Merge tag 'renesas-soc-r8a7790-for-v3.10' of git://git.kernel.org/pub/scm/linux/kerne...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41
42 /* /sys/fs */
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
45
46 /*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54 DEFINE_BRLOCK(vfsmount_lock);
55
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 {
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
62 }
63
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
66 /*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 int res;
73
74 retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 if (!res)
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85 }
86
87 static void mnt_free_id(struct mount *mnt)
88 {
89 int id = mnt->mnt_id;
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
94 spin_unlock(&mnt_id_lock);
95 }
96
97 /*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 int res;
105
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
111 &mnt->mnt_group_id);
112 if (!res)
113 mnt_group_start = mnt->mnt_group_id + 1;
114
115 return res;
116 }
117
118 /*
119 * Release a peer group ID
120 */
121 void mnt_release_group_id(struct mount *mnt)
122 {
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
128 }
129
130 /*
131 * vfsmount lock must be held for read
132 */
133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 preempt_disable();
139 mnt->mnt_count += n;
140 preempt_enable();
141 #endif
142 }
143
144 /*
145 * vfsmount lock must be held for write
146 */
147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 unsigned int count = 0;
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 }
156
157 return count;
158 #else
159 return mnt->mnt_count;
160 #endif
161 }
162
163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
167 int err;
168
169 err = mnt_alloc_id(mnt);
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
176 goto out_free_id;
177 }
178
179 #ifdef CONFIG_SMP
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
182 goto out_free_devname;
183
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
188 #endif
189
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 }
202 return mnt;
203
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 mnt_free_id(mnt);
210 out_free_cache:
211 kmem_cache_free(mnt_cache, mnt);
212 return NULL;
213 }
214
215 /*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223 /*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 mnt->mnt_writers++;
250 #endif
251 }
252
253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 mnt->mnt_writers--;
259 #endif
260 }
261
262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 unsigned int count = 0;
266 int cpu;
267
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 }
271
272 return count;
273 #else
274 return mnt->mnt_writers;
275 #endif
276 }
277
278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285 }
286
287 /*
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
292 */
293 /**
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
302 */
303 int __mnt_want_write(struct vfsmount *m)
304 {
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329
330 return ret;
331 }
332
333 /**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342 int mnt_want_write(struct vfsmount *m)
343 {
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
350 return ret;
351 }
352 EXPORT_SYMBOL_GPL(mnt_want_write);
353
354 /**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366 int mnt_clone_write(struct vfsmount *mnt)
367 {
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
372 mnt_inc_writers(real_mount(mnt));
373 preempt_enable();
374 return 0;
375 }
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378 /**
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
381 *
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
384 */
385 int __mnt_want_write_file(struct file *file)
386 {
387 struct inode *inode = file_inode(file);
388
389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 return __mnt_want_write(file->f_path.mnt);
391 else
392 return mnt_clone_write(file->f_path.mnt);
393 }
394
395 /**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402 int mnt_want_write_file(struct file *file)
403 {
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411 }
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
414 /**
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
421 */
422 void __mnt_drop_write(struct vfsmount *mnt)
423 {
424 preempt_disable();
425 mnt_dec_writers(real_mount(mnt));
426 preempt_enable();
427 }
428
429 /**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437 void mnt_drop_write(struct vfsmount *mnt)
438 {
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441 }
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
443
444 void __mnt_drop_write_file(struct file *file)
445 {
446 __mnt_drop_write(file->f_path.mnt);
447 }
448
449 void mnt_drop_write_file(struct file *file)
450 {
451 mnt_drop_write(file->f_path.mnt);
452 }
453 EXPORT_SYMBOL(mnt_drop_write_file);
454
455 static int mnt_make_readonly(struct mount *mnt)
456 {
457 int ret = 0;
458
459 br_write_lock(&vfsmount_lock);
460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 /*
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
464 */
465 smp_mb();
466
467 /*
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
482 */
483 if (mnt_get_writers(mnt) > 0)
484 ret = -EBUSY;
485 else
486 mnt->mnt.mnt_flags |= MNT_READONLY;
487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 br_write_unlock(&vfsmount_lock);
494 return ret;
495 }
496
497 static void __mnt_unmake_readonly(struct mount *mnt)
498 {
499 br_write_lock(&vfsmount_lock);
500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 br_write_unlock(&vfsmount_lock);
502 }
503
504 int sb_prepare_remount_readonly(struct super_block *sb)
505 {
506 struct mount *mnt;
507 int err = 0;
508
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
513 br_write_lock(&vfsmount_lock);
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
535 br_write_unlock(&vfsmount_lock);
536
537 return err;
538 }
539
540 static void free_vfsmnt(struct mount *mnt)
541 {
542 kfree(mnt->mnt_devname);
543 mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 free_percpu(mnt->mnt_pcp);
546 #endif
547 kmem_cache_free(mnt_cache, mnt);
548 }
549
550 /*
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
553 * vfsmount_lock must be held for read or write.
554 */
555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 int dir)
557 {
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
560 struct mount *p, *found = NULL;
561
562 for (;;) {
563 tmp = dir ? tmp->next : tmp->prev;
564 p = NULL;
565 if (tmp == head)
566 break;
567 p = list_entry(tmp, struct mount, mnt_hash);
568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 found = p;
570 break;
571 }
572 }
573 return found;
574 }
575
576 /*
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
591 */
592 struct vfsmount *lookup_mnt(struct path *path)
593 {
594 struct mount *child_mnt;
595
596 br_read_lock(&vfsmount_lock);
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
600 br_read_unlock(&vfsmount_lock);
601 return &child_mnt->mnt;
602 } else {
603 br_read_unlock(&vfsmount_lock);
604 return NULL;
605 }
606 }
607
608 static inline int check_mnt(struct mount *mnt)
609 {
610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
611 }
612
613 /*
614 * vfsmount lock must be held for write
615 */
616 static void touch_mnt_namespace(struct mnt_namespace *ns)
617 {
618 if (ns) {
619 ns->event = ++event;
620 wake_up_interruptible(&ns->poll);
621 }
622 }
623
624 /*
625 * vfsmount lock must be held for write
626 */
627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
628 {
629 if (ns && ns->event != event) {
630 ns->event = event;
631 wake_up_interruptible(&ns->poll);
632 }
633 }
634
635 /*
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
638 */
639 static void dentry_reset_mounted(struct dentry *dentry)
640 {
641 unsigned u;
642
643 for (u = 0; u < HASH_SIZE; u++) {
644 struct mount *p;
645
646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 if (p->mnt_mountpoint == dentry)
648 return;
649 }
650 }
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654 }
655
656 /*
657 * vfsmount lock must be held for write
658 */
659 static void detach_mnt(struct mount *mnt, struct path *old_path)
660 {
661 old_path->dentry = mnt->mnt_mountpoint;
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 list_del_init(&mnt->mnt_child);
666 list_del_init(&mnt->mnt_hash);
667 dentry_reset_mounted(old_path->dentry);
668 }
669
670 /*
671 * vfsmount lock must be held for write
672 */
673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 struct mount *child_mnt)
675 {
676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
677 child_mnt->mnt_mountpoint = dget(dentry);
678 child_mnt->mnt_parent = mnt;
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
682 }
683
684 /*
685 * vfsmount lock must be held for write
686 */
687 static void attach_mnt(struct mount *mnt, struct path *path)
688 {
689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 hash(path->mnt, path->dentry));
692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
693 }
694
695 /*
696 * vfsmount lock must be held for write
697 */
698 static void commit_tree(struct mount *mnt)
699 {
700 struct mount *parent = mnt->mnt_parent;
701 struct mount *m;
702 LIST_HEAD(head);
703 struct mnt_namespace *n = parent->mnt_ns;
704
705 BUG_ON(parent == mnt);
706
707 list_add_tail(&head, &mnt->mnt_list);
708 list_for_each_entry(m, &head, mnt_list)
709 m->mnt_ns = n;
710
711 list_splice(&head, n->list.prev);
712
713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 hash(&parent->mnt, mnt->mnt_mountpoint));
715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 touch_mnt_namespace(n);
717 }
718
719 static struct mount *next_mnt(struct mount *p, struct mount *root)
720 {
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
723 while (1) {
724 if (p == root)
725 return NULL;
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
728 break;
729 p = p->mnt_parent;
730 }
731 }
732 return list_entry(next, struct mount, mnt_child);
733 }
734
735 static struct mount *skip_mnt_tree(struct mount *p)
736 {
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
741 }
742 return p;
743 }
744
745 struct vfsmount *
746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747 {
748 struct mount *mnt;
749 struct dentry *root;
750
751 if (!type)
752 return ERR_PTR(-ENODEV);
753
754 mnt = alloc_vfsmnt(name);
755 if (!mnt)
756 return ERR_PTR(-ENOMEM);
757
758 if (flags & MS_KERNMOUNT)
759 mnt->mnt.mnt_flags = MNT_INTERNAL;
760
761 root = mount_fs(type, flags, name, data);
762 if (IS_ERR(root)) {
763 free_vfsmnt(mnt);
764 return ERR_CAST(root);
765 }
766
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 mnt->mnt_parent = mnt;
771 br_write_lock(&vfsmount_lock);
772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 br_write_unlock(&vfsmount_lock);
774 return &mnt->mnt;
775 }
776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
777
778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
779 int flag)
780 {
781 struct super_block *sb = old->mnt.mnt_sb;
782 struct mount *mnt;
783 int err;
784
785 mnt = alloc_vfsmnt(old->mnt_devname);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
788
789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
790 mnt->mnt_group_id = 0; /* not a peer of original */
791 else
792 mnt->mnt_group_id = old->mnt_group_id;
793
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
796 if (err)
797 goto out_free;
798 }
799
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 /* Don't allow unprivileged users to change mount flags */
802 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
803 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
804
805 atomic_inc(&sb->s_active);
806 mnt->mnt.mnt_sb = sb;
807 mnt->mnt.mnt_root = dget(root);
808 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
809 mnt->mnt_parent = mnt;
810 br_write_lock(&vfsmount_lock);
811 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
812 br_write_unlock(&vfsmount_lock);
813
814 if ((flag & CL_SLAVE) ||
815 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
816 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
817 mnt->mnt_master = old;
818 CLEAR_MNT_SHARED(mnt);
819 } else if (!(flag & CL_PRIVATE)) {
820 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
821 list_add(&mnt->mnt_share, &old->mnt_share);
822 if (IS_MNT_SLAVE(old))
823 list_add(&mnt->mnt_slave, &old->mnt_slave);
824 mnt->mnt_master = old->mnt_master;
825 }
826 if (flag & CL_MAKE_SHARED)
827 set_mnt_shared(mnt);
828
829 /* stick the duplicate mount on the same expiry list
830 * as the original if that was on one */
831 if (flag & CL_EXPIRE) {
832 if (!list_empty(&old->mnt_expire))
833 list_add(&mnt->mnt_expire, &old->mnt_expire);
834 }
835
836 return mnt;
837
838 out_free:
839 free_vfsmnt(mnt);
840 return ERR_PTR(err);
841 }
842
843 static inline void mntfree(struct mount *mnt)
844 {
845 struct vfsmount *m = &mnt->mnt;
846 struct super_block *sb = m->mnt_sb;
847
848 /*
849 * This probably indicates that somebody messed
850 * up a mnt_want/drop_write() pair. If this
851 * happens, the filesystem was probably unable
852 * to make r/w->r/o transitions.
