irq: Better struct irqaction layout
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/vmalloc.h>
37
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 #include "fscache.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 static int nfs_readdir_clear_array(struct page*, gfp_t);
60
61 const struct file_operations nfs_dir_operations = {
62 .llseek = nfs_llseek_dir,
63 .read = generic_read_dir,
64 .readdir = nfs_readdir,
65 .open = nfs_opendir,
66 .release = nfs_release,
67 .fsync = nfs_fsync_dir,
68 };
69
70 const struct inode_operations nfs_dir_inode_operations = {
71 .create = nfs_create,
72 .lookup = nfs_lookup,
73 .link = nfs_link,
74 .unlink = nfs_unlink,
75 .symlink = nfs_symlink,
76 .mkdir = nfs_mkdir,
77 .rmdir = nfs_rmdir,
78 .mknod = nfs_mknod,
79 .rename = nfs_rename,
80 .permission = nfs_permission,
81 .getattr = nfs_getattr,
82 .setattr = nfs_setattr,
83 };
84
85 const struct address_space_operations nfs_dir_addr_space_ops = {
86 .releasepage = nfs_readdir_clear_array,
87 };
88
89 #ifdef CONFIG_NFS_V3
90 const struct inode_operations nfs3_dir_inode_operations = {
91 .create = nfs_create,
92 .lookup = nfs_lookup,
93 .link = nfs_link,
94 .unlink = nfs_unlink,
95 .symlink = nfs_symlink,
96 .mkdir = nfs_mkdir,
97 .rmdir = nfs_rmdir,
98 .mknod = nfs_mknod,
99 .rename = nfs_rename,
100 .permission = nfs_permission,
101 .getattr = nfs_getattr,
102 .setattr = nfs_setattr,
103 .listxattr = nfs3_listxattr,
104 .getxattr = nfs3_getxattr,
105 .setxattr = nfs3_setxattr,
106 .removexattr = nfs3_removexattr,
107 };
108 #endif /* CONFIG_NFS_V3 */
109
110 #ifdef CONFIG_NFS_V4
111
112 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
113 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
114 const struct inode_operations nfs4_dir_inode_operations = {
115 .create = nfs_open_create,
116 .lookup = nfs_atomic_lookup,
117 .link = nfs_link,
118 .unlink = nfs_unlink,
119 .symlink = nfs_symlink,
120 .mkdir = nfs_mkdir,
121 .rmdir = nfs_rmdir,
122 .mknod = nfs_mknod,
123 .rename = nfs_rename,
124 .permission = nfs_permission,
125 .getattr = nfs_getattr,
126 .setattr = nfs_setattr,
127 .getxattr = nfs4_getxattr,
128 .setxattr = nfs4_setxattr,
129 .listxattr = nfs4_listxattr,
130 };
131
132 #endif /* CONFIG_NFS_V4 */
133
134 /*
135 * Open file
136 */
137 static int
138 nfs_opendir(struct inode *inode, struct file *filp)
139 {
140 int res;
141
142 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
143 filp->f_path.dentry->d_parent->d_name.name,
144 filp->f_path.dentry->d_name.name);
145
146 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
147
148 /* Call generic open code in order to cache credentials */
149 res = nfs_open(inode, filp);
150 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
151 /* This is a mountpoint, so d_revalidate will never
152 * have been called, so we need to refresh the
153 * inode (for close-open consistency) ourselves.
154 */
155 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
156 }
157 return res;
158 }
159
160 struct nfs_cache_array_entry {
161 u64 cookie;
162 u64 ino;
163 struct qstr string;
164 };
165
166 struct nfs_cache_array {
167 unsigned int size;
168 int eof_index;
169 u64 last_cookie;
170 struct nfs_cache_array_entry array[0];
171 };
172
173 #define MAX_READDIR_ARRAY ((PAGE_SIZE - sizeof(struct nfs_cache_array)) / sizeof(struct nfs_cache_array_entry))
174
175 typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
176 typedef struct {
177 struct file *file;
178 struct page *page;
179 unsigned long page_index;
180 u64 *dir_cookie;
181 loff_t current_index;
182 decode_dirent_t decode;
183
184 unsigned long timestamp;
185 unsigned long gencount;
186 unsigned int cache_entry_index;
187 unsigned int plus:1;
188 unsigned int eof:1;
189 } nfs_readdir_descriptor_t;
190
191 /*
192 * The caller is responsible for calling nfs_readdir_release_array(page)
193 */
194 static
195 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
196 {
197 if (page == NULL)
198 return ERR_PTR(-EIO);
199 return (struct nfs_cache_array *)kmap(page);
200 }
201
202 static
203 void nfs_readdir_release_array(struct page *page)
204 {
205 kunmap(page);
206 }
207
208 /*
209 * we are freeing strings created by nfs_add_to_readdir_array()
210 */
211 static
212 int nfs_readdir_clear_array(struct page *page, gfp_t mask)
213 {
214 struct nfs_cache_array *array = nfs_readdir_get_array(page);
215 int i;
216 for (i = 0; i < array->size; i++)
217 kfree(array->array[i].string.name);
218 nfs_readdir_release_array(page);
219 return 0;
220 }
221
222 /*
223 * the caller is responsible for freeing qstr.name
224 * when called by nfs_readdir_add_to_array, the strings will be freed in
225 * nfs_clear_readdir_array()
226 */
227 static
228 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
229 {
230 string->len = len;
231 string->name = kmemdup(name, len, GFP_KERNEL);
232 if (string->name == NULL)
233 return -ENOMEM;
234 string->hash = full_name_hash(name, len);
235 return 0;
236 }
237
238 static
239 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
240 {
241 struct nfs_cache_array *array = nfs_readdir_get_array(page);
242 struct nfs_cache_array_entry *cache_entry;
243 int ret;
244
245 if (IS_ERR(array))
246 return PTR_ERR(array);
247 ret = -EIO;
248 if (array->size >= MAX_READDIR_ARRAY)
249 goto out;
250
251 cache_entry = &array->array[array->size];
252 cache_entry->cookie = entry->prev_cookie;
253 cache_entry->ino = entry->ino;
254 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
255 if (ret)
256 goto out;
257 array->last_cookie = entry->cookie;
258 if (entry->eof == 1)
259 array->eof_index = array->size;
260 array->size++;
261 out:
262 nfs_readdir_release_array(page);
263 return ret;
264 }
265
266 static
267 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
268 {
269 loff_t diff = desc->file->f_pos - desc->current_index;
270 unsigned int index;
271
272 if (diff < 0)
273 goto out_eof;
274 if (diff >= array->size) {
275 if (array->eof_index > 0)
276 goto out_eof;
277 desc->current_index += array->size;
278 return -EAGAIN;
279 }
280
281 index = (unsigned int)diff;
282 *desc->dir_cookie = array->array[index].cookie;
283 desc->cache_entry_index = index;
284 if (index == array->eof_index)
285 desc->eof = 1;
286 return 0;
287 out_eof:
288 desc->eof = 1;
289 return -EBADCOOKIE;
290 }
291
292 static
293 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
294 {
295 int i;
296 int status = -EAGAIN;
297
298 for (i = 0; i < array->size; i++) {
299 if (i == array->eof_index) {
300 desc->eof = 1;
301 status = -EBADCOOKIE;
302 }
303 if (array->array[i].cookie == *desc->dir_cookie) {
304 desc->cache_entry_index = i;
305 status = 0;
306 break;
307 }
308 }
309
310 return status;
311 }
312
313 static
314 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
315 {
316 struct nfs_cache_array *array;
317 int status = -EBADCOOKIE;
318
319 if (desc->dir_cookie == NULL)
320 goto out;
321
322 array = nfs_readdir_get_array(desc->page);
323 if (IS_ERR(array)) {
324 status = PTR_ERR(array);
325 goto out;
326 }
327
328 if (*desc->dir_cookie == 0)
329 status = nfs_readdir_search_for_pos(array, desc);
330 else
331 status = nfs_readdir_search_for_cookie(array, desc);
332
333 nfs_readdir_release_array(desc->page);
334 out:
335 return status;
336 }
337
338 /* Fill a page with xdr information before transferring to the cache page */
339 static
340 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
341 struct nfs_entry *entry, struct file *file, struct inode *inode)
342 {
343 struct rpc_cred *cred = nfs_file_cred(file);
344 unsigned long timestamp, gencount;
345 int error;
346
347 again:
348 timestamp = jiffies;
349 gencount = nfs_inc_attr_generation_counter();
350 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
351 NFS_SERVER(inode)->dtsize, desc->plus);
352 if (error < 0) {
353 /* We requested READDIRPLUS, but the server doesn't grok it */
354 if (error == -ENOTSUPP && desc->plus) {
355 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
356 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
357 desc->plus = 0;
358 goto again;
359 }
360 goto error;
361 }
362 desc->timestamp = timestamp;
363 desc->gencount = gencount;
364 error:
365 return error;
366 }
367
368 /* Fill in an entry based on the xdr code stored in desc->page */
369 static
370 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
371 {
372 __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
373 if (IS_ERR(p))
374 return PTR_ERR(p);
375
376 entry->fattr->time_start = desc->timestamp;
377 entry->fattr->gencount = desc->gencount;
378 return 0;
379 }
380
381 static
382 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
383 {
384 struct nfs_inode *node;
385 if (dentry->d_inode == NULL)
386 goto different;
387 node = NFS_I(dentry->d_inode);
388 if (node->fh.size != entry->fh->size)
389 goto different;
390 if (strncmp(node->fh.data, entry->fh->data, node->fh.size) != 0)
391 goto different;
392 return 1;
393 different:
394 return 0;
395 }
396
397 static
398 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
399 {
400 struct qstr filename = {
401 .len = entry->len,
402 .name = entry->name,
403 };
404 struct dentry *dentry;
405 struct dentry *alias;
406 struct inode *dir = parent->d_inode;
407 struct inode *inode;
408
409 if (filename.name[0] == '.') {
410 if (filename.len == 1)
411 return;
412 if (filename.len == 2 && filename.name[1] == '.')
