomic_open(struct inode *, struct dentry *,
115 struct opendata *, unsigned, umode_t,
116 int *);
117 const struct inode_operations nfs4_dir_inode_operations = {
118 .create = nfs_create,
119 .lookup = nfs_lookup,
120 .atomic_open = nfs_atomic_open,
121 .link = nfs_link,
122 .unlink = nfs_unlink,
123 .symlink = nfs_symlink,
124 .mkdir = nfs_mkdir,
125 .rmdir = nfs_rmdir,
126 .mknod = nfs_mknod,
127 .rename = nfs_rename,
128 .permission = nfs_permission,
129 .getattr = nfs_getattr,
130 .setattr = nfs_setattr,
131 .getxattr = generic_getxattr,
132 .setxattr = generic_setxattr,
133 .listxattr = generic_listxattr,
134 .removexattr = generic_removexattr,
135 };
136
137 #endif /* CONFIG_NFS_V4 */
138
139 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
140 {
141 struct nfs_open_dir_context *ctx;
142 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
143 if (ctx != NULL) {
144 ctx->duped = 0;
145 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
146 ctx->dir_cookie = 0;
147 ctx->dup_cookie = 0;
148 ctx->cred = get_rpccred(cred);
149 return ctx;
150 }
151 return ERR_PTR(-ENOMEM);
152 }
153
154 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
155 {
156 put_rpccred(ctx->cred);
157 kfree(ctx);
158 }
159
160 /*
161 * Open file
162 */
163 static int
164 nfs_opendir(struct inode *inode, struct file *filp)
165 {
166 int res = 0;
167 struct nfs_open_dir_context *ctx;
168 struct rpc_cred *cred;
169
170 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
171 filp->f_path.dentry->d_parent->d_name.name,
172 filp->f_path.dentry->d_name.name);
173
174 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
175
176 cred = rpc_lookup_cred();
177 if (IS_ERR(cred))
178 return PTR_ERR(cred);
179 ctx = alloc_nfs_open_dir_context(inode, cred);
180 if (IS_ERR(ctx)) {
181 res = PTR_ERR(ctx);
182 goto out;
183 }
184 filp->private_data = ctx;
185 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
186 /* This is a mountpoint, so d_revalidate will never
187 * have been called, so we need to refresh the
188 * inode (for close-open consistency) ourselves.
189 */
190 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
191 }
192 out:
193 put_rpccred(cred);
194 return res;
195 }
196
197 static int
198 nfs_closedir(struct inode *inode, struct file *filp)
199 {
200 put_nfs_open_dir_context(filp->private_data);
201 return 0;
202 }
203
204 struct nfs_cache_array_entry {
205 u64 cookie;
206 u64 ino;
207 struct qstr string;
208 unsigned char d_type;
209 };
210
211 struct nfs_cache_array {
212 int size;
213 int eof_index;
214 u64 last_cookie;
215 struct nfs_cache_array_entry array[0];
216 };
217
218 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
219 typedef struct {
220 struct file *file;
221 struct page *page;
222 unsigned long page_index;
223 u64 *dir_cookie;
224 u64 last_cookie;
225 loff_t current_index;
226 decode_dirent_t decode;
227
228 unsigned long timestamp;
229 unsigned long gencount;
230 unsigned int cache_entry_index;
231 unsigned int plus:1;
232 unsigned int eof:1;
233 } nfs_readdir_descriptor_t;
234
235 /*
236 * The caller is responsible for calling nfs_readdir_release_array(page)
237 */
238 static
239 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
240 {
241 void *ptr;
242 if (page == NULL)
243 return ERR_PTR(-EIO);
244 ptr = kmap(page);
245 if (ptr == NULL)
246 return ERR_PTR(-ENOMEM);
247 return ptr;
248 }
249
250 static
251 void nfs_readdir_release_array(struct page *page)
252 {
253 kunmap(page);
254 }
255
256 /*
257 * we are freeing strings created by nfs_add_to_readdir_array()
258 */
259 static
260 void nfs_readdir_clear_array(struct page *page)
261 {
262 struct nfs_cache_array *array;
263 int i;
264
265 array = kmap_atomic(page);
266 for (i = 0; i < array->size; i++)
267 kfree(array->array[i].string.name);
268 kunmap_atomic(array);
269 }
270
271 /*
272 * the caller is responsible for freeing qstr.name
273 * when called by nfs_readdir_add_to_array, the strings will be freed in
274 * nfs_clear_readdir_array()
275 */
276 static
277 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
278 {
279 string->len = len;
280 string->name = kmemdup(name, len, GFP_KERNEL);
281 if (string->name == NULL)
282 return -ENOMEM;
283 /*
284 * Avoid a kmemleak false positive. The pointer to the name is stored
285 * in a page cache page which kmemleak does not scan.
286 */
287 kmemleak_not_leak(string->name);
288 string->hash = full_name_hash(name, len);
289 return 0;
290 }
291
292 static
293 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
294 {
295 struct nfs_cache_array *array = nfs_readdir_get_array(page);
296 struct nfs_cache_array_entry *cache_entry;
297 int ret;
298
299 if (IS_ERR(array))
300 return PTR_ERR(array);
301
302 cache_entry = &array->array[array->size];
303
304 /* Check that this entry lies within the page bounds */
305 ret = -ENOSPC;
306 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
307 goto out;
308
309 cache_entry->cookie = entry->prev_cookie;
310 cache_entry->ino = entry->ino;
311 cache_entry->d_type = entry->d_type;
312 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
313 if (ret)
314 goto out;
315 array->last_cookie = entry->cookie;
316 array->size++;
317 if (entry->eof != 0)
318 array->eof_index = array->size;
319 out:
320 nfs_readdir_release_array(page);
321 return ret;
322 }
323
324 static
325 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
326 {
327 loff_t diff = desc->file->f_pos - desc->current_index;
328 unsigned int index;
329
330 if (diff < 0)
331 goto out_eof;
332 if (diff >= array->size) {
333 if (array->eof_index >= 0)
334 goto out_eof;
335 return -EAGAIN;
336 }
337
338 index = (unsigned int)diff;
339 *desc->dir_cookie = array->array[index].cookie;
340 desc->cache_entry_index = index;
341 return 0;
342 out_eof:
343 desc->eof = 1;
344 return -EBADCOOKIE;
345 }
346
347 static
348 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
349 {
350 int i;
351 loff_t new_pos;
352 int status = -EAGAIN;
353
354 for (i = 0; i < array->size; i++) {
355 if (array->array[i].cookie == *desc->dir_cookie) {
356 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
357 struct nfs_open_dir_context *ctx = desc->file->private_data;
358
359 new_pos = desc->current_index + i;
360 if (ctx->attr_gencount != nfsi->attr_gencount
361 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
362 ctx->duped = 0;
363 ctx->attr_gencount = nfsi->attr_gencount;
364 } else if (new_pos < desc->file->f_pos) {
365 if (ctx->duped > 0
366 && ctx->dup_cookie == *desc->dir_cookie) {
367 if (printk_ratelimit()) {
368 pr_notice("NFS: directory %s/%s contains a readdir loop."
