mnt: Implicitly add MNT_NODEV on remount when it was implicitly added by mount
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
43
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47
48 /*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56 DEFINE_BRLOCK(vfsmount_lock);
57
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64 }
65
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
68 /*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
72 static int mnt_alloc_id(struct mount *mnt)
73 {
74 int res;
75
76 retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 spin_lock(&mnt_id_lock);
79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 if (!res)
81 mnt_id_start = mnt->mnt_id + 1;
82 spin_unlock(&mnt_id_lock);
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87 }
88
89 static void mnt_free_id(struct mount *mnt)
90 {
91 int id = mnt->mnt_id;
92 spin_lock(&mnt_id_lock);
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
96 spin_unlock(&mnt_id_lock);
97 }
98
99 /*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
104 static int mnt_alloc_group_id(struct mount *mnt)
105 {
106 int res;
107
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
113 &mnt->mnt_group_id);
114 if (!res)
115 mnt_group_start = mnt->mnt_group_id + 1;
116
117 return res;
118 }
119
120 /*
121 * Release a peer group ID
122 */
123 void mnt_release_group_id(struct mount *mnt)
124 {
125 int id = mnt->mnt_group_id;
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
129 mnt->mnt_group_id = 0;
130 }
131
132 /*
133 * vfsmount lock must be held for read
134 */
135 static inline void mnt_add_count(struct mount *mnt, int n)
136 {
137 #ifdef CONFIG_SMP
138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
139 #else
140 preempt_disable();
141 mnt->mnt_count += n;
142 preempt_enable();
143 #endif
144 }
145
146 /*
147 * vfsmount lock must be held for write
148 */
149 unsigned int mnt_get_count(struct mount *mnt)
150 {
151 #ifdef CONFIG_SMP
152 unsigned int count = 0;
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 }
158
159 return count;
160 #else
161 return mnt->mnt_count;
162 #endif
163 }
164
165 static struct mount *alloc_vfsmnt(const char *name)
166 {
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
169 int err;
170
171 err = mnt_alloc_id(mnt);
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
178 goto out_free_id;
179 }
180
181 #ifdef CONFIG_SMP
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
184 goto out_free_devname;
185
186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 #else
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
190 #endif
191
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
200 #ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
202 #endif
203 }
204 return mnt;
205
206 #ifdef CONFIG_SMP
207 out_free_devname:
208 kfree(mnt->mnt_devname);
209 #endif
210 out_free_id:
211 mnt_free_id(mnt);
212 out_free_cache:
213 kmem_cache_free(mnt_cache, mnt);
214 return NULL;
215 }
216
217 /*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225 /*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236 int __mnt_is_readonly(struct vfsmount *mnt)
237 {
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
243 }
244 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
246 static inline void mnt_inc_writers(struct mount *mnt)
247 {
248 #ifdef CONFIG_SMP
249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
250 #else
251 mnt->mnt_writers++;
252 #endif
253 }
254
255 static inline void mnt_dec_writers(struct mount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
259 #else
260 mnt->mnt_writers--;
261 #endif
262 }
263
264 static unsigned int mnt_get_writers(struct mount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 unsigned int count = 0;
268 int cpu;
269
270 for_each_possible_cpu(cpu) {
271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
272 }
273
274 return count;
275 #else
276 return mnt->mnt_writers;
277 #endif
278 }
279
280 static int mnt_is_readonly(struct vfsmount *mnt)
281 {
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287 }
288
289 /*
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
294 */
295 /**
296 * __mnt_want_write - get write access to a mount without freeze protection
297 * @m: the mount on which to take a write
298 *
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
304 */
305 int __mnt_want_write(struct vfsmount *m)
306 {
307 struct mount *mnt = real_mount(m);
308 int ret = 0;
309
310 preempt_disable();
311 mnt_inc_writers(mnt);
312 /*
313 * The store to mnt_inc_writers must be visible before we pass
314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
326 if (mnt_is_readonly(m)) {
327 mnt_dec_writers(mnt);
328 ret = -EROFS;
329 }
330 preempt_enable();
331
332 return ret;
333 }
334
335 /**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344 int mnt_want_write(struct vfsmount *m)
345 {
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
352 return ret;
353 }
354 EXPORT_SYMBOL_GPL(mnt_want_write);
355
356 /**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368 int mnt_clone_write(struct vfsmount *mnt)
369 {
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
374 mnt_inc_writers(real_mount(mnt));
375 preempt_enable();
376 return 0;
377 }
378 EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380 /**
381 * __mnt_want_write_file - get write access to a file's mount
382 * @file: the file who's mount on which to take a write
383 *
384 * This is like __mnt_want_write, but it takes a file and can
385 * do some optimisations if the file is open for write already
386 */
387 int __mnt_want_write_file(struct file *file)
388 {
389 struct inode *inode = file_inode(file);
390
391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
392 return __mnt_want_write(file->f_path.mnt);
393 else
394 return mnt_clone_write(file->f_path.mnt);
395 }
396
397 /**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404 int mnt_want_write_file(struct file *file)
405 {
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413 }
414 EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
416 /**
417 * __mnt_drop_write - give up write access to a mount
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
422 * __mnt_want_write() call above.
423 */
424 void __mnt_drop_write(struct vfsmount *mnt)
425 {
426 preempt_disable();
427 mnt_dec_writers(real_mount(mnt));
428 preempt_enable();
429 }
430
431 /**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439 void mnt_drop_write(struct vfsmount *mnt)
440 {
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443 }
444 EXPORT_SYMBOL_GPL(mnt_drop_write);
445
446 void __mnt_drop_write_file(struct file *file)
447 {
448 __mnt_drop_write(file->f_path.mnt);
449 }
450
451 void mnt_drop_write_file(struct file *file)
452 {
453 mnt_drop_write(file->f_path.mnt);
454 }
455 EXPORT_SYMBOL(mnt_drop_write_file);
456
457 static int mnt_make_readonly(struct mount *mnt)
458 {
459 int ret = 0;
460
461 br_write_lock(&vfsmount_lock);
462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
463 /*
464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
466 */
467 smp_mb();
468
469 /*
470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
484 */
485 if (mnt_get_writers(mnt) > 0)
486 ret = -EBUSY;
487 else
488 mnt->mnt.mnt_flags |= MNT_READONLY;
489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
495 br_write_unlock(&vfsmount_lock);
496 return ret;
497 }
498
499 static void __mnt_unmake_readonly(struct mount *mnt)
500 {
501 br_write_lock(&vfsmount_lock);
502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
503 br_write_unlock(&vfsmount_lock);
504 }
505
506 int sb_prepare_remount_readonly(struct super_block *sb)
507 {
508 struct mount *mnt;
509 int err = 0;
510
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
515 br_write_lock(&vfsmount_lock);
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
537 br_write_unlock(&vfsmount_lock);
538
539 return err;
540 }
541
542 static void free_vfsmnt(struct mount *mnt)
543 {
544 kfree(mnt->mnt_devname);
545 mnt_free_id(mnt);
546 #ifdef CONFIG_SMP
547 free_percpu(mnt->mnt_pcp);
548 #endif
549 kmem_cache_free(mnt_cache, mnt);
550 }
551
552 /*
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
555 * vfsmount_lock must be held for read or write.