413 return;
414 }
415 filename.hash = full_name_hash(filename.name, filename.len);
416
417 dentry = d_lookup(parent, &filename);
418 if (dentry != NULL) {
419 if (nfs_same_file(dentry, entry)) {
420 nfs_refresh_inode(dentry->d_inode, entry->fattr);
421 goto out;
422 } else {
423 d_drop(dentry);
424 dput(dentry);
425 }
426 }
427
428 dentry = d_alloc(parent, &filename);
429 if (dentry == NULL)
430 return;
431
432 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
433 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
434 if (IS_ERR(inode))
435 goto out;
436
437 alias = d_materialise_unique(dentry, inode);
438 if (IS_ERR(alias))
439 goto out;
440 else if (alias) {
441 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
442 dput(alias);
443 } else
444 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
445
446 out:
447 dput(dentry);
448 }
449
450 /* Perform conversion from xdr to cache array */
451 static
452 void nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
453 void *xdr_page, struct page *page, unsigned int buflen)
454 {
455 struct xdr_stream stream;
456 struct xdr_buf buf;
457 __be32 *ptr = xdr_page;
458 int status;
459 struct nfs_cache_array *array;
460
461 buf.head->iov_base = xdr_page;
462 buf.head->iov_len = buflen;
463 buf.tail->iov_len = 0;
464 buf.page_base = 0;
465 buf.page_len = 0;
466 buf.buflen = buf.head->iov_len;
467 buf.len = buf.head->iov_len;
468
469 xdr_init_decode(&stream, &buf, ptr);
470
471
472 do {
473 status = xdr_decode(desc, entry, &stream);
474 if (status != 0)
475 break;
476
477 if (nfs_readdir_add_to_array(entry, page) == -1)
478 break;
479 if (desc->plus == 1)
480 nfs_prime_dcache(desc->file->f_path.dentry, entry);
481 } while (!entry->eof);
482
483 if (status == -EBADCOOKIE && entry->eof) {
484 array = nfs_readdir_get_array(page);
485 array->eof_index = array->size - 1;
486 status = 0;
487 nfs_readdir_release_array(page);
488 }
489 }
490
491 static
492 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
493 {
494 unsigned int i;
495 for (i = 0; i < npages; i++)
496 put_page(pages[i]);
497 }
498
499 static
500 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
501 unsigned int npages)
502 {
503 vm_unmap_ram(ptr, npages);
504 nfs_readdir_free_pagearray(pages, npages);
505 }
506
507 /*
508 * nfs_readdir_large_page will allocate pages that must be freed with a call
509 * to nfs_readdir_free_large_page
510 */
511 static
512 void *nfs_readdir_large_page(struct page **pages, unsigned int npages)
513 {
514 void *ptr;
515 unsigned int i;
516
517 for (i = 0; i < npages; i++) {
518 struct page *page = alloc_page(GFP_KERNEL);
519 if (page == NULL)
520 goto out_freepages;
521 pages[i] = page;
522 }
523
524 ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL);
525 if (!IS_ERR_OR_NULL(ptr))
526 return ptr;
527 out_freepages:
528 nfs_readdir_free_pagearray(pages, i);
529 return NULL;
530 }
531
532 static
533 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
534 {
535 struct page *pages[NFS_MAX_READDIR_PAGES];
536 void *pages_ptr = NULL;
537 struct nfs_entry entry;
538 struct file *file = desc->file;
539 struct nfs_cache_array *array;
540 int status = 0;
541 unsigned int array_size = ARRAY_SIZE(pages);
542
543 entry.prev_cookie = 0;
544 entry.cookie = *desc->dir_cookie;
545 entry.eof = 0;
546 entry.fh = nfs_alloc_fhandle();
547 entry.fattr = nfs_alloc_fattr();
548 if (entry.fh == NULL || entry.fattr == NULL)
549 goto out;
550
551 array = nfs_readdir_get_array(page);
552 memset(array, 0, sizeof(struct nfs_cache_array));
553 array->eof_index = -1;
554
555 pages_ptr = nfs_readdir_large_page(pages, array_size);
556 if (!pages_ptr)
557 goto out_release_array;
558 do {
559 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
560
561 if (status < 0)
562 break;
563 nfs_readdir_page_filler(desc, &entry, pages_ptr, page, array_size * PAGE_SIZE);
564 } while (array->eof_index < 0 && array->size < MAX_READDIR_ARRAY);
565
566 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
567 out_release_array:
568 nfs_readdir_release_array(page);
569 out:
570 nfs_free_fattr(entry.fattr);
571 nfs_free_fhandle(entry.fh);
572 return status;
573 }
574
575 /*
576 * Now we cache directories properly, by converting xdr information
577 * to an array that can be used for lookups later. This results in
578 * fewer cache pages, since we can store more information on each page.