369 "Please contact your server vendor. "
370 "The file: %s has duplicate cookie %llu\n",
371 desc->file->f_dentry->d_parent->d_name.name,
372 desc->file->f_dentry->d_name.name,
373 array->array[i].string.name,
374 *desc->dir_cookie);
375 }
376 status = -ELOOP;
377 goto out;
378 }
379 ctx->dup_cookie = *desc->dir_cookie;
380 ctx->duped = -1;
381 }
382 desc->file->f_pos = new_pos;
383 desc->cache_entry_index = i;
384 return 0;
385 }
386 }
387 if (array->eof_index >= 0) {
388 status = -EBADCOOKIE;
389 if (*desc->dir_cookie == array->last_cookie)
390 desc->eof = 1;
391 }
392 out:
393 return status;
394 }
395
396 static
397 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
398 {
399 struct nfs_cache_array *array;
400 int status;
401
402 array = nfs_readdir_get_array(desc->page);
403 if (IS_ERR(array)) {
404 status = PTR_ERR(array);
405 goto out;
406 }
407
408 if (*desc->dir_cookie == 0)
409 status = nfs_readdir_search_for_pos(array, desc);
410 else
411 status = nfs_readdir_search_for_cookie(array, desc);
412
413 if (status == -EAGAIN) {
414 desc->last_cookie = array->last_cookie;
415 desc->current_index += array->size;
416 desc->page_index++;
417 }
418 nfs_readdir_release_array(desc->page);
419 out:
420 return status;
421 }
422
423 /* Fill a page with xdr information before transferring to the cache page */
424 static
425 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
426 struct nfs_entry *entry, struct file *file, struct inode *inode)
427 {
428 struct nfs_open_dir_context *ctx = file->private_data;
429 struct rpc_cred *cred = ctx->cred;
430 unsigned long timestamp, gencount;
431 int error;
432
433 again:
434 timestamp = jiffies;
435 gencount = nfs_inc_attr_generation_counter();
436 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
437 NFS_SERVER(inode)->dtsize, desc->plus);
438 if (error < 0) {
439 /* We requested READDIRPLUS, but the server doesn't grok it */
440 if (error == -ENOTSUPP && desc->plus) {
441 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
442 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
443 desc->plus = 0;
444 goto again;
445 }
446 goto error;
447 }
448 desc->timestamp = timestamp;
449 desc->gencount = gencount;
450 error:
451 return error;
452 }
453
454 static int xdr_decode(nfs_readdir_descriptor_t *desc,
455 struct nfs_entry *entry, struct xdr_stream *xdr)
456 {
457 int error;
458
459 error = desc->decode(xdr, entry, desc->plus);
460 if (error)
461 return error;
462 entry->fattr->time_start = desc->timestamp;
463 entry->fattr->gencount = desc->gencount;
464 return 0;
465 }
466
467 static
468 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
469 {
470 if (dentry->d_inode == NULL)
471 goto different;
472 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
473 goto different;
474 return 1;
475 different:
476 return 0;
477 }
478
479 static
480 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
481 {
482 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
483 return false;
484 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
485 return true;
486 if (filp->f_pos == 0)
487 return true;
488 return false;
489 }
490
491 /*
492 * This function is called by the lookup code to request the use of
493 * readdirplus to accelerate any future lookups in the same
494 * directory.
495 */
496 static
497 void nfs_advise_use_readdirplus(struct inode *dir)
498 {
499 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
500 }
501
502 static
503 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
504 {
505 struct qstr filename = QSTR_INIT(entry->name, entry->len);
506 struct dentry *dentry;
507 struct dentry *alias;
508 struct inode *dir = parent->d_inode;
509 struct inode *inode;
510
511 if (filename.name[0] == '.') {
512 if (filename.len == 1)
513 return;
514 if (filename.len == 2 && filename.name[1] == '.')
515 return;
516 }
517 filename.hash = full_name_hash(filename.name, filename.len);
518
519 dentry = d_lookup(parent, &filename);
520 if (dentry != NULL) {
521 if (nfs_same_file(dentry, entry)) {
522 nfs_refresh_inode(dentry->d_inode, entry->fattr);
523 goto out;
524 } else {
525 d_drop(dentry);
526 dput(dentry);
527 }
528 }
529
530 dentry = d_alloc(parent, &filename);
531 if (dentry == NULL)
532 return;
533
534 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
535 if (IS_ERR(inode))
536 goto out;
537
538 alias = d_materialise_unique(dentry, inode);
539 if (IS_ERR(alias))
540 goto out;
541 else if (alias) {
542 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
543 dput(alias);
544 } else
545 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
546
547 out:
548 dput(dentry);
549 }
550
551 /* Perform conversion from xdr to cache array */
552 static
553 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
554 struct page **xdr_pages, struct page *page, unsigned int buflen)
555 {
556 struct xdr_stream stream;
557 struct xdr_buf buf;
558 struct page *scratch;
559 struct nfs_cache_array *array;
560 unsigned int count = 0;
561 int status;
562
563 scratch = alloc_page(GFP_KERNEL);
564 if (scratch == NULL)
565 return -ENOMEM;
566
567 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
568 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
569
570 do {
571 status = xdr_decode(desc, entry, &stream);
572 if (status != 0) {
573 if (status == -EAGAIN)
574 status = 0;
575 break;
576 }
577
578 count++;
579
580 if (desc->plus != 0)
581 nfs_prime_dcache(desc->file->f_path.dentry, entry);
582
583 status = nfs_readdir_add_to_array(entry, page);
584 if (status != 0)
585 break;
586 } while (!entry->eof);
587
588 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
589 array = nfs_readdir_get_array(page);
590 if (!IS_ERR(array)) {
591 array->eof_index = array->size;
592 status = 0;
593 nfs_readdir_release_array(page);
594 } else
595 status = PTR_ERR(array);
596 }
597
598 put_page(scratch);
599 return status;
600 }
601
602 static
603 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
604 {
605 unsigned int i;
606 for (i = 0; i < npages; i++)
607 put_page(pages[i]);
608 }
609
610 static
611 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
612 unsigned int npages)
613 {
614 nfs_readdir_free_pagearray(pages, npages);
615 }
616
617 /*
618 * nfs_readdir_large_page will allocate pages that must be freed with a call
619 * to nfs_readdir_free_large_page
620 */
621 static
622 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
623 {
624 unsigned int i;
625
626 for (i = 0; i < npages; i++) {
627 struct page *page = alloc_page(GFP_KERNEL);
628 if (page == NULL)
629 goto out_freepages;
630 pages[i] = page;
631 }
632 return 0;
633
634 out_freepages:
635 nfs_readdir_free_pagearray(pages, i);
636 return -ENOMEM;
637 }
638
639 static
640 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
641 {
642 struct page *pages[NFS_MAX_READDIR_PAGES];
643 void *pages_ptr = NULL;
644 struct nfs_entry entry;
645 struct file *file = desc->file;
646 struct nfs_cache_array *array;
647 int status = -ENOMEM;
648 unsigned int array_size = ARRAY_SIZE(pages);
649
650 entry.prev_cookie = 0;
651 entry.cookie = desc->last_cookie;
652 entry.eof = 0;
653 entry.fh = nfs_alloc_fhandle();
654 entry.fattr = nfs_alloc_fattr();
655 entry.server = NFS_SERVER(inode);
656 if (entry.fh == NULL || entry.fattr == NULL)
657 goto out;
658
659 array = nfs_readdir_get_array(page);
660 if (IS_ERR(array)) {
661 status = PTR_ERR(array);
662 goto out;
663 }
664 memset(array, 0, sizeof(struct nfs_cache_array));
665 array->eof_index = -1;
666
667 status = nfs_readdir_large_page(pages, array_size);
668 if (status < 0)
669 goto out_release_array;
670 do {
671 unsigned int pglen;
672 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
673
674 if (status < 0)
675 break;
676 pglen = status;
677 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
678 if (status < 0) {
679 if (status == -ENOSPC)
680 status = 0;
681 break;
682 }
683 } while (array->eof_index < 0);
684
685 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
686 out_release_array:
687 nfs_readdir_release_array(page);
688 out:
689 nfs_free_fattr(entry.fattr);
690 nfs_free_fhandle(entry.fh);
691 return status;
692 }
693
694 /*
695 * Now we cache directories properly, by converting xdr information
696 * to an array that can be used for lookups later. This results in
697 * fewer cache pages, since we can store more information on each page.