556 */
557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
558 int dir)
559 {
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
562 struct mount *p, *found = NULL;
563
564 for (;;) {
565 tmp = dir ? tmp->next : tmp->prev;
566 p = NULL;
567 if (tmp == head)
568 break;
569 p = list_entry(tmp, struct mount, mnt_hash);
570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
571 found = p;
572 break;
573 }
574 }
575 return found;
576 }
577
578 /*
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
593 */
594 struct vfsmount *lookup_mnt(struct path *path)
595 {
596 struct mount *child_mnt;
597
598 br_read_lock(&vfsmount_lock);
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
602 br_read_unlock(&vfsmount_lock);
603 return &child_mnt->mnt;
604 } else {
605 br_read_unlock(&vfsmount_lock);
606 return NULL;
607 }
608 }
609
610 static struct mountpoint *new_mountpoint(struct dentry *dentry)
611 {
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614
615 list_for_each_entry(mp, chain, m_hash) {
616 if (mp->m_dentry == dentry) {
617 /* might be worth a WARN_ON() */
618 if (d_unlinked(dentry))
619 return ERR_PTR(-ENOENT);
620 mp->m_count++;
621 return mp;
622 }
623 }
624
625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
626 if (!mp)
627 return ERR_PTR(-ENOMEM);
628
629 spin_lock(&dentry->d_lock);
630 if (d_unlinked(dentry)) {
631 spin_unlock(&dentry->d_lock);
632 kfree(mp);
633 return ERR_PTR(-ENOENT);
634 }
635 dentry->d_flags |= DCACHE_MOUNTED;
636 spin_unlock(&dentry->d_lock);
637 mp->m_dentry = dentry;
638 mp->m_count = 1;
639 list_add(&mp->m_hash, chain);
640 return mp;
641 }
642
643 static void put_mountpoint(struct mountpoint *mp)
644 {
645 if (!--mp->m_count) {
646 struct dentry *dentry = mp->m_dentry;
647 spin_lock(&dentry->d_lock);
648 dentry->d_flags &= ~DCACHE_MOUNTED;
649 spin_unlock(&dentry->d_lock);
650 list_del(&mp->m_hash);
651 kfree(mp);
652 }
653 }
654
655 static inline int check_mnt(struct mount *mnt)
656 {
657 return mnt->mnt_ns == current->nsproxy->mnt_ns;
658 }
659
660 /*
661 * vfsmount lock must be held for write
662 */
663 static void touch_mnt_namespace(struct mnt_namespace *ns)
664 {
665 if (ns) {
666 ns->event = ++event;
667 wake_up_interruptible(&ns->poll);
668 }
669 }
670
671 /*
672 * vfsmount lock must be held for write
673 */
674 static void __touch_mnt_namespace(struct mnt_namespace *ns)
675 {
676 if (ns && ns->event != event) {
677 ns->event = event;
678 wake_up_interruptible(&ns->poll);
679 }
680 }
681
682 /*
683 * vfsmount lock must be held for write
684 */
685 static void detach_mnt(struct mount *mnt, struct path *old_path)
686 {
687 old_path->dentry = mnt->mnt_mountpoint;
688 old_path->mnt = &mnt->mnt_parent->mnt;
689 mnt->mnt_parent = mnt;
690 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
691 list_del_init(&mnt->mnt_child);
692 list_del_init(&mnt->mnt_hash);
693 put_mountpoint(mnt->mnt_mp);
694 mnt->mnt_mp = NULL;
695 }
696
697 /*
698 * vfsmount lock must be held for write
699 */
700 void mnt_set_mountpoint(struct mount *mnt,
701 struct mountpoint *mp,
702 struct mount *child_mnt)
703 {
704 mp->m_count++;
705 mnt_add_count(mnt, 1); /* essentially, that's mntget */
706 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
707 child_mnt->mnt_parent = mnt;
708 child_mnt->mnt_mp = mp;
709 }
710
711 /*
712 * vfsmount lock must be held for write
713 */
714 static void attach_mnt(struct mount *mnt,
715 struct mount *parent,
716 struct mountpoint *mp)
717 {
718 mnt_set_mountpoint(parent, mp, mnt);
719 list_add_tail(&mnt->mnt_hash, mount_hashtable +
720 hash(&parent->mnt, mp->m_dentry));
721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
722 }
723
724 /*
725 * vfsmount lock must be held for write
726 */
727 static void commit_tree(struct mount *mnt)
728 {
729 struct mount *parent = mnt->mnt_parent;
730 struct mount *m;
731 LIST_HEAD(head);
732 struct mnt_namespace *n = parent->mnt_ns;
733
734 BUG_ON(parent == mnt);
735
736 list_add_tail(&head, &mnt->mnt_list);
737 list_for_each_entry(m, &head, mnt_list)
738 m->mnt_ns = n;
739
740 list_splice(&head, n->list.prev);
741
742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
743 hash(&parent->mnt, mnt->mnt_mountpoint));
744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
745 touch_mnt_namespace(n);
746 }
747
748 static struct mount *next_mnt(struct mount *p, struct mount *root)
749 {
750 struct list_head *next = p->mnt_mounts.next;
751 if (next == &p->mnt_mounts) {
752 while (1) {
753 if (p == root)
754 return NULL;
755 next = p->mnt_child.next;
756 if (next != &p->mnt_parent->mnt_mounts)
757 break;
758 p = p->mnt_parent;
759 }
760 }
761 return list_entry(next, struct mount, mnt_child);
762 }
763
764 static struct mount *skip_mnt_tree(struct mount *p)
765 {
766 struct list_head *prev = p->mnt_mounts.prev;
767 while (prev != &p->mnt_mounts) {
768 p = list_entry(prev, struct mount, mnt_child);
769 prev = p->mnt_mounts.prev;
770 }
771 return p;
772 }
773
774 struct vfsmount *
775 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776 {
777 struct mount *mnt;
778 struct dentry *root;
779
780 if (!type)
781 return ERR_PTR(-ENODEV);
782
783 mnt = alloc_vfsmnt(name);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
786
787 if (flags & MS_KERNMOUNT)
788 mnt->mnt.mnt_flags = MNT_INTERNAL;
789
790 root = mount_fs(type, flags, name, data);
791 if (IS_ERR(root)) {
792 free_vfsmnt(mnt);
793 return ERR_CAST(root);
794 }
795
796 mnt->mnt.mnt_root = root;
797 mnt->mnt.mnt_sb = root->d_sb;
798 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
799 mnt->mnt_parent = mnt;
800 br_write_lock(&vfsmount_lock);
801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
802 br_write_unlock(&vfsmount_lock);
803 return &mnt->mnt;
804 }
805 EXPORT_SYMBOL_GPL(vfs_kern_mount);
806
807 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
808 int flag)
809 {
810 struct super_block *sb = old->mnt.mnt_sb;
811 struct mount *mnt;
812 int err;
813
814 mnt = alloc_vfsmnt(old->mnt_devname);
815 if (!mnt)
816 return ERR_PTR(-ENOMEM);
817
818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
819 mnt->mnt_group_id = 0; /* not a peer of original */
820 else
821 mnt->mnt_group_id = old->mnt_group_id;
822
823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 err = mnt_alloc_group_id(mnt);
825 if (err)
826 goto out_free;
827 }
828
829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
830 /* Don't allow unprivileged users to change mount flags */
831 if (flag & CL_UNPRIVILEGED) {
832 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
833
834 if (mnt->mnt.mnt_flags & MNT_READONLY)
835 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
836
837 if (mnt->mnt.mnt_flags & MNT_NODEV)
838 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
839
840 if (mnt->mnt.mnt_flags & MNT_NOSUID)
841 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
842
843 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
844 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
845 }
846
847 atomic_inc(&sb->s_active);
848 mnt->mnt.mnt_sb = sb;
849 mnt->mnt.mnt_root = dget(root);
850 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
851 mnt->mnt_parent = mnt;
852 br_write_lock(&vfsmount_lock);
853 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
854 br_write_unlock(&vfsmount_lock);
855
856 if ((flag & CL_SLAVE) ||
857 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
858 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
859 mnt->mnt_master = old;
860 CLEAR_MNT_SHARED(mnt);
861 } else if (!(flag & CL_PRIVATE)) {
862 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
863 list_add(&mnt->mnt_share, &old->mnt_share);
864 if (IS_MNT_SLAVE(old))
865 list_add(&mnt->mnt_slave, &old->mnt_slave);
866 mnt->mnt_master = old->mnt_master;
867 }
868 if (flag & CL_MAKE_SHARED)
869 set_mnt_shared(mnt);
870
871 /* stick the duplicate mount on the same expiry list
872 * as the original if that was on one */
873 if (flag & CL_EXPIRE) {
874 if (!list_empty(&old->mnt_expire))
875 list_add(&mnt->mnt_expire, &old->mnt_expire);
876 }
877
878 return mnt;
879
880 out_free:
881 free_vfsmnt(mnt);
882 return ERR_PTR(err);
883 }
884
885 static inline void mntfree(struct mount *mnt)
886 {
887 struct vfsmount *m = &mnt->mnt;
888 struct super_block *sb = m->mnt_sb;
889
890 /*
891 * This probably indicates that somebody messed
892 * up a mnt_want/drop_write() pair. If this
893 * happens, the filesystem was probably unable
894 * to make r/w->r/o transitions.
895 */
896 /*
897 * The locking used to deal with mnt_count decrement provides barriers,
898 * so mnt_get_writers() below is safe.
899 */
900 WARN_ON(mnt_get_writers(mnt));
901 fsnotify_vfsmount_delete(m);
902 dput(m->mnt_root);
903 free_vfsmnt(mnt);
904 deactivate_super(sb);
905 }
906
907 static void mntput_no_expire(struct mount *mnt)
908 {
909 put_again:
910 #ifdef CONFIG_SMP
911 br_read_lock(&vfsmount_lock);
912 if (likely(mnt->mnt_ns)) {
913 /* shouldn't be the last one */
914 mnt_add_count(mnt, -1);
915 br_read_unlock(&vfsmount_lock);
916 return;
917 }
918 br_read_unlock(&vfsmount_lock);
919
920 br_write_lock(&vfsmount_lock);
921 mnt_add_count(mnt, -1);
922 if (mnt_get_count(mnt)) {
923 br_write_unlock(&vfsmount_lock);
924 return;
925 }
926 #else
927 mnt_add_count(mnt, -1);
928 if (likely(mnt_get_count(mnt)))
929 return;
930 br_write_lock(&vfsmount_lock);
931 #endif
932 if (unlikely(mnt->mnt_pinned)) {
933 mnt_add_count(mnt, mnt->mnt_pinned + 1);
934 mnt->mnt_pinned = 0;
935 br_write_unlock(&vfsmount_lock);
936 acct_auto_close_mnt(&mnt->mnt);
937 goto put_again;
938 }
939
940 list_del(&mnt->mnt_instance);
941 br_write_unlock(&vfsmount_lock);
942 mntfree(mnt);
943 }
944
945 void mntput(struct vfsmount *mnt)
946 {
947 if (mnt) {
948 struct mount *m = real_mount(mnt);
949 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
950 if (unlikely(m->mnt_expiry_mark))
951 m->mnt_expiry_mark = 0;
952 mntput_no_expire(m);
953 }
954 }
955 EXPORT_SYMBOL(mntput);
956
957 struct vfsmount *mntget(struct vfsmount *mnt)
958 {
959 if (mnt)
960 mnt_add_count(real_mount(mnt), 1);
961 return mnt;
962 }
963 EXPORT_SYMBOL(mntget);
964
965 void mnt_pin(struct vfsmount *mnt)
966 {
967 br_write_lock(&vfsmount_lock);
968 real_mount(mnt)->mnt_pinned++;
969 br_write_unlock(&vfsmount_lock);
970 }
971 EXPORT_SYMBOL(mnt_pin);
972
973 void mnt_unpin(struct vfsmount *m)
974 {
975 struct mount *mnt = real_mount(m);
976 br_write_lock(&vfsmount_lock);
977 if (mnt->mnt_pinned) {
978 mnt_add_count(mnt, 1);
979 mnt->mnt_pinned--;
980 }
981 br_write_unlock(&vfsmount_lock);
982 }
983 EXPORT_SYMBOL(mnt_unpin);
984
985 static inline void mangle(struct seq_file *m, const char *s)
986 {
987 seq_escape(m, s, " \t\n\\");
988 }
989
990 /*
991 * Simple .show_options callback for filesystems which don't want to
992 * implement more complex mount option showing.
993 *
994 * See also save_mount_options().