579 * We only need to convert from xdr once so future lookups are much simpler
580 */
581 static
582 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
583 {
584 struct inode *inode = desc->file->f_path.dentry->d_inode;
585
586 if (nfs_readdir_xdr_to_array(desc, page, inode) < 0)
587 goto error;
588 SetPageUptodate(page);
589
590 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
591 /* Should never happen */
592 nfs_zap_mapping(inode, inode->i_mapping);
593 }
594 unlock_page(page);
595 return 0;
596 error:
597 unlock_page(page);
598 return -EIO;
599 }
600
601 static
602 void cache_page_release(nfs_readdir_descriptor_t *desc)
603 {
604 page_cache_release(desc->page);
605 desc->page = NULL;
606 }
607
608 static
609 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
610 {
611 struct page *page;
612 page = read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
613 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
614 if (IS_ERR(page))
615 desc->eof = 1;
616 return page;
617 }
618
619 /*
620 * Returns 0 if desc->dir_cookie was found on page desc->page_index
621 */
622 static
623 int find_cache_page(nfs_readdir_descriptor_t *desc)
624 {
625 int res;
626
627 desc->page = get_cache_page(desc);
628 if (IS_ERR(desc->page))
629 return PTR_ERR(desc->page);
630
631 res = nfs_readdir_search_array(desc);
632 if (res == 0)
633 return 0;
634 cache_page_release(desc);
635 return res;
636 }
637
638 /* Search for desc->dir_cookie from the beginning of the page cache */
639 static inline
640 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
641 {
642 int res = -EAGAIN;
643
644 while (1) {
645 res = find_cache_page(desc);
646 if (res != -EAGAIN)
647 break;
648 desc->page_index++;
649 }
650 return res;
651 }
652
653 static inline unsigned int dt_type(struct inode *inode)
654 {
655 return (inode->i_mode >> 12) & 15;
656 }
657
658 /*
659 * Once we've found the start of the dirent within a page: fill 'er up...
660 */
661 static
662 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
663 filldir_t filldir)
664 {
665 struct file *file = desc->file;
666 int i = 0;
667 int res = 0;
668 struct nfs_cache_array *array = NULL;
669 unsigned int d_type = DT_UNKNOWN;
670 struct dentry *dentry = NULL;
671
672 array = nfs_readdir_get_array(desc->page);
673
674 for (i = desc->cache_entry_index; i < array->size; i++) {
675 d_type = DT_UNKNOWN;
676
677 res = filldir(dirent, array->array[i].string.name,
678 array->array[i].string.len, file->f_pos,
679 nfs_compat_user_ino64(array->array[i].ino), d_type);
680 if (res < 0)
681 break;
682 file->f_pos++;
683 desc->cache_entry_index = i;
684 if (i < (array->size-1))
685 *desc->dir_cookie = array->array[i+1].cookie;
686 else
687 *desc->dir_cookie = array->last_cookie;
688 if (i == array->eof_index) {
689 desc->eof = 1;
690 break;
691 }
692 }
693
694 nfs_readdir_release_array(desc->page);
695 cache_page_release(desc);
696 if (dentry != NULL)
697 dput(dentry);
698 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
699 (unsigned long long)*desc->dir_cookie, res);
700 return res;
701 }
702
703 /*
704 * If we cannot find a cookie in our cache, we suspect that this is
705 * because it points to a deleted file, so we ask the server to return
706 * whatever it thinks is the next entry. We then feed this to filldir.
707 * If all goes well, we should then be able to find our way round the
708 * cache on the next call to readdir_search_pagecache();
709 *
710 * NOTE: we cannot add the anonymous page to the pagecache because
711 * the data it contains might not be page aligned. Besides,
712 * we should already have a complete representation of the
713 * directory in the page cache by the time we get here.
714 */
715 static inline
716 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
717 filldir_t filldir)
718 {
719 struct page *page = NULL;
720 int status;
721 struct inode *inode = desc->file->f_path.dentry->d_inode;
722
723 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
724 (unsigned long long)*desc->dir_cookie);
725
726 page = alloc_page(GFP_HIGHUSER);
727 if (!page) {
728 status = -ENOMEM;
729 goto out;
730 }
731
732 if (nfs_readdir_xdr_to_array(desc, page, inode) == -1) {
733 status = -EIO;
734 goto out_release;
735 }
736
737 desc->page_index = 0;
738 desc->page = page;
739 status = nfs_do_filldir(desc, dirent, filldir);
740
741 out:
742 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
743 __func__, status);
744 return status;
745 out_release:
746 cache_page_release(desc);
747 goto out;
748 }
749
750 /* The file offset position represents the dirent entry number. A
751 last cookie cache takes care of the common case of reading the
752 whole directory.
753 */
754 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
755 {
756 struct dentry *dentry = filp->f_path.dentry;
757 struct inode *inode = dentry->d_inode;
758 nfs_readdir_descriptor_t my_desc,
759 *desc = &my_desc;
760 int res = -ENOMEM;
761
762 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
763 dentry->d_parent->d_name.name, dentry->d_name.name,
764 (long long)filp->f_pos);
765 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
766
767 /*
768 * filp->f_pos points to the dirent entry number.
769 * *desc->dir_cookie has the cookie for the next entry. We have
770 * to either find the entry with the appropriate number or
771 * revalidate the cookie.
772 */
773 memset(desc, 0, sizeof(*desc));
774
775 desc->file = filp;
776 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
777 desc->decode = NFS_PROTO(inode)->decode_dirent;
778 desc->plus = NFS_USE_READDIRPLUS(inode);
779
780 nfs_block_sillyrename(dentry);
781 res = nfs_revalidate_mapping(inode, filp->f_mapping);
782 if (res < 0)
783 goto out;
784
785 while (desc->eof != 1) {
786 res = readdir_search_pagecache(desc);
787
788 if (res == -EBADCOOKIE) {
789 /* This means either end of directory */
790 if (*desc->dir_cookie && desc->eof == 0) {
791 /* Or that the server has 'lost' a cookie */
792 res = uncached_readdir(desc, dirent, filldir);
793 if (res >= 0)
794 continue;
795 }
796 res = 0;
797 break;
798 }
799 if (res == -ETOOSMALL && desc->plus) {
800 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
801 nfs_zap_caches(inode);
802 desc->page_index = 0;
803 desc->plus = 0;
804 desc->eof = 0;
805 continue;
806 }
807 if (res < 0)
808 break;
809
810 res = nfs_do_filldir(desc, dirent, filldir);
811 if (res < 0) {
812 res = 0;
813 break;
814 }
815 }
816 out:
817 nfs_unblock_sillyrename(dentry);
818 if (res > 0)
819 res = 0;
820 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
821 dentry->d_parent->d_name.name, dentry->d_name.name,
822 res);
823 return res;
824 }
825
826 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
827 {
828 struct dentry *dentry = filp->f_path.dentry;
829 struct inode *inode = dentry->d_inode;
830
831 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
832 dentry->d_parent->d_name.name,
833 dentry->d_name.name,
834 offset, origin);
835
836 mutex_lock(&inode->i_mutex);
837 switch (origin) {
838 case 1:
839 offset += filp->f_pos;
840 case 0:
841 if (offset >= 0)
842 break;
843 default:
844 offset = -EINVAL;
845 goto out;
846 }
847 if (offset != filp->f_pos) {
848 filp->f_pos = offset;
849 nfs_file_open_context(filp)->dir_cookie = 0;
850 }
851 out:
852 mutex_unlock(&inode->i_mutex);
853 return offset;
854 }
855
856 /*
857 * All directory operations under NFS are synchronous, so fsync()
858 * is a dummy operation.
859 */
860 static int nfs_fsync_dir(struct file *filp, int datasync)
861 {
862 struct dentry *dentry = filp->f_path.dentry;
863
864 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
865 dentry->d_parent->d_name.name, dentry->d_name.name,
866 datasync);
867
868 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
869 return 0;
870 }
871
872 /**
873 * nfs_force_lookup_revalidate - Mark the directory as having changed
874 * @dir - pointer to directory inode
875 *
876 * This forces the revalidation code in nfs_lookup_revalidate() to do a
877 * full lookup on all child dentries of 'dir' whenever a change occurs
878 * on the server that might have invalidated our dcache.
879 *
880 * The caller should be holding dir->i_lock
881 */
882 void nfs_force_lookup_revalidate(struct inode *dir)
883 {
884 NFS_I(dir)->cache_change_attribute++;
885 }
886
887 /*
888 * A check for whether or not the parent directory has changed.
889 * In the case it has, we assume that the dentries are untrustworthy
890 * and may need to be looked up again.