853 */
854 /*
855 * The locking used to deal with mnt_count decrement provides barriers,
856 * so mnt_get_writers() below is safe.
857 */
858 WARN_ON(mnt_get_writers(mnt));
859 fsnotify_vfsmount_delete(m);
860 dput(m->mnt_root);
861 free_vfsmnt(mnt);
862 deactivate_super(sb);
863 }
864
865 static void mntput_no_expire(struct mount *mnt)
866 {
867 put_again:
868 #ifdef CONFIG_SMP
869 br_read_lock(&vfsmount_lock);
870 if (likely(mnt->mnt_ns)) {
871 /* shouldn't be the last one */
872 mnt_add_count(mnt, -1);
873 br_read_unlock(&vfsmount_lock);
874 return;
875 }
876 br_read_unlock(&vfsmount_lock);
877
878 br_write_lock(&vfsmount_lock);
879 mnt_add_count(mnt, -1);
880 if (mnt_get_count(mnt)) {
881 br_write_unlock(&vfsmount_lock);
882 return;
883 }
884 #else
885 mnt_add_count(mnt, -1);
886 if (likely(mnt_get_count(mnt)))
887 return;
888 br_write_lock(&vfsmount_lock);
889 #endif
890 if (unlikely(mnt->mnt_pinned)) {
891 mnt_add_count(mnt, mnt->mnt_pinned + 1);
892 mnt->mnt_pinned = 0;
893 br_write_unlock(&vfsmount_lock);
894 acct_auto_close_mnt(&mnt->mnt);
895 goto put_again;
896 }
897
898 list_del(&mnt->mnt_instance);
899 br_write_unlock(&vfsmount_lock);
900 mntfree(mnt);
901 }
902
903 void mntput(struct vfsmount *mnt)
904 {
905 if (mnt) {
906 struct mount *m = real_mount(mnt);
907 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
908 if (unlikely(m->mnt_expiry_mark))
909 m->mnt_expiry_mark = 0;
910 mntput_no_expire(m);
911 }
912 }
913 EXPORT_SYMBOL(mntput);
914
915 struct vfsmount *mntget(struct vfsmount *mnt)
916 {
917 if (mnt)
918 mnt_add_count(real_mount(mnt), 1);
919 return mnt;
920 }
921 EXPORT_SYMBOL(mntget);
922
923 void mnt_pin(struct vfsmount *mnt)
924 {
925 br_write_lock(&vfsmount_lock);
926 real_mount(mnt)->mnt_pinned++;
927 br_write_unlock(&vfsmount_lock);
928 }
929 EXPORT_SYMBOL(mnt_pin);
930
931 void mnt_unpin(struct vfsmount *m)
932 {
933 struct mount *mnt = real_mount(m);
934 br_write_lock(&vfsmount_lock);
935 if (mnt->mnt_pinned) {
936 mnt_add_count(mnt, 1);
937 mnt->mnt_pinned--;
938 }
939 br_write_unlock(&vfsmount_lock);
940 }
941 EXPORT_SYMBOL(mnt_unpin);
942
943 static inline void mangle(struct seq_file *m, const char *s)
944 {
945 seq_escape(m, s, " \t\n\\");
946 }
947
948 /*
949 * Simple .show_options callback for filesystems which don't want to
950 * implement more complex mount option showing.
951 *
952 * See also save_mount_options().
953 */
954 int generic_show_options(struct seq_file *m, struct dentry *root)
955 {
956 const char *options;
957
958 rcu_read_lock();
959 options = rcu_dereference(root->d_sb->s_options);
960
961 if (options != NULL && options[0]) {
962 seq_putc(m, ',');
963 mangle(m, options);
964 }
965 rcu_read_unlock();
966
967 return 0;
968 }
969 EXPORT_SYMBOL(generic_show_options);
970
971 /*
972 * If filesystem uses generic_show_options(), this function should be
973 * called from the fill_super() callback.
974 *
975 * The .remount_fs callback usually needs to be handled in a special
976 * way, to make sure, that previous options are not overwritten if the
977 * remount fails.
978 *
979 * Also note, that if the filesystem's .remount_fs function doesn't
980 * reset all options to their default value, but changes only newly
981 * given options, then the displayed options will not reflect reality
982 * any more.
983 */
984 void save_mount_options(struct super_block *sb, char *options)
985 {
986 BUG_ON(sb->s_options);
987 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
988 }
989 EXPORT_SYMBOL(save_mount_options);
990
991 void replace_mount_options(struct super_block *sb, char *options)
992 {
993 char *old = sb->s_options;
994 rcu_assign_pointer(sb->s_options, options);
995 if (old) {
996 synchronize_rcu();
997 kfree(old);
998 }
999 }
1000 EXPORT_SYMBOL(replace_mount_options);
1001
1002 #ifdef CONFIG_PROC_FS
1003 /* iterator; we want it to have access to namespace_sem, thus here... */
1004 static void *m_start(struct seq_file *m, loff_t *pos)
1005 {
1006 struct proc_mounts *p = proc_mounts(m);
1007
1008 down_read(&namespace_sem);
1009 return seq_list_start(&p->ns->list, *pos);
1010 }
1011
1012 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1013 {
1014 struct proc_mounts *p = proc_mounts(m);
1015
1016 return seq_list_next(v, &p->ns->list, pos);
1017 }
1018
1019 static void m_stop(struct seq_file *m, void *v)
1020 {
1021 up_read(&namespace_sem);
1022 }
1023
1024 static int m_show(struct seq_file *m, void *v)
1025 {
1026 struct proc_mounts *p = proc_mounts(m);
1027 struct mount *r = list_entry(v, struct mount, mnt_list);
1028 return p->show(m, &r->mnt);
1029 }
1030
1031 const struct seq_operations mounts_op = {
1032 .start = m_start,
1033 .next = m_next,
1034 .stop = m_stop,
1035 .show = m_show,
1036 };
1037 #endif /* CONFIG_PROC_FS */
1038
1039 /**
1040 * may_umount_tree - check if a mount tree is busy
1041 * @mnt: root of mount tree
1042 *
1043 * This is called to check if a tree of mounts has any
1044 * open files, pwds, chroots or sub mounts that are
1045 * busy.