995 */
996 int generic_show_options(struct seq_file *m, struct dentry *root)
997 {
998 const char *options;
999
1000 rcu_read_lock();
1001 options = rcu_dereference(root->d_sb->s_options);
1002
1003 if (options != NULL && options[0]) {
1004 seq_putc(m, ',');
1005 mangle(m, options);
1006 }
1007 rcu_read_unlock();
1008
1009 return 0;
1010 }
1011 EXPORT_SYMBOL(generic_show_options);
1012
1013 /*
1014 * If filesystem uses generic_show_options(), this function should be
1015 * called from the fill_super() callback.
1016 *
1017 * The .remount_fs callback usually needs to be handled in a special
1018 * way, to make sure, that previous options are not overwritten if the
1019 * remount fails.
1020 *
1021 * Also note, that if the filesystem's .remount_fs function doesn't
1022 * reset all options to their default value, but changes only newly
1023 * given options, then the displayed options will not reflect reality
1024 * any more.
1025 */
1026 void save_mount_options(struct super_block *sb, char *options)
1027 {
1028 BUG_ON(sb->s_options);
1029 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1030 }
1031 EXPORT_SYMBOL(save_mount_options);
1032
1033 void replace_mount_options(struct super_block *sb, char *options)
1034 {
1035 char *old = sb->s_options;
1036 rcu_assign_pointer(sb->s_options, options);
1037 if (old) {
1038 synchronize_rcu();
1039 kfree(old);
1040 }
1041 }
1042 EXPORT_SYMBOL(replace_mount_options);
1043
1044 #ifdef CONFIG_PROC_FS
1045 /* iterator; we want it to have access to namespace_sem, thus here... */
1046 static void *m_start(struct seq_file *m, loff_t *pos)
1047 {
1048 struct proc_mounts *p = proc_mounts(m);
1049
1050 down_read(&namespace_sem);
1051 return seq_list_start(&p->ns->list, *pos);
1052 }
1053
1054 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1055 {
1056 struct proc_mounts *p = proc_mounts(m);
1057
1058 return seq_list_next(v, &p->ns->list, pos);
1059 }
1060
1061 static void m_stop(struct seq_file *m, void *v)
1062 {
1063 up_read(&namespace_sem);
1064 }
1065
1066 static int m_show(struct seq_file *m, void *v)
1067 {
1068 struct proc_mounts *p = proc_mounts(m);
1069 struct mount *r = list_entry(v, struct mount, mnt_list);
1070 return p->show(m, &r->mnt);
1071 }
1072
1073 const struct seq_operations mounts_op = {
1074 .start = m_start,
1075 .next = m_next,
1076 .stop = m_stop,
1077 .show = m_show,
1078 };
1079 #endif /* CONFIG_PROC_FS */
1080
1081 /**
1082 * may_umount_tree - check if a mount tree is busy
1083 * @mnt: root of mount tree
1084 *
1085 * This is called to check if a tree of mounts has any
1086 * open files, pwds, chroots or sub mounts that are
1087 * busy.
1088 */
1089 int may_umount_tree(struct vfsmount *m)
1090 {
1091 struct mount *mnt = real_mount(m);
1092 int actual_refs = 0;
1093 int minimum_refs = 0;
1094 struct mount *p;
1095 BUG_ON(!m);
1096
1097 /* write lock needed for mnt_get_count */
1098 br_write_lock(&vfsmount_lock);
1099 for (p = mnt; p; p = next_mnt(p, mnt)) {
1100 actual_refs += mnt_get_count(p);
1101 minimum_refs += 2;
1102 }
1103 br_write_unlock(&vfsmount_lock);
1104
1105 if (actual_refs > minimum_refs)
1106 return 0;
1107
1108 return 1;
1109 }
1110
1111 EXPORT_SYMBOL(may_umount_tree);
1112
1113 /**
1114 * may_umount - check if a mount point is busy
1115 * @mnt: root of mount
1116 *
1117 * This is called to check if a mount point has any
1118 * open files, pwds, chroots or sub mounts. If the
1119 * mount has sub mounts this will return busy
1120 * regardless of whether the sub mounts are busy.
1121 *
1122 * Doesn't take quota and stuff into account. IOW, in some cases it will
1123 * give false negatives. The main reason why it's here is that we need
1124 * a non-destructive way to look for easily umountable filesystems.
1125 */
1126 int may_umount(struct vfsmount *mnt)
1127 {
1128 int ret = 1;
1129 down_read(&namespace_sem);
1130 br_write_lock(&vfsmount_lock);
1131 if (propagate_mount_busy(real_mount(mnt), 2))
1132 ret = 0;
1133 br_write_unlock(&vfsmount_lock);
1134 up_read(&namespace_sem);
1135 return ret;
1136 }
1137
1138 EXPORT_SYMBOL(may_umount);
1139
1140 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1141
1142 static void namespace_unlock(void)
1143 {
1144 struct mount *mnt;
1145 LIST_HEAD(head);
1146
1147 if (likely(list_empty(&unmounted))) {
1148 up_write(&namespace_sem);
1149 return;
1150 }
1151
1152 list_splice_init(&unmounted, &head);
1153 up_write(&namespace_sem);
1154
1155 while (!list_empty(&head)) {
1156 mnt = list_first_entry(&head, struct mount, mnt_hash);
1157 list_del_init(&mnt->mnt_hash);
1158 if (mnt_has_parent(mnt)) {
1159 struct dentry *dentry;
1160 struct mount *m;
1161
1162 br_write_lock(&vfsmount_lock);
1163 dentry = mnt->mnt_mountpoint;
1164 m = mnt->mnt_parent;
1165 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1166 mnt->mnt_parent = mnt;
1167 m->mnt_ghosts--;
1168 br_write_unlock(&vfsmount_lock);
1169 dput(dentry);
1170 mntput(&m->mnt);
1171 }
1172 mntput(&mnt->mnt);
1173 }
1174 }
1175
1176 static inline void namespace_lock(void)
1177 {
1178 down_write(&namespace_sem);
1179 }
1180
1181 /*
1182 * vfsmount lock must be held for write
1183 * namespace_sem must be held for write
1184 */
1185 void umount_tree(struct mount *mnt, int propagate)
1186 {
1187 LIST_HEAD(tmp_list);
1188 struct mount *p;
1189
1190 for (p = mnt; p; p = next_mnt(p, mnt))
1191 list_move(&p->mnt_hash, &tmp_list);
1192
1193 if (propagate)
1194 propagate_umount(&tmp_list);
1195
1196 list_for_each_entry(p, &tmp_list, mnt_hash) {
1197 list_del_init(&p->mnt_expire);
1198 list_del_init(&p->mnt_list);
1199 __touch_mnt_namespace(p->mnt_ns);
1200 p->mnt_ns = NULL;
1201 list_del_init(&p->mnt_child);
1202 if (mnt_has_parent(p)) {
1203 p->mnt_parent->mnt_ghosts++;
1204 put_mountpoint(p->mnt_mp);
1205 p->mnt_mp = NULL;
1206 }
1207 change_mnt_propagation(p, MS_PRIVATE);
1208 }
1209 list_splice(&tmp_list, &unmounted);
1210 }
1211
1212 static void shrink_submounts(struct mount *mnt);
1213
1214 static int do_umount(struct mount *mnt, int flags)
1215 {
1216 struct super_block *sb = mnt->mnt.mnt_sb;
1217 int retval;
1218
1219 retval = security_sb_umount(&mnt->mnt, flags);
1220 if (retval)
1221 return retval;
1222
1223 /*
1224 * Allow userspace to request a mountpoint be expired rather than
1225 * unmounting unconditionally. Unmount only happens if:
1226 * (1) the mark is already set (the mark is cleared by mntput())
1227 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1228 */
1229 if (flags & MNT_EXPIRE) {
1230 if (&mnt->mnt == current->fs->root.mnt ||
1231 flags & (MNT_FORCE | MNT_DETACH))
1232 return -EINVAL;
1233
1234 /*
1235 * probably don't strictly need the lock here if we examined
1236 * all race cases, but it's a slowpath.
1237 */
1238 br_write_lock(&vfsmount_lock);
1239 if (mnt_get_count(mnt) != 2) {
1240 br_write_unlock(&vfsmount_lock);
1241 return -EBUSY;
1242 }
1243 br_write_unlock(&vfsmount_lock);
1244
1245 if (!xchg(&mnt->mnt_expiry_mark, 1))
1246 return -EAGAIN;
1247 }
1248
1249 /*
1250 * If we may have to abort operations to get out of this
1251 * mount, and they will themselves hold resources we must
1252 * allow the fs to do things. In the Unix tradition of
1253 * 'Gee thats tricky lets do it in userspace' the umount_begin
1254 * might fail to complete on the first run through as other tasks
1255 * must return, and the like. Thats for the mount program to worry
1256 * about for the moment.
1257 */
1258
1259 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1260 sb->s_op->umount_begin(sb);
1261 }
1262
1263 /*
1264 * No sense to grab the lock for this test, but test itself looks
1265 * somewhat bogus. Suggestions for better replacement?
1266 * Ho-hum... In principle, we might treat that as umount + switch
1267 * to rootfs. GC would eventually take care of the old vfsmount.
1268 * Actually it makes sense, especially if rootfs would contain a
1269 * /reboot - static binary that would close all descriptors and
1270 * call reboot(9). Then init(8) could umount root and exec /reboot.
1271 */
1272 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1273 /*
1274 * Special case for "unmounting" root ...
1275 * we just try to remount it readonly.
1276 */
1277 if (!capable(CAP_SYS_ADMIN))
1278 return -EPERM;
1279 down_write(&sb->s_umount);
1280 if (!(sb->s_flags & MS_RDONLY))
1281 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1282 up_write(&sb->s_umount);
1283 return retval;
1284 }
1285
1286 namespace_lock();
1287 br_write_lock(&vfsmount_lock);
1288 event++;
1289
1290 if (!(flags & MNT_DETACH))
1291 shrink_submounts(mnt);
1292
1293 retval = -EBUSY;
1294 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1295 if (!list_empty(&mnt->mnt_list))
1296 umount_tree(mnt, 1);
1297 retval = 0;
1298 }
1299 br_write_unlock(&vfsmount_lock);
1300 namespace_unlock();
1301 return retval;
1302 }
1303
1304 /*
1305 * Is the caller allowed to modify his namespace?