891 */
892 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
893 {
894 if (IS_ROOT(dentry))
895 return 1;
896 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
897 return 0;
898 if (!nfs_verify_change_attribute(dir, dentry->d_time))
899 return 0;
900 /* Revalidate nfsi->cache_change_attribute before we declare a match */
901 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
902 return 0;
903 if (!nfs_verify_change_attribute(dir, dentry->d_time))
904 return 0;
905 return 1;
906 }
907
908 /*
909 * Return the intent data that applies to this particular path component
910 *
911 * Note that the current set of intents only apply to the very last
912 * component of the path.
913 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
914 */
915 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
916 {
917 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
918 return 0;
919 return nd->flags & mask;
920 }
921
922 /*
923 * Use intent information to check whether or not we're going to do
924 * an O_EXCL create using this path component.
925 */
926 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
927 {
928 if (NFS_PROTO(dir)->version == 2)
929 return 0;
930 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
931 }
932
933 /*
934 * Inode and filehandle revalidation for lookups.
935 *
936 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
937 * or if the intent information indicates that we're about to open this
938 * particular file and the "nocto" mount flag is not set.
939 *
940 */
941 static inline
942 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
943 {
944 struct nfs_server *server = NFS_SERVER(inode);
945
946 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
947 return 0;
948 if (nd != NULL) {
949 /* VFS wants an on-the-wire revalidation */
950 if (nd->flags & LOOKUP_REVAL)
951 goto out_force;
952 /* This is an open(2) */
953 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
954 !(server->flags & NFS_MOUNT_NOCTO) &&
955 (S_ISREG(inode->i_mode) ||
956 S_ISDIR(inode->i_mode)))
957 goto out_force;
958 return 0;
959 }
960 return nfs_revalidate_inode(server, inode);
961 out_force:
962 return __nfs_revalidate_inode(server, inode);
963 }
964
965 /*
966 * We judge how long we want to trust negative
967 * dentries by looking at the parent inode mtime.
968 *
969 * If parent mtime has changed, we revalidate, else we wait for a
970 * period corresponding to the parent's attribute cache timeout value.
971 */
972 static inline
973 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
974 struct nameidata *nd)
975 {
976 /* Don't revalidate a negative dentry if we're creating a new file */
977 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
978 return 0;
979 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
980 return 1;
981 return !nfs_check_verifier(dir, dentry);
982 }
983
984 /*
985 * This is called every time the dcache has a lookup hit,
986 * and we should check whether we can really trust that
987 * lookup.
988 *
989 * NOTE! The hit can be a negative hit too, don't assume
990 * we have an inode!
991 *
992 * If the parent directory is seen to have changed, we throw out the
993 * cached dentry and do a new lookup.
994 */
995 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
996 {
997 struct inode *dir;
998 struct inode *inode;
999 struct dentry *parent;
1000 struct nfs_fh *fhandle = NULL;
1001 struct nfs_fattr *fattr = NULL;
1002 int error;
1003
1004 parent = dget_parent(dentry);
1005 dir = parent->d_inode;
1006 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1007 inode = dentry->d_inode;
1008
1009 if (!inode) {
1010 if (nfs_neg_need_reval(dir, dentry, nd))
1011 goto out_bad;
1012 goto out_valid;
1013 }
1014
1015 if (is_bad_inode(inode)) {
1016 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1017 __func__, dentry->d_parent->d_name.name,
1018 dentry->d_name.name);
1019 goto out_bad;
1020 }
1021
1022 if (nfs_have_delegation(inode, FMODE_READ))
1023 goto out_set_verifier;
1024
1025 /* Force a full look up iff the parent directory has changed */
1026 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1027 if (nfs_lookup_verify_inode(inode, nd))
1028 goto out_zap_parent;
1029 goto out_valid;
1030 }
1031
1032 if (NFS_STALE(inode))
1033 goto out_bad;
1034
1035 error = -ENOMEM;
1036 fhandle = nfs_alloc_fhandle();
1037 fattr = nfs_alloc_fattr();
1038 if (fhandle == NULL || fattr == NULL)
1039 goto out_error;
1040
1041 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1042 if (error)
1043 goto out_bad;
1044 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1045 goto out_bad;
1046 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1047 goto out_bad;
1048
1049 nfs_free_fattr(fattr);
1050 nfs_free_fhandle(fhandle);
1051 out_set_verifier:
1052 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1053 out_valid:
1054 dput(parent);
1055 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1056 __func__, dentry->d_parent->d_name.name,
1057 dentry->d_name.name);
1058 return 1;
1059 out_zap_parent:
1060 nfs_zap_caches(dir);
1061 out_bad:
1062 nfs_mark_for_revalidate(dir);
1063 if (inode && S_ISDIR(inode->i_mode)) {
1064 /* Purge readdir caches. */
1065 nfs_zap_caches(inode);
1066 /* If we have submounts, don't unhash ! */
1067 if (have_submounts(dentry))
1068 goto out_valid;
1069 if (dentry->d_flags & DCACHE_DISCONNECTED)
1070 goto out_valid;
1071 shrink_dcache_parent(dentry);
1072 }
1073 d_drop(dentry);
1074 nfs_free_fattr(fattr);
1075 nfs_free_fhandle(fhandle);
1076 dput(parent);
1077 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1078 __func__, dentry->d_parent->d_name.name,
1079 dentry->d_name.name);
1080 return 0;
1081 out_error:
1082 nfs_free_fattr(fattr);
1083 nfs_free_fhandle(fhandle);
1084 dput(parent);
1085 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1086 __func__, dentry->d_parent->d_name.name,
1087 dentry->d_name.name, error);
1088 return error;
1089 }
1090
1091 /*
1092 * This is called from dput() when d_count is going to 0.
1093 */
1094 static int nfs_dentry_delete(struct dentry *dentry)
1095 {
1096 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1097 dentry->d_parent->d_name.name, dentry->d_name.name,
1098 dentry->d_flags);
1099
1100 /* Unhash any dentry with a stale inode */
1101 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1102 return 1;
1103
1104 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1105 /* Unhash it, so that ->d_iput() would be called */
1106 return 1;
1107 }
1108 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1109 /* Unhash it, so that ancestors of killed async unlink
1110 * files will be cleaned up during umount */
1111 return 1;
1112 }
1113 return 0;
1114
1115 }
1116
1117 static void nfs_drop_nlink(struct inode *inode)
1118 {
1119 spin_lock(&inode->i_lock);
1120 if (inode->i_nlink > 0)
1121 drop_nlink(inode);
1122 spin_unlock(&inode->i_lock);
1123 }
1124
1125 /*
1126 * Called when the dentry loses inode.
1127 * We use it to clean up silly-renamed files.
1128 */
1129 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1130 {
1131 if (S_ISDIR(inode->i_mode))
1132 /* drop any readdir cache as it could easily be old */
1133 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1134
1135 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1136 drop_nlink(inode);
1137 nfs_complete_unlink(dentry, inode);
1138 }
1139 iput(inode);
1140 }
1141
1142 const struct dentry_operations nfs_dentry_operations = {
1143 .d_revalidate = nfs_lookup_revalidate,
1144 .d_delete = nfs_dentry_delete,
1145 .d_iput = nfs_dentry_iput,
1146 };
1147
1148 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1149 {
1150 struct dentry *res;
1151 struct dentry *parent;
1152 struct inode *inode = NULL;
1153 struct nfs_fh *fhandle = NULL;
1154 struct nfs_fattr *fattr = NULL;
1155 int error;
1156
1157 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1158 dentry->d_parent->d_name.name, dentry->d_name.name);
1159 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1160
1161 res = ERR_PTR(-ENAMETOOLONG);
1162 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1163 goto out;
1164
1165 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1166
1167 /*
1168 * If we're doing an exclusive create, optimize away the lookup
1169 * but don't hash the dentry.
