14ab8d3f2f0c8f7fc3e829ed26404e53a2420028
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 unsigned int mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask, flags);
194 if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 other_perms:
203 /*
204 * If the DACs are ok we don't need any capability check.
205 */
206 if ((mask & ~mode) == 0)
207 return 0;
208 return -EACCES;
209 }
210
211 /**
212 * generic_permission - check for access rights on a Posix-like filesystem
213 * @inode: inode to check access rights for
214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215 * @check_acl: optional callback to check for Posix ACLs
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 int ret;
231
232 /*
233 * Do the basic POSIX ACL permission checks.
234 */
235 ret = acl_permission_check(inode, mask, flags, check_acl);
236 if (ret != -EACCES)
237 return ret;
238
239 /*
240 * Read/write DACs are always overridable.
241 * Executable DACs are overridable for all directories and
242 * for non-directories that have least one exec bit set.
243 */
244 if (!(mask & MAY_EXEC) || execute_ok(inode))
245 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
246 return 0;
247
248 /*
249 * Searching includes executable on directories, else just read.
250 */
251 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
252 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
253 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
254 return 0;
255
256 return -EACCES;
257 }
258
259 /**
260 * inode_permission - check for access rights to a given inode
261 * @inode: inode to check permission on
262 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
263 *
264 * Used to check for read/write/execute permissions on an inode.
265 * We use "fsuid" for this, letting us set arbitrary permissions
266 * for filesystem access without changing the "normal" uids which
267 * are used for other things.
268 */
269 int inode_permission(struct inode *inode, int mask)
270 {
271 int retval;
272
273 if (mask & MAY_WRITE) {
274 umode_t mode = inode->i_mode;
275
276 /*
277 * Nobody gets write access to a read-only fs.
278 */
279 if (IS_RDONLY(inode) &&
280 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
281 return -EROFS;
282
283 /*
284 * Nobody gets write access to an immutable file.
285 */
286 if (IS_IMMUTABLE(inode))
287 return -EACCES;
288 }
289
290 if (inode->i_op->permission)
291 retval = inode->i_op->permission(inode, mask, 0);
292 else
293 retval = generic_permission(inode, mask, 0,
294 inode->i_op->check_acl);
295
296 if (retval)
297 return retval;
298
299 retval = devcgroup_inode_permission(inode, mask);
300 if (retval)
301 return retval;
302
303 return security_inode_permission(inode, mask);
304 }
305
306 /**
307 * file_permission - check for additional access rights to a given file
308 * @file: file to check access rights for
309 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
310 *
311 * Used to check for read/write/execute permissions on an already opened
312 * file.
313 *
314 * Note:
315 * Do not use this function in new code. All access checks should
316 * be done using inode_permission().
317 */
318 int file_permission(struct file *file, int mask)
319 {
320 return inode_permission(file->f_path.dentry->d_inode, mask);
321 }
322
323 /*
324 * get_write_access() gets write permission for a file.
325 * put_write_access() releases this write permission.
326 * This is used for regular files.
327 * We cannot support write (and maybe mmap read-write shared) accesses and
328 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
329 * can have the following values:
330 * 0: no writers, no VM_DENYWRITE mappings
331 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
332 * > 0: (i_writecount) users are writing to the file.
333 *
334 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
335 * except for the cases where we don't hold i_writecount yet. Then we need to
336 * use {get,deny}_write_access() - these functions check the sign and refuse
337 * to do the change if sign is wrong. Exclusion between them is provided by
338 * the inode->i_lock spinlock.
339 */
340
341 int get_write_access(struct inode * inode)
342 {
343 spin_lock(&inode->i_lock);
344 if (atomic_read(&inode->i_writecount) < 0) {
345 spin_unlock(&inode->i_lock);
346 return -ETXTBSY;
347 }
348 atomic_inc(&inode->i_writecount);
349 spin_unlock(&inode->i_lock);
350
351 return 0;
352 }
353
354 int deny_write_access(struct file * file)
355 {
356 struct inode *inode = file->f_path.dentry->d_inode;
357
358 spin_lock(&inode->i_lock);
359 if (atomic_read(&inode->i_writecount) > 0) {
360 spin_unlock(&inode->i_lock);
361 return -ETXTBSY;
362 }
363 atomic_dec(&inode->i_writecount);
364 spin_unlock(&inode->i_lock);
365
366 return 0;
367 }
368
369 /**
370 * path_get - get a reference to a path
371 * @path: path to get the reference to
372 *
373 * Given a path increment the reference count to the dentry and the vfsmount.
374 */
375 void path_get(struct path *path)
376 {
377 mntget(path->mnt);
378 dget(path->dentry);
379 }
380 EXPORT_SYMBOL(path_get);
381
382 /**
383 * path_put - put a reference to a path
384 * @path: path to put the reference to
385 *
386 * Given a path decrement the reference count to the dentry and the vfsmount.
387 */
388 void path_put(struct path *path)
389 {
390 dput(path->dentry);
391 mntput(path->mnt);
392 }
393 EXPORT_SYMBOL(path_put);
394
395 /*
396 * Path walking has 2 modes, rcu-walk and ref-walk (see
397 * Documentation/filesystems/path-lookup.txt). In situations when we can't
398 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
399 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
400 * mode. Refcounts are grabbed at the last known good point before rcu-walk
401 * got stuck, so ref-walk may continue from there. If this is not successful
402 * (eg. a seqcount has changed), then failure is returned and it's up to caller
403 * to restart the path walk from the beginning in ref-walk mode.
404 */
405
406 /**
407 * unlazy_walk - try to switch to ref-walk mode.
408 * @nd: nameidata pathwalk data
409 * @dentry: child of nd->path.dentry or NULL
410 * Returns: 0 on success, -ECHILD on failure
411 *
412 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
413 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
414 * @nd or NULL. Must be called from rcu-walk context.