1306 */
1307 static inline bool may_mount(void)
1308 {
1309 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1310 }
1311
1312 /*
1313 * Now umount can handle mount points as well as block devices.
1314 * This is important for filesystems which use unnamed block devices.
1315 *
1316 * We now support a flag for forced unmount like the other 'big iron'
1317 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1318 */
1319
1320 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1321 {
1322 struct path path;
1323 struct mount *mnt;
1324 int retval;
1325 int lookup_flags = 0;
1326
1327 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1328 return -EINVAL;
1329
1330 if (!may_mount())
1331 return -EPERM;
1332
1333 if (!(flags & UMOUNT_NOFOLLOW))
1334 lookup_flags |= LOOKUP_FOLLOW;
1335
1336 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1337 if (retval)
1338 goto out;
1339 mnt = real_mount(path.mnt);
1340 retval = -EINVAL;
1341 if (path.dentry != path.mnt->mnt_root)
1342 goto dput_and_out;
1343 if (!check_mnt(mnt))
1344 goto dput_and_out;
1345
1346 retval = do_umount(mnt, flags);
1347 dput_and_out:
1348 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1349 dput(path.dentry);
1350 mntput_no_expire(mnt);
1351 out:
1352 return retval;
1353 }
1354
1355 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1356
1357 /*
1358 * The 2.0 compatible umount. No flags.
1359 */
1360 SYSCALL_DEFINE1(oldumount, char __user *, name)
1361 {
1362 return sys_umount(name, 0);
1363 }
1364
1365 #endif
1366
1367 static bool mnt_ns_loop(struct path *path)
1368 {
1369 /* Could bind mounting the mount namespace inode cause a
1370 * mount namespace loop?
1371 */
1372 struct inode *inode = path->dentry->d_inode;
1373 struct proc_ns *ei;
1374 struct mnt_namespace *mnt_ns;
1375
1376 if (!proc_ns_inode(inode))
1377 return false;
1378
1379 ei = get_proc_ns(inode);
1380 if (ei->ns_ops != &mntns_operations)
1381 return false;
1382
1383 mnt_ns = ei->ns;
1384 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1385 }
1386
1387 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1388 int flag)
1389 {
1390 struct mount *res, *p, *q, *r, *parent;
1391
1392 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1393 return ERR_PTR(-EINVAL);
1394
1395 res = q = clone_mnt(mnt, dentry, flag);
1396 if (IS_ERR(q))
1397 return q;
1398
1399 q->mnt_mountpoint = mnt->mnt_mountpoint;
1400
1401 p = mnt;
1402 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1403 struct mount *s;
1404 if (!is_subdir(r->mnt_mountpoint, dentry))
1405 continue;
1406
1407 for (s = r; s; s = next_mnt(s, r)) {
1408 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1409 s = skip_mnt_tree(s);
1410 continue;
1411 }
1412 while (p != s->mnt_parent) {
1413 p = p->mnt_parent;
1414 q = q->mnt_parent;
1415 }
1416 p = s;
1417 parent = q;
1418 q = clone_mnt(p, p->mnt.mnt_root, flag);
1419 if (IS_ERR(q))
1420 goto out;
1421 br_write_lock(&vfsmount_lock);
1422 list_add_tail(&q->mnt_list, &res->mnt_list);
1423 attach_mnt(q, parent, p->mnt_mp);
1424 br_write_unlock(&vfsmount_lock);
1425 }
1426 }
1427 return res;
1428 out:
1429 if (res) {
1430 br_write_lock(&vfsmount_lock);
1431 umount_tree(res, 0);
1432 br_write_unlock(&vfsmount_lock);
1433 }
1434 return q;
1435 }
1436
1437 /* Caller should check returned pointer for errors */
1438
1439 struct vfsmount *collect_mounts(struct path *path)
1440 {
1441 struct mount *tree;
1442 namespace_lock();
1443 tree = copy_tree(real_mount(path->mnt), path->dentry,
1444 CL_COPY_ALL | CL_PRIVATE);
1445 namespace_unlock();
1446 if (IS_ERR(tree))
1447 return ERR_CAST(tree);
1448 return &tree->mnt;
1449 }
1450
1451 void drop_collected_mounts(struct vfsmount *mnt)
1452 {
1453 namespace_lock();
1454 br_write_lock(&vfsmount_lock);
1455 umount_tree(real_mount(mnt), 0);
1456 br_write_unlock(&vfsmount_lock);
1457 namespace_unlock();
1458 }
1459
1460 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1461 struct vfsmount *root)
1462 {
1463 struct mount *mnt;
1464 int res = f(root, arg);
1465 if (res)
1466 return res;
1467 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1468 res = f(&mnt->mnt, arg);
1469 if (res)
1470 return res;
1471 }
1472 return 0;
1473 }
1474
1475 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1476 {
1477 struct mount *p;
1478
1479 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1480 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1481 mnt_release_group_id(p);
1482 }
1483 }
1484
1485 static int invent_group_ids(struct mount *mnt, bool recurse)
1486 {
1487 struct mount *p;
1488
1489 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1490 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1491 int err = mnt_alloc_group_id(p);
1492 if (err) {
1493 cleanup_group_ids(mnt, p);
1494 return err;
1495 }
1496 }
1497 }
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * @source_mnt : mount tree to be attached
1504 * @nd : place the mount tree @source_mnt is attached
1505 * @parent_nd : if non-null, detach the source_mnt from its parent and
1506 * store the parent mount and mountpoint dentry.
1507 * (done when source_mnt is moved)
1508 *
1509 * NOTE: in the table below explains the semantics when a source mount
1510 * of a given type is attached to a destination mount of a given type.
1511 * ---------------------------------------------------------------------------
1512 * | BIND MOUNT OPERATION |
1513 * |**************************************************************************
1514 * | source-->| shared | private | slave | unbindable |
1515 * | dest | | | | |
1516 * | | | | | | |
1517 * | v | | | | |
1518 * |**************************************************************************
1519 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1520 * | | | | | |
1521 * |non-shared| shared (+) | private | slave (*) | invalid |
1522 * ***************************************************************************
1523 * A bind operation clones the source mount and mounts the clone on the
1524 * destination mount.
1525 *
1526 * (++) the cloned mount is propagated to all the mounts in the propagation
1527 * tree of the destination mount and the cloned mount is added to
1528 * the peer group of the source mount.
1529 * (+) the cloned mount is created under the destination mount and is marked
1530 * as shared. The cloned mount is added to the peer group of the source
1531 * mount.
1532 * (+++) the mount is propagated to all the mounts in the propagation tree
1533 * of the destination mount and the cloned mount is made slave
1534 * of the same master as that of the source mount. The cloned mount
1535 * is marked as 'shared and slave'.
1536 * (*) the cloned mount is made a slave of the same master as that of the
1537 * source mount.
1538 *
1539 * ---------------------------------------------------------------------------
1540 * | MOVE MOUNT OPERATION |
1541 * |**************************************************************************
1542 * | source-->| shared | private | slave | unbindable |
1543 * | dest | | | | |
1544 * | | | | | | |
1545 * | v | | | | |
1546 * |**************************************************************************
1547 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1548 * | | | | | |
1549 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1550 * ***************************************************************************
1551 *
1552 * (+) the mount is moved to the destination. And is then propagated to
1553 * all the mounts in the propagation tree of the destination mount.
1554 * (+*) the mount is moved to the destination.
1555 * (+++) the mount is moved to the destination and is then propagated to
1556 * all the mounts belonging to the destination mount's propagation tree.
1557 * the mount is marked as 'shared and slave'.
1558 * (*) the mount continues to be a slave at the new location.
1559 *
1560 * if the source mount is a tree, the operations explained above is
1561 * applied to each mount in the tree.
1562 * Must be called without spinlocks held, since this function can sleep
1563 * in allocations.
1564 */
1565 static int attach_recursive_mnt(struct mount *source_mnt,
1566 struct mount *dest_mnt,
1567 struct mountpoint *dest_mp,
1568 struct path *parent_path)
1569 {
1570 LIST_HEAD(tree_list);
1571 struct mount *child, *p;
1572 int err;
1573
1574 if (IS_MNT_SHARED(dest_mnt)) {
1575 err = invent_group_ids(source_mnt, true);
1576 if (err)
1577 goto out;
1578 }
1579 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1580 if (err)
1581 goto out_cleanup_ids;
1582
1583 br_write_lock(&vfsmount_lock);
1584
1585 if (IS_MNT_SHARED(dest_mnt)) {
1586 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1587 set_mnt_shared(p);
1588 }
1589 if (parent_path) {
1590 detach_mnt(source_mnt, parent_path);
1591 attach_mnt(source_mnt, dest_mnt, dest_mp);
1592 touch_mnt_namespace(source_mnt->mnt_ns);
1593 } else {
1594 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1595 commit_tree(source_mnt);
1596 }
1597
1598 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1599 list_del_init(&child->mnt_hash);
1600 commit_tree(child);
1601 }
1602 br_write_unlock(&vfsmount_lock);
1603
1604 return 0;
1605
1606 out_cleanup_ids:
1607 if (IS_MNT_SHARED(dest_mnt))
1608 cleanup_group_ids(source_mnt, NULL);
1609 out:
1610 return err;
1611 }
1612
1613 static struct mountpoint *lock_mount(struct path *path)
1614 {
1615 struct vfsmount *mnt;
1616 struct dentry *dentry = path->dentry;
1617 retry:
1618 mutex_lock(&dentry->d_inode->i_mutex);
1619 if (unlikely(cant_mount(dentry))) {
1620 mutex_unlock(&dentry->d_inode->i_mutex);
1621 return ERR_PTR(-ENOENT);
1622 }
1623 namespace_lock();
1624 mnt = lookup_mnt(path);
1625 if (likely(!mnt)) {
1626 struct mountpoint *mp = new_mountpoint(dentry);
1627 if (IS_ERR(mp)) {
1628 namespace_unlock();
1629 mutex_unlock(&dentry->d_inode->i_mutex);
1630 return mp;
1631 }
1632 return mp;
1633 }
1634 namespace_unlock();
1635 mutex_unlock(&path->dentry->d_inode->i_mutex);
1636 path_put(path);
1637 path->mnt = mnt;
1638 dentry = path->dentry = dget(mnt->mnt_root);
1639 goto retry;
1640 }
1641
1642 static void unlock_mount(struct mountpoint *where)
1643 {
1644 struct dentry *dentry = where->m_dentry;
1645 put_mountpoint(where);
1646 namespace_unlock();
1647 mutex_unlock(&dentry->d_inode->i_mutex);
1648 }
1649
1650 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1651 {
1652 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1653 return -EINVAL;
1654
1655 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1656 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1657 return -ENOTDIR;
1658
1659 return attach_recursive_mnt(mnt, p, mp, NULL);
1660 }
1661
1662 /*
1663 * Sanity check the flags to change_mnt_propagation.