1170 */
1171 if (nfs_is_exclusive_create(dir, nd)) {
1172 d_instantiate(dentry, NULL);
1173 res = NULL;
1174 goto out;
1175 }
1176
1177 res = ERR_PTR(-ENOMEM);
1178 fhandle = nfs_alloc_fhandle();
1179 fattr = nfs_alloc_fattr();
1180 if (fhandle == NULL || fattr == NULL)
1181 goto out;
1182
1183 parent = dentry->d_parent;
1184 /* Protect against concurrent sillydeletes */
1185 nfs_block_sillyrename(parent);
1186 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1187 if (error == -ENOENT)
1188 goto no_entry;
1189 if (error < 0) {
1190 res = ERR_PTR(error);
1191 goto out_unblock_sillyrename;
1192 }
1193 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1194 res = (struct dentry *)inode;
1195 if (IS_ERR(res))
1196 goto out_unblock_sillyrename;
1197
1198 no_entry:
1199 res = d_materialise_unique(dentry, inode);
1200 if (res != NULL) {
1201 if (IS_ERR(res))
1202 goto out_unblock_sillyrename;
1203 dentry = res;
1204 }
1205 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1206 out_unblock_sillyrename:
1207 nfs_unblock_sillyrename(parent);
1208 out:
1209 nfs_free_fattr(fattr);
1210 nfs_free_fhandle(fhandle);
1211 return res;
1212 }
1213
1214 #ifdef CONFIG_NFS_V4
1215 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1216
1217 const struct dentry_operations nfs4_dentry_operations = {
1218 .d_revalidate = nfs_open_revalidate,
1219 .d_delete = nfs_dentry_delete,
1220 .d_iput = nfs_dentry_iput,
1221 };
1222
1223 /*
1224 * Use intent information to determine whether we need to substitute
1225 * the NFSv4-style stateful OPEN for the LOOKUP call
1226 */
1227 static int is_atomic_open(struct nameidata *nd)
1228 {
1229 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1230 return 0;
1231 /* NFS does not (yet) have a stateful open for directories */
1232 if (nd->flags & LOOKUP_DIRECTORY)
1233 return 0;
1234 /* Are we trying to write to a read only partition? */
1235 if (__mnt_is_readonly(nd->path.mnt) &&
1236 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1237 return 0;
1238 return 1;
1239 }
1240
1241 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1242 {
1243 struct path path = {
1244 .mnt = nd->path.mnt,
1245 .dentry = dentry,
1246 };
1247 struct nfs_open_context *ctx;
1248 struct rpc_cred *cred;
1249 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1250
1251 cred = rpc_lookup_cred();
1252 if (IS_ERR(cred))
1253 return ERR_CAST(cred);
1254 ctx = alloc_nfs_open_context(&path, cred, fmode);
1255 put_rpccred(cred);
1256 if (ctx == NULL)
1257 return ERR_PTR(-ENOMEM);
1258 return ctx;
1259 }
1260
1261 static int do_open(struct inode *inode, struct file *filp)
1262 {
1263 nfs_fscache_set_inode_cookie(inode, filp);
1264 return 0;
1265 }
1266
1267 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1268 {
1269 struct file *filp;
1270 int ret = 0;
1271
1272 /* If the open_intent is for execute, we have an extra check to make */
1273 if (ctx->mode & FMODE_EXEC) {
1274 ret = nfs_may_open(ctx->path.dentry->d_inode,
1275 ctx->cred,
1276 nd->intent.open.flags);
1277 if (ret < 0)
1278 goto out;
1279 }
1280 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1281 if (IS_ERR(filp))
1282 ret = PTR_ERR(filp);
1283 else
1284 nfs_file_set_open_context(filp, ctx);
1285 out:
1286 put_nfs_open_context(ctx);
1287 return ret;
1288 }
1289
1290 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1291 {
1292 struct nfs_open_context *ctx;
1293 struct iattr attr;
1294 struct dentry *res = NULL;
1295 struct inode *inode;
1296 int open_flags;
1297 int err;
1298
1299 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1300 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1301
1302 /* Check that we are indeed trying to open this file */
1303 if (!is_atomic_open(nd))
1304 goto no_open;
1305
1306 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1307 res = ERR_PTR(-ENAMETOOLONG);
1308 goto out;
1309 }
1310 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1311
1312 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1313 * the dentry. */
1314 if (nd->flags & LOOKUP_EXCL) {
1315 d_instantiate(dentry, NULL);
1316 goto out;
1317 }
1318
1319 ctx = nameidata_to_nfs_open_context(dentry, nd);
1320 res = ERR_CAST(ctx);
1321 if (IS_ERR(ctx))
1322 goto out;
1323
1324 open_flags = nd->intent.open.flags;
1325 if (nd->flags & LOOKUP_CREATE) {
1326 attr.ia_mode = nd->intent.open.create_mode;
1327 attr.ia_valid = ATTR_MODE;
1328 if (!IS_POSIXACL(dir))
1329 attr.ia_mode &= ~current_umask();
1330 } else {
1331 open_flags &= ~(O_EXCL | O_CREAT);
1332 attr.ia_valid = 0;
1333 }
1334
1335 /* Open the file on the server */
1336 nfs_block_sillyrename(dentry->d_parent);
1337 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1338 if (IS_ERR(inode)) {
1339 nfs_unblock_sillyrename(dentry->d_parent);
1340 put_nfs_open_context(ctx);
1341 switch (PTR_ERR(inode)) {
1342 /* Make a negative dentry */
1343 case -ENOENT:
1344 d_add(dentry, NULL);
1345 res = NULL;
1346 goto out;
1347 /* This turned out not to be a regular file */
1348 case -EISDIR:
1349 case -ENOTDIR:
1350 goto no_open;
1351 case -ELOOP:
1352 if (!(nd->intent.open.flags & O_NOFOLLOW))
1353 goto no_open;
1354 /* case -EINVAL: */
1355 default:
1356 res = ERR_CAST(inode);
1357 goto out;
1358 }
1359 }
1360 res = d_add_unique(dentry, inode);
1361 nfs_unblock_sillyrename(dentry->d_parent);
1362 if (res != NULL) {
1363 dput(ctx->path.dentry);
1364 ctx->path.dentry = dget(res);
1365 dentry = res;
1366 }
1367 err = nfs_intent_set_file(nd, ctx);
1368 if (err < 0) {
1369 if (res != NULL)
1370 dput(res);
1371 return ERR_PTR(err);
1372 }
1373 out:
1374 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1375 return res;
1376 no_open:
1377 return nfs_lookup(dir, dentry, nd);
1378 }
1379
1380 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1381 {
1382 struct dentry *parent = NULL;
1383 struct inode *inode = dentry->d_inode;
1384 struct inode *dir;
1385 struct nfs_open_context *ctx;
1386 int openflags, ret = 0;
1387
1388 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1389 goto no_open;
1390
1391 parent = dget_parent(dentry);
1392 dir = parent->d_inode;
1393
1394 /* We can't create new files in nfs_open_revalidate(), so we
1395 * optimize away revalidation of negative dentries.
1396 */
1397 if (inode == NULL) {
1398 if (!nfs_neg_need_reval(dir, dentry, nd))
1399 ret = 1;
1400 goto out;
1401 }
1402
1403 /* NFS only supports OPEN on regular files */
1404 if (!S_ISREG(inode->i_mode))
1405 goto no_open_dput;
1406 openflags = nd->intent.open.flags;
1407 /* We cannot do exclusive creation on a positive dentry */
1408 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1409 goto no_open_dput;
1410 /* We can't create new files, or truncate existing ones here */
1411 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1412
1413 ctx = nameidata_to_nfs_open_context(dentry, nd);
1414 ret = PTR_ERR(ctx);
1415 if (IS_ERR(ctx))
1416 goto out;
1417 /*
1418 * Note: we're not holding inode->i_mutex and so may be racing with
1419 * operations that change the directory. We therefore save the
1420 * change attribute *before* we do the RPC call.