698 * We only need to convert from xdr once so future lookups are much simpler
699 */
700 static
701 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
702 {
703 struct inode *inode = desc->file->f_path.dentry->d_inode;
704 int ret;
705
706 ret = nfs_readdir_xdr_to_array(desc, page, inode);
707 if (ret < 0)
708 goto error;
709 SetPageUptodate(page);
710
711 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
712 /* Should never happen */
713 nfs_zap_mapping(inode, inode->i_mapping);
714 }
715 unlock_page(page);
716 return 0;
717 error:
718 unlock_page(page);
719 return ret;
720 }
721
722 static
723 void cache_page_release(nfs_readdir_descriptor_t *desc)
724 {
725 if (!desc->page->mapping)
726 nfs_readdir_clear_array(desc->page);
727 page_cache_release(desc->page);
728 desc->page = NULL;
729 }
730
731 static
732 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
733 {
734 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
735 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
736 }
737
738 /*
739 * Returns 0 if desc->dir_cookie was found on page desc->page_index
740 */
741 static
742 int find_cache_page(nfs_readdir_descriptor_t *desc)
743 {
744 int res;
745
746 desc->page = get_cache_page(desc);
747 if (IS_ERR(desc->page))
748 return PTR_ERR(desc->page);
749
750 res = nfs_readdir_search_array(desc);
751 if (res != 0)
752 cache_page_release(desc);
753 return res;
754 }
755
756 /* Search for desc->dir_cookie from the beginning of the page cache */
757 static inline
758 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
759 {
760 int res;
761
762 if (desc->page_index == 0) {
763 desc->current_index = 0;
764 desc->last_cookie = 0;
765 }
766 do {
767 res = find_cache_page(desc);
768 } while (res == -EAGAIN);
769 return res;
770 }
771
772 /*
773 * Once we've found the start of the dirent within a page: fill 'er up...
774 */
775 static
776 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
777 filldir_t filldir)
778 {
779 struct file *file = desc->file;
780 int i = 0;
781 int res = 0;
782 struct nfs_cache_array *array = NULL;
783 struct nfs_open_dir_context *ctx = file->private_data;
784
785 array = nfs_readdir_get_array(desc->page);
786 if (IS_ERR(array)) {
787 res = PTR_ERR(array);
788 goto out;
789 }
790
791 for (i = desc->cache_entry_index; i < array->size; i++) {
792 struct nfs_cache_array_entry *ent;
793
794 ent = &array->array[i];
795 if (filldir(dirent, ent->string.name, ent->string.len,
796 file->f_pos, nfs_compat_user_ino64(ent->ino),
797 ent->d_type) < 0) {
798 desc->eof = 1;
799 break;
800 }
801 file->f_pos++;
802 if (i < (array->size-1))
803 *desc->dir_cookie = array->array[i+1].cookie;
804 else
805 *desc->dir_cookie = array->last_cookie;
806 if (ctx->duped != 0)
807 ctx->duped = 1;
808 }
809 if (array->eof_index >= 0)
810 desc->eof = 1;
811
812 nfs_readdir_release_array(desc->page);
813 out:
814 cache_page_release(desc);
815 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
816 (unsigned long long)*desc->dir_cookie, res);
817 return res;
818 }
819
820 /*
821 * If we cannot find a cookie in our cache, we suspect that this is
822 * because it points to a deleted file, so we ask the server to return
823 * whatever it thinks is the next entry. We then feed this to filldir.
824 * If all goes well, we should then be able to find our way round the
825 * cache on the next call to readdir_search_pagecache();
826 *
827 * NOTE: we cannot add the anonymous page to the pagecache because
828 * the data it contains might not be page aligned. Besides,
829 * we should already have a complete representation of the
830 * directory in the page cache by the time we get here.
831 */
832 static inline
833 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
834 filldir_t filldir)
835 {
836 struct page *page = NULL;
837 int status;
838 struct inode *inode = desc->file->f_path.dentry->d_inode;
839 struct nfs_open_dir_context *ctx = desc->file->private_data;
840
841 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
842 (unsigned long long)*desc->dir_cookie);
843
844 page = alloc_page(GFP_HIGHUSER);
845 if (!page) {
846 status = -ENOMEM;
847 goto out;
848 }
849
850 desc->page_index = 0;
851 desc->last_cookie = *desc->dir_cookie;
852 desc->page = page;
853 ctx->duped = 0;
854
855 status = nfs_readdir_xdr_to_array(desc, page, inode);
856 if (status < 0)
857 goto out_release;
858
859 status = nfs_do_filldir(desc, dirent, filldir);
860
861 out:
862 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
863 __func__, status);
864 return status;
865 out_release:
866 cache_page_release(desc);
867 goto out;
868 }
869
870 /* The file offset position represents the dirent entry number. A
871 last cookie cache takes care of the common case of reading the
872 whole directory.
873 */
874 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
875 {
876 struct dentry *dentry = filp->f_path.dentry;
877 struct inode *inode = dentry->d_inode;
878 nfs_readdir_descriptor_t my_desc,
879 *desc = &my_desc;
880 struct nfs_open_dir_context *dir_ctx = filp->private_data;
881 int res;
882
883 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
884 dentry->d_parent->d_name.name, dentry->d_name.name,
885 (long long)filp->f_pos);
886 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
887
888 /*
889 * filp->f_pos points to the dirent entry number.
890 * *desc->dir_cookie has the cookie for the next entry. We have
891 * to either find the entry with the appropriate number or
892 * revalidate the cookie.
893 */
894 memset(desc, 0, sizeof(*desc));
895
896 desc->file = filp;
897 desc->dir_cookie = &dir_ctx->dir_cookie;
898 desc->decode = NFS_PROTO(inode)->decode_dirent;
899 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
900
901 nfs_block_sillyrename(dentry);
902 res = nfs_revalidate_mapping(inode, filp->f_mapping);
903 if (res < 0)
904 goto out;
905
906 do {
907 res = readdir_search_pagecache(desc);
908
909 if (res == -EBADCOOKIE) {
910 res = 0;
911 /* This means either end of directory */
912 if (*desc->dir_cookie && desc->eof == 0) {
913 /* Or that the server has 'lost' a cookie */
914 res = uncached_readdir(desc, dirent, filldir);
915 if (res == 0)
916 continue;
917 }
918 break;
919 }
920 if (res == -ETOOSMALL && desc->plus) {
921 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
922 nfs_zap_caches(inode);
923 desc->page_index = 0;
924 desc->plus = 0;
925 desc->eof = 0;
926 continue;
927 }
928 if (res < 0)
929 break;
930
931 res = nfs_do_filldir(desc, dirent, filldir);
932 if (res < 0)
933 break;
934 } while (!desc->eof);
935 out:
936 nfs_unblock_sillyrename(dentry);
937 if (res > 0)
938 res = 0;
939 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
940 dentry->d_parent->d_name.name, dentry->d_name.name,
941 res);
942 return res;
943 }
944
945 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
946 {
947 struct dentry *dentry = filp->f_path.dentry;
948 struct inode *inode = dentry->d_inode;
949 struct nfs_open_dir_context *dir_ctx = filp->private_data;
950
951 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
952 dentry->d_parent->d_name.name,
953 dentry->d_name.name,
954 offset, origin);
955
956 mutex_lock(&inode->i_mutex);
957 switch (origin) {
958 case 1:
959 offset += filp->f_pos;
960 case 0:
961 if (offset >= 0)
962 break;
963 default:
964 offset = -EINVAL;
965 goto out;
966 }
967 if (offset != filp->f_pos) {
968 filp->f_pos = offset;
969 dir_ctx->dir_cookie = 0;
970 dir_ctx->duped = 0;
971 }
972 out:
973 mutex_unlock(&inode->i_mutex);
974 return offset;
975 }
976
977 /*
978 * All directory operations under NFS are synchronous, so fsync()
979 * is a dummy operation.