1664 */
1665
1666 static int flags_to_propagation_type(int flags)
1667 {
1668 int type = flags & ~(MS_REC | MS_SILENT);
1669
1670 /* Fail if any non-propagation flags are set */
1671 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1672 return 0;
1673 /* Only one propagation flag should be set */
1674 if (!is_power_of_2(type))
1675 return 0;
1676 return type;
1677 }
1678
1679 /*
1680 * recursively change the type of the mountpoint.
1681 */
1682 static int do_change_type(struct path *path, int flag)
1683 {
1684 struct mount *m;
1685 struct mount *mnt = real_mount(path->mnt);
1686 int recurse = flag & MS_REC;
1687 int type;
1688 int err = 0;
1689
1690 if (path->dentry != path->mnt->mnt_root)
1691 return -EINVAL;
1692
1693 type = flags_to_propagation_type(flag);
1694 if (!type)
1695 return -EINVAL;
1696
1697 namespace_lock();
1698 if (type == MS_SHARED) {
1699 err = invent_group_ids(mnt, recurse);
1700 if (err)
1701 goto out_unlock;
1702 }
1703
1704 br_write_lock(&vfsmount_lock);
1705 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1706 change_mnt_propagation(m, type);
1707 br_write_unlock(&vfsmount_lock);
1708
1709 out_unlock:
1710 namespace_unlock();
1711 return err;
1712 }
1713
1714 /*
1715 * do loopback mount.
1716 */
1717 static int do_loopback(struct path *path, const char *old_name,
1718 int recurse)
1719 {
1720 struct path old_path;
1721 struct mount *mnt = NULL, *old, *parent;
1722 struct mountpoint *mp;
1723 int err;
1724 if (!old_name || !*old_name)
1725 return -EINVAL;
1726 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1727 if (err)
1728 return err;
1729
1730 err = -EINVAL;
1731 if (mnt_ns_loop(&old_path))
1732 goto out;
1733
1734 mp = lock_mount(path);
1735 err = PTR_ERR(mp);
1736 if (IS_ERR(mp))
1737 goto out;
1738
1739 old = real_mount(old_path.mnt);
1740 parent = real_mount(path->mnt);
1741
1742 err = -EINVAL;
1743 if (IS_MNT_UNBINDABLE(old))
1744 goto out2;
1745
1746 if (!check_mnt(parent) || !check_mnt(old))
1747 goto out2;
1748
1749 if (recurse)
1750 mnt = copy_tree(old, old_path.dentry, 0);
1751 else
1752 mnt = clone_mnt(old, old_path.dentry, 0);
1753
1754 if (IS_ERR(mnt)) {
1755 err = PTR_ERR(mnt);
1756 goto out2;
1757 }
1758
1759 err = graft_tree(mnt, parent, mp);
1760 if (err) {
1761 br_write_lock(&vfsmount_lock);
1762 umount_tree(mnt, 0);
1763 br_write_unlock(&vfsmount_lock);
1764 }
1765 out2:
1766 unlock_mount(mp);
1767 out:
1768 path_put(&old_path);
1769 return err;
1770 }
1771
1772 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1773 {
1774 int error = 0;
1775 int readonly_request = 0;
1776
1777 if (ms_flags & MS_RDONLY)
1778 readonly_request = 1;
1779 if (readonly_request == __mnt_is_readonly(mnt))
1780 return 0;
1781
1782 if (readonly_request)
1783 error = mnt_make_readonly(real_mount(mnt));
1784 else
1785 __mnt_unmake_readonly(real_mount(mnt));
1786 return error;
1787 }
1788
1789 /*
1790 * change filesystem flags. dir should be a physical root of filesystem.
1791 * If you've mounted a non-root directory somewhere and want to do remount
1792 * on it - tough luck.
1793 */
1794 static int do_remount(struct path *path, int flags, int mnt_flags,
1795 void *data)
1796 {
1797 int err;
1798 struct super_block *sb = path->mnt->mnt_sb;
1799 struct mount *mnt = real_mount(path->mnt);
1800
1801 if (!check_mnt(mnt))
1802 return -EINVAL;
1803
1804 if (path->dentry != path->mnt->mnt_root)
1805 return -EINVAL;
1806
1807 /* Don't allow changing of locked mnt flags.
1808 *
1809 * No locks need to be held here while testing the various
1810 * MNT_LOCK flags because those flags can never be cleared
1811 * once they are set.
1812 */
1813 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1814 !(mnt_flags & MNT_READONLY)) {
1815 return -EPERM;
1816 }
1817 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1818 !(mnt_flags & MNT_NODEV)) {
1819 /* Was the nodev implicitly added in mount? */
1820 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
1821 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1822 mnt_flags |= MNT_NODEV;
1823 } else {
1824 return -EPERM;
1825 }
1826 }
1827 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1828 !(mnt_flags & MNT_NOSUID)) {
1829 return -EPERM;
1830 }
1831 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1832 !(mnt_flags & MNT_NOEXEC)) {
1833 return -EPERM;
1834 }
1835 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1836 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1837 return -EPERM;
1838 }
1839
1840 err = security_sb_remount(sb, data);
1841 if (err)
1842 return err;
1843
1844 down_write(&sb->s_umount);
1845 if (flags & MS_BIND)
1846 err = change_mount_flags(path->mnt, flags);
1847 else if (!capable(CAP_SYS_ADMIN))
1848 err = -EPERM;
1849 else
1850 err = do_remount_sb(sb, flags, data, 0);
1851 if (!err) {
1852 br_write_lock(&vfsmount_lock);
1853 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1854 mnt->mnt.mnt_flags = mnt_flags;
1855 br_write_unlock(&vfsmount_lock);
1856 }
1857 up_write(&sb->s_umount);
1858 if (!err) {
1859 br_write_lock(&vfsmount_lock);
1860 touch_mnt_namespace(mnt->mnt_ns);
1861 br_write_unlock(&vfsmount_lock);
1862 }
1863 return err;
1864 }
1865
1866 static inline int tree_contains_unbindable(struct mount *mnt)
1867 {
1868 struct mount *p;
1869 for (p = mnt; p; p = next_mnt(p, mnt)) {
1870 if (IS_MNT_UNBINDABLE(p))
1871 return 1;
1872 }
1873 return 0;
1874 }
1875
1876 static int do_move_mount(struct path *path, const char *old_name)
1877 {
1878 struct path old_path, parent_path;
1879 struct mount *p;
1880 struct mount *old;
1881 struct mountpoint *mp;
1882 int err;
1883 if (!old_name || !*old_name)
1884 return -EINVAL;
1885 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1886 if (err)
1887 return err;
1888
1889 mp = lock_mount(path);
1890 err = PTR_ERR(mp);
1891 if (IS_ERR(mp))
1892 goto out;
1893
1894 old = real_mount(old_path.mnt);
1895 p = real_mount(path->mnt);
1896
1897 err = -EINVAL;
1898 if (!check_mnt(p) || !check_mnt(old))
1899 goto out1;
1900
1901 err = -EINVAL;
1902 if (old_path.dentry != old_path.mnt->mnt_root)
1903 goto out1;
1904
1905 if (!mnt_has_parent(old))
1906 goto out1;
1907
1908 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1909 S_ISDIR(old_path.dentry->d_inode->i_mode))
1910 goto out1;
1911 /*
1912 * Don't move a mount residing in a shared parent.
1913 */
1914 if (IS_MNT_SHARED(old->mnt_parent))
1915 goto out1;
1916 /*
1917 * Don't move a mount tree containing unbindable mounts to a destination
1918 * mount which is shared.