1046 */
1047 int may_umount_tree(struct vfsmount *m)
1048 {
1049 struct mount *mnt = real_mount(m);
1050 int actual_refs = 0;
1051 int minimum_refs = 0;
1052 struct mount *p;
1053 BUG_ON(!m);
1054
1055 /* write lock needed for mnt_get_count */
1056 br_write_lock(&vfsmount_lock);
1057 for (p = mnt; p; p = next_mnt(p, mnt)) {
1058 actual_refs += mnt_get_count(p);
1059 minimum_refs += 2;
1060 }
1061 br_write_unlock(&vfsmount_lock);
1062
1063 if (actual_refs > minimum_refs)
1064 return 0;
1065
1066 return 1;
1067 }
1068
1069 EXPORT_SYMBOL(may_umount_tree);
1070
1071 /**
1072 * may_umount - check if a mount point is busy
1073 * @mnt: root of mount
1074 *
1075 * This is called to check if a mount point has any
1076 * open files, pwds, chroots or sub mounts. If the
1077 * mount has sub mounts this will return busy
1078 * regardless of whether the sub mounts are busy.
1079 *
1080 * Doesn't take quota and stuff into account. IOW, in some cases it will
1081 * give false negatives. The main reason why it's here is that we need
1082 * a non-destructive way to look for easily umountable filesystems.
1083 */
1084 int may_umount(struct vfsmount *mnt)
1085 {
1086 int ret = 1;
1087 down_read(&namespace_sem);
1088 br_write_lock(&vfsmount_lock);
1089 if (propagate_mount_busy(real_mount(mnt), 2))
1090 ret = 0;
1091 br_write_unlock(&vfsmount_lock);
1092 up_read(&namespace_sem);
1093 return ret;
1094 }
1095
1096 EXPORT_SYMBOL(may_umount);
1097
1098 void release_mounts(struct list_head *head)
1099 {
1100 struct mount *mnt;
1101 while (!list_empty(head)) {
1102 mnt = list_first_entry(head, struct mount, mnt_hash);
1103 list_del_init(&mnt->mnt_hash);
1104 if (mnt_has_parent(mnt)) {
1105 struct dentry *dentry;
1106 struct mount *m;
1107
1108 br_write_lock(&vfsmount_lock);
1109 dentry = mnt->mnt_mountpoint;
1110 m = mnt->mnt_parent;
1111 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1112 mnt->mnt_parent = mnt;
1113 m->mnt_ghosts--;
1114 br_write_unlock(&vfsmount_lock);
1115 dput(dentry);
1116 mntput(&m->mnt);
1117 }
1118 mntput(&mnt->mnt);
1119 }
1120 }
1121
1122 /*
1123 * vfsmount lock must be held for write
1124 * namespace_sem must be held for write
1125 */
1126 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1127 {
1128 LIST_HEAD(tmp_list);
1129 struct mount *p;
1130
1131 for (p = mnt; p; p = next_mnt(p, mnt))
1132 list_move(&p->mnt_hash, &tmp_list);
1133
1134 if (propagate)
1135 propagate_umount(&tmp_list);
1136
1137 list_for_each_entry(p, &tmp_list, mnt_hash) {
1138 list_del_init(&p->mnt_expire);
1139 list_del_init(&p->mnt_list);
1140 __touch_mnt_namespace(p->mnt_ns);
1141 p->mnt_ns = NULL;
1142 list_del_init(&p->mnt_child);
1143 if (mnt_has_parent(p)) {
1144 p->mnt_parent->mnt_ghosts++;
1145 dentry_reset_mounted(p->mnt_mountpoint);
1146 }
1147 change_mnt_propagation(p, MS_PRIVATE);
1148 }
1149 list_splice(&tmp_list, kill);
1150 }
1151
1152 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1153
1154 static int do_umount(struct mount *mnt, int flags)
1155 {
1156 struct super_block *sb = mnt->mnt.mnt_sb;
1157 int retval;
1158 LIST_HEAD(umount_list);
1159
1160 retval = security_sb_umount(&mnt->mnt, flags);
1161 if (retval)
1162 return retval;
1163
1164 /*
1165 * Allow userspace to request a mountpoint be expired rather than
1166 * unmounting unconditionally. Unmount only happens if:
1167 * (1) the mark is already set (the mark is cleared by mntput())
1168 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1169 */
1170 if (flags & MNT_EXPIRE) {
1171 if (&mnt->mnt == current->fs->root.mnt ||
1172 flags & (MNT_FORCE | MNT_DETACH))
1173 return -EINVAL;
1174
1175 /*
1176 * probably don't strictly need the lock here if we examined
1177 * all race cases, but it's a slowpath.
1178 */
1179 br_write_lock(&vfsmount_lock);
1180 if (mnt_get_count(mnt) != 2) {
1181 br_write_unlock(&vfsmount_lock);
1182 return -EBUSY;
1183 }
1184 br_write_unlock(&vfsmount_lock);
1185
1186 if (!xchg(&mnt->mnt_expiry_mark, 1))
1187 return -EAGAIN;
1188 }
1189
1190 /*
1191 * If we may have to abort operations to get out of this
1192 * mount, and they will themselves hold resources we must
1193 * allow the fs to do things. In the Unix tradition of
1194 * 'Gee thats tricky lets do it in userspace' the umount_begin
1195 * might fail to complete on the first run through as other tasks
1196 * must return, and the like. Thats for the mount program to worry
1197 * about for the moment.
1198 */
1199
1200 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1201 sb->s_op->umount_begin(sb);
1202 }
1203
1204 /*
1205 * No sense to grab the lock for this test, but test itself looks
1206 * somewhat bogus. Suggestions for better replacement?
1207 * Ho-hum... In principle, we might treat that as umount + switch
1208 * to rootfs. GC would eventually take care of the old vfsmount.
1209 * Actually it makes sense, especially if rootfs would contain a
1210 * /reboot - static binary that would close all descriptors and
1211 * call reboot(9). Then init(8) could umount root and exec /reboot.
1212 */
1213 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1214 /*
1215 * Special case for "unmounting" root ...
1216 * we just try to remount it readonly.
1217 */
1218 down_write(&sb->s_umount);
1219 if (!(sb->s_flags & MS_RDONLY))
1220 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1221 up_write(&sb->s_umount);
1222 return retval;
1223 }
1224
1225 down_write(&namespace_sem);
1226 br_write_lock(&vfsmount_lock);
1227 event++;
1228
1229 if (!(flags & MNT_DETACH))
1230 shrink_submounts(mnt, &umount_list);
1231
1232 retval = -EBUSY;
1233 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1234 if (!list_empty(&mnt->mnt_list))
1235 umount_tree(mnt, 1, &umount_list);
1236 retval = 0;
1237 }
1238 br_write_unlock(&vfsmount_lock);
1239 up_write(&namespace_sem);
1240 release_mounts(&umount_list);
1241 return retval;
1242 }
1243
1244 /*
1245 * Is the caller allowed to modify his namespace?
1246 */
1247 static inline bool may_mount(void)
1248 {
1249 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1250 }
1251
1252 /*
1253 * Now umount can handle mount points as well as block devices.
1254 * This is important for filesystems which use unnamed block devices.
1255 *
1256 * We now support a flag for forced unmount like the other 'big iron'
1257 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1258 */
1259
1260 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1261 {
1262 struct path path;
1263 struct mount *mnt;
1264 int retval;
1265 int lookup_flags = 0;
1266
1267 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1268 return -EINVAL;
1269
1270 if (!may_mount())
1271 return -EPERM;
1272
1273 if (!(flags & UMOUNT_NOFOLLOW))
1274 lookup_flags |= LOOKUP_FOLLOW;
1275
1276 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1277 if (retval)
1278 goto out;
1279 mnt = real_mount(path.mnt);
1280 retval = -EINVAL;
1281 if (path.dentry != path.mnt->mnt_root)
1282 goto dput_and_out;
1283 if (!check_mnt(mnt))
1284 goto dput_and_out;
1285
1286 retval = do_umount(mnt, flags);
1287 dput_and_out:
1288 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1289 dput(path.dentry);
1290 mntput_no_expire(mnt);
1291 out:
1292 return retval;
1293 }
1294
1295 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1296
1297 /*
1298 * The 2.0 compatible umount. No flags.
1299 */
1300 SYSCALL_DEFINE1(oldumount, char __user *, name)
1301 {
1302 return sys_umount(name, 0);
1303 }
1304
1305 #endif
1306
1307 static bool mnt_ns_loop(struct path *path)
1308 {
1309 /* Could bind mounting the mount namespace inode cause a
1310 * mount namespace loop?