980 */
981 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
982 int datasync)
983 {
984 struct dentry *dentry = filp->f_path.dentry;
985 struct inode *inode = dentry->d_inode;
986
987 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
988 dentry->d_parent->d_name.name, dentry->d_name.name,
989 datasync);
990
991 mutex_lock(&inode->i_mutex);
992 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
993 mutex_unlock(&inode->i_mutex);
994 return 0;
995 }
996
997 /**
998 * nfs_force_lookup_revalidate - Mark the directory as having changed
999 * @dir - pointer to directory inode
1000 *
1001 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1002 * full lookup on all child dentries of 'dir' whenever a change occurs
1003 * on the server that might have invalidated our dcache.
1004 *
1005 * The caller should be holding dir->i_lock
1006 */
1007 void nfs_force_lookup_revalidate(struct inode *dir)
1008 {
1009 NFS_I(dir)->cache_change_attribute++;
1010 }
1011
1012 /*
1013 * A check for whether or not the parent directory has changed.
1014 * In the case it has, we assume that the dentries are untrustworthy
1015 * and may need to be looked up again.
1016 */
1017 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
1018 {
1019 if (IS_ROOT(dentry))
1020 return 1;
1021 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1022 return 0;
1023 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1024 return 0;
1025 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1026 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1027 return 0;
1028 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1029 return 0;
1030 return 1;
1031 }
1032
1033 /*
1034 * Return the intent data that applies to this particular path component
1035 *
1036 * Note that the current set of intents only apply to the very last
1037 * component of the path and none of them is set before that last
1038 * component.
1039 */
1040 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1041 unsigned int mask)
1042 {
1043 return nd->flags & mask;
1044 }
1045
1046 /*
1047 * Use intent information to check whether or not we're going to do
1048 * an O_EXCL create using this path component.
1049 */
1050 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1051 {
1052 if (NFS_PROTO(dir)->version == 2)
1053 return 0;
1054 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1055 }
1056
1057 /*
1058 * Inode and filehandle revalidation for lookups.
1059 *
1060 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1061 * or if the intent information indicates that we're about to open this
1062 * particular file and the "nocto" mount flag is not set.
1063 *
1064 */
1065 static inline
1066 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1067 {
1068 struct nfs_server *server = NFS_SERVER(inode);
1069
1070 if (IS_AUTOMOUNT(inode))
1071 return 0;
1072 if (nd != NULL) {
1073 /* VFS wants an on-the-wire revalidation */
1074 if (nd->flags & LOOKUP_REVAL)
1075 goto out_force;
1076 /* This is an open(2) */
1077 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1078 !(server->flags & NFS_MOUNT_NOCTO) &&
1079 (S_ISREG(inode->i_mode) ||
1080 S_ISDIR(inode->i_mode)))
1081 goto out_force;
1082 return 0;
1083 }
1084 return nfs_revalidate_inode(server, inode);
1085 out_force:
1086 return __nfs_revalidate_inode(server, inode);
1087 }
1088
1089 /*
1090 * We judge how long we want to trust negative
1091 * dentries by looking at the parent inode mtime.
1092 *
1093 * If parent mtime has changed, we revalidate, else we wait for a
1094 * period corresponding to the parent's attribute cache timeout value.
1095 */
1096 static inline
1097 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1098 struct nameidata *nd)
1099 {
1100 /* Don't revalidate a negative dentry if we're creating a new file */
1101 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1102 return 0;
1103 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1104 return 1;
1105 return !nfs_check_verifier(dir, dentry);
1106 }
1107
1108 /*
1109 * This is called every time the dcache has a lookup hit,
1110 * and we should check whether we can really trust that
1111 * lookup.
1112 *
1113 * NOTE! The hit can be a negative hit too, don't assume
1114 * we have an inode!
1115 *
1116 * If the parent directory is seen to have changed, we throw out the
1117 * cached dentry and do a new lookup.
1118 */
1119 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1120 {
1121 struct inode *dir;
1122 struct inode *inode;
1123 struct dentry *parent;
1124 struct nfs_fh *fhandle = NULL;
1125 struct nfs_fattr *fattr = NULL;
1126 int error;
1127
1128 if (nd->flags & LOOKUP_RCU)
1129 return -ECHILD;
1130
1131 parent = dget_parent(dentry);
1132 dir = parent->d_inode;
1133 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1134 inode = dentry->d_inode;
1135
1136 if (!inode) {
1137 if (nfs_neg_need_reval(dir, dentry, nd))
1138 goto out_bad;
1139 goto out_valid_noent;
1140 }
1141
1142 if (is_bad_inode(inode)) {
1143 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1144 __func__, dentry->d_parent->d_name.name,
1145 dentry->d_name.name);
1146 goto out_bad;
1147 }
1148
1149 if (nfs_have_delegation(inode, FMODE_READ))
1150 goto out_set_verifier;
1151
1152 /* Force a full look up iff the parent directory has changed */
1153 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1154 if (nfs_lookup_verify_inode(inode, nd))
1155 goto out_zap_parent;
1156 goto out_valid;
1157 }
1158
1159 if (NFS_STALE(inode))
1160 goto out_bad;
1161
1162 error = -ENOMEM;
1163 fhandle = nfs_alloc_fhandle();
1164 fattr = nfs_alloc_fattr();
1165 if (fhandle == NULL || fattr == NULL)
1166 goto out_error;
1167
1168 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1169 if (error)
1170 goto out_bad;
1171 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1172 goto out_bad;
1173 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1174 goto out_bad;
1175
1176 nfs_free_fattr(fattr);
1177 nfs_free_fhandle(fhandle);
1178 out_set_verifier:
1179 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1180 out_valid:
1181 /* Success: notify readdir to use READDIRPLUS */
1182 nfs_advise_use_readdirplus(dir);
1183 out_valid_noent:
1184 dput(parent);
1185 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1186 __func__, dentry->d_parent->d_name.name,
1187 dentry->d_name.name);
1188 return 1;
1189 out_zap_parent:
1190 nfs_zap_caches(dir);
1191 out_bad:
1192 nfs_mark_for_revalidate(dir);
1193 if (inode && S_ISDIR(inode->i_mode)) {
1194 /* Purge readdir caches. */
1195 nfs_zap_caches(inode);
1196 /* If we have submounts, don't unhash ! */
1197 if (have_submounts(dentry))
1198 goto out_valid;
1199 if (dentry->d_flags & DCACHE_DISCONNECTED)
1200 goto out_valid;
1201 shrink_dcache_parent(dentry);
1202 }
1203 d_drop(dentry);
1204 nfs_free_fattr(fattr);
1205 nfs_free_fhandle(fhandle);
1206 dput(parent);
1207 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1208 __func__, dentry->d_parent->d_name.name,
1209 dentry->d_name.name);
1210 return 0;
1211 out_error:
1212 nfs_free_fattr(fattr);
1213 nfs_free_fhandle(fhandle);
1214 dput(parent);
1215 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1216 __func__, dentry->d_parent->d_name.name,
1217 dentry->d_name.name, error);
1218 return error;
1219 }
1220
1221 /*
1222 * This is called from dput() when d_count is going to 0.
1223 */
1224 static int nfs_dentry_delete(const struct dentry *dentry)
1225 {
1226 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1227 dentry->d_parent->d_name.name, dentry->d_name.name,
1228 dentry->d_flags);
1229
1230 /* Unhash any dentry with a stale inode */
1231 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1232 return 1;
1233
1234 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1235 /* Unhash it, so that ->d_iput() would be called */
1236 return 1;
1237 }
1238 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1239 /* Unhash it, so that ancestors of killed async unlink
1240 * files will be cleaned up during umount */
1241 return 1;
1242 }
1243 return 0;
1244
1245 }
1246
1247 static void nfs_drop_nlink(struct inode *inode)
1248 {
1249 spin_lock(&inode->i_lock);
1250 if (inode->i_nlink > 0)
1251 drop_nlink(inode);
1252 spin_unlock(&inode->i_lock);
1253 }
1254
1255 /*
1256 * Called when the dentry loses inode.