415 */
416 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
417 {
418 struct fs_struct *fs = current->fs;
419 struct dentry *parent = nd->path.dentry;
420 int want_root = 0;
421
422 BUG_ON(!(nd->flags & LOOKUP_RCU));
423 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
424 want_root = 1;
425 spin_lock(&fs->lock);
426 if (nd->root.mnt != fs->root.mnt ||
427 nd->root.dentry != fs->root.dentry)
428 goto err_root;
429 }
430 spin_lock(&parent->d_lock);
431 if (!dentry) {
432 if (!__d_rcu_to_refcount(parent, nd->seq))
433 goto err_parent;
434 BUG_ON(nd->inode != parent->d_inode);
435 } else {
436 if (dentry->d_parent != parent)
437 goto err_parent;
438 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
439 if (!__d_rcu_to_refcount(dentry, nd->seq))
440 goto err_child;
441 /*
442 * If the sequence check on the child dentry passed, then
443 * the child has not been removed from its parent. This
444 * means the parent dentry must be valid and able to take
445 * a reference at this point.
446 */
447 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
448 BUG_ON(!parent->d_count);
449 parent->d_count++;
450 spin_unlock(&dentry->d_lock);
451 }
452 spin_unlock(&parent->d_lock);
453 if (want_root) {
454 path_get(&nd->root);
455 spin_unlock(&fs->lock);
456 }
457 mntget(nd->path.mnt);
458
459 rcu_read_unlock();
460 br_read_unlock(vfsmount_lock);
461 nd->flags &= ~LOOKUP_RCU;
462 return 0;
463
464 err_child:
465 spin_unlock(&dentry->d_lock);
466 err_parent:
467 spin_unlock(&parent->d_lock);
468 err_root:
469 if (want_root)
470 spin_unlock(&fs->lock);
471 return -ECHILD;
472 }
473
474 /**
475 * release_open_intent - free up open intent resources
476 * @nd: pointer to nameidata
477 */
478 void release_open_intent(struct nameidata *nd)
479 {
480 struct file *file = nd->intent.open.file;
481
482 if (file && !IS_ERR(file)) {
483 if (file->f_path.dentry == NULL)
484 put_filp(file);
485 else
486 fput(file);
487 }
488 }
489
490 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
491 {
492 return dentry->d_op->d_revalidate(dentry, nd);
493 }
494
495 static struct dentry *
496 do_revalidate(struct dentry *dentry, struct nameidata *nd)
497 {
498 int status = d_revalidate(dentry, nd);
499 if (unlikely(status <= 0)) {
500 /*
501 * The dentry failed validation.
502 * If d_revalidate returned 0 attempt to invalidate
503 * the dentry otherwise d_revalidate is asking us
504 * to return a fail status.
505 */
506 if (status < 0) {
507 dput(dentry);
508 dentry = ERR_PTR(status);
509 } else if (!d_invalidate(dentry)) {
510 dput(dentry);
511 dentry = NULL;
512 }
513 }
514 return dentry;
515 }
516
517 /**
518 * complete_walk - successful completion of path walk
519 * @nd: pointer nameidata
520 *
521 * If we had been in RCU mode, drop out of it and legitimize nd->path.
522 * Revalidate the final result, unless we'd already done that during
523 * the path walk or the filesystem doesn't ask for it. Return 0 on
524 * success, -error on failure. In case of failure caller does not
525 * need to drop nd->path.
526 */
527 static int complete_walk(struct nameidata *nd)
528 {
529 struct dentry *dentry = nd->path.dentry;
530 int status;
531
532 if (nd->flags & LOOKUP_RCU) {
533 nd->flags &= ~LOOKUP_RCU;
534 if (!(nd->flags & LOOKUP_ROOT))
535 nd->root.mnt = NULL;
536 spin_lock(&dentry->d_lock);
537 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
538 spin_unlock(&dentry->d_lock);
539 rcu_read_unlock();
540 br_read_unlock(vfsmount_lock);
541 return -ECHILD;
542 }
543 BUG_ON(nd->inode != dentry->d_inode);
544 spin_unlock(&dentry->d_lock);
545 mntget(nd->path.mnt);
546 rcu_read_unlock();
547 br_read_unlock(vfsmount_lock);
548 }
549
550 if (likely(!(nd->flags & LOOKUP_JUMPED)))
551 return 0;
552
553 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
554 return 0;
555
556 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
557 return 0;
558
559 /* Note: we do not d_invalidate() */
560 status = d_revalidate(dentry, nd);
561 if (status > 0)
562 return 0;
563
564 if (!status)
565 status = -ESTALE;
566
567 path_put(&nd->path);
568 return status;
569 }
570
571 /*
572 * Short-cut version of permission(), for calling on directories
573 * during pathname resolution. Combines parts of permission()
574 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
575 *
576 * If appropriate, check DAC only. If not appropriate, or
577 * short-cut DAC fails, then call ->permission() to do more
578 * complete permission check.