1919 */
1920 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1921 goto out1;
1922 err = -ELOOP;
1923 for (; mnt_has_parent(p); p = p->mnt_parent)
1924 if (p == old)
1925 goto out1;
1926
1927 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1928 if (err)
1929 goto out1;
1930
1931 /* if the mount is moved, it should no longer be expire
1932 * automatically */
1933 list_del_init(&old->mnt_expire);
1934 out1:
1935 unlock_mount(mp);
1936 out:
1937 if (!err)
1938 path_put(&parent_path);
1939 path_put(&old_path);
1940 return err;
1941 }
1942
1943 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1944 {
1945 int err;
1946 const char *subtype = strchr(fstype, '.');
1947 if (subtype) {
1948 subtype++;
1949 err = -EINVAL;
1950 if (!subtype[0])
1951 goto err;
1952 } else
1953 subtype = "";
1954
1955 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1956 err = -ENOMEM;
1957 if (!mnt->mnt_sb->s_subtype)
1958 goto err;
1959 return mnt;
1960
1961 err:
1962 mntput(mnt);
1963 return ERR_PTR(err);
1964 }
1965
1966 /*
1967 * add a mount into a namespace's mount tree
1968 */
1969 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1970 {
1971 struct mountpoint *mp;
1972 struct mount *parent;
1973 int err;
1974
1975 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1976
1977 mp = lock_mount(path);
1978 if (IS_ERR(mp))
1979 return PTR_ERR(mp);
1980
1981 parent = real_mount(path->mnt);
1982 err = -EINVAL;
1983 if (unlikely(!check_mnt(parent))) {
1984 /* that's acceptable only for automounts done in private ns */
1985 if (!(mnt_flags & MNT_SHRINKABLE))
1986 goto unlock;
1987 /* ... and for those we'd better have mountpoint still alive */
1988 if (!parent->mnt_ns)
1989 goto unlock;
1990 }
1991
1992 /* Refuse the same filesystem on the same mount point */
1993 err = -EBUSY;
1994 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1995 path->mnt->mnt_root == path->dentry)
1996 goto unlock;
1997
1998 err = -EINVAL;
1999 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2000 goto unlock;
2001
2002 newmnt->mnt.mnt_flags = mnt_flags;
2003 err = graft_tree(newmnt, parent, mp);
2004
2005 unlock:
2006 unlock_mount(mp);
2007 return err;
2008 }
2009
2010 /*
2011 * create a new mount for userspace and request it to be added into the
2012 * namespace's tree
2013 */
2014 static int do_new_mount(struct path *path, const char *fstype, int flags,
2015 int mnt_flags, const char *name, void *data)
2016 {
2017 struct file_system_type *type;
2018 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2019 struct vfsmount *mnt;
2020 int err;
2021
2022 if (!fstype)
2023 return -EINVAL;
2024
2025 type = get_fs_type(fstype);
2026 if (!type)
2027 return -ENODEV;
2028
2029 if (user_ns != &init_user_ns) {
2030 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2031 put_filesystem(type);
2032 return -EPERM;
2033 }
2034 /* Only in special cases allow devices from mounts
2035 * created outside the initial user namespace.
2036 */
2037 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2038 flags |= MS_NODEV;
2039 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2040 }
2041 }
2042
2043 mnt = vfs_kern_mount(type, flags, name, data);
2044 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2045 !mnt->mnt_sb->s_subtype)
2046 mnt = fs_set_subtype(mnt, fstype);
2047
2048 put_filesystem(type);
2049 if (IS_ERR(mnt))
2050 return PTR_ERR(mnt);
2051
2052 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2053 if (err)
2054 mntput(mnt);
2055 return err;
2056 }
2057
2058 int finish_automount(struct vfsmount *m, struct path *path)
2059 {
2060 struct mount *mnt = real_mount(m);
2061 int err;
2062 /* The new mount record should have at least 2 refs to prevent it being
2063 * expired before we get a chance to add it
2064 */
2065 BUG_ON(mnt_get_count(mnt) < 2);
2066
2067 if (m->mnt_sb == path->mnt->mnt_sb &&
2068 m->mnt_root == path->dentry) {
2069 err = -ELOOP;
2070 goto fail;
2071 }
2072
2073 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2074 if (!err)
2075 return 0;
2076 fail:
2077 /* remove m from any expiration list it may be on */
2078 if (!list_empty(&mnt->mnt_expire)) {
2079 namespace_lock();
2080 br_write_lock(&vfsmount_lock);
2081 list_del_init(&mnt->mnt_expire);
2082 br_write_unlock(&vfsmount_lock);
2083 namespace_unlock();
2084 }
2085 mntput(m);
2086 mntput(m);
2087 return err;
2088 }
2089
2090 /**
2091 * mnt_set_expiry - Put a mount on an expiration list
2092 * @mnt: The mount to list.
2093 * @expiry_list: The list to add the mount to.
2094 */
2095 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2096 {
2097 namespace_lock();
2098 br_write_lock(&vfsmount_lock);
2099
2100 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2101
2102 br_write_unlock(&vfsmount_lock);
2103 namespace_unlock();
2104 }
2105 EXPORT_SYMBOL(mnt_set_expiry);
2106
2107 /*
2108 * process a list of expirable mountpoints with the intent of discarding any
2109 * mountpoints that aren't in use and haven't been touched since last we came
2110 * here
2111 */
2112 void mark_mounts_for_expiry(struct list_head *mounts)
2113 {
2114 struct mount *mnt, *next;
2115 LIST_HEAD(graveyard);
2116
2117 if (list_empty(mounts))
2118 return;
2119
2120 namespace_lock();
2121 br_write_lock(&vfsmount_lock);
2122
2123 /* extract from the expiration list every vfsmount that matches the
2124 * following criteria:
2125 * - only referenced by its parent vfsmount
2126 * - still marked for expiry (marked on the last call here; marks are
2127 * cleared by mntput())
2128 */
2129 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2130 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2131 propagate_mount_busy(mnt, 1))
2132 continue;
2133 list_move(&mnt->mnt_expire, &graveyard);
2134 }
2135 while (!list_empty(&graveyard)) {
2136 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2137 touch_mnt_namespace(mnt->mnt_ns);
2138 umount_tree(mnt, 1);
2139 }
2140 br_write_unlock(&vfsmount_lock);
2141 namespace_unlock();
2142 }
2143
2144 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2145
2146 /*
2147 * Ripoff of 'select_parent()'
2148 *
2149 * search the list of submounts for a given mountpoint, and move any
2150 * shrinkable submounts to the 'graveyard' list.
2151 */
2152 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2153 {
2154 struct mount *this_parent = parent;
2155 struct list_head *next;
2156 int found = 0;
2157
2158 repeat:
2159 next = this_parent->mnt_mounts.next;
2160 resume:
2161 while (next != &this_parent->mnt_mounts) {
2162 struct list_head *tmp = next;
2163 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2164
2165 next = tmp->next;
2166 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2167 continue;
2168 /*
2169 * Descend a level if the d_mounts list is non-empty.
2170 */
2171 if (!list_empty(&mnt->mnt_mounts)) {
2172 this_parent = mnt;
2173 goto repeat;
2174 }
2175
2176 if (!propagate_mount_busy(mnt, 1)) {
2177 list_move_tail(&mnt->mnt_expire, graveyard);
2178 found++;
2179 }
2180 }
2181 /*
2182 * All done at this level ... ascend and resume the search
2183 */
2184 if (this_parent != parent) {
2185 next = this_parent->mnt_child.next;
2186 this_parent = this_parent->mnt_parent;
2187 goto resume;
2188 }
2189 return found;
2190 }
2191
2192 /*
2193 * process a list of expirable mountpoints with the intent of discarding any
2194 * submounts of a specific parent mountpoint
2195 *
2196 * vfsmount_lock must be held for write
2197 */
2198 static void shrink_submounts(struct mount *mnt)
2199 {
2200 LIST_HEAD(graveyard);
2201 struct mount *m;
2202
2203 /* extract submounts of 'mountpoint' from the expiration list */
2204 while (select_submounts(mnt, &graveyard)) {
2205 while (!list_empty(&graveyard)) {
2206 m = list_first_entry(&graveyard, struct mount,
2207 mnt_expire);
2208 touch_mnt_namespace(m->mnt_ns);
2209 umount_tree(m, 1);
2210 }
2211 }
2212 }
2213
2214 /*
2215 * Some copy_from_user() implementations do not return the exact number of
2216 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2217 * Note that this function differs from copy_from_user() in that it will oops
2218 * on bad values of `to', rather than returning a short copy.
2219 */
2220 static long exact_copy_from_user(void *to, const void __user * from,
2221 unsigned long n)
2222 {
2223 char *t = to;
2224 const char __user *f = from;
2225 char c;
2226
2227 if (!access_ok(VERIFY_READ, from, n))
2228 return n;
2229
2230 while (n) {
2231 if (__get_user(c, f)) {
2232 memset(t, 0, n);
2233 break;
2234 }
2235 *t++ = c;
2236 f++;
2237 n--;
2238 }
2239 return n;
2240 }
2241
2242 int copy_mount_options(const void __user * data, unsigned long *where)
2243 {
2244 int i;
2245 unsigned long page;
2246 unsigned long size;
2247
2248 *where = 0;
2249 if (!data)
2250 return 0;
2251
2252 if (!(page = __get_free_page(GFP_KERNEL)))
2253 return -ENOMEM;
2254
2255 /* We only care that *some* data at the address the user
2256 * gave us is valid. Just in case, we'll zero
2257 * the remainder of the page.
2258 */
2259 /* copy_from_user cannot cross TASK_SIZE ! */
2260 size = TASK_SIZE - (unsigned long)data;
2261 if (size > PAGE_SIZE)
2262 size = PAGE_SIZE;
2263
2264 i = size - exact_copy_from_user((void *)page, data, size);
2265 if (!i) {
2266 free_page(page);
2267 return -EFAULT;
2268 }
2269 if (i != PAGE_SIZE)
2270 memset((char *)page + i, 0, PAGE_SIZE - i);
2271 *where = page;
2272 return 0;
2273 }
2274
2275 int copy_mount_string(const void __user *data, char **where)
2276 {
2277 char *tmp;
2278
2279 if (!data) {
2280 *where = NULL;
2281 return 0;
2282 }
2283
2284 tmp = strndup_user(data, PAGE_SIZE);
2285 if (IS_ERR(tmp))
2286 return PTR_ERR(tmp);
2287
2288 *where = tmp;
2289 return 0;
2290 }
2291
2292 /*
2293 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2294 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2295 *
2296 * data is a (void *) that can point to any structure up to
2297 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2298 * information (or be NULL).
2299 *
2300 * Pre-0.97 versions of mount() didn't have a flags word.
2301 * When the flags word was introduced its top half was required
2302 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2303 * Therefore, if this magic number is present, it carries no information
2304 * and must be discarded.