1257 * We use it to clean up silly-renamed files.
1258 */
1259 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1260 {
1261 if (S_ISDIR(inode->i_mode))
1262 /* drop any readdir cache as it could easily be old */
1263 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1264
1265 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1266 drop_nlink(inode);
1267 nfs_complete_unlink(dentry, inode);
1268 }
1269 iput(inode);
1270 }
1271
1272 static void nfs_d_release(struct dentry *dentry)
1273 {
1274 /* free cached devname value, if it survived that far */
1275 if (unlikely(dentry->d_fsdata)) {
1276 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1277 WARN_ON(1);
1278 else
1279 kfree(dentry->d_fsdata);
1280 }
1281 }
1282
1283 const struct dentry_operations nfs_dentry_operations = {
1284 .d_revalidate = nfs_lookup_revalidate,
1285 .d_delete = nfs_dentry_delete,
1286 .d_iput = nfs_dentry_iput,
1287 .d_automount = nfs_d_automount,
1288 .d_release = nfs_d_release,
1289 };
1290
1291 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1292 {
1293 struct dentry *res;
1294 struct dentry *parent;
1295 struct inode *inode = NULL;
1296 struct nfs_fh *fhandle = NULL;
1297 struct nfs_fattr *fattr = NULL;
1298 int error;
1299
1300 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1301 dentry->d_parent->d_name.name, dentry->d_name.name);
1302 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1303
1304 res = ERR_PTR(-ENAMETOOLONG);
1305 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1306 goto out;
1307
1308 /*
1309 * If we're doing an exclusive create, optimize away the lookup
1310 * but don't hash the dentry.
1311 */
1312 if (nfs_is_exclusive_create(dir, nd)) {
1313 d_instantiate(dentry, NULL);
1314 res = NULL;
1315 goto out;
1316 }
1317
1318 res = ERR_PTR(-ENOMEM);
1319 fhandle = nfs_alloc_fhandle();
1320 fattr = nfs_alloc_fattr();
1321 if (fhandle == NULL || fattr == NULL)
1322 goto out;
1323
1324 parent = dentry->d_parent;
1325 /* Protect against concurrent sillydeletes */
1326 nfs_block_sillyrename(parent);
1327 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1328 if (error == -ENOENT)
1329 goto no_entry;
1330 if (error < 0) {
1331 res = ERR_PTR(error);
1332 goto out_unblock_sillyrename;
1333 }
1334 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1335 res = ERR_CAST(inode);
1336 if (IS_ERR(res))
1337 goto out_unblock_sillyrename;
1338
1339 /* Success: notify readdir to use READDIRPLUS */
1340 nfs_advise_use_readdirplus(dir);
1341
1342 no_entry:
1343 res = d_materialise_unique(dentry, inode);
1344 if (res != NULL) {
1345 if (IS_ERR(res))
1346 goto out_unblock_sillyrename;
1347 dentry = res;
1348 }
1349 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1350 out_unblock_sillyrename:
1351 nfs_unblock_sillyrename(parent);
1352 out:
1353 nfs_free_fattr(fattr);
1354 nfs_free_fhandle(fhandle);
1355 return res;
1356 }
1357
1358 #ifdef CONFIG_NFS_V4
1359 static int nfs4_lookup_revalidate(struct dentry *, struct nameidata *);
1360
1361 const struct dentry_operations nfs4_dentry_operations = {
1362 .d_revalidate = nfs4_lookup_revalidate,
1363 .d_delete = nfs_dentry_delete,
1364 .d_iput = nfs_dentry_iput,
1365 .d_automount = nfs_d_automount,
1366 .d_release = nfs_d_release,
1367 };
1368
1369 static fmode_t flags_to_mode(int flags)
1370 {
1371 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1372 if ((flags & O_ACCMODE) != O_WRONLY)
1373 res |= FMODE_READ;
1374 if ((flags & O_ACCMODE) != O_RDONLY)
1375 res |= FMODE_WRITE;
1376 return res;
1377 }
1378
1379 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1380 {
1381 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1382 }
1383
1384 static int do_open(struct inode *inode, struct file *filp)
1385 {
1386 nfs_fscache_set_inode_cookie(inode, filp);
1387 return 0;
1388 }
1389
1390 static int nfs_finish_open(struct nfs_open_context *ctx,
1391 struct dentry *dentry,
1392 struct opendata *od, unsigned open_flags,
1393 int *opened)
1394 {
1395 struct file *filp;
1396 int err;
1397
1398 if (ctx->dentry != dentry) {
1399 dput(ctx->dentry);
1400 ctx->dentry = dget(dentry);
1401 }
1402
1403 /* If the open_intent is for execute, we have an extra check to make */
1404 if (ctx->mode & FMODE_EXEC) {
1405 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1406 if (err < 0)
1407 goto out;
1408 }
1409
1410 filp = finish_open(od, dentry, do_open, opened);
1411 if (IS_ERR(filp)) {
1412 err = PTR_ERR(filp);
1413 goto out;
1414 }
1415 nfs_file_set_open_context(filp, ctx);
1416 err = 0;
1417
1418 out:
1419 put_nfs_open_context(ctx);
1420 return err;
1421 }
1422
1423 static int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1424 struct opendata *od, unsigned open_flags,
1425 umode_t mode, int *opened)
1426 {
1427 struct nfs_open_context *ctx;
1428 struct dentry *res;
1429 struct iattr attr = { .ia_valid = ATTR_OPEN };
1430 struct inode *inode;
1431 int err;
1432
1433 /* Expect a negative dentry */
1434 BUG_ON(dentry->d_inode);
1435
1436 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1437 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1438
1439 /* NFS only supports OPEN on regular files */
1440 if ((open_flags & O_DIRECTORY)) {
1441 if (!d_unhashed(dentry)) {
1442 /*
1443 * Hashed negative dentry with O_DIRECTORY: dentry was
1444 * revalidated and is fine, no need to perform lookup
1445 * again
1446 */
1447 return -ENOENT;
1448 }
1449 goto no_open;
1450 }
1451
1452 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1453 return -ENAMETOOLONG;
1454
1455 if (open_flags & O_CREAT) {
1456 attr.ia_valid |= ATTR_MODE;
1457 attr.ia_mode = mode & ~current_umask();
1458 }
1459 if (open_flags & O_TRUNC) {
1460 attr.ia_valid |= ATTR_SIZE;
1461 attr.ia_size = 0;
1462 }
1463
1464 ctx = create_nfs_open_context(dentry, open_flags);
1465 err = PTR_ERR(ctx);
1466 if (IS_ERR(ctx))
1467 goto out;
1468
1469 nfs_block_sillyrename(dentry->d_parent);
1470 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1471 d_drop(dentry);
1472 if (IS_ERR(inode)) {
1473 nfs_unblock_sillyrename(dentry->d_parent);
1474 put_nfs_open_context(ctx);
1475 err = PTR_ERR(inode);
1476 switch (err) {
1477 case -ENOENT:
1478 d_add(dentry, NULL);
1479 break;
1480 case -EISDIR:
1481 case -ENOTDIR:
1482 goto no_open;
1483 case -ELOOP:
1484 if (!(open_flags & O_NOFOLLOW))
1485 goto no_open;
1486 break;
1487 /* case -EINVAL: */
1488 default:
1489 break;
1490 }
1491 goto out;
1492 }
1493 res = d_add_unique(dentry, inode);
1494 if (res != NULL)
1495 dentry = res;
1496
1497 nfs_unblock_sillyrename(dentry->d_parent);
1498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1499
1500 err = nfs_finish_open(ctx, dentry, od, open_flags, opened);
1501
1502 dput(res);
1503 out:
1504 return err;
1505
1506 no_open:
1507 res = nfs_lookup(dir, dentry, NULL);
1508 err = PTR_ERR(res);
1509 if (IS_ERR(res))
1510 goto out;
1511
1512 finish_no_open(od, res);
1513 return 1;
1514 }
1515
1516 static int nfs4_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1517 {
1518 struct dentry *parent = NULL;
1519 struct inode *inode;
1520 struct inode *dir;
1521 int ret = 0;
1522
1523 if (nd->flags & LOOKUP_RCU)
1524 return -ECHILD;
1525
1526 if (!(nd->flags & LOOKUP_OPEN) || (nd->flags & LOOKUP_DIRECTORY))
1527 goto no_open;
1528 if (d_mountpoint(dentry))
1529 goto no_open;
1530
1531 inode = dentry->d_inode;
1532 parent = dget_parent(dentry);
1533 dir = parent->d_inode;
1534
1535 /* We can't create new files in nfs_open_revalidate(), so we
1536 * optimize away revalidation of negative dentries.