579 */
580 static inline int exec_permission(struct inode *inode, unsigned int flags)
581 {
582 int ret;
583 struct user_namespace *ns = inode_userns(inode);
584
585 if (inode->i_op->permission) {
586 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
587 } else {
588 ret = acl_permission_check(inode, MAY_EXEC, flags,
589 inode->i_op->check_acl);
590 }
591 if (likely(!ret))
592 goto ok;
593 if (ret == -ECHILD)
594 return ret;
595
596 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
597 ns_capable(ns, CAP_DAC_READ_SEARCH))
598 goto ok;
599
600 return ret;
601 ok:
602 return security_inode_exec_permission(inode, flags);
603 }
604
605 static __always_inline void set_root(struct nameidata *nd)
606 {
607 if (!nd->root.mnt)
608 get_fs_root(current->fs, &nd->root);
609 }
610
611 static int link_path_walk(const char *, struct nameidata *);
612
613 static __always_inline void set_root_rcu(struct nameidata *nd)
614 {
615 if (!nd->root.mnt) {
616 struct fs_struct *fs = current->fs;
617 unsigned seq;
618
619 do {
620 seq = read_seqcount_begin(&fs->seq);
621 nd->root = fs->root;
622 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
623 } while (read_seqcount_retry(&fs->seq, seq));
624 }
625 }
626
627 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
628 {
629 int ret;
630
631 if (IS_ERR(link))
632 goto fail;
633
634 if (*link == '/') {
635 set_root(nd);
636 path_put(&nd->path);
637 nd->path = nd->root;
638 path_get(&nd->root);
639 nd->flags |= LOOKUP_JUMPED;
640 }
641 nd->inode = nd->path.dentry->d_inode;
642
643 ret = link_path_walk(link, nd);
644 return ret;
645 fail:
646 path_put(&nd->path);
647 return PTR_ERR(link);
648 }
649
650 static void path_put_conditional(struct path *path, struct nameidata *nd)
651 {
652 dput(path->dentry);
653 if (path->mnt != nd->path.mnt)
654 mntput(path->mnt);
655 }
656
657 static inline void path_to_nameidata(const struct path *path,
658 struct nameidata *nd)
659 {
660 if (!(nd->flags & LOOKUP_RCU)) {
661 dput(nd->path.dentry);
662 if (nd->path.mnt != path->mnt)
663 mntput(nd->path.mnt);
664 }
665 nd->path.mnt = path->mnt;
666 nd->path.dentry = path->dentry;
667 }
668
669 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
670 {
671 struct inode *inode = link->dentry->d_inode;
672 if (!IS_ERR(cookie) && inode->i_op->put_link)
673 inode->i_op->put_link(link->dentry, nd, cookie);
674 path_put(link);
675 }
676
677 static __always_inline int
678 follow_link(struct path *link, struct nameidata *nd, void **p)
679 {
680 int error;
681 struct dentry *dentry = link->dentry;
682
683 BUG_ON(nd->flags & LOOKUP_RCU);
684
685 if (link->mnt == nd->path.mnt)
686 mntget(link->mnt);
687
688 if (unlikely(current->total_link_count >= 40)) {
689 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
690 path_put(&nd->path);
691 return -ELOOP;
692 }
693 cond_resched();
694 current->total_link_count++;
695
696 touch_atime(link->mnt, dentry);
697 nd_set_link(nd, NULL);
698
699 error = security_inode_follow_link(link->dentry, nd);
700 if (error) {
701 *p = ERR_PTR(error); /* no ->put_link(), please */
702 path_put(&nd->path);
703 return error;
704 }
705
706 nd->last_type = LAST_BIND;
707 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
708 error = PTR_ERR(*p);
709 if (!IS_ERR(*p)) {
710 char *s = nd_get_link(nd);
711 error = 0;
712 if (s)
713 error = __vfs_follow_link(nd, s);
714 else if (nd->last_type == LAST_BIND) {
715 nd->flags |= LOOKUP_JUMPED;
716 nd->inode = nd->path.dentry->d_inode;
717 if (nd->inode->i_op->follow_link) {
718 /* stepped on a _really_ weird one */
719 path_put(&nd->path);
720 error = -ELOOP;
721 }
722 }
723 }
724 return error;
725 }
726
727 static int follow_up_rcu(struct path *path)
728 {
729 struct vfsmount *parent;
730 struct dentry *mountpoint;
731
732 parent = path->mnt->mnt_parent;
733 if (parent == path->mnt)
734 return 0;
735 mountpoint = path->mnt->mnt_mountpoint;
736 path->dentry = mountpoint;
737 path->mnt = parent;
738 return 1;
739 }
740
741 int follow_up(struct path *path)
742 {
743 struct vfsmount *parent;
744 struct dentry *mountpoint;
745
746 br_read_lock(vfsmount_lock);
747 parent = path->mnt->mnt_parent;
748 if (parent == path->mnt) {
749 br_read_unlock(vfsmount_lock);
750 return 0;
751 }
752 mntget(parent);
753 mountpoint = dget(path->mnt->mnt_mountpoint);
754 br_read_unlock(vfsmount_lock);
755 dput(path->dentry);
756 path->dentry = mountpoint;
757 mntput(path->mnt);
758 path->mnt = parent;
759 return 1;
760 }
761
762 /*
763 * Perform an automount
764 * - return -EISDIR to tell follow_managed() to stop and return the path we
765 * were called with.
766 */
767 static int follow_automount(struct path *path, unsigned flags,
768 bool *need_mntput)
769 {
770 struct vfsmount *mnt;
771 int err;
772
773 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
774 return -EREMOTE;
775
776 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
777 * and this is the terminal part of the path.
778 */
779 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
780 return -EISDIR; /* we actually want to stop here */
781
782 /* We want to mount if someone is trying to open/create a file of any
783 * type under the mountpoint, wants to traverse through the mountpoint
784 * or wants to open the mounted directory.
785 *
786 * We don't want to mount if someone's just doing a stat and they've
787 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
788 * appended a '/' to the name.
789 */
790 if (!(flags & LOOKUP_FOLLOW) &&
791 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
792 LOOKUP_OPEN | LOOKUP_CREATE)))
793 return -EISDIR;
794
795 current->total_link_count++;
796 if (current->total_link_count >= 40)
797 return -ELOOP;
798
799 mnt = path->dentry->d_op->d_automount(path);
800 if (IS_ERR(mnt)) {
801 /*
802 * The filesystem is allowed to return -EISDIR here to indicate
803 * it doesn't want to automount. For instance, autofs would do
804 * this so that its userspace daemon can mount on this dentry.
805 *
806 * However, we can only permit this if it's a terminal point in
807 * the path being looked up; if it wasn't then the remainder of
808 * the path is inaccessible and we should say so.
809 */
810 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
811 return -EREMOTE;
812 return PTR_ERR(mnt);
813 }
814
815 if (!mnt) /* mount collision */
816 return 0;
817
818 if (!*need_mntput) {
819 /* lock_mount() may release path->mnt on error */
820 mntget(path->mnt);
821 *need_mntput = true;
822 }
823 err = finish_automount(mnt, path);
824
825 switch (err) {
826 case -EBUSY:
827 /* Someone else made a mount here whilst we were busy */
828 return 0;
829 case 0:
830 path_put(path);
831 path->mnt = mnt;
832 path->dentry = dget(mnt->mnt_root);
833 return 0;
834 default:
835 return err;
836 }
837
838 }
839
840 /*
841 * Handle a dentry that is managed in some way.