2305 */
2306 long do_mount(const char *dev_name, const char *dir_name,
2307 const char *type_page, unsigned long flags, void *data_page)
2308 {
2309 struct path path;
2310 int retval = 0;
2311 int mnt_flags = 0;
2312
2313 /* Discard magic */
2314 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2315 flags &= ~MS_MGC_MSK;
2316
2317 /* Basic sanity checks */
2318
2319 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2320 return -EINVAL;
2321
2322 if (data_page)
2323 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2324
2325 /* ... and get the mountpoint */
2326 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2327 if (retval)
2328 return retval;
2329
2330 retval = security_sb_mount(dev_name, &path,
2331 type_page, flags, data_page);
2332 if (!retval && !may_mount())
2333 retval = -EPERM;
2334 if (retval)
2335 goto dput_out;
2336
2337 /* Default to relatime unless overriden */
2338 if (!(flags & MS_NOATIME))
2339 mnt_flags |= MNT_RELATIME;
2340
2341 /* Separate the per-mountpoint flags */
2342 if (flags & MS_NOSUID)
2343 mnt_flags |= MNT_NOSUID;
2344 if (flags & MS_NODEV)
2345 mnt_flags |= MNT_NODEV;
2346 if (flags & MS_NOEXEC)
2347 mnt_flags |= MNT_NOEXEC;
2348 if (flags & MS_NOATIME)
2349 mnt_flags |= MNT_NOATIME;
2350 if (flags & MS_NODIRATIME)
2351 mnt_flags |= MNT_NODIRATIME;
2352 if (flags & MS_STRICTATIME)
2353 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2354 if (flags & MS_RDONLY)
2355 mnt_flags |= MNT_READONLY;
2356
2357 /* The default atime for remount is preservation */
2358 if ((flags & MS_REMOUNT) &&
2359 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2360 MS_STRICTATIME)) == 0)) {
2361 mnt_flags &= ~MNT_ATIME_MASK;
2362 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2363 }
2364
2365 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2366 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2367 MS_STRICTATIME);
2368
2369 if (flags & MS_REMOUNT)
2370 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2371 data_page);
2372 else if (flags & MS_BIND)
2373 retval = do_loopback(&path, dev_name, flags & MS_REC);
2374 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2375 retval = do_change_type(&path, flags);
2376 else if (flags & MS_MOVE)
2377 retval = do_move_mount(&path, dev_name);
2378 else
2379 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2380 dev_name, data_page);
2381 dput_out:
2382 path_put(&path);
2383 return retval;
2384 }
2385
2386 static void free_mnt_ns(struct mnt_namespace *ns)
2387 {
2388 proc_free_inum(ns->proc_inum);
2389 put_user_ns(ns->user_ns);
2390 kfree(ns);
2391 }
2392
2393 /*
2394 * Assign a sequence number so we can detect when we attempt to bind
2395 * mount a reference to an older mount namespace into the current
2396 * mount namespace, preventing reference counting loops. A 64bit
2397 * number incrementing at 10Ghz will take 12,427 years to wrap which
2398 * is effectively never, so we can ignore the possibility.
2399 */
2400 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2401
2402 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2403 {
2404 struct mnt_namespace *new_ns;
2405 int ret;
2406
2407 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2408 if (!new_ns)
2409 return ERR_PTR(-ENOMEM);
2410 ret = proc_alloc_inum(&new_ns->proc_inum);
2411 if (ret) {
2412 kfree(new_ns);
2413 return ERR_PTR(ret);
2414 }
2415 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2416 atomic_set(&new_ns->count, 1);
2417 new_ns->root = NULL;
2418 INIT_LIST_HEAD(&new_ns->list);
2419 init_waitqueue_head(&new_ns->poll);
2420 new_ns->event = 0;
2421 new_ns->user_ns = get_user_ns(user_ns);
2422 return new_ns;
2423 }
2424
2425 /*
2426 * Allocate a new namespace structure and populate it with contents
2427 * copied from the namespace of the passed in task structure.
2428 */
2429 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2430 struct user_namespace *user_ns, struct fs_struct *fs)
2431 {
2432 struct mnt_namespace *new_ns;
2433 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2434 struct mount *p, *q;
2435 struct mount *old = mnt_ns->root;
2436 struct mount *new;
2437 int copy_flags;
2438
2439 new_ns = alloc_mnt_ns(user_ns);
2440 if (IS_ERR(new_ns))
2441 return new_ns;
2442
2443 namespace_lock();
2444 /* First pass: copy the tree topology */
2445 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2446 if (user_ns != mnt_ns->user_ns)
2447 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2448 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2449 if (IS_ERR(new)) {
2450 namespace_unlock();
2451 free_mnt_ns(new_ns);
2452 return ERR_CAST(new);
2453 }
2454 new_ns->root = new;
2455 br_write_lock(&vfsmount_lock);
2456 list_add_tail(&new_ns->list, &new->mnt_list);
2457 br_write_unlock(&vfsmount_lock);
2458
2459 /*
2460 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2461 * as belonging to new namespace. We have already acquired a private
2462 * fs_struct, so tsk->fs->lock is not needed.
2463 */
2464 p = old;
2465 q = new;
2466 while (p) {
2467 q->mnt_ns = new_ns;
2468 if (fs) {
2469 if (&p->mnt == fs->root.mnt) {
2470 fs->root.mnt = mntget(&q->mnt);
2471 rootmnt = &p->mnt;
2472 }
2473 if (&p->mnt == fs->pwd.mnt) {
2474 fs->pwd.mnt = mntget(&q->mnt);
2475 pwdmnt = &p->mnt;
2476 }
2477 }
2478 p = next_mnt(p, old);
2479 q = next_mnt(q, new);
2480 }
2481 namespace_unlock();
2482
2483 if (rootmnt)
2484 mntput(rootmnt);
2485 if (pwdmnt)
2486 mntput(pwdmnt);
2487
2488 return new_ns;
2489 }
2490
2491 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2492 struct user_namespace *user_ns, struct fs_struct *new_fs)
2493 {
2494 struct mnt_namespace *new_ns;
2495
2496 BUG_ON(!ns);
2497 get_mnt_ns(ns);
2498
2499 if (!(flags & CLONE_NEWNS))
2500 return ns;
2501
2502 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2503
2504 put_mnt_ns(ns);
2505 return new_ns;
2506 }
2507
2508 /**
2509 * create_mnt_ns - creates a private namespace and adds a root filesystem
2510 * @mnt: pointer to the new root filesystem mountpoint
2511 */
2512 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2513 {
2514 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2515 if (!IS_ERR(new_ns)) {
2516 struct mount *mnt = real_mount(m);
2517 mnt->mnt_ns = new_ns;
2518 new_ns->root = mnt;
2519 list_add(&mnt->mnt_list, &new_ns->list);
2520 } else {
2521 mntput(m);
2522 }
2523 return new_ns;
2524 }
2525
2526 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2527 {
2528 struct mnt_namespace *ns;
2529 struct super_block *s;
2530 struct path path;
2531 int err;
2532
2533 ns = create_mnt_ns(mnt);
2534 if (IS_ERR(ns))
2535 return ERR_CAST(ns);
2536
2537 err = vfs_path_lookup(mnt->mnt_root, mnt,
2538 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2539
2540 put_mnt_ns(ns);
2541
2542 if (err)
2543 return ERR_PTR(err);
2544
2545 /* trade a vfsmount reference for active sb one */
2546 s = path.mnt->mnt_sb;
2547 atomic_inc(&s->s_active);
2548 mntput(path.mnt);
2549 /* lock the sucker */
2550 down_write(&s->s_umount);
2551 /* ... and return the root of (sub)tree on it */
2552 return path.dentry;
2553 }
2554 EXPORT_SYMBOL(mount_subtree);
2555
2556 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2557 char __user *, type, unsigned long, flags, void __user *, data)
2558 {
2559 int ret;
2560 char *kernel_type;
2561 struct filename *kernel_dir;
2562 char *kernel_dev;
2563 unsigned long data_page;
2564
2565 ret = copy_mount_string(type, &kernel_type);
2566 if (ret < 0)
2567 goto out_type;
2568
2569 kernel_dir = getname(dir_name);
2570 if (IS_ERR(kernel_dir)) {
2571 ret = PTR_ERR(kernel_dir);
2572 goto out_dir;
2573 }
2574
2575 ret = copy_mount_string(dev_name, &kernel_dev);
2576 if (ret < 0)
2577 goto out_dev;
2578
2579 ret = copy_mount_options(data, &data_page);
2580 if (ret < 0)
2581 goto out_data;
2582
2583 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2584 (void *) data_page);
2585
2586 free_page(data_page);
2587 out_data:
2588 kfree(kernel_dev);
2589 out_dev:
2590 putname(kernel_dir);
2591 out_dir:
2592 kfree(kernel_type);
2593 out_type:
2594 return ret;
2595 }
2596
2597 /*
2598 * Return true if path is reachable from root
2599 *
2600 * namespace_sem or vfsmount_lock is held
2601 */
2602 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2603 const struct path *root)
2604 {
2605 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2606 dentry = mnt->mnt_mountpoint;
2607 mnt = mnt->mnt_parent;
2608 }
2609 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2610 }
2611
2612 int path_is_under(struct path *path1, struct path *path2)
2613 {
2614 int res;
2615 br_read_lock(&vfsmount_lock);
2616 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2617 br_read_unlock(&vfsmount_lock);
2618 return res;
2619 }
2620 EXPORT_SYMBOL(path_is_under);
2621
2622 /*
2623 * pivot_root Semantics:
2624 * Moves the root file system of the current process to the directory put_old,
2625 * makes new_root as the new root file system of the current process, and sets
2626 * root/cwd of all processes which had them on the current root to new_root.
2627 *
2628 * Restrictions:
2629 * The new_root and put_old must be directories, and must not be on the
2630 * same file system as the current process root. The put_old must be
2631 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2632 * pointed to by put_old must yield the same directory as new_root. No other
2633 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2634 *
2635 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2636 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2637 * in this situation.
2638 *
2639 * Notes:
2640 * - we don't move root/cwd if they are not at the root (reason: if something
2641 * cared enough to change them, it's probably wrong to force them elsewhere)
2642 * - it's okay to pick a root that isn't the root of a file system, e.g.