1537 */
1538 if (inode == NULL) {
1539 if (!nfs_neg_need_reval(dir, dentry, nd))
1540 ret = 1;
1541 goto out;
1542 }
1543
1544 /* NFS only supports OPEN on regular files */
1545 if (!S_ISREG(inode->i_mode))
1546 goto no_open_dput;
1547 /* We cannot do exclusive creation on a positive dentry */
1548 if (nd && nd->flags & LOOKUP_EXCL)
1549 goto no_open_dput;
1550
1551 /* Let f_op->open() actually open (and revalidate) the file */
1552 ret = 1;
1553
1554 out:
1555 dput(parent);
1556 return ret;
1557
1558 no_open_dput:
1559 dput(parent);
1560 no_open:
1561 return nfs_lookup_revalidate(dentry, nd);
1562 }
1563
1564 #endif /* CONFIG_NFSV4 */
1565
1566 /*
1567 * Code common to create, mkdir, and mknod.
1568 */
1569 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1570 struct nfs_fattr *fattr)
1571 {
1572 struct dentry *parent = dget_parent(dentry);
1573 struct inode *dir = parent->d_inode;
1574 struct inode *inode;
1575 int error = -EACCES;
1576
1577 d_drop(dentry);
1578
1579 /* We may have been initialized further down */
1580 if (dentry->d_inode)
1581 goto out;
1582 if (fhandle->size == 0) {
1583 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1584 if (error)
1585 goto out_error;
1586 }
1587 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1588 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1589 struct nfs_server *server = NFS_SB(dentry->d_sb);
1590 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1591 if (error < 0)
1592 goto out_error;
1593 }
1594 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1595 error = PTR_ERR(inode);
1596 if (IS_ERR(inode))
1597 goto out_error;
1598 d_add(dentry, inode);
1599 out:
1600 dput(parent);
1601 return 0;
1602 out_error:
1603 nfs_mark_for_revalidate(dir);
1604 dput(parent);
1605 return error;
1606 }
1607
1608 /*
1609 * Following a failed create operation, we drop the dentry rather
1610 * than retain a negative dentry. This avoids a problem in the event
1611 * that the operation succeeded on the server, but an error in the
1612 * reply path made it appear to have failed.
1613 */
1614 static int nfs_create(struct inode *dir, struct dentry *dentry,
1615 umode_t mode, struct nameidata *nd)
1616 {
1617 struct iattr attr;
1618 int error;
1619 int open_flags = O_CREAT|O_EXCL;
1620
1621 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1622 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1623
1624 attr.ia_mode = mode;
1625 attr.ia_valid = ATTR_MODE;
1626
1627 if (nd && !(nd->flags & LOOKUP_EXCL))
1628 open_flags = O_CREAT;
1629
1630 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1631 if (error != 0)
1632 goto out_err;
1633 return 0;
1634 out_err:
1635 d_drop(dentry);
1636 return error;
1637 }
1638
1639 /*
1640 * See comments for nfs_proc_create regarding failed operations.
1641 */
1642 static int
1643 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1644 {
1645 struct iattr attr;
1646 int status;
1647
1648 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1649 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1650
1651 if (!new_valid_dev(rdev))
1652 return -EINVAL;
1653
1654 attr.ia_mode = mode;
1655 attr.ia_valid = ATTR_MODE;
1656
1657 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1658 if (status != 0)
1659 goto out_err;
1660 return 0;
1661 out_err:
1662 d_drop(dentry);
1663 return status;
1664 }
1665
1666 /*
1667 * See comments for nfs_proc_create regarding failed operations.
1668 */
1669 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1670 {
1671 struct iattr attr;
1672 int error;
1673
1674 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1675 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1676
1677 attr.ia_valid = ATTR_MODE;
1678 attr.ia_mode = mode | S_IFDIR;
1679
1680 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1681 if (error != 0)
1682 goto out_err;
1683 return 0;
1684 out_err:
1685 d_drop(dentry);
1686 return error;
1687 }
1688
1689 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1690 {
1691 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1692 d_delete(dentry);
1693 }
1694
1695 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1696 {
1697 int error;
1698
1699 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1700 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1701
1702 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1703 /* Ensure the VFS deletes this inode */
1704 if (error == 0 && dentry->d_inode != NULL)
1705 clear_nlink(dentry->d_inode);
1706 else if (error == -ENOENT)
1707 nfs_dentry_handle_enoent(dentry);
1708
1709 return error;
1710 }
1711
1712 /*
1713 * Remove a file after making sure there are no pending writes,
1714 * and after checking that the file has only one user.
1715 *
1716 * We invalidate the attribute cache and free the inode prior to the operation
1717 * to avoid possible races if the server reuses the inode.
1718 */
1719 static int nfs_safe_remove(struct dentry *dentry)
1720 {
1721 struct inode *dir = dentry->d_parent->d_inode;
1722 struct inode *inode = dentry->d_inode;
1723 int error = -EBUSY;
1724
1725 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1726 dentry->d_parent->d_name.name, dentry->d_name.name);
1727
1728 /* If the dentry was sillyrenamed, we simply call d_delete() */
1729 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1730 error = 0;
1731 goto out;
1732 }
1733
1734 if (inode != NULL) {
1735 nfs_inode_return_delegation(inode);
1736 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1737 /* The VFS may want to delete this inode */
1738 if (error == 0)
1739 nfs_drop_nlink(inode);
1740 nfs_mark_for_revalidate(inode);
1741 } else
1742 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1743 if (error == -ENOENT)
1744 nfs_dentry_handle_enoent(dentry);
1745 out:
1746 return error;
1747 }
1748
1749 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1750 * belongs to an active ".nfs..." file and we return -EBUSY.
1751 *
1752 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1753 */
1754 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1755 {
1756 int error;
1757 int need_rehash = 0;
1758
1759 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1760 dir->i_ino, dentry->d_name.name);
1761
1762 spin_lock(&dentry->d_lock);
1763 if (dentry->d_count > 1) {
1764 spin_unlock(&dentry->d_lock);
1765 /* Start asynchronous writeout of the inode */
1766 write_inode_now(dentry->d_inode, 0);
1767 error = nfs_sillyrename(dir, dentry);
1768 return error;
1769 }
1770 if (!d_unhashed(dentry)) {
1771 __d_drop(dentry);
1772 need_rehash = 1;
1773 }
1774 spin_unlock(&dentry->d_lock);
1775 error = nfs_safe_remove(dentry);
1776 if (!error || error == -ENOENT) {
1777 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1778 } else if (need_rehash)
1779 d_rehash(dentry);
1780 return error;
1781 }
1782
1783 /*
1784 * To create a symbolic link, most file systems instantiate a new inode,
1785 * add a page to it containing the path, then write it out to the disk
1786 * using prepare_write/commit_write.