1421 */
1422 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1423 if (IS_ERR(inode)) {
1424 ret = PTR_ERR(inode);
1425 switch (ret) {
1426 case -EPERM:
1427 case -EACCES:
1428 case -EDQUOT:
1429 case -ENOSPC:
1430 case -EROFS:
1431 goto out_put_ctx;
1432 default:
1433 goto out_drop;
1434 }
1435 }
1436 iput(inode);
1437 if (inode != dentry->d_inode)
1438 goto out_drop;
1439
1440 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1441 ret = nfs_intent_set_file(nd, ctx);
1442 if (ret >= 0)
1443 ret = 1;
1444 out:
1445 dput(parent);
1446 return ret;
1447 out_drop:
1448 d_drop(dentry);
1449 ret = 0;
1450 out_put_ctx:
1451 put_nfs_open_context(ctx);
1452 goto out;
1453
1454 no_open_dput:
1455 dput(parent);
1456 no_open:
1457 return nfs_lookup_revalidate(dentry, nd);
1458 }
1459
1460 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1461 struct nameidata *nd)
1462 {
1463 struct nfs_open_context *ctx = NULL;
1464 struct iattr attr;
1465 int error;
1466 int open_flags = 0;
1467
1468 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1469 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1470
1471 attr.ia_mode = mode;
1472 attr.ia_valid = ATTR_MODE;
1473
1474 if ((nd->flags & LOOKUP_CREATE) != 0) {
1475 open_flags = nd->intent.open.flags;
1476
1477 ctx = nameidata_to_nfs_open_context(dentry, nd);
1478 error = PTR_ERR(ctx);
1479 if (IS_ERR(ctx))
1480 goto out_err_drop;
1481 }
1482
1483 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1484 if (error != 0)
1485 goto out_put_ctx;
1486 if (ctx != NULL) {
1487 error = nfs_intent_set_file(nd, ctx);
1488 if (error < 0)
1489 goto out_err;
1490 }
1491 return 0;
1492 out_put_ctx:
1493 if (ctx != NULL)
1494 put_nfs_open_context(ctx);
1495 out_err_drop:
1496 d_drop(dentry);
1497 out_err:
1498 return error;
1499 }
1500
1501 #endif /* CONFIG_NFSV4 */
1502
1503 /*
1504 * Code common to create, mkdir, and mknod.
1505 */
1506 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1507 struct nfs_fattr *fattr)
1508 {
1509 struct dentry *parent = dget_parent(dentry);
1510 struct inode *dir = parent->d_inode;
1511 struct inode *inode;
1512 int error = -EACCES;
1513
1514 d_drop(dentry);
1515
1516 /* We may have been initialized further down */
1517 if (dentry->d_inode)
1518 goto out;
1519 if (fhandle->size == 0) {
1520 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1521 if (error)
1522 goto out_error;
1523 }
1524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1525 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1526 struct nfs_server *server = NFS_SB(dentry->d_sb);
1527 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1528 if (error < 0)
1529 goto out_error;
1530 }
1531 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1532 error = PTR_ERR(inode);
1533 if (IS_ERR(inode))
1534 goto out_error;
1535 d_add(dentry, inode);
1536 out:
1537 dput(parent);
1538 return 0;
1539 out_error:
1540 nfs_mark_for_revalidate(dir);
1541 dput(parent);
1542 return error;
1543 }
1544
1545 /*
1546 * Following a failed create operation, we drop the dentry rather
1547 * than retain a negative dentry. This avoids a problem in the event
1548 * that the operation succeeded on the server, but an error in the
1549 * reply path made it appear to have failed.
1550 */
1551 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1552 struct nameidata *nd)
1553 {
1554 struct iattr attr;
1555 int error;
1556
1557 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1558 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1559
1560 attr.ia_mode = mode;
1561 attr.ia_valid = ATTR_MODE;
1562
1563 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1564 if (error != 0)
1565 goto out_err;
1566 return 0;
1567 out_err:
1568 d_drop(dentry);
1569 return error;
1570 }
1571
1572 /*
1573 * See comments for nfs_proc_create regarding failed operations.
1574 */
1575 static int
1576 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1577 {
1578 struct iattr attr;
1579 int status;
1580
1581 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1582 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1583
1584 if (!new_valid_dev(rdev))
1585 return -EINVAL;
1586
1587 attr.ia_mode = mode;
1588 attr.ia_valid = ATTR_MODE;
1589
1590 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1591 if (status != 0)
1592 goto out_err;
1593 return 0;
1594 out_err:
1595 d_drop(dentry);
1596 return status;
1597 }
1598
1599 /*
1600 * See comments for nfs_proc_create regarding failed operations.
1601 */
1602 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1603 {
1604 struct iattr attr;
1605 int error;
1606
1607 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1608 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1609
1610 attr.ia_valid = ATTR_MODE;
1611 attr.ia_mode = mode | S_IFDIR;
1612
1613 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1614 if (error != 0)
1615 goto out_err;
1616 return 0;
1617 out_err:
1618 d_drop(dentry);
1619 return error;
1620 }
1621
1622 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1623 {
1624 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1625 d_delete(dentry);
1626 }
1627
1628 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1629 {
1630 int error;
1631
1632 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1633 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1634
1635 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1636 /* Ensure the VFS deletes this inode */
1637 if (error == 0 && dentry->d_inode != NULL)
1638 clear_nlink(dentry->d_inode);
1639 else if (error == -ENOENT)
1640 nfs_dentry_handle_enoent(dentry);
1641
1642 return error;
1643 }
1644
1645 /*
1646 * Remove a file after making sure there are no pending writes,
1647 * and after checking that the file has only one user.
1648 *
1649 * We invalidate the attribute cache and free the inode prior to the operation
1650 * to avoid possible races if the server reuses the inode.
1651 */
1652 static int nfs_safe_remove(struct dentry *dentry)
1653 {
1654 struct inode *dir = dentry->d_parent->d_inode;
1655 struct inode *inode = dentry->d_inode;
1656 int error = -EBUSY;
1657
1658 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1659 dentry->d_parent->d_name.name, dentry->d_name.name);
1660
1661 /* If the dentry was sillyrenamed, we simply call d_delete() */
1662 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1663 error = 0;
1664 goto out;
1665 }
1666
1667 if (inode != NULL) {
1668 nfs_inode_return_delegation(inode);
1669 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1670 /* The VFS may want to delete this inode */
1671 if (error == 0)
1672 nfs_drop_nlink(inode);
1673 nfs_mark_for_revalidate(inode);
1674 } else
1675 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1676 if (error == -ENOENT)
1677 nfs_dentry_handle_enoent(dentry);
1678 out:
1679 return error;
1680 }
1681
1682 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1683 * belongs to an active ".nfs..." file and we return -EBUSY.
1684 *
1685 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1686 */
1687 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1688 {
1689 int error;
1690 int need_rehash = 0;
1691
1692 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1693 dir->i_ino, dentry->d_name.name);
1694
1695 spin_lock(&dcache_lock);
1696 spin_lock(&dentry->d_lock);
1697 if (atomic_read(&dentry->d_count) > 1) {
1698 spin_unlock(&dentry->d_lock);
1699 spin_unlock(&dcache_lock);
1700 /* Start asynchronous writeout of the inode */
1701 write_inode_now(dentry->d_inode, 0);
1702 error = nfs_sillyrename(dir, dentry);
1703 return error;
1704 }
1705 if (!d_unhashed(dentry)) {
1706 __d_drop(dentry);
1707 need_rehash = 1;
1708 }
1709 spin_unlock(&dentry->d_lock);
1710 spin_unlock(&dcache_lock);
1711 error = nfs_safe_remove(dentry);
1712 if (!error || error == -ENOENT) {
1713 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1714 } else if (need_rehash)
1715 d_rehash(dentry);
1716 return error;
1717 }
1718
1719 /*
1720 * To create a symbolic link, most file systems instantiate a new inode,
1721 * add a page to it containing the path, then write it out to the disk
1722 * using prepare_write/commit_write.