842 * - Flagged for transit management (autofs)
843 * - Flagged as mountpoint
844 * - Flagged as automount point
845 *
846 * This may only be called in refwalk mode.
847 *
848 * Serialization is taken care of in namespace.c
849 */
850 static int follow_managed(struct path *path, unsigned flags)
851 {
852 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
853 unsigned managed;
854 bool need_mntput = false;
855 int ret = 0;
856
857 /* Given that we're not holding a lock here, we retain the value in a
858 * local variable for each dentry as we look at it so that we don't see
859 * the components of that value change under us */
860 while (managed = ACCESS_ONCE(path->dentry->d_flags),
861 managed &= DCACHE_MANAGED_DENTRY,
862 unlikely(managed != 0)) {
863 /* Allow the filesystem to manage the transit without i_mutex
864 * being held. */
865 if (managed & DCACHE_MANAGE_TRANSIT) {
866 BUG_ON(!path->dentry->d_op);
867 BUG_ON(!path->dentry->d_op->d_manage);
868 ret = path->dentry->d_op->d_manage(path->dentry, false);
869 if (ret < 0)
870 break;
871 }
872
873 /* Transit to a mounted filesystem. */
874 if (managed & DCACHE_MOUNTED) {
875 struct vfsmount *mounted = lookup_mnt(path);
876 if (mounted) {
877 dput(path->dentry);
878 if (need_mntput)
879 mntput(path->mnt);
880 path->mnt = mounted;
881 path->dentry = dget(mounted->mnt_root);
882 need_mntput = true;
883 continue;
884 }
885
886 /* Something is mounted on this dentry in another
887 * namespace and/or whatever was mounted there in this
888 * namespace got unmounted before we managed to get the
889 * vfsmount_lock */
890 }
891
892 /* Handle an automount point */
893 if (managed & DCACHE_NEED_AUTOMOUNT) {
894 ret = follow_automount(path, flags, &need_mntput);
895 if (ret < 0)
896 break;
897 continue;
898 }
899
900 /* We didn't change the current path point */
901 break;
902 }
903
904 if (need_mntput && path->mnt == mnt)
905 mntput(path->mnt);
906 if (ret == -EISDIR)
907 ret = 0;
908 return ret;
909 }
910
911 int follow_down_one(struct path *path)
912 {
913 struct vfsmount *mounted;
914
915 mounted = lookup_mnt(path);
916 if (mounted) {
917 dput(path->dentry);
918 mntput(path->mnt);
919 path->mnt = mounted;
920 path->dentry = dget(mounted->mnt_root);
921 return 1;
922 }
923 return 0;
924 }
925
926 static inline bool managed_dentry_might_block(struct dentry *dentry)
927 {
928 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
929 dentry->d_op->d_manage(dentry, true) < 0);
930 }
931
932 /*
933 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
934 * we meet a managed dentry that would need blocking.
935 */
936 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
937 struct inode **inode)
938 {
939 for (;;) {
940 struct vfsmount *mounted;
941 /*
942 * Don't forget we might have a non-mountpoint managed dentry
943 * that wants to block transit.
944 */
945 if (unlikely(managed_dentry_might_block(path->dentry)))
946 return false;
947
948 if (!d_mountpoint(path->dentry))
949 break;
950
951 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
952 if (!mounted)
953 break;
954 path->mnt = mounted;
955 path->dentry = mounted->mnt_root;
956 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
957 /*
958 * Update the inode too. We don't need to re-check the
959 * dentry sequence number here after this d_inode read,
960 * because a mount-point is always pinned.
961 */
962 *inode = path->dentry->d_inode;
963 }
964 return true;
965 }
966
967 static void follow_mount_rcu(struct nameidata *nd)
968 {
969 while (d_mountpoint(nd->path.dentry)) {
970 struct vfsmount *mounted;
971 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
972 if (!mounted)
973 break;
974 nd->path.mnt = mounted;
975 nd->path.dentry = mounted->mnt_root;
976 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
977 }
978 }
979
980 static int follow_dotdot_rcu(struct nameidata *nd)
981 {
982 set_root_rcu(nd);
983
984 while (1) {
985 if (nd->path.dentry == nd->root.dentry &&
986 nd->path.mnt == nd->root.mnt) {
987 break;
988 }
989 if (nd->path.dentry != nd->path.mnt->mnt_root) {
990 struct dentry *old = nd->path.dentry;
991 struct dentry *parent = old->d_parent;
992 unsigned seq;
993
994 seq = read_seqcount_begin(&parent->d_seq);
995 if (read_seqcount_retry(&old->d_seq, nd->seq))
996 goto failed;
997 nd->path.dentry = parent;
998 nd->seq = seq;
999 break;
1000 }
1001 if (!follow_up_rcu(&nd->path))
1002 break;
1003 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1004 }
1005 follow_mount_rcu(nd);
1006 nd->inode = nd->path.dentry->d_inode;
1007 return 0;
1008
1009 failed:
1010 nd->flags &= ~LOOKUP_RCU;
1011 if (!(nd->flags & LOOKUP_ROOT))
1012 nd->root.mnt = NULL;
1013 rcu_read_unlock();
1014 br_read_unlock(vfsmount_lock);
1015 return -ECHILD;
1016 }
1017
1018 /*
1019 * Follow down to the covering mount currently visible to userspace. At each
1020 * point, the filesystem owning that dentry may be queried as to whether the
1021 * caller is permitted to proceed or not.
1022 */
1023 int follow_down(struct path *path)
1024 {
1025 unsigned managed;
1026 int ret;
1027
1028 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1029 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1030 /* Allow the filesystem to manage the transit without i_mutex
1031 * being held.