1311 */
1312 struct inode *inode = path->dentry->d_inode;
1313 struct proc_inode *ei;
1314 struct mnt_namespace *mnt_ns;
1315
1316 if (!proc_ns_inode(inode))
1317 return false;
1318
1319 ei = PROC_I(inode);
1320 if (ei->ns_ops != &mntns_operations)
1321 return false;
1322
1323 mnt_ns = ei->ns;
1324 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1325 }
1326
1327 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1328 int flag)
1329 {
1330 struct mount *res, *p, *q, *r;
1331 struct path path;
1332
1333 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1334 return ERR_PTR(-EINVAL);
1335
1336 res = q = clone_mnt(mnt, dentry, flag);
1337 if (IS_ERR(q))
1338 return q;
1339
1340 q->mnt_mountpoint = mnt->mnt_mountpoint;
1341
1342 p = mnt;
1343 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1344 struct mount *s;
1345 if (!is_subdir(r->mnt_mountpoint, dentry))
1346 continue;
1347
1348 for (s = r; s; s = next_mnt(s, r)) {
1349 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1350 s = skip_mnt_tree(s);
1351 continue;
1352 }
1353 while (p != s->mnt_parent) {
1354 p = p->mnt_parent;
1355 q = q->mnt_parent;
1356 }
1357 p = s;
1358 path.mnt = &q->mnt;
1359 path.dentry = p->mnt_mountpoint;
1360 q = clone_mnt(p, p->mnt.mnt_root, flag);
1361 if (IS_ERR(q))
1362 goto out;
1363 br_write_lock(&vfsmount_lock);
1364 list_add_tail(&q->mnt_list, &res->mnt_list);
1365 attach_mnt(q, &path);
1366 br_write_unlock(&vfsmount_lock);
1367 }
1368 }
1369 return res;
1370 out:
1371 if (res) {
1372 LIST_HEAD(umount_list);
1373 br_write_lock(&vfsmount_lock);
1374 umount_tree(res, 0, &umount_list);
1375 br_write_unlock(&vfsmount_lock);
1376 release_mounts(&umount_list);
1377 }
1378 return q;
1379 }
1380
1381 /* Caller should check returned pointer for errors */
1382
1383 struct vfsmount *collect_mounts(struct path *path)
1384 {
1385 struct mount *tree;
1386 down_write(&namespace_sem);
1387 tree = copy_tree(real_mount(path->mnt), path->dentry,
1388 CL_COPY_ALL | CL_PRIVATE);
1389 up_write(&namespace_sem);
1390 if (IS_ERR(tree))
1391 return NULL;
1392 return &tree->mnt;
1393 }
1394
1395 void drop_collected_mounts(struct vfsmount *mnt)
1396 {
1397 LIST_HEAD(umount_list);
1398 down_write(&namespace_sem);
1399 br_write_lock(&vfsmount_lock);
1400 umount_tree(real_mount(mnt), 0, &umount_list);
1401 br_write_unlock(&vfsmount_lock);
1402 up_write(&namespace_sem);
1403 release_mounts(&umount_list);
1404 }
1405
1406 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1407 struct vfsmount *root)
1408 {
1409 struct mount *mnt;
1410 int res = f(root, arg);
1411 if (res)
1412 return res;
1413 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1414 res = f(&mnt->mnt, arg);
1415 if (res)
1416 return res;
1417 }
1418 return 0;
1419 }
1420
1421 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1422 {
1423 struct mount *p;
1424
1425 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1426 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1427 mnt_release_group_id(p);
1428 }
1429 }
1430
1431 static int invent_group_ids(struct mount *mnt, bool recurse)
1432 {
1433 struct mount *p;
1434
1435 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1436 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1437 int err = mnt_alloc_group_id(p);
1438 if (err) {
1439 cleanup_group_ids(mnt, p);
1440 return err;
1441 }
1442 }
1443 }
1444
1445 return 0;
1446 }
1447
1448 /*
1449 * @source_mnt : mount tree to be attached
1450 * @nd : place the mount tree @source_mnt is attached
1451 * @parent_nd : if non-null, detach the source_mnt from its parent and
1452 * store the parent mount and mountpoint dentry.
1453 * (done when source_mnt is moved)
1454 *
1455 * NOTE: in the table below explains the semantics when a source mount
1456 * of a given type is attached to a destination mount of a given type.
1457 * ---------------------------------------------------------------------------
1458 * | BIND MOUNT OPERATION |
1459 * |**************************************************************************
1460 * | source-->| shared | private | slave | unbindable |
1461 * | dest | | | | |
1462 * | | | | | | |
1463 * | v | | | | |
1464 * |**************************************************************************
1465 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1466 * | | | | | |
1467 * |non-shared| shared (+) | private | slave (*) | invalid |
1468 * ***************************************************************************
1469 * A bind operation clones the source mount and mounts the clone on the
1470 * destination mount.
1471 *
1472 * (++) the cloned mount is propagated to all the mounts in the propagation
1473 * tree of the destination mount and the cloned mount is added to
1474 * the peer group of the source mount.
1475 * (+) the cloned mount is created under the destination mount and is marked
1476 * as shared. The cloned mount is added to the peer group of the source
1477 * mount.
1478 * (+++) the mount is propagated to all the mounts in the propagation tree
1479 * of the destination mount and the cloned mount is made slave
1480 * of the same master as that of the source mount. The cloned mount
1481 * is marked as 'shared and slave'.
1482 * (*) the cloned mount is made a slave of the same master as that of the
1483 * source mount.
1484 *
1485 * ---------------------------------------------------------------------------
1486 * | MOVE MOUNT OPERATION |
1487 * |**************************************************************************
1488 * | source-->| shared | private | slave | unbindable |
1489 * | dest | | | | |
1490 * | | | | | | |
1491 * | v | | | | |
1492 * |**************************************************************************
1493 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1494 * | | | | | |
1495 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1496 * ***************************************************************************
1497 *
1498 * (+) the mount is moved to the destination. And is then propagated to
1499 * all the mounts in the propagation tree of the destination mount.
1500 * (+*) the mount is moved to the destination.
1501 * (+++) the mount is moved to the destination and is then propagated to
1502 * all the mounts belonging to the destination mount's propagation tree.
1503 * the mount is marked as 'shared and slave'.
1504 * (*) the mount continues to be a slave at the new location.
1505 *
1506 * if the source mount is a tree, the operations explained above is
1507 * applied to each mount in the tree.
1508 * Must be called without spinlocks held, since this function can sleep
1509 * in allocations.
1510 */
1511 static int attach_recursive_mnt(struct mount *source_mnt,
1512 struct path *path, struct path *parent_path)
1513 {
1514 LIST_HEAD(tree_list);
1515 struct mount *dest_mnt = real_mount(path->mnt);
1516 struct dentry *dest_dentry = path->dentry;
1517 struct mount *child, *p;
1518 int err;
1519
1520 if (IS_MNT_SHARED(dest_mnt)) {
1521 err = invent_group_ids(source_mnt, true);
1522 if (err)
1523 goto out;
1524 }
1525 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1526 if (err)
1527 goto out_cleanup_ids;
1528
1529 br_write_lock(&vfsmount_lock);
1530
1531 if (IS_MNT_SHARED(dest_mnt)) {
1532 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1533 set_mnt_shared(p);
1534 }
1535 if (parent_path) {
1536 detach_mnt(source_mnt, parent_path);
1537 attach_mnt(source_mnt, path);
1538 touch_mnt_namespace(source_mnt->mnt_ns);
1539 } else {
1540 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1541 commit_tree(source_mnt);
1542 }
1543
1544 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1545 list_del_init(&child->mnt_hash);
1546 commit_tree(child);
1547 }
1548 br_write_unlock(&vfsmount_lock);
1549
1550 return 0;
1551
1552 out_cleanup_ids:
1553 if (IS_MNT_SHARED(dest_mnt))
1554 cleanup_group_ids(source_mnt, NULL);
1555 out:
1556 return err;
1557 }
1558
1559 static int lock_mount(struct path *path)
1560 {
1561 struct vfsmount *mnt;
1562 retry:
1563 mutex_lock(&path->dentry->d_inode->i_mutex);
1564 if (unlikely(cant_mount(path->dentry))) {
1565 mutex_unlock(&path->dentry->d_inode->i_mutex);
1566 return -ENOENT;
1567 }
1568 down_write(&namespace_sem);
1569 mnt = lookup_mnt(path);
1570 if (likely(!mnt))
1571 return 0;
1572 up_write(&namespace_sem);
1573 mutex_unlock(&path->dentry->d_inode->i_mutex);
1574 path_put(path);
1575 path->mnt = mnt;
1576 path->dentry = dget(mnt->mnt_root);
1577 goto retry;
1578 }
1579
1580 static void unlock_mount(struct path *path)
1581 {
1582 up_write(&namespace_sem);
1583 mutex_unlock(&path->dentry->d_inode->i_mutex);
1584 }
1585
1586 static int graft_tree(struct mount *mnt, struct path *path)
1587 {
1588 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1589 return -EINVAL;
1590
1591 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1592 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1593 return -ENOTDIR;
1594
1595 if (d_unlinked(path->dentry))
1596 return -ENOENT;
1597
1598 return attach_recursive_mnt(mnt, path, NULL);
1599 }
1600
1601 /*
1602 * Sanity check the flags to change_mnt_propagation.
1603 */
1604
1605 static int flags_to_propagation_type(int flags)
1606 {
1607 int type = flags & ~(MS_REC | MS_SILENT);
1608
1609 /* Fail if any non-propagation flags are set */
1610 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1611 return 0;
1612 /* Only one propagation flag should be set */
1613 if (!is_power_of_2(type))
1614 return 0;
1615 return type;
1616 }
1617
1618 /*
1619 * recursively change the type of the mountpoint.