1723 *
1724 * Unfortunately the NFS client can't create the in-core inode first
1725 * because it needs a file handle to create an in-core inode (see
1726 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1727 * symlink request has completed on the server.
1728 *
1729 * So instead we allocate a raw page, copy the symname into it, then do
1730 * the SYMLINK request with the page as the buffer. If it succeeds, we
1731 * now have a new file handle and can instantiate an in-core NFS inode
1732 * and move the raw page into its mapping.
1733 */
1734 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1735 {
1736 struct pagevec lru_pvec;
1737 struct page *page;
1738 char *kaddr;
1739 struct iattr attr;
1740 unsigned int pathlen = strlen(symname);
1741 int error;
1742
1743 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1744 dir->i_ino, dentry->d_name.name, symname);
1745
1746 if (pathlen > PAGE_SIZE)
1747 return -ENAMETOOLONG;
1748
1749 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1750 attr.ia_valid = ATTR_MODE;
1751
1752 page = alloc_page(GFP_HIGHUSER);
1753 if (!page)
1754 return -ENOMEM;
1755
1756 kaddr = kmap_atomic(page, KM_USER0);
1757 memcpy(kaddr, symname, pathlen);
1758 if (pathlen < PAGE_SIZE)
1759 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1760 kunmap_atomic(kaddr, KM_USER0);
1761
1762 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1763 if (error != 0) {
1764 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1765 dir->i_sb->s_id, dir->i_ino,
1766 dentry->d_name.name, symname, error);
1767 d_drop(dentry);
1768 __free_page(page);
1769 return error;
1770 }
1771
1772 /*
1773 * No big deal if we can't add this page to the page cache here.
1774 * READLINK will get the missing page from the server if needed.
1775 */
1776 pagevec_init(&lru_pvec, 0);
1777 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1778 GFP_KERNEL)) {
1779 pagevec_add(&lru_pvec, page);
1780 pagevec_lru_add_file(&lru_pvec);
1781 SetPageUptodate(page);
1782 unlock_page(page);
1783 } else
1784 __free_page(page);
1785
1786 return 0;
1787 }
1788
1789 static int
1790 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1791 {
1792 struct inode *inode = old_dentry->d_inode;
1793 int error;
1794
1795 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1796 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1797 dentry->d_parent->d_name.name, dentry->d_name.name);
1798
1799 nfs_inode_return_delegation(inode);
1800
1801 d_drop(dentry);
1802 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1803 if (error == 0) {
1804 ihold(inode);
1805 d_add(dentry, inode);
1806 }
1807 return error;
1808 }
1809
1810 /*
1811 * RENAME
1812 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1813 * different file handle for the same inode after a rename (e.g. when
1814 * moving to a different directory). A fail-safe method to do so would
1815 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1816 * rename the old file using the sillyrename stuff. This way, the original
1817 * file in old_dir will go away when the last process iput()s the inode.
1818 *
1819 * FIXED.
1820 *
1821 * It actually works quite well. One needs to have the possibility for
1822 * at least one ".nfs..." file in each directory the file ever gets
1823 * moved or linked to which happens automagically with the new
1824 * implementation that only depends on the dcache stuff instead of
1825 * using the inode layer
1826 *
1827 * Unfortunately, things are a little more complicated than indicated
1828 * above. For a cross-directory move, we want to make sure we can get
1829 * rid of the old inode after the operation. This means there must be
1830 * no pending writes (if it's a file), and the use count must be 1.
1831 * If these conditions are met, we can drop the dentries before doing
1832 * the rename.
1833 */
1834 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1835 struct inode *new_dir, struct dentry *new_dentry)
1836 {
1837 struct inode *old_inode = old_dentry->d_inode;
1838 struct inode *new_inode = new_dentry->d_inode;
1839 struct dentry *dentry = NULL, *rehash = NULL;
1840 int error = -EBUSY;
1841
1842 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1843 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1844 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1845 atomic_read(&new_dentry->d_count));
1846
1847 /*
1848 * For non-directories, check whether the target is busy and if so,
1849 * make a copy of the dentry and then do a silly-rename. If the
1850 * silly-rename succeeds, the copied dentry is hashed and becomes
1851 * the new target.
1852 */
1853 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1854 /*
1855 * To prevent any new references to the target during the
1856 * rename, we unhash the dentry in advance.
1857 */
1858 if (!d_unhashed(new_dentry)) {
1859 d_drop(new_dentry);
1860 rehash = new_dentry;
1861 }
1862
1863 if (atomic_read(&new_dentry->d_count) > 2) {
1864 int err;
1865
1866 /* copy the target dentry's name */
1867 dentry = d_alloc(new_dentry->d_parent,
1868 &new_dentry->d_name);
1869 if (!dentry)
1870 goto out;
1871
1872 /* silly-rename the existing target ... */
1873 err = nfs_sillyrename(new_dir, new_dentry);
1874 if (err)
1875 goto out;
1876
1877 new_dentry = dentry;
1878 rehash = NULL;
1879 new_inode = NULL;
1880 }
1881 }
1882
1883 nfs_inode_return_delegation(old_inode);
1884 if (new_inode != NULL)
1885 nfs_inode_return_delegation(new_inode);
1886
1887 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1888 new_dir, &new_dentry->d_name);
1889 nfs_mark_for_revalidate(old_inode);
1890 out:
1891 if (rehash)
1892 d_rehash(rehash);
1893 if (!error) {
1894 if (new_inode != NULL)
1895 nfs_drop_nlink(new_inode);
1896 d_move(old_dentry, new_dentry);
1897 nfs_set_verifier(new_dentry,
1898 nfs_save_change_attribute(new_dir));
1899 } else if (error == -ENOENT)
1900 nfs_dentry_handle_enoent(old_dentry);
1901
1902 /* new dentry created? */
1903 if (dentry)
1904 dput(dentry);
1905 return error;
1906 }
1907
1908 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1909 static LIST_HEAD(nfs_access_lru_list);
1910 static atomic_long_t nfs_access_nr_entries;
1911
1912 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1913 {
1914 put_rpccred(entry->cred);
1915 kfree(entry);
1916 smp_mb__before_atomic_dec();
1917 atomic_long_dec(&nfs_access_nr_entries);
1918 smp_mb__after_atomic_dec();
1919 }
1920
1921 static void nfs_access_free_list(struct list_head *head)
1922 {
1923 struct nfs_access_entry *cache;
1924
1925 while (!list_empty(head)) {
1926 cache = list_entry(head->next, struct nfs_access_entry, lru);
1927 list_del(&cache->lru);
1928 nfs_access_free_entry(cache);
1929 }
1930 }
1931
1932 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1933 {
1934 LIST_HEAD(head);
1935 struct nfs_inode *nfsi, *next;
1936 struct nfs_access_entry *cache;
1937
1938 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1939 return (nr_to_scan == 0) ? 0 : -1;
1940
1941 spin_lock(&nfs_access_lru_lock);
1942 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1943 struct inode *inode;
1944
1945 if (nr_to_scan-- == 0)
1946 break;
1947 inode = &nfsi->vfs_inode;
1948 spin_lock(&inode->i_lock);
1949 if (list_empty(&nfsi->access_cache_entry_lru))
1950 goto remove_lru_entry;
1951 cache = list_entry(nfsi->access_cache_entry_lru.next,
1952 struct nfs_access_entry, lru);
1953 list_move(&cache->lru, &head);
1954 rb_erase(&cache->rb_node, &nfsi->access_cache);
1955 if (!list_empty(&nfsi->access_cache_entry_lru))
1956 list_move_tail(&nfsi->access_cache_inode_lru,
1957 &nfs_access_lru_list);