1032 *
1033 * We indicate to the filesystem if someone is trying to mount
1034 * something here. This gives autofs the chance to deny anyone
1035 * other than its daemon the right to mount on its
1036 * superstructure.
1037 *
1038 * The filesystem may sleep at this point.
1039 */
1040 if (managed & DCACHE_MANAGE_TRANSIT) {
1041 BUG_ON(!path->dentry->d_op);
1042 BUG_ON(!path->dentry->d_op->d_manage);
1043 ret = path->dentry->d_op->d_manage(
1044 path->dentry, false);
1045 if (ret < 0)
1046 return ret == -EISDIR ? 0 : ret;
1047 }
1048
1049 /* Transit to a mounted filesystem. */
1050 if (managed & DCACHE_MOUNTED) {
1051 struct vfsmount *mounted = lookup_mnt(path);
1052 if (!mounted)
1053 break;
1054 dput(path->dentry);
1055 mntput(path->mnt);
1056 path->mnt = mounted;
1057 path->dentry = dget(mounted->mnt_root);
1058 continue;
1059 }
1060
1061 /* Don't handle automount points here */
1062 break;
1063 }
1064 return 0;
1065 }
1066
1067 /*
1068 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1069 */
1070 static void follow_mount(struct path *path)
1071 {
1072 while (d_mountpoint(path->dentry)) {
1073 struct vfsmount *mounted = lookup_mnt(path);
1074 if (!mounted)
1075 break;
1076 dput(path->dentry);
1077 mntput(path->mnt);
1078 path->mnt = mounted;
1079 path->dentry = dget(mounted->mnt_root);
1080 }
1081 }
1082
1083 static void follow_dotdot(struct nameidata *nd)
1084 {
1085 set_root(nd);
1086
1087 while(1) {
1088 struct dentry *old = nd->path.dentry;
1089
1090 if (nd->path.dentry == nd->root.dentry &&
1091 nd->path.mnt == nd->root.mnt) {
1092 break;
1093 }
1094 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1095 /* rare case of legitimate dget_parent()... */
1096 nd->path.dentry = dget_parent(nd->path.dentry);
1097 dput(old);
1098 break;
1099 }
1100 if (!follow_up(&nd->path))
1101 break;
1102 }
1103 follow_mount(&nd->path);
1104 nd->inode = nd->path.dentry->d_inode;
1105 }
1106
1107 /*
1108 * Allocate a dentry with name and parent, and perform a parent
1109 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1110 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1111 * have verified that no child exists while under i_mutex.
1112 */
1113 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1114 struct qstr *name, struct nameidata *nd)
1115 {
1116 struct inode *inode = parent->d_inode;
1117 struct dentry *dentry;
1118 struct dentry *old;
1119
1120 /* Don't create child dentry for a dead directory. */
1121 if (unlikely(IS_DEADDIR(inode)))
1122 return ERR_PTR(-ENOENT);
1123
1124 dentry = d_alloc(parent, name);
1125 if (unlikely(!dentry))
1126 return ERR_PTR(-ENOMEM);
1127
1128 old = inode->i_op->lookup(inode, dentry, nd);
1129 if (unlikely(old)) {
1130 dput(dentry);
1131 dentry = old;
1132 }
1133 return dentry;
1134 }
1135
1136 /*
1137 * It's more convoluted than I'd like it to be, but... it's still fairly
1138 * small and for now I'd prefer to have fast path as straight as possible.
1139 * It _is_ time-critical.
1140 */
1141 static int do_lookup(struct nameidata *nd, struct qstr *name,
1142 struct path *path, struct inode **inode)
1143 {
1144 struct vfsmount *mnt = nd->path.mnt;
1145 struct dentry *dentry, *parent = nd->path.dentry;
1146 int need_reval = 1;
1147 int status = 1;
1148 int err;
1149
1150 /*
1151 * Rename seqlock is not required here because in the off chance
1152 * of a false negative due to a concurrent rename, we're going to
1153 * do the non-racy lookup, below.
1154 */
1155 if (nd->flags & LOOKUP_RCU) {
1156 unsigned seq;
1157 *inode = nd->inode;
1158 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1159 if (!dentry)
1160 goto unlazy;
1161
1162 /* Memory barrier in read_seqcount_begin of child is enough */
1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 return -ECHILD;
1165 nd->seq = seq;
1166
1167 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1168 status = d_revalidate(dentry, nd);
1169 if (unlikely(status <= 0)) {
1170 if (status != -ECHILD)
1171 need_reval = 0;
1172 goto unlazy;
1173 }
1174 }
1175 path->mnt = mnt;
1176 path->dentry = dentry;
1177 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1178 goto unlazy;
1179 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1180 goto unlazy;
1181 return 0;
1182 unlazy:
1183 if (unlazy_walk(nd, dentry))
1184 return -ECHILD;
1185 } else {
1186 dentry = __d_lookup(parent, name);
1187 }
1188
1189 retry:
1190 if (unlikely(!dentry)) {
1191 struct inode *dir = parent->d_inode;
1192 BUG_ON(nd->inode != dir);
1193
1194 mutex_lock(&dir->i_mutex);
1195 dentry = d_lookup(parent, name);
1196 if (likely(!dentry)) {
1197 dentry = d_alloc_and_lookup(parent, name, nd);
1198 if (IS_ERR(dentry)) {
1199 mutex_unlock(&dir->i_mutex);
1200 return PTR_ERR(dentry);
1201 }
1202 /* known good */
1203 need_reval = 0;
1204 status = 1;