1787 *
1788 * Unfortunately the NFS client can't create the in-core inode first
1789 * because it needs a file handle to create an in-core inode (see
1790 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1791 * symlink request has completed on the server.
1792 *
1793 * So instead we allocate a raw page, copy the symname into it, then do
1794 * the SYMLINK request with the page as the buffer. If it succeeds, we
1795 * now have a new file handle and can instantiate an in-core NFS inode
1796 * and move the raw page into its mapping.
1797 */
1798 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1799 {
1800 struct pagevec lru_pvec;
1801 struct page *page;
1802 char *kaddr;
1803 struct iattr attr;
1804 unsigned int pathlen = strlen(symname);
1805 int error;
1806
1807 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1808 dir->i_ino, dentry->d_name.name, symname);
1809
1810 if (pathlen > PAGE_SIZE)
1811 return -ENAMETOOLONG;
1812
1813 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1814 attr.ia_valid = ATTR_MODE;
1815
1816 page = alloc_page(GFP_HIGHUSER);
1817 if (!page)
1818 return -ENOMEM;
1819
1820 kaddr = kmap_atomic(page);
1821 memcpy(kaddr, symname, pathlen);
1822 if (pathlen < PAGE_SIZE)
1823 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1824 kunmap_atomic(kaddr);
1825
1826 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1827 if (error != 0) {
1828 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1829 dir->i_sb->s_id, dir->i_ino,
1830 dentry->d_name.name, symname, error);
1831 d_drop(dentry);
1832 __free_page(page);
1833 return error;
1834 }
1835
1836 /*
1837 * No big deal if we can't add this page to the page cache here.
1838 * READLINK will get the missing page from the server if needed.
1839 */
1840 pagevec_init(&lru_pvec, 0);
1841 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1842 GFP_KERNEL)) {
1843 pagevec_add(&lru_pvec, page);
1844 pagevec_lru_add_file(&lru_pvec);
1845 SetPageUptodate(page);
1846 unlock_page(page);
1847 } else
1848 __free_page(page);
1849
1850 return 0;
1851 }
1852
1853 static int
1854 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1855 {
1856 struct inode *inode = old_dentry->d_inode;
1857 int error;
1858
1859 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1860 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1861 dentry->d_parent->d_name.name, dentry->d_name.name);
1862
1863 nfs_inode_return_delegation(inode);
1864
1865 d_drop(dentry);
1866 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1867 if (error == 0) {
1868 ihold(inode);
1869 d_add(dentry, inode);
1870 }
1871 return error;
1872 }
1873
1874 /*
1875 * RENAME
1876 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1877 * different file handle for the same inode after a rename (e.g. when
1878 * moving to a different directory). A fail-safe method to do so would
1879 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1880 * rename the old file using the sillyrename stuff. This way, the original
1881 * file in old_dir will go away when the last process iput()s the inode.
1882 *
1883 * FIXED.
1884 *
1885 * It actually works quite well. One needs to have the possibility for
1886 * at least one ".nfs..." file in each directory the file ever gets
1887 * moved or linked to which happens automagically with the new
1888 * implementation that only depends on the dcache stuff instead of
1889 * using the inode layer
1890 *
1891 * Unfortunately, things are a little more complicated than indicated
1892 * above. For a cross-directory move, we want to make sure we can get
1893 * rid of the old inode after the operation. This means there must be
1894 * no pending writes (if it's a file), and the use count must be 1.
1895 * If these conditions are met, we can drop the dentries before doing
1896 * the rename.
1897 */
1898 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1899 struct inode *new_dir, struct dentry *new_dentry)
1900 {
1901 struct inode *old_inode = old_dentry->d_inode;
1902 struct inode *new_inode = new_dentry->d_inode;
1903 struct dentry *dentry = NULL, *rehash = NULL;
1904 int error = -EBUSY;
1905
1906 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1907 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1908 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1909 new_dentry->d_count);
1910
1911 /*
1912 * For non-directories, check whether the target is busy and if so,
1913 * make a copy of the dentry and then do a silly-rename. If the
1914 * silly-rename succeeds, the copied dentry is hashed and becomes
1915 * the new target.
1916 */
1917 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1918 /*
1919 * To prevent any new references to the target during the
1920 * rename, we unhash the dentry in advance.
1921 */
1922 if (!d_unhashed(new_dentry)) {
1923 d_drop(new_dentry);
1924 rehash = new_dentry;
1925 }
1926
1927 if (new_dentry->d_count > 2) {
1928 int err;
1929
1930 /* copy the target dentry's name */
1931 dentry = d_alloc(new_dentry->d_parent,
1932 &new_dentry->d_name);
1933 if (!dentry)
1934 goto out;
1935
1936 /* silly-rename the existing target ... */
1937 err = nfs_sillyrename(new_dir, new_dentry);
1938 if (err)
1939 goto out;
1940
1941 new_dentry = dentry;
1942 rehash = NULL;
1943 new_inode = NULL;
1944 }
1945 }
1946
1947 nfs_inode_return_delegation(old_inode);
1948 if (new_inode != NULL)
1949 nfs_inode_return_delegation(new_inode);
1950
1951 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1952 new_dir, &new_dentry->d_name);
1953 nfs_mark_for_revalidate(old_inode);
1954 out:
1955 if (rehash)
1956 d_rehash(rehash);
1957 if (!error) {
1958 if (new_inode != NULL)
1959 nfs_drop_nlink(new_inode);
1960 d_move(old_dentry, new_dentry);
1961 nfs_set_verifier(new_dentry,
1962 nfs_save_change_attribute(new_dir));
1963 } else if (error == -ENOENT)
1964 nfs_dentry_handle_enoent(old_dentry);
1965
1966 /* new dentry created? */
1967 if (dentry)
1968 dput(dentry);
1969 return error;
1970 }
1971
1972 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1973 static LIST_HEAD(nfs_access_lru_list);
1974 static atomic_long_t nfs_access_nr_entries;
1975
1976 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1977 {
1978 put_rpccred(entry->cred);
1979 kfree(entry);
1980 smp_mb__before_atomic_dec();
1981 atomic_long_dec(&nfs_access_nr_entries);
1982 smp_mb__after_atomic_dec();
1983 }
1984
1985 static void nfs_access_free_list(struct list_head *head)
1986 {
1987 struct nfs_access_entry *cache;
1988
1989 while (!list_empty(head)) {
1990 cache = list_entry(head->next, struct nfs_access_entry, lru);
1991 list_del(&cache->lru);
1992 nfs_access_free_entry(cache);
1993 }
1994 }
1995
1996 int nfs_access_cache_shrinker(struct shrinker *shrink,
1997 struct shrink_control *sc)
1998 {
1999 LIST_HEAD(head);
2000 struct nfs_inode *nfsi, *next;
2001 struct nfs_access_entry *cache;
2002 int nr_to_scan = sc->nr_to_scan;
2003 gfp_t gfp_mask = sc->gfp_mask;
2004
2005 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2006 return (nr_to_scan == 0) ? 0 : -1;
2007
2008 spin_lock(&nfs_access_lru_lock);
2009 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2010 struct inode *inode;
2011
2012 if (nr_to_scan-- == 0)
2013 break;
2014 inode = &nfsi->vfs_inode;
2015 spin_lock(&inode->i_lock);
2016 if (list_empty(&nfsi->access_cache_entry_lru))
2017 goto remove_lru_entry;
2018 cache = list_entry(nfsi->access_cache_entry_lru.next,
2019 struct nfs_access_entry, lru);
2020 list_move(&cache->lru, &head);
2021 rb_erase(&cache->rb_node, &nfsi->access_cache);
2022 if (!list_empty(&nfsi->access_cache_entry_lru))
2023 list_move_tail(&nfsi->access_cache_inode_lru,
2024 &nfs_access_lru_list);
2025 else {