1620 */
1621 static int do_change_type(struct path *path, int flag)
1622 {
1623 struct mount *m;
1624 struct mount *mnt = real_mount(path->mnt);
1625 int recurse = flag & MS_REC;
1626 int type;
1627 int err = 0;
1628
1629 if (path->dentry != path->mnt->mnt_root)
1630 return -EINVAL;
1631
1632 type = flags_to_propagation_type(flag);
1633 if (!type)
1634 return -EINVAL;
1635
1636 down_write(&namespace_sem);
1637 if (type == MS_SHARED) {
1638 err = invent_group_ids(mnt, recurse);
1639 if (err)
1640 goto out_unlock;
1641 }
1642
1643 br_write_lock(&vfsmount_lock);
1644 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1645 change_mnt_propagation(m, type);
1646 br_write_unlock(&vfsmount_lock);
1647
1648 out_unlock:
1649 up_write(&namespace_sem);
1650 return err;
1651 }
1652
1653 /*
1654 * do loopback mount.
1655 */
1656 static int do_loopback(struct path *path, const char *old_name,
1657 int recurse)
1658 {
1659 LIST_HEAD(umount_list);
1660 struct path old_path;
1661 struct mount *mnt = NULL, *old;
1662 int err;
1663 if (!old_name || !*old_name)
1664 return -EINVAL;
1665 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1666 if (err)
1667 return err;
1668
1669 err = -EINVAL;
1670 if (mnt_ns_loop(&old_path))
1671 goto out;
1672
1673 err = lock_mount(path);
1674 if (err)
1675 goto out;
1676
1677 old = real_mount(old_path.mnt);
1678
1679 err = -EINVAL;
1680 if (IS_MNT_UNBINDABLE(old))
1681 goto out2;
1682
1683 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1684 goto out2;
1685
1686 if (recurse)
1687 mnt = copy_tree(old, old_path.dentry, 0);
1688 else
1689 mnt = clone_mnt(old, old_path.dentry, 0);
1690
1691 if (IS_ERR(mnt)) {
1692 err = PTR_ERR(mnt);
1693 goto out;
1694 }
1695
1696 err = graft_tree(mnt, path);
1697 if (err) {
1698 br_write_lock(&vfsmount_lock);
1699 umount_tree(mnt, 0, &umount_list);
1700 br_write_unlock(&vfsmount_lock);
1701 }
1702 out2:
1703 unlock_mount(path);
1704 release_mounts(&umount_list);
1705 out:
1706 path_put(&old_path);
1707 return err;
1708 }
1709
1710 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1711 {
1712 int error = 0;
1713 int readonly_request = 0;
1714
1715 if (ms_flags & MS_RDONLY)
1716 readonly_request = 1;
1717 if (readonly_request == __mnt_is_readonly(mnt))
1718 return 0;
1719
1720 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1721 return -EPERM;
1722
1723 if (readonly_request)
1724 error = mnt_make_readonly(real_mount(mnt));
1725 else
1726 __mnt_unmake_readonly(real_mount(mnt));
1727 return error;
1728 }
1729
1730 /*
1731 * change filesystem flags. dir should be a physical root of filesystem.
1732 * If you've mounted a non-root directory somewhere and want to do remount
1733 * on it - tough luck.
1734 */
1735 static int do_remount(struct path *path, int flags, int mnt_flags,
1736 void *data)
1737 {
1738 int err;
1739 struct super_block *sb = path->mnt->mnt_sb;
1740 struct mount *mnt = real_mount(path->mnt);
1741
1742 if (!check_mnt(mnt))
1743 return -EINVAL;
1744
1745 if (path->dentry != path->mnt->mnt_root)
1746 return -EINVAL;
1747
1748 err = security_sb_remount(sb, data);
1749 if (err)
1750 return err;
1751
1752 down_write(&sb->s_umount);
1753 if (flags & MS_BIND)
1754 err = change_mount_flags(path->mnt, flags);
1755 else if (!capable(CAP_SYS_ADMIN))
1756 err = -EPERM;
1757 else
1758 err = do_remount_sb(sb, flags, data, 0);
1759 if (!err) {
1760 br_write_lock(&vfsmount_lock);
1761 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1762 mnt->mnt.mnt_flags = mnt_flags;
1763 br_write_unlock(&vfsmount_lock);
1764 }
1765 up_write(&sb->s_umount);
1766 if (!err) {
1767 br_write_lock(&vfsmount_lock);
1768 touch_mnt_namespace(mnt->mnt_ns);
1769 br_write_unlock(&vfsmount_lock);
1770 }
1771 return err;
1772 }
1773
1774 static inline int tree_contains_unbindable(struct mount *mnt)
1775 {
1776 struct mount *p;
1777 for (p = mnt; p; p = next_mnt(p, mnt)) {
1778 if (IS_MNT_UNBINDABLE(p))
1779 return 1;
1780 }
1781 return 0;
1782 }
1783
1784 static int do_move_mount(struct path *path, const char *old_name)
1785 {
1786 struct path old_path, parent_path;
1787 struct mount *p;
1788 struct mount *old;
1789 int err;
1790 if (!old_name || !*old_name)
1791 return -EINVAL;
1792 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1793 if (err)
1794 return err;
1795
1796 err = lock_mount(path);
1797 if (err < 0)
1798 goto out;
1799
1800 old = real_mount(old_path.mnt);
1801 p = real_mount(path->mnt);
1802
1803 err = -EINVAL;
1804 if (!check_mnt(p) || !check_mnt(old))
1805 goto out1;
1806
1807 if (d_unlinked(path->dentry))
1808 goto out1;
1809
1810 err = -EINVAL;
1811 if (old_path.dentry != old_path.mnt->mnt_root)
1812 goto out1;
1813
1814 if (!mnt_has_parent(old))
1815 goto out1;
1816
1817 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1818 S_ISDIR(old_path.dentry->d_inode->i_mode))
1819 goto out1;
1820 /*
1821 * Don't move a mount residing in a shared parent.
1822 */
1823 if (IS_MNT_SHARED(old->mnt_parent))
1824 goto out1;
1825 /*
1826 * Don't move a mount tree containing unbindable mounts to a destination
1827 * mount which is shared.
1828 */
1829 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1830 goto out1;
1831 err = -ELOOP;
1832 for (; mnt_has_parent(p); p = p->mnt_parent)
1833 if (p == old)
1834 goto out1;
1835
1836 err = attach_recursive_mnt(old, path, &parent_path);
1837 if (err)
1838 goto out1;
1839
1840 /* if the mount is moved, it should no longer be expire
1841 * automatically */
1842 list_del_init(&old->mnt_expire);
1843 out1:
1844 unlock_mount(path);
1845 out:
1846 if (!err)
1847 path_put(&parent_path);
1848 path_put(&old_path);
1849 return err;
1850 }
1851
1852 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1853 {
1854 int err;
1855 const char *subtype = strchr(fstype, '.');
1856 if (subtype) {
1857 subtype++;
1858 err = -EINVAL;
1859 if (!subtype[0])
1860 goto err;
1861 } else
1862 subtype = "";
1863
1864 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1865 err = -ENOMEM;
1866 if (!mnt->mnt_sb->s_subtype)
1867 goto err;
1868 return mnt;
1869
1870 err:
1871 mntput(mnt);
1872 return ERR_PTR(err);
1873 }
1874
1875 /*
1876 * add a mount into a namespace's mount tree
1877 */
1878 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1879 {
1880 int err;
1881
1882 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1883
1884 err = lock_mount(path);
1885 if (err)
1886 return err;
1887
1888 err = -EINVAL;
1889 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1890 /* that's acceptable only for automounts done in private ns */
1891 if (!(mnt_flags & MNT_SHRINKABLE))
1892 goto unlock;
1893 /* ... and for those we'd better have mountpoint still alive */
1894 if (!real_mount(path->mnt)->mnt_ns)
1895 goto unlock;
1896 }
1897
1898 /* Refuse the same filesystem on the same mount point */
1899 err = -EBUSY;
1900 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1901 path->mnt->mnt_root == path->dentry)
1902 goto unlock;
1903
1904 err = -EINVAL;
1905 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1906 goto unlock;
1907
1908 newmnt->mnt.mnt_flags = mnt_flags;
1909 err = graft_tree(newmnt, path);
1910
1911 unlock:
1912 unlock_mount(path);
1913 return err;
1914 }
1915
1916 /*
1917 * create a new mount for userspace and request it to be added into the
1918 * namespace's tree
1919 */
1920 static int do_new_mount(struct path *path, const char *fstype, int flags,
1921 int mnt_flags, const char *name, void *data)
1922 {
1923 struct file_system_type *type;
1924 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1925 struct vfsmount *mnt;
1926 int err;
1927
1928 if (!fstype)
1929 return -EINVAL;
1930
1931 type = get_fs_type(fstype);
1932 if (!type)
1933 return -ENODEV;
1934
1935 if (user_ns != &init_user_ns) {
1936 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1937 put_filesystem(type);
1938 return -EPERM;
1939 }
1940 /* Only in special cases allow devices from mounts
1941 * created outside the initial user namespace.