1205 }
1206 mutex_unlock(&dir->i_mutex);
1207 }
1208 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1209 status = d_revalidate(dentry, nd);
1210 if (unlikely(status <= 0)) {
1211 if (status < 0) {
1212 dput(dentry);
1213 return status;
1214 }
1215 if (!d_invalidate(dentry)) {
1216 dput(dentry);
1217 dentry = NULL;
1218 need_reval = 1;
1219 goto retry;
1220 }
1221 }
1222
1223 path->mnt = mnt;
1224 path->dentry = dentry;
1225 err = follow_managed(path, nd->flags);
1226 if (unlikely(err < 0)) {
1227 path_put_conditional(path, nd);
1228 return err;
1229 }
1230 *inode = path->dentry->d_inode;
1231 return 0;
1232 }
1233
1234 static inline int may_lookup(struct nameidata *nd)
1235 {
1236 if (nd->flags & LOOKUP_RCU) {
1237 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1238 if (err != -ECHILD)
1239 return err;
1240 if (unlazy_walk(nd, NULL))
1241 return -ECHILD;
1242 }
1243 return exec_permission(nd->inode, 0);
1244 }
1245
1246 static inline int handle_dots(struct nameidata *nd, int type)
1247 {
1248 if (type == LAST_DOTDOT) {
1249 if (nd->flags & LOOKUP_RCU) {
1250 if (follow_dotdot_rcu(nd))
1251 return -ECHILD;
1252 } else
1253 follow_dotdot(nd);
1254 }
1255 return 0;
1256 }
1257
1258 static void terminate_walk(struct nameidata *nd)
1259 {
1260 if (!(nd->flags & LOOKUP_RCU)) {
1261 path_put(&nd->path);
1262 } else {
1263 nd->flags &= ~LOOKUP_RCU;
1264 if (!(nd->flags & LOOKUP_ROOT))
1265 nd->root.mnt = NULL;
1266 rcu_read_unlock();
1267 br_read_unlock(vfsmount_lock);
1268 }
1269 }
1270
1271 static inline int walk_component(struct nameidata *nd, struct path *path,
1272 struct qstr *name, int type, int follow)
1273 {
1274 struct inode *inode;
1275 int err;
1276 /*
1277 * "." and ".." are special - ".." especially so because it has
1278 * to be able to know about the current root directory and
1279 * parent relationships.
1280 */
1281 if (unlikely(type != LAST_NORM))
1282 return handle_dots(nd, type);
1283 err = do_lookup(nd, name, path, &inode);
1284 if (unlikely(err)) {
1285 terminate_walk(nd);
1286 return err;
1287 }
1288 if (!inode) {
1289 path_to_nameidata(path, nd);
1290 terminate_walk(nd);
1291 return -ENOENT;
1292 }
1293 if (unlikely(inode->i_op->follow_link) && follow) {
1294 if (nd->flags & LOOKUP_RCU) {
1295 if (unlikely(unlazy_walk(nd, path->dentry))) {
1296 terminate_walk(nd);
1297 return -ECHILD;
1298 }
1299 }
1300 BUG_ON(inode != path->dentry->d_inode);
1301 return 1;
1302 }
1303 path_to_nameidata(path, nd);
1304 nd->inode = inode;
1305 return 0;
1306 }
1307
1308 /*
1309 * This limits recursive symlink follows to 8, while
1310 * limiting consecutive symlinks to 40.
1311 *
1312 * Without that kind of total limit, nasty chains of consecutive
1313 * symlinks can cause almost arbitrarily long lookups.
1314 */
1315 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1316 {
1317 int res;
1318
1319 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1320 path_put_conditional(path, nd);
1321 path_put(&nd->path);
1322 return -ELOOP;
1323 }
1324 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1325
1326 nd->depth++;
1327 current->link_count++;
1328
1329 do {
1330 struct path link = *path;
1331 void *cookie;
1332
1333 res = follow_link(&link, nd, &cookie);
1334 if (!res)
1335 res = walk_component(nd, path, &nd->last,
1336 nd->last_type, LOOKUP_FOLLOW);
1337 put_link(nd, &link, cookie);
1338 } while (res > 0);
1339
1340 current->link_count--;
1341 nd->depth--;
1342 return res;
1343 }
1344
1345 /*
1346 * Name resolution.
1347 * This is the basic name resolution function, turning a pathname into
1348 * the final dentry. We expect 'base' to be positive and a directory.
1349 *
1350 * Returns 0 and nd will have valid dentry and mnt on success.
1351 * Returns error and drops reference to input namei data on failure.
1352 */
1353 static int link_path_walk(const char *name, struct nameidata *nd)
1354 {
1355 struct path next;
1356 int err;
1357 unsigned int lookup_flags = nd->flags;
1358
1359 while (*name=='/')
1360 name++;
1361 if (!*name)
1362 return 0;
1363
1364 /* At this point we know we have a real path component. */
1365 for(;;) {
1366 unsigned long hash;
1367 struct qstr this;
1368 unsigned int c;
1369 int type;
1370
1371 nd->flags |= LOOKUP_CONTINUE;
1372
1373 err = may_lookup(nd);
1374 if (err)
1375 break;
1376
1377 this.name = name;
1378 c = *(const unsigned char *)name;
1379
1380 hash = init_name_hash();
1381 do {
1382 name++;
1383 hash = partial_name_hash(c, hash);
1384 c = *(const unsigned char *)name;
1385 } while (c && (c != '/'));
1386 this.len = name - (const char *) this.name;
1387 this.hash = end_name_hash(hash);
1388
1389 type = LAST_NORM;
1390 if (this.name[0] == '.') switch (this.len) {
1391 case 2:
1392 if (this.name[1] == '.') {
1393 type = LAST_DOTDOT;
1394 nd->flags |= LOOKUP_JUMPED;