1958 else {
1959 remove_lru_entry:
1960 list_del_init(&nfsi->access_cache_inode_lru);
1961 smp_mb__before_clear_bit();
1962 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1963 smp_mb__after_clear_bit();
1964 }
1965 spin_unlock(&inode->i_lock);
1966 }
1967 spin_unlock(&nfs_access_lru_lock);
1968 nfs_access_free_list(&head);
1969 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1970 }
1971
1972 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1973 {
1974 struct rb_root *root_node = &nfsi->access_cache;
1975 struct rb_node *n;
1976 struct nfs_access_entry *entry;
1977
1978 /* Unhook entries from the cache */
1979 while ((n = rb_first(root_node)) != NULL) {
1980 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1981 rb_erase(n, root_node);
1982 list_move(&entry->lru, head);
1983 }
1984 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1985 }
1986
1987 void nfs_access_zap_cache(struct inode *inode)
1988 {
1989 LIST_HEAD(head);
1990
1991 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1992 return;
1993 /* Remove from global LRU init */
1994 spin_lock(&nfs_access_lru_lock);
1995 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1996 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1997
1998 spin_lock(&inode->i_lock);
1999 __nfs_access_zap_cache(NFS_I(inode), &head);
2000 spin_unlock(&inode->i_lock);
2001 spin_unlock(&nfs_access_lru_lock);
2002 nfs_access_free_list(&head);
2003 }
2004
2005 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2006 {
2007 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2008 struct nfs_access_entry *entry;
2009
2010 while (n != NULL) {
2011 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2012
2013 if (cred < entry->cred)
2014 n = n->rb_left;
2015 else if (cred > entry->cred)
2016 n = n->rb_right;
2017 else
2018 return entry;
2019 }
2020 return NULL;
2021 }
2022
2023 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2024 {
2025 struct nfs_inode *nfsi = NFS_I(inode);
2026 struct nfs_access_entry *cache;
2027 int err = -ENOENT;
2028
2029 spin_lock(&inode->i_lock);
2030 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2031 goto out_zap;
2032 cache = nfs_access_search_rbtree(inode, cred);
2033 if (cache == NULL)
2034 goto out;
2035 if (!nfs_have_delegated_attributes(inode) &&
2036 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2037 goto out_stale;
2038 res->jiffies = cache->jiffies;
2039 res->cred = cache->cred;
2040 res->mask = cache->mask;
2041 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2042 err = 0;
2043 out:
2044 spin_unlock(&inode->i_lock);
2045 return err;
2046 out_stale:
2047 rb_erase(&cache->rb_node, &nfsi->access_cache);
2048 list_del(&cache->lru);
2049 spin_unlock(&inode->i_lock);
2050 nfs_access_free_entry(cache);
2051 return -ENOENT;
2052 out_zap:
2053 spin_unlock(&inode->i_lock);
2054 nfs_access_zap_cache(inode);
2055 return -ENOENT;
2056 }
2057
2058 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2059 {
2060 struct nfs_inode *nfsi = NFS_I(inode);
2061 struct rb_root *root_node = &nfsi->access_cache;
2062 struct rb_node **p = &root_node->rb_node;
2063 struct rb_node *parent = NULL;
2064 struct nfs_access_entry *entry;
2065
2066 spin_lock(&inode->i_lock);
2067 while (*p != NULL) {
2068 parent = *p;
2069 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2070
2071 if (set->cred < entry->cred)
2072 p = &parent->rb_left;
2073 else if (set->cred > entry->cred)
2074 p = &parent->rb_right;
2075 else
2076 goto found;
2077 }
2078 rb_link_node(&set->rb_node, parent, p);
2079 rb_insert_color(&set->rb_node, root_node);
2080 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2081 spin_unlock(&inode->i_lock);
2082 return;
2083 found:
2084 rb_replace_node(parent, &set->rb_node, root_node);
2085 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2086 list_del(&entry->lru);
2087 spin_unlock(&inode->i_lock);
2088 nfs_access_free_entry(entry);
2089 }
2090
2091 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2092 {
2093 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2094 if (cache == NULL)
2095 return;
2096 RB_CLEAR_NODE(&cache->rb_node);
2097 cache->jiffies = set->jiffies;
2098 cache->cred = get_rpccred(set->cred);
2099 cache->mask = set->mask;
2100
2101 nfs_access_add_rbtree(inode, cache);
2102
2103 /* Update accounting */
2104 smp_mb__before_atomic_inc();
2105 atomic_long_inc(&nfs_access_nr_entries);
2106 smp_mb__after_atomic_inc();
2107
2108 /* Add inode to global LRU list */
2109 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2110 spin_lock(&nfs_access_lru_lock);
2111 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2112 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2113 &nfs_access_lru_list);
2114 spin_unlock(&nfs_access_lru_lock);
2115 }
2116 }
2117
2118 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2119 {
2120 struct nfs_access_entry cache;
2121 int status;
2122
2123 status = nfs_access_get_cached(inode, cred, &cache);
2124 if (status == 0)
2125 goto out;
2126
2127 /* Be clever: ask server to check for all possible rights */
2128 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2129 cache.cred = cred;
2130 cache.jiffies = jiffies;
2131 status = NFS_PROTO(inode)->access(inode, &cache);
2132 if (status != 0) {
2133 if (status == -ESTALE) {
2134 nfs_zap_caches(inode);
2135 if (!S_ISDIR(inode->i_mode))
2136 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2137 }
2138 return status;
2139 }
2140 nfs_access_add_cache(inode, &cache);
2141 out:
2142 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2143 return 0;
2144 return -EACCES;
2145 }
2146
2147 static int nfs_open_permission_mask(int openflags)
2148 {
2149 int mask = 0;
2150
2151 if (openflags & FMODE_READ)
2152 mask |= MAY_READ;
2153 if (openflags & FMODE_WRITE)
2154 mask |= MAY_WRITE;
2155 if (openflags & FMODE_EXEC)
2156 mask |= MAY_EXEC;
2157 return mask;
2158 }
2159
2160 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2161 {
2162 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2163 }
2164
2165 int nfs_permission(struct inode *inode, int mask)
2166 {
2167 struct rpc_cred *cred;
2168 int res = 0;
2169
2170 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2171
2172 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2173 goto out;
2174 /* Is this sys_access() ? */
2175 if (mask & (MAY_ACCESS | MAY_CHDIR))
2176 goto force_lookup;
2177
2178 switch (inode->i_mode & S_IFMT) {
2179 case S_IFLNK:
2180 goto out;
2181 case S_IFREG:
2182 /* NFSv4 has atomic_open... */
2183 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2184 && (mask & MAY_OPEN)
2185 && !(mask & MAY_EXEC))
2186 goto out;
2187 break;
2188 case S_IFDIR:
2189 /*
2190 * Optimize away all write operations, since the server
2191 * will check permissions when we perform the op.
2192 */
2193 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2194 goto out;
2195 }
2196
2197 force_lookup:
2198 if (!NFS_PROTO(inode)->access)
2199 goto out_notsup;
2200
2201 cred = rpc_lookup_cred();
2202 if (!IS_ERR(cred)) {
2203 res = nfs_do_access(inode, cred, mask);
2204 put_rpccred(cred);
2205 } else
2206 res = PTR_ERR(cred);
2207 out:
2208 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2209 res = -EACCES;
2210
2211 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2212 inode->i_sb->s_id, inode->i_ino, mask, res);
2213 return res;
2214 out_notsup:
2215 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2216 if (res == 0)
2217 res = generic_permission(inode, mask, NULL);
2218 goto out;
2219 }
2220
2221 /*
2222 * Local variables:
2223 * version-control: t
2224 * kept-new-versions: 5
2225 * End:
2226 */