1942 */
1943 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1944 flags |= MS_NODEV;
1945 mnt_flags |= MNT_NODEV;
1946 }
1947 }
1948
1949 mnt = vfs_kern_mount(type, flags, name, data);
1950 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1951 !mnt->mnt_sb->s_subtype)
1952 mnt = fs_set_subtype(mnt, fstype);
1953
1954 put_filesystem(type);
1955 if (IS_ERR(mnt))
1956 return PTR_ERR(mnt);
1957
1958 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1959 if (err)
1960 mntput(mnt);
1961 return err;
1962 }
1963
1964 int finish_automount(struct vfsmount *m, struct path *path)
1965 {
1966 struct mount *mnt = real_mount(m);
1967 int err;
1968 /* The new mount record should have at least 2 refs to prevent it being
1969 * expired before we get a chance to add it
1970 */
1971 BUG_ON(mnt_get_count(mnt) < 2);
1972
1973 if (m->mnt_sb == path->mnt->mnt_sb &&
1974 m->mnt_root == path->dentry) {
1975 err = -ELOOP;
1976 goto fail;
1977 }
1978
1979 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1980 if (!err)
1981 return 0;
1982 fail:
1983 /* remove m from any expiration list it may be on */
1984 if (!list_empty(&mnt->mnt_expire)) {
1985 down_write(&namespace_sem);
1986 br_write_lock(&vfsmount_lock);
1987 list_del_init(&mnt->mnt_expire);
1988 br_write_unlock(&vfsmount_lock);
1989 up_write(&namespace_sem);
1990 }
1991 mntput(m);
1992 mntput(m);
1993 return err;
1994 }
1995
1996 /**
1997 * mnt_set_expiry - Put a mount on an expiration list
1998 * @mnt: The mount to list.
1999 * @expiry_list: The list to add the mount to.
2000 */
2001 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2002 {
2003 down_write(&namespace_sem);
2004 br_write_lock(&vfsmount_lock);
2005
2006 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2007
2008 br_write_unlock(&vfsmount_lock);
2009 up_write(&namespace_sem);
2010 }
2011 EXPORT_SYMBOL(mnt_set_expiry);
2012
2013 /*
2014 * process a list of expirable mountpoints with the intent of discarding any
2015 * mountpoints that aren't in use and haven't been touched since last we came
2016 * here
2017 */
2018 void mark_mounts_for_expiry(struct list_head *mounts)
2019 {
2020 struct mount *mnt, *next;
2021 LIST_HEAD(graveyard);
2022 LIST_HEAD(umounts);
2023
2024 if (list_empty(mounts))
2025 return;
2026
2027 down_write(&namespace_sem);
2028 br_write_lock(&vfsmount_lock);
2029
2030 /* extract from the expiration list every vfsmount that matches the
2031 * following criteria:
2032 * - only referenced by its parent vfsmount
2033 * - still marked for expiry (marked on the last call here; marks are
2034 * cleared by mntput())
2035 */
2036 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2037 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2038 propagate_mount_busy(mnt, 1))
2039 continue;
2040 list_move(&mnt->mnt_expire, &graveyard);
2041 }
2042 while (!list_empty(&graveyard)) {
2043 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2044 touch_mnt_namespace(mnt->mnt_ns);
2045 umount_tree(mnt, 1, &umounts);
2046 }
2047 br_write_unlock(&vfsmount_lock);
2048 up_write(&namespace_sem);
2049
2050 release_mounts(&umounts);
2051 }
2052
2053 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2054
2055 /*
2056 * Ripoff of 'select_parent()'
2057 *
2058 * search the list of submounts for a given mountpoint, and move any
2059 * shrinkable submounts to the 'graveyard' list.
2060 */
2061 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2062 {
2063 struct mount *this_parent = parent;
2064 struct list_head *next;
2065 int found = 0;
2066
2067 repeat:
2068 next = this_parent->mnt_mounts.next;
2069 resume:
2070 while (next != &this_parent->mnt_mounts) {
2071 struct list_head *tmp = next;
2072 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2073
2074 next = tmp->next;
2075 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2076 continue;
2077 /*
2078 * Descend a level if the d_mounts list is non-empty.
2079 */
2080 if (!list_empty(&mnt->mnt_mounts)) {
2081 this_parent = mnt;
2082 goto repeat;
2083 }
2084
2085 if (!propagate_mount_busy(mnt, 1)) {
2086 list_move_tail(&mnt->mnt_expire, graveyard);
2087 found++;
2088 }
2089 }
2090 /*
2091 * All done at this level ... ascend and resume the search
2092 */
2093 if (this_parent != parent) {
2094 next = this_parent->mnt_child.next;
2095 this_parent = this_parent->mnt_parent;
2096 goto resume;
2097 }
2098 return found;
2099 }
2100
2101 /*
2102 * process a list of expirable mountpoints with the intent of discarding any
2103 * submounts of a specific parent mountpoint
2104 *
2105 * vfsmount_lock must be held for write
2106 */
2107 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2108 {
2109 LIST_HEAD(graveyard);
2110 struct mount *m;
2111
2112 /* extract submounts of 'mountpoint' from the expiration list */
2113 while (select_submounts(mnt, &graveyard)) {
2114 while (!list_empty(&graveyard)) {
2115 m = list_first_entry(&graveyard, struct mount,
2116 mnt_expire);
2117 touch_mnt_namespace(m->mnt_ns);
2118 umount_tree(m, 1, umounts);
2119 }
2120 }
2121 }
2122
2123 /*
2124 * Some copy_from_user() implementations do not return the exact number of
2125 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2126 * Note that this function differs from copy_from_user() in that it will oops
2127 * on bad values of `to', rather than returning a short copy.
2128 */
2129 static long exact_copy_from_user(void *to, const void __user * from,
2130 unsigned long n)
2131 {
2132 char *t = to;
2133 const char __user *f = from;
2134 char c;
2135
2136 if (!access_ok(VERIFY_READ, from, n))
2137 return n;
2138
2139 while (n) {
2140 if (__get_user(c, f)) {
2141 memset(t, 0, n);
2142 break;
2143 }
2144 *t++ = c;
2145 f++;
2146 n--;
2147 }
2148 return n;
2149 }
2150
2151 int copy_mount_options(const void __user * data, unsigned long *where)
2152 {
2153 int i;
2154 unsigned long page;
2155 unsigned long size;
2156
2157 *where = 0;
2158 if (!data)
2159 return 0;
2160
2161 if (!(page = __get_free_page(GFP_KERNEL)))
2162 return -ENOMEM;
2163
2164 /* We only care that *some* data at the address the user
2165 * gave us is valid. Just in case, we'll zero
2166 * the remainder of the page.
2167 */
2168 /* copy_from_user cannot cross TASK_SIZE ! */
2169 size = TASK_SIZE - (unsigned long)data;
2170 if (size > PAGE_SIZE)
2171 size = PAGE_SIZE;
2172
2173 i = size - exact_copy_from_user((void *)page, data, size);
2174 if (!i) {
2175 free_page(page);
2176 return -EFAULT;
2177 }
2178 if (i != PAGE_SIZE)
2179 memset((char *)page + i, 0, PAGE_SIZE - i);
2180 *where = page;
2181 return 0;
2182 }
2183
2184 int copy_mount_string(const void __user *data, char **where)
2185 {
2186 char *tmp;
2187
2188 if (!data) {
2189 *where = NULL;
2190 return 0;
2191 }
2192
2193 tmp = strndup_user(data, PAGE_SIZE);
2194 if (IS_ERR(tmp))
2195 return PTR_ERR(tmp);
2196
2197 *where = tmp;
2198 return 0;
2199 }
2200
2201 /*
2202 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2203 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2204 *
2205 * data is a (void *) that can point to any structure up to
2206 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2207 * information (or be NULL).
2208 *
2209 * Pre-0.97 versions of mount() didn't have a flags word.
2210 * When the flags word was introduced its top half was required
2211 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2212 * Therefore, if this magic number is present, it carries no information
2213 * and must be discarded.