1395 }
1396 break;
1397 case 1:
1398 type = LAST_DOT;
1399 }
1400 if (likely(type == LAST_NORM)) {
1401 struct dentry *parent = nd->path.dentry;
1402 nd->flags &= ~LOOKUP_JUMPED;
1403 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1404 err = parent->d_op->d_hash(parent, nd->inode,
1405 &this);
1406 if (err < 0)
1407 break;
1408 }
1409 }
1410
1411 /* remove trailing slashes? */
1412 if (!c)
1413 goto last_component;
1414 while (*++name == '/');
1415 if (!*name)
1416 goto last_component;
1417
1418 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1419 if (err < 0)
1420 return err;
1421
1422 if (err) {
1423 err = nested_symlink(&next, nd);
1424 if (err)
1425 return err;
1426 }
1427 err = -ENOTDIR;
1428 if (!nd->inode->i_op->lookup)
1429 break;
1430 continue;
1431 /* here ends the main loop */
1432
1433 last_component:
1434 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1435 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1436 nd->last = this;
1437 nd->last_type = type;
1438 return 0;
1439 }
1440 terminate_walk(nd);
1441 return err;
1442 }
1443
1444 static int path_init(int dfd, const char *name, unsigned int flags,
1445 struct nameidata *nd, struct file **fp)
1446 {
1447 int retval = 0;
1448 int fput_needed;
1449 struct file *file;
1450
1451 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1452 nd->flags = flags | LOOKUP_JUMPED;
1453 nd->depth = 0;
1454 if (flags & LOOKUP_ROOT) {
1455 struct inode *inode = nd->root.dentry->d_inode;
1456 if (*name) {
1457 if (!inode->i_op->lookup)
1458 return -ENOTDIR;
1459 retval = inode_permission(inode, MAY_EXEC);
1460 if (retval)
1461 return retval;
1462 }
1463 nd->path = nd->root;
1464 nd->inode = inode;
1465 if (flags & LOOKUP_RCU) {
1466 br_read_lock(vfsmount_lock);
1467 rcu_read_lock();
1468 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1469 } else {
1470 path_get(&nd->path);
1471 }
1472 return 0;
1473 }
1474
1475 nd->root.mnt = NULL;
1476
1477 if (*name=='/') {
1478 if (flags & LOOKUP_RCU) {
1479 br_read_lock(vfsmount_lock);
1480 rcu_read_lock();
1481 set_root_rcu(nd);
1482 } else {
1483 set_root(nd);
1484 path_get(&nd->root);
1485 }
1486 nd->path = nd->root;
1487 } else if (dfd == AT_FDCWD) {
1488 if (flags & LOOKUP_RCU) {
1489 struct fs_struct *fs = current->fs;
1490 unsigned seq;
1491
1492 br_read_lock(vfsmount_lock);
1493 rcu_read_lock();
1494
1495 do {
1496 seq = read_seqcount_begin(&fs->seq);
1497 nd->path = fs->pwd;
1498 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1499 } while (read_seqcount_retry(&fs->seq, seq));
1500 } else {
1501 get_fs_pwd(current->fs, &nd->path);
1502 }
1503 } else {
1504 struct dentry *dentry;
1505
1506 file = fget_raw_light(dfd, &fput_needed);
1507 retval = -EBADF;
1508 if (!file)
1509 goto out_fail;
1510
1511 dentry = file->f_path.dentry;
1512
1513 if (*name) {
1514 retval = -ENOTDIR;
1515 if (!S_ISDIR(dentry->d_inode->i_mode))
1516 goto fput_fail;
1517
1518 retval = file_permission(file, MAY_EXEC);
1519 if (retval)
1520 goto fput_fail;
1521 }
1522
1523 nd->path = file->f_path;
1524 if (flags & LOOKUP_RCU) {
1525 if (fput_needed)
1526 *fp = file;
1527 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1528 br_read_lock(vfsmount_lock);
1529 rcu_read_lock();
1530 } else {
1531 path_get(&file->f_path);
1532 fput_light(file, fput_needed);
1533 }
1534 }
1535
1536 nd->inode = nd->path.dentry->d_inode;
1537 return 0;
1538
1539 fput_fail:
1540 fput_light(file, fput_needed);
1541 out_fail:
1542 return retval;
1543 }
1544
1545 static inline int lookup_last(struct nameidata *nd, struct path *path)
1546 {
1547 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1548 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1549
1550 nd->flags &= ~LOOKUP_PARENT;
1551 return walk_component(nd, path, &nd->last, nd->last_type,
1552 nd->flags & LOOKUP_FOLLOW);
1553 }
1554
1555 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1556 static int path_lookupat(int dfd, const char *name,
1557 unsigned int flags, struct nameidata *nd)
1558 {
1559 struct file *base = NULL;
1560 struct path path;
1561 int err;
1562
1563 /*
1564 * Path walking is largely split up into 2 different synchronisation
1565 * schemes, rcu-walk and ref-walk (explained in
1566 * Documentation/filesystems/path-lookup.txt). These share much of the
1567 * path walk code, but some things particularly setup, cleanup, and
1568 * following mounts are sufficiently divergent that functions are
1569 * duplicated. Typically there is a function foo(), and its RCU
1570 * analogue, foo_rcu().
1571 *
1572 * -ECHILD is the error number of choice (just to avoid clashes) that
1573 * is returned if some aspect of an rcu-walk fails. Such an error must
1574 * be handled by restarting a traditional ref-walk (which will always
1575 * be able to complete).