2026 remove_lru_entry:
2027 list_del_init(&nfsi->access_cache_inode_lru);
2028 smp_mb__before_clear_bit();
2029 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2030 smp_mb__after_clear_bit();
2031 }
2032 spin_unlock(&inode->i_lock);
2033 }
2034 spin_unlock(&nfs_access_lru_lock);
2035 nfs_access_free_list(&head);
2036 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2037 }
2038
2039 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2040 {
2041 struct rb_root *root_node = &nfsi->access_cache;
2042 struct rb_node *n;
2043 struct nfs_access_entry *entry;
2044
2045 /* Unhook entries from the cache */
2046 while ((n = rb_first(root_node)) != NULL) {
2047 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2048 rb_erase(n, root_node);
2049 list_move(&entry->lru, head);
2050 }
2051 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2052 }
2053
2054 void nfs_access_zap_cache(struct inode *inode)
2055 {
2056 LIST_HEAD(head);
2057
2058 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2059 return;
2060 /* Remove from global LRU init */
2061 spin_lock(&nfs_access_lru_lock);
2062 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2063 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2064
2065 spin_lock(&inode->i_lock);
2066 __nfs_access_zap_cache(NFS_I(inode), &head);
2067 spin_unlock(&inode->i_lock);
2068 spin_unlock(&nfs_access_lru_lock);
2069 nfs_access_free_list(&head);
2070 }
2071
2072 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2073 {
2074 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2075 struct nfs_access_entry *entry;
2076
2077 while (n != NULL) {
2078 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2079
2080 if (cred < entry->cred)
2081 n = n->rb_left;
2082 else if (cred > entry->cred)
2083 n = n->rb_right;
2084 else
2085 return entry;
2086 }
2087 return NULL;
2088 }
2089
2090 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2091 {
2092 struct nfs_inode *nfsi = NFS_I(inode);
2093 struct nfs_access_entry *cache;
2094 int err = -ENOENT;
2095
2096 spin_lock(&inode->i_lock);
2097 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2098 goto out_zap;
2099 cache = nfs_access_search_rbtree(inode, cred);
2100 if (cache == NULL)
2101 goto out;
2102 if (!nfs_have_delegated_attributes(inode) &&
2103 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2104 goto out_stale;
2105 res->jiffies = cache->jiffies;
2106 res->cred = cache->cred;
2107 res->mask = cache->mask;
2108 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2109 err = 0;
2110 out:
2111 spin_unlock(&inode->i_lock);
2112 return err;
2113 out_stale:
2114 rb_erase(&cache->rb_node, &nfsi->access_cache);
2115 list_del(&cache->lru);
2116 spin_unlock(&inode->i_lock);
2117 nfs_access_free_entry(cache);
2118 return -ENOENT;
2119 out_zap:
2120 spin_unlock(&inode->i_lock);
2121 nfs_access_zap_cache(inode);
2122 return -ENOENT;
2123 }
2124
2125 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2126 {
2127 struct nfs_inode *nfsi = NFS_I(inode);
2128 struct rb_root *root_node = &nfsi->access_cache;
2129 struct rb_node **p = &root_node->rb_node;
2130 struct rb_node *parent = NULL;
2131 struct nfs_access_entry *entry;
2132
2133 spin_lock(&inode->i_lock);
2134 while (*p != NULL) {
2135 parent = *p;
2136 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2137
2138 if (set->cred < entry->cred)
2139 p = &parent->rb_left;
2140 else if (set->cred > entry->cred)
2141 p = &parent->rb_right;
2142 else
2143 goto found;
2144 }
2145 rb_link_node(&set->rb_node, parent, p);
2146 rb_insert_color(&set->rb_node, root_node);
2147 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2148 spin_unlock(&inode->i_lock);
2149 return;
2150 found:
2151 rb_replace_node(parent, &set->rb_node, root_node);
2152 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2153 list_del(&entry->lru);
2154 spin_unlock(&inode->i_lock);
2155 nfs_access_free_entry(entry);
2156 }
2157
2158 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2159 {
2160 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2161 if (cache == NULL)
2162 return;
2163 RB_CLEAR_NODE(&cache->rb_node);
2164 cache->jiffies = set->jiffies;
2165 cache->cred = get_rpccred(set->cred);
2166 cache->mask = set->mask;
2167
2168 nfs_access_add_rbtree(inode, cache);
2169
2170 /* Update accounting */
2171 smp_mb__before_atomic_inc();
2172 atomic_long_inc(&nfs_access_nr_entries);
2173 smp_mb__after_atomic_inc();
2174
2175 /* Add inode to global LRU list */
2176 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2177 spin_lock(&nfs_access_lru_lock);
2178 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2179 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2180 &nfs_access_lru_list);
2181 spin_unlock(&nfs_access_lru_lock);
2182 }
2183 }
2184
2185 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2186 {
2187 struct nfs_access_entry cache;
2188 int status;
2189
2190 status = nfs_access_get_cached(inode, cred, &cache);
2191 if (status == 0)
2192 goto out;
2193
2194 /* Be clever: ask server to check for all possible rights */
2195 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2196 cache.cred = cred;
2197 cache.jiffies = jiffies;
2198 status = NFS_PROTO(inode)->access(inode, &cache);
2199 if (status != 0) {
2200 if (status == -ESTALE) {
2201 nfs_zap_caches(inode);
2202 if (!S_ISDIR(inode->i_mode))
2203 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2204 }
2205 return status;
2206 }
2207 nfs_access_add_cache(inode, &cache);
2208 out:
2209 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2210 return 0;
2211 return -EACCES;
2212 }
2213
2214 static int nfs_open_permission_mask(int openflags)
2215 {
2216 int mask = 0;
2217
2218 if ((openflags & O_ACCMODE) != O_WRONLY)
2219 mask |= MAY_READ;
2220 if ((openflags & O_ACCMODE) != O_RDONLY)
2221 mask |= MAY_WRITE;
2222 if (openflags & __FMODE_EXEC)
2223 mask |= MAY_EXEC;
2224 return mask;
2225 }
2226
2227 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2228 {
2229 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2230 }
2231
2232 int nfs_permission(struct inode *inode, int mask)
2233 {
2234 struct rpc_cred *cred;
2235 int res = 0;
2236
2237 if (mask & MAY_NOT_BLOCK)
2238 return -ECHILD;
2239
2240 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2241
2242 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2243 goto out;
2244 /* Is this sys_access() ? */
2245 if (mask & (MAY_ACCESS | MAY_CHDIR))
2246 goto force_lookup;
2247
2248 switch (inode->i_mode & S_IFMT) {
2249 case S_IFLNK:
2250 goto out;
2251 case S_IFREG:
2252 /* NFSv4 has atomic_open... */
2253 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2254 && (mask & MAY_OPEN)
2255 && !(mask & MAY_EXEC))
2256 goto out;
2257 break;
2258 case S_IFDIR:
2259 /*
2260 * Optimize away all write operations, since the server
2261 * will check permissions when we perform the op.
2262 */
2263 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2264 goto out;
2265 }
2266
2267 force_lookup:
2268 if (!NFS_PROTO(inode)->access)
2269 goto out_notsup;
2270
2271 cred = rpc_lookup_cred();
2272 if (!IS_ERR(cred)) {
2273 res = nfs_do_access(inode, cred, mask);
2274 put_rpccred(cred);
2275 } else
2276 res = PTR_ERR(cred);
2277 out:
2278 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2279 res = -EACCES;
2280
2281 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2282 inode->i_sb->s_id, inode->i_ino, mask, res);
2283 return res;
2284 out_notsup:
2285 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2286 if (res == 0)
2287 res = generic_permission(inode, mask);
2288 goto out;
2289 }
2290
2291 /*
2292 * Local variables:
2293 * version-control: t
2294 * kept-new-versions: 5
2295 * End:
2296 */