2214 */
2215 long do_mount(const char *dev_name, const char *dir_name,
2216 const char *type_page, unsigned long flags, void *data_page)
2217 {
2218 struct path path;
2219 int retval = 0;
2220 int mnt_flags = 0;
2221
2222 /* Discard magic */
2223 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2224 flags &= ~MS_MGC_MSK;
2225
2226 /* Basic sanity checks */
2227
2228 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2229 return -EINVAL;
2230
2231 if (data_page)
2232 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2233
2234 /* ... and get the mountpoint */
2235 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2236 if (retval)
2237 return retval;
2238
2239 retval = security_sb_mount(dev_name, &path,
2240 type_page, flags, data_page);
2241 if (retval)
2242 goto dput_out;
2243
2244 if (!may_mount())
2245 return -EPERM;
2246
2247 /* Default to relatime unless overriden */
2248 if (!(flags & MS_NOATIME))
2249 mnt_flags |= MNT_RELATIME;
2250
2251 /* Separate the per-mountpoint flags */
2252 if (flags & MS_NOSUID)
2253 mnt_flags |= MNT_NOSUID;
2254 if (flags & MS_NODEV)
2255 mnt_flags |= MNT_NODEV;
2256 if (flags & MS_NOEXEC)
2257 mnt_flags |= MNT_NOEXEC;
2258 if (flags & MS_NOATIME)
2259 mnt_flags |= MNT_NOATIME;
2260 if (flags & MS_NODIRATIME)
2261 mnt_flags |= MNT_NODIRATIME;
2262 if (flags & MS_STRICTATIME)
2263 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2264 if (flags & MS_RDONLY)
2265 mnt_flags |= MNT_READONLY;
2266
2267 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2268 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2269 MS_STRICTATIME);
2270
2271 if (flags & MS_REMOUNT)
2272 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2273 data_page);
2274 else if (flags & MS_BIND)
2275 retval = do_loopback(&path, dev_name, flags & MS_REC);
2276 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2277 retval = do_change_type(&path, flags);
2278 else if (flags & MS_MOVE)
2279 retval = do_move_mount(&path, dev_name);
2280 else
2281 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2282 dev_name, data_page);
2283 dput_out:
2284 path_put(&path);
2285 return retval;
2286 }
2287
2288 static void free_mnt_ns(struct mnt_namespace *ns)
2289 {
2290 proc_free_inum(ns->proc_inum);
2291 put_user_ns(ns->user_ns);
2292 kfree(ns);
2293 }
2294
2295 /*
2296 * Assign a sequence number so we can detect when we attempt to bind
2297 * mount a reference to an older mount namespace into the current
2298 * mount namespace, preventing reference counting loops. A 64bit
2299 * number incrementing at 10Ghz will take 12,427 years to wrap which
2300 * is effectively never, so we can ignore the possibility.
2301 */
2302 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2303
2304 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2305 {
2306 struct mnt_namespace *new_ns;
2307 int ret;
2308
2309 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2310 if (!new_ns)
2311 return ERR_PTR(-ENOMEM);
2312 ret = proc_alloc_inum(&new_ns->proc_inum);
2313 if (ret) {
2314 kfree(new_ns);
2315 return ERR_PTR(ret);
2316 }
2317 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2318 atomic_set(&new_ns->count, 1);
2319 new_ns->root = NULL;
2320 INIT_LIST_HEAD(&new_ns->list);
2321 init_waitqueue_head(&new_ns->poll);
2322 new_ns->event = 0;
2323 new_ns->user_ns = get_user_ns(user_ns);
2324 return new_ns;
2325 }
2326
2327 /*
2328 * Allocate a new namespace structure and populate it with contents
2329 * copied from the namespace of the passed in task structure.
2330 */
2331 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2332 struct user_namespace *user_ns, struct fs_struct *fs)
2333 {
2334 struct mnt_namespace *new_ns;
2335 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2336 struct mount *p, *q;
2337 struct mount *old = mnt_ns->root;
2338 struct mount *new;
2339 int copy_flags;
2340
2341 new_ns = alloc_mnt_ns(user_ns);
2342 if (IS_ERR(new_ns))
2343 return new_ns;
2344
2345 down_write(&namespace_sem);
2346 /* First pass: copy the tree topology */
2347 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2348 if (user_ns != mnt_ns->user_ns)
2349 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2350 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2351 if (IS_ERR(new)) {
2352 up_write(&namespace_sem);
2353 free_mnt_ns(new_ns);
2354 return ERR_CAST(new);
2355 }
2356 new_ns->root = new;
2357 br_write_lock(&vfsmount_lock);
2358 list_add_tail(&new_ns->list, &new->mnt_list);
2359 br_write_unlock(&vfsmount_lock);
2360
2361 /*
2362 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2363 * as belonging to new namespace. We have already acquired a private
2364 * fs_struct, so tsk->fs->lock is not needed.
2365 */
2366 p = old;
2367 q = new;
2368 while (p) {
2369 q->mnt_ns = new_ns;
2370 if (fs) {
2371 if (&p->mnt == fs->root.mnt) {
2372 fs->root.mnt = mntget(&q->mnt);
2373 rootmnt = &p->mnt;
2374 }
2375 if (&p->mnt == fs->pwd.mnt) {
2376 fs->pwd.mnt = mntget(&q->mnt);
2377 pwdmnt = &p->mnt;
2378 }
2379 }
2380 p = next_mnt(p, old);
2381 q = next_mnt(q, new);
2382 }
2383 up_write(&namespace_sem);
2384
2385 if (rootmnt)
2386 mntput(rootmnt);
2387 if (pwdmnt)
2388 mntput(pwdmnt);
2389
2390 return new_ns;
2391 }
2392
2393 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2394 struct user_namespace *user_ns, struct fs_struct *new_fs)
2395 {
2396 struct mnt_namespace *new_ns;
2397
2398 BUG_ON(!ns);
2399 get_mnt_ns(ns);
2400
2401 if (!(flags & CLONE_NEWNS))
2402 return ns;
2403
2404 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2405
2406 put_mnt_ns(ns);
2407 return new_ns;
2408 }
2409
2410 /**
2411 * create_mnt_ns - creates a private namespace and adds a root filesystem
2412 * @mnt: pointer to the new root filesystem mountpoint
2413 */
2414 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2415 {
2416 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2417 if (!IS_ERR(new_ns)) {
2418 struct mount *mnt = real_mount(m);
2419 mnt->mnt_ns = new_ns;
2420 new_ns->root = mnt;
2421 list_add(&new_ns->list, &mnt->mnt_list);
2422 } else {
2423 mntput(m);
2424 }
2425 return new_ns;
2426 }
2427
2428 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2429 {
2430 struct mnt_namespace *ns;
2431 struct super_block *s;
2432 struct path path;
2433 int err;
2434
2435 ns = create_mnt_ns(mnt);
2436 if (IS_ERR(ns))
2437 return ERR_CAST(ns);
2438
2439 err = vfs_path_lookup(mnt->mnt_root, mnt,
2440 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2441
2442 put_mnt_ns(ns);
2443
2444 if (err)
2445 return ERR_PTR(err);
2446
2447 /* trade a vfsmount reference for active sb one */
2448 s = path.mnt->mnt_sb;
2449 atomic_inc(&s->s_active);
2450 mntput(path.mnt);
2451 /* lock the sucker */
2452 down_write(&s->s_umount);
2453 /* ... and return the root of (sub)tree on it */
2454 return path.dentry;
2455 }
2456 EXPORT_SYMBOL(mount_subtree);
2457
2458 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2459 char __user *, type, unsigned long, flags, void __user *, data)
2460 {
2461 int ret;
2462 char *kernel_type;
2463 struct filename *kernel_dir;
2464 char *kernel_dev;
2465 unsigned long data_page;
2466
2467 ret = copy_mount_string(type, &kernel_type);
2468 if (ret < 0)
2469 goto out_type;
2470
2471 kernel_dir = getname(dir_name);
2472 if (IS_ERR(kernel_dir)) {
2473 ret = PTR_ERR(kernel_dir);
2474 goto out_dir;
2475 }
2476
2477 ret = copy_mount_string(dev_name, &kernel_dev);
2478 if (ret < 0)
2479 goto out_dev;
2480
2481 ret = copy_mount_options(data, &data_page);
2482 if (ret < 0)
2483 goto out_data;
2484
2485 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2486 (void *) data_page);
2487
2488 free_page(data_page);
2489 out_data:
2490 kfree(kernel_dev);
2491 out_dev:
2492 putname(kernel_dir);
2493 out_dir:
2494 kfree(kernel_type);
2495 out_type:
2496 return ret;
2497 }
2498
2499 /*
2500 * Return true if path is reachable from root
2501 *
2502 * namespace_sem or vfsmount_lock is held
2503 */
2504 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2505 const struct path *root)
2506 {
2507 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2508 dentry = mnt->mnt_mountpoint;
2509 mnt = mnt->mnt_parent;
2510 }
2511 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2512 }
2513
2514 int path_is_under(struct path *path1, struct path *path2)
2515 {
2516 int res;
2517 br_read_lock(&vfsmount_lock);
2518 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2519 br_read_unlock(&vfsmount_lock);
2520 return res;
2521 }
2522 EXPORT_SYMBOL(path_is_under);
2523
2524 /*
2525 * pivot_root Semantics:
2526 * Moves the root file system of the current process to the directory put_old,
2527 * makes new_root as the new root file system of the current process, and sets
2528 * root/cwd of all processes which had them on the current root to new_root.
2529 *
2530 * Restrictions:
2531 * The new_root and put_old must be directories, and must not be on the
2532 * same file system as the current process root. The put_old must be
2533 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2534 * pointed to by put_old must yield the same directory as new_root. No other
2535 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2536 *
2537 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2538 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2539 * in this situation.
2540 *
2541 * Notes:
2542 * - we don't move root/cwd if they are not at the root (reason: if something
2543 * cared enough to change them, it's probably wrong to force them elsewhere)
2544 * - it's okay to pick a root that isn't the root of a file system, e.g.
2545 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2546 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2547 * first.