2643 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2644 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2645 * first.
2646 */
2647 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2648 const char __user *, put_old)
2649 {
2650 struct path new, old, parent_path, root_parent, root;
2651 struct mount *new_mnt, *root_mnt, *old_mnt;
2652 struct mountpoint *old_mp, *root_mp;
2653 int error;
2654
2655 if (!may_mount())
2656 return -EPERM;
2657
2658 error = user_path_dir(new_root, &new);
2659 if (error)
2660 goto out0;
2661
2662 error = user_path_dir(put_old, &old);
2663 if (error)
2664 goto out1;
2665
2666 error = security_sb_pivotroot(&old, &new);
2667 if (error)
2668 goto out2;
2669
2670 get_fs_root(current->fs, &root);
2671 old_mp = lock_mount(&old);
2672 error = PTR_ERR(old_mp);
2673 if (IS_ERR(old_mp))
2674 goto out3;
2675
2676 error = -EINVAL;
2677 new_mnt = real_mount(new.mnt);
2678 root_mnt = real_mount(root.mnt);
2679 old_mnt = real_mount(old.mnt);
2680 if (IS_MNT_SHARED(old_mnt) ||
2681 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2682 IS_MNT_SHARED(root_mnt->mnt_parent))
2683 goto out4;
2684 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2685 goto out4;
2686 error = -ENOENT;
2687 if (d_unlinked(new.dentry))
2688 goto out4;
2689 error = -EBUSY;
2690 if (new_mnt == root_mnt || old_mnt == root_mnt)
2691 goto out4; /* loop, on the same file system */
2692 error = -EINVAL;
2693 if (root.mnt->mnt_root != root.dentry)
2694 goto out4; /* not a mountpoint */
2695 if (!mnt_has_parent(root_mnt))
2696 goto out4; /* not attached */
2697 root_mp = root_mnt->mnt_mp;
2698 if (new.mnt->mnt_root != new.dentry)
2699 goto out4; /* not a mountpoint */
2700 if (!mnt_has_parent(new_mnt))
2701 goto out4; /* not attached */
2702 /* make sure we can reach put_old from new_root */
2703 if (!is_path_reachable(old_mnt, old.dentry, &new))
2704 goto out4;
2705 /* make certain new is below the root */
2706 if (!is_path_reachable(new_mnt, new.dentry, &root))
2707 goto out4;
2708 root_mp->m_count++; /* pin it so it won't go away */
2709 br_write_lock(&vfsmount_lock);
2710 detach_mnt(new_mnt, &parent_path);
2711 detach_mnt(root_mnt, &root_parent);
2712 /* mount old root on put_old */
2713 attach_mnt(root_mnt, old_mnt, old_mp);
2714 /* mount new_root on / */
2715 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2716 touch_mnt_namespace(current->nsproxy->mnt_ns);
2717 br_write_unlock(&vfsmount_lock);
2718 chroot_fs_refs(&root, &new);
2719 put_mountpoint(root_mp);
2720 error = 0;
2721 out4:
2722 unlock_mount(old_mp);
2723 if (!error) {
2724 path_put(&root_parent);
2725 path_put(&parent_path);
2726 }
2727 out3:
2728 path_put(&root);
2729 out2:
2730 path_put(&old);
2731 out1:
2732 path_put(&new);
2733 out0:
2734 return error;
2735 }
2736
2737 static void __init init_mount_tree(void)
2738 {
2739 struct vfsmount *mnt;
2740 struct mnt_namespace *ns;
2741 struct path root;
2742 struct file_system_type *type;
2743
2744 type = get_fs_type("rootfs");
2745 if (!type)
2746 panic("Can't find rootfs type");
2747 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2748 put_filesystem(type);
2749 if (IS_ERR(mnt))
2750 panic("Can't create rootfs");
2751
2752 ns = create_mnt_ns(mnt);
2753 if (IS_ERR(ns))
2754 panic("Can't allocate initial namespace");
2755
2756 init_task.nsproxy->mnt_ns = ns;
2757 get_mnt_ns(ns);
2758
2759 root.mnt = mnt;
2760 root.dentry = mnt->mnt_root;
2761
2762 set_fs_pwd(current->fs, &root);
2763 set_fs_root(current->fs, &root);
2764 }
2765
2766 void __init mnt_init(void)
2767 {
2768 unsigned u;
2769 int err;
2770
2771 init_rwsem(&namespace_sem);
2772
2773 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2774 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2775
2776 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2777 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2778
2779 if (!mount_hashtable || !mountpoint_hashtable)
2780 panic("Failed to allocate mount hash table\n");
2781
2782 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2783
2784 for (u = 0; u < HASH_SIZE; u++)
2785 INIT_LIST_HEAD(&mount_hashtable[u]);
2786 for (u = 0; u < HASH_SIZE; u++)
2787 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2788
2789 br_lock_init(&vfsmount_lock);
2790
2791 err = sysfs_init();
2792 if (err)
2793 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2794 __func__, err);
2795 fs_kobj = kobject_create_and_add("fs", NULL);
2796 if (!fs_kobj)
2797 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2798 init_rootfs();
2799 init_mount_tree();
2800 }
2801
2802 void put_mnt_ns(struct mnt_namespace *ns)
2803 {
2804 if (!atomic_dec_and_test(&ns->count))
2805 return;
2806 namespace_lock();
2807 br_write_lock(&vfsmount_lock);
2808 umount_tree(ns->root, 0);
2809 br_write_unlock(&vfsmount_lock);
2810 namespace_unlock();
2811 free_mnt_ns(ns);
2812 }
2813
2814 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2815 {
2816 struct vfsmount *mnt;
2817 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2818 if (!IS_ERR(mnt)) {
2819 /*
2820 * it is a longterm mount, don't release mnt until
2821 * we unmount before file sys is unregistered
2822 */
2823 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2824 }
2825 return mnt;
2826 }
2827 EXPORT_SYMBOL_GPL(kern_mount_data);
2828
2829 void kern_unmount(struct vfsmount *mnt)
2830 {
2831 /* release long term mount so mount point can be released */
2832 if (!IS_ERR_OR_NULL(mnt)) {
2833 br_write_lock(&vfsmount_lock);
2834 real_mount(mnt)->mnt_ns = NULL;
2835 br_write_unlock(&vfsmount_lock);
2836 mntput(mnt);
2837 }
2838 }
2839 EXPORT_SYMBOL(kern_unmount);
2840
2841 bool our_mnt(struct vfsmount *mnt)
2842 {
2843 return check_mnt(real_mount(mnt));
2844 }
2845
2846 bool current_chrooted(void)
2847 {
2848 /* Does the current process have a non-standard root */
2849 struct path ns_root;
2850 struct path fs_root;
2851 bool chrooted;
2852
2853 /* Find the namespace root */
2854 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2855 ns_root.dentry = ns_root.mnt->mnt_root;
2856 path_get(&ns_root);
2857 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2858 ;
2859
2860 get_fs_root(current->fs, &fs_root);
2861
2862 chrooted = !path_equal(&fs_root, &ns_root);
2863
2864 path_put(&fs_root);
2865 path_put(&ns_root);
2866
2867 return chrooted;
2868 }
2869
2870 void update_mnt_policy(struct user_namespace *userns)
2871 {
2872 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2873 struct mount *mnt;
2874
2875 down_read(&namespace_sem);
2876 list_for_each_entry(mnt, &ns->list, mnt_list) {
2877 switch (mnt->mnt.mnt_sb->s_magic) {
2878 case SYSFS_MAGIC:
2879 userns->may_mount_sysfs = true;
2880 break;
2881 case PROC_SUPER_MAGIC:
2882 userns->may_mount_proc = true;
2883 break;
2884 }
2885 if (userns->may_mount_sysfs && userns->may_mount_proc)
2886 break;
2887 }
2888 up_read(&namespace_sem);
2889 }
2890
2891 static void *mntns_get(struct task_struct *task)
2892 {
2893 struct mnt_namespace *ns = NULL;
2894 struct nsproxy *nsproxy;
2895
2896 rcu_read_lock();
2897 nsproxy = task_nsproxy(task);
2898 if (nsproxy) {
2899 ns = nsproxy->mnt_ns;
2900 get_mnt_ns(ns);
2901 }
2902 rcu_read_unlock();
2903
2904 return ns;
2905 }
2906
2907 static void mntns_put(void *ns)
2908 {
2909 put_mnt_ns(ns);
2910 }
2911
2912 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2913 {
2914 struct fs_struct *fs = current->fs;
2915 struct mnt_namespace *mnt_ns = ns;
2916 struct path root;
2917
2918 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2919 !nsown_capable(CAP_SYS_CHROOT) ||
2920 !nsown_capable(CAP_SYS_ADMIN))
2921 return -EPERM;
2922
2923 if (fs->users != 1)
2924 return -EINVAL;
2925
2926 get_mnt_ns(mnt_ns);
2927 put_mnt_ns(nsproxy->mnt_ns);
2928 nsproxy->mnt_ns = mnt_ns;
2929
2930 /* Find the root */
2931 root.mnt = &mnt_ns->root->mnt;
2932 root.dentry = mnt_ns->root->mnt.mnt_root;
2933 path_get(&root);
2934 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2935 ;
2936
2937 /* Update the pwd and root */
2938 set_fs_pwd(fs, &root);
2939 set_fs_root(fs, &root);
2940
2941 path_put(&root);
2942 return 0;
2943 }
2944
2945 static unsigned int mntns_inum(void *ns)
2946 {
2947 struct mnt_namespace *mnt_ns = ns;
2948 return mnt_ns->proc_inum;
2949 }
2950
2951 const struct proc_ns_operations mntns_operations = {
2952 .name = "mnt",
2953 .type = CLONE_NEWNS,
2954 .get = mntns_get,
2955 .put = mntns_put,
2956 .install = mntns_install,
2957 .inum = mntns_inum,
2958 };