2548 */
2549 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2550 const char __user *, put_old)
2551 {
2552 struct path new, old, parent_path, root_parent, root;
2553 struct mount *new_mnt, *root_mnt;
2554 int error;
2555
2556 if (!may_mount())
2557 return -EPERM;
2558
2559 error = user_path_dir(new_root, &new);
2560 if (error)
2561 goto out0;
2562
2563 error = user_path_dir(put_old, &old);
2564 if (error)
2565 goto out1;
2566
2567 error = security_sb_pivotroot(&old, &new);
2568 if (error)
2569 goto out2;
2570
2571 get_fs_root(current->fs, &root);
2572 error = lock_mount(&old);
2573 if (error)
2574 goto out3;
2575
2576 error = -EINVAL;
2577 new_mnt = real_mount(new.mnt);
2578 root_mnt = real_mount(root.mnt);
2579 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2580 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2581 IS_MNT_SHARED(root_mnt->mnt_parent))
2582 goto out4;
2583 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2584 goto out4;
2585 error = -ENOENT;
2586 if (d_unlinked(new.dentry))
2587 goto out4;
2588 if (d_unlinked(old.dentry))
2589 goto out4;
2590 error = -EBUSY;
2591 if (new.mnt == root.mnt ||
2592 old.mnt == root.mnt)
2593 goto out4; /* loop, on the same file system */
2594 error = -EINVAL;
2595 if (root.mnt->mnt_root != root.dentry)
2596 goto out4; /* not a mountpoint */
2597 if (!mnt_has_parent(root_mnt))
2598 goto out4; /* not attached */
2599 if (new.mnt->mnt_root != new.dentry)
2600 goto out4; /* not a mountpoint */
2601 if (!mnt_has_parent(new_mnt))
2602 goto out4; /* not attached */
2603 /* make sure we can reach put_old from new_root */
2604 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2605 goto out4;
2606 br_write_lock(&vfsmount_lock);
2607 detach_mnt(new_mnt, &parent_path);
2608 detach_mnt(root_mnt, &root_parent);
2609 /* mount old root on put_old */
2610 attach_mnt(root_mnt, &old);
2611 /* mount new_root on / */
2612 attach_mnt(new_mnt, &root_parent);
2613 touch_mnt_namespace(current->nsproxy->mnt_ns);
2614 br_write_unlock(&vfsmount_lock);
2615 chroot_fs_refs(&root, &new);
2616 error = 0;
2617 out4:
2618 unlock_mount(&old);
2619 if (!error) {
2620 path_put(&root_parent);
2621 path_put(&parent_path);
2622 }
2623 out3:
2624 path_put(&root);
2625 out2:
2626 path_put(&old);
2627 out1:
2628 path_put(&new);
2629 out0:
2630 return error;
2631 }
2632
2633 static void __init init_mount_tree(void)
2634 {
2635 struct vfsmount *mnt;
2636 struct mnt_namespace *ns;
2637 struct path root;
2638 struct file_system_type *type;
2639
2640 type = get_fs_type("rootfs");
2641 if (!type)
2642 panic("Can't find rootfs type");
2643 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2644 put_filesystem(type);
2645 if (IS_ERR(mnt))
2646 panic("Can't create rootfs");
2647
2648 ns = create_mnt_ns(mnt);
2649 if (IS_ERR(ns))
2650 panic("Can't allocate initial namespace");
2651
2652 init_task.nsproxy->mnt_ns = ns;
2653 get_mnt_ns(ns);
2654
2655 root.mnt = mnt;
2656 root.dentry = mnt->mnt_root;
2657
2658 set_fs_pwd(current->fs, &root);
2659 set_fs_root(current->fs, &root);
2660 }
2661
2662 void __init mnt_init(void)
2663 {
2664 unsigned u;
2665 int err;
2666
2667 init_rwsem(&namespace_sem);
2668
2669 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2670 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2671
2672 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2673
2674 if (!mount_hashtable)
2675 panic("Failed to allocate mount hash table\n");
2676
2677 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2678
2679 for (u = 0; u < HASH_SIZE; u++)
2680 INIT_LIST_HEAD(&mount_hashtable[u]);
2681
2682 br_lock_init(&vfsmount_lock);
2683
2684 err = sysfs_init();
2685 if (err)
2686 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2687 __func__, err);
2688 fs_kobj = kobject_create_and_add("fs", NULL);
2689 if (!fs_kobj)
2690 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2691 init_rootfs();
2692 init_mount_tree();
2693 }
2694
2695 void put_mnt_ns(struct mnt_namespace *ns)
2696 {
2697 LIST_HEAD(umount_list);
2698
2699 if (!atomic_dec_and_test(&ns->count))
2700 return;
2701 down_write(&namespace_sem);
2702 br_write_lock(&vfsmount_lock);
2703 umount_tree(ns->root, 0, &umount_list);
2704 br_write_unlock(&vfsmount_lock);
2705 up_write(&namespace_sem);
2706 release_mounts(&umount_list);
2707 free_mnt_ns(ns);
2708 }
2709
2710 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2711 {
2712 struct vfsmount *mnt;
2713 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2714 if (!IS_ERR(mnt)) {
2715 /*
2716 * it is a longterm mount, don't release mnt until
2717 * we unmount before file sys is unregistered
2718 */
2719 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2720 }
2721 return mnt;
2722 }
2723 EXPORT_SYMBOL_GPL(kern_mount_data);
2724
2725 void kern_unmount(struct vfsmount *mnt)
2726 {
2727 /* release long term mount so mount point can be released */
2728 if (!IS_ERR_OR_NULL(mnt)) {
2729 br_write_lock(&vfsmount_lock);
2730 real_mount(mnt)->mnt_ns = NULL;
2731 br_write_unlock(&vfsmount_lock);
2732 mntput(mnt);
2733 }
2734 }
2735 EXPORT_SYMBOL(kern_unmount);
2736
2737 bool our_mnt(struct vfsmount *mnt)
2738 {
2739 return check_mnt(real_mount(mnt));
2740 }
2741
2742 bool current_chrooted(void)
2743 {
2744 /* Does the current process have a non-standard root */
2745 struct path ns_root;
2746 struct path fs_root;
2747 bool chrooted;
2748
2749 /* Find the namespace root */
2750 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2751 ns_root.dentry = ns_root.mnt->mnt_root;
2752 path_get(&ns_root);
2753 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2754 ;
2755
2756 get_fs_root(current->fs, &fs_root);
2757
2758 chrooted = !path_equal(&fs_root, &ns_root);
2759
2760 path_put(&fs_root);
2761 path_put(&ns_root);
2762
2763 return chrooted;
2764 }
2765
2766 void update_mnt_policy(struct user_namespace *userns)
2767 {
2768 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2769 struct mount *mnt;
2770
2771 down_read(&namespace_sem);
2772 list_for_each_entry(mnt, &ns->list, mnt_list) {
2773 switch (mnt->mnt.mnt_sb->s_magic) {
2774 case SYSFS_MAGIC:
2775 userns->may_mount_sysfs = true;
2776 break;
2777 case PROC_SUPER_MAGIC:
2778 userns->may_mount_proc = true;
2779 break;
2780 }
2781 if (userns->may_mount_sysfs && userns->may_mount_proc)
2782 break;
2783 }
2784 up_read(&namespace_sem);
2785 }
2786
2787 static void *mntns_get(struct task_struct *task)
2788 {
2789 struct mnt_namespace *ns = NULL;
2790 struct nsproxy *nsproxy;
2791
2792 rcu_read_lock();
2793 nsproxy = task_nsproxy(task);
2794 if (nsproxy) {
2795 ns = nsproxy->mnt_ns;
2796 get_mnt_ns(ns);
2797 }
2798 rcu_read_unlock();
2799
2800 return ns;
2801 }
2802
2803 static void mntns_put(void *ns)
2804 {
2805 put_mnt_ns(ns);
2806 }
2807
2808 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2809 {
2810 struct fs_struct *fs = current->fs;
2811 struct mnt_namespace *mnt_ns = ns;
2812 struct path root;
2813
2814 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2815 !nsown_capable(CAP_SYS_CHROOT) ||
2816 !nsown_capable(CAP_SYS_ADMIN))
2817 return -EPERM;
2818
2819 if (fs->users != 1)
2820 return -EINVAL;
2821
2822 get_mnt_ns(mnt_ns);
2823 put_mnt_ns(nsproxy->mnt_ns);
2824 nsproxy->mnt_ns = mnt_ns;
2825
2826 /* Find the root */
2827 root.mnt = &mnt_ns->root->mnt;
2828 root.dentry = mnt_ns->root->mnt.mnt_root;
2829 path_get(&root);
2830 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2831 ;
2832
2833 /* Update the pwd and root */
2834 set_fs_pwd(fs, &root);
2835 set_fs_root(fs, &root);
2836
2837 path_put(&root);
2838 return 0;
2839 }
2840
2841 static unsigned int mntns_inum(void *ns)
2842 {
2843 struct mnt_namespace *mnt_ns = ns;
2844 return mnt_ns->proc_inum;
2845 }
2846
2847 const struct proc_ns_operations mntns_operations = {
2848 .name = "mnt",
2849 .type = CLONE_NEWNS,
2850 .get = mntns_get,
2851 .put = mntns_put,
2852 .install = mntns_install,
2853 .inum = mntns_inum,
2854 };