1576 */
1577 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1578
1579 if (unlikely(err))
1580 return err;
1581
1582 current->total_link_count = 0;
1583 err = link_path_walk(name, nd);
1584
1585 if (!err && !(flags & LOOKUP_PARENT)) {
1586 err = lookup_last(nd, &path);
1587 while (err > 0) {
1588 void *cookie;
1589 struct path link = path;
1590 nd->flags |= LOOKUP_PARENT;
1591 err = follow_link(&link, nd, &cookie);
1592 if (!err)
1593 err = lookup_last(nd, &path);
1594 put_link(nd, &link, cookie);
1595 }
1596 }
1597
1598 if (!err)
1599 err = complete_walk(nd);
1600
1601 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1602 if (!nd->inode->i_op->lookup) {
1603 path_put(&nd->path);
1604 err = -ENOTDIR;
1605 }
1606 }
1607
1608 if (base)
1609 fput(base);
1610
1611 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1612 path_put(&nd->root);
1613 nd->root.mnt = NULL;
1614 }
1615 return err;
1616 }
1617
1618 static int do_path_lookup(int dfd, const char *name,
1619 unsigned int flags, struct nameidata *nd)
1620 {
1621 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1622 if (unlikely(retval == -ECHILD))
1623 retval = path_lookupat(dfd, name, flags, nd);
1624 if (unlikely(retval == -ESTALE))
1625 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1626
1627 if (likely(!retval)) {
1628 if (unlikely(!audit_dummy_context())) {
1629 if (nd->path.dentry && nd->inode)
1630 audit_inode(name, nd->path.dentry);
1631 }
1632 }
1633 return retval;
1634 }
1635
1636 int kern_path_parent(const char *name, struct nameidata *nd)
1637 {
1638 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1639 }
1640
1641 int kern_path(const char *name, unsigned int flags, struct path *path)
1642 {
1643 struct nameidata nd;
1644 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1645 if (!res)
1646 *path = nd.path;
1647 return res;
1648 }
1649
1650 /**
1651 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1652 * @dentry: pointer to dentry of the base directory
1653 * @mnt: pointer to vfs mount of the base directory
1654 * @name: pointer to file name
1655 * @flags: lookup flags
1656 * @nd: pointer to nameidata
1657 */
1658 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1659 const char *name, unsigned int flags,
1660 struct nameidata *nd)
1661 {
1662 nd->root.dentry = dentry;
1663 nd->root.mnt = mnt;
1664 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1665 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1666 }
1667
1668 static struct dentry *__lookup_hash(struct qstr *name,
1669 struct dentry *base, struct nameidata *nd)
1670 {
1671 struct inode *inode = base->d_inode;
1672 struct dentry *dentry;
1673 int err;
1674
1675 err = exec_permission(inode, 0);
1676 if (err)
1677 return ERR_PTR(err);
1678
1679 /*
1680 * Don't bother with __d_lookup: callers are for creat as
1681 * well as unlink, so a lot of the time it would cost
1682 * a double lookup.
1683 */
1684 dentry = d_lookup(base, name);
1685
1686 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1687 dentry = do_revalidate(dentry, nd);
1688
1689 if (!dentry)
1690 dentry = d_alloc_and_lookup(base, name, nd);
1691
1692 return dentry;
1693 }
1694
1695 /*
1696 * Restricted form of lookup. Doesn't follow links, single-component only,
1697 * needs parent already locked. Doesn't follow mounts.
1698 * SMP-safe.
1699 */
1700 static struct dentry *lookup_hash(struct nameidata *nd)
1701 {
1702 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1703 }
1704
1705 /**
1706 * lookup_one_len - filesystem helper to lookup single pathname component
1707 * @name: pathname component to lookup
1708 * @base: base directory to lookup from
1709 * @len: maximum length @len should be interpreted to
1710 *
1711 * Note that this routine is purely a helper for filesystem usage and should
1712 * not be called by generic code. Also note that by using this function the
1713 * nameidata argument is passed to the filesystem methods and a filesystem
1714 * using this helper needs to be prepared for that.
1715 */
1716 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1717 {
1718 struct qstr this;
1719 unsigned long hash;
1720 unsigned int c;
1721
1722 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1723
1724 this.name = name;
1725 this.len = len;
1726 if (!len)
1727 return ERR_PTR(-EACCES);
1728
1729 hash = init_name_hash();
1730 while (len--) {
1731 c = *(const unsigned char *)name++;
1732 if (c == '/' || c == '\0')
1733 return ERR_PTR(-EACCES);
1734 hash = partial_name_hash(c, hash);
1735 }
1736 this.hash = end_name_hash(hash);
1737 /*
1738 * See if the low-level filesystem might want
1739 * to use its own hash..
1740 */
1741 if (base->d_flags & DCACHE_OP_HASH) {
1742 int err = base->d_op->d_hash(base, base->d_inode, &this);
1743 if (err < 0)
1744 return ERR_PTR(err);
1745 }
1746
1747 return __lookup_hash(&this, base, NULL);
1748 }
1749
1750 int user_path_at(int dfd, const char __user *name, unsigned flags,
1751 struct path *path)
1752 {
1753 struct nameidata nd;
1754 char *tmp = getname_flags(name, flags);
1755 int err = PTR_ERR(tmp);
1756 if (!IS_ERR(tmp)) {
1757
1758 BUG_ON(flags & LOOKUP_PARENT);
1759
1760 err = do_path_lookup(dfd, tmp, flags, &nd);
1761 putname(tmp);
1762 if (!err)
1763 *path = nd.path;
1764 }
1765 return err;
1766 }
1767
1768 static int user_path_parent(int dfd, const char __user *path,
1769 struct nameidata *nd, char **name)
1770 {
1771 char *s = getname(path);
1772 int error;
1773
1774 if (IS_ERR(s))
1775 return PTR_ERR(s);
1776
1777 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1778 if (error)
1779 putname(s);
1780 else
1781 *name = s;
1782
1783 return error;
1784 }
1785
1786 /*
1787 * It's inline, so penalty for filesystems that don't use sticky bit is
1788 * minimal.
1789 */
1790 static inline int check_sticky(struct inode *dir, struct inode *inode)
1791 {
1792 uid_t fsuid = current_fsuid();
1793
1794 if (!(dir->i_mode & S_ISVTX))
1795 return 0;
1796 if (current_user_ns() != inode_userns(inode))
1797 goto other_userns;
1798 if (inode->i_uid == fsuid)
1799 return 0;
1800 if (dir->i_uid == fsuid)
1801 return 0;
1802
1803 other_userns:
1804 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1805 }
1806
1807 /*
1808 * Check whether we can remove a link victim from directory dir, check
1809 * whether the type of victim is right.
1810 * 1. We can't do it if dir is read-only (done in permission())
1811 * 2. We should have write and exec permissions on dir
1812 * 3. We can't remove anything from append-only dir
1813 * 4. We can't do anything with immutable dir (done in permission())
1814 * 5. If the sticky bit on dir is set we should either
1815 * a. be owner of dir, or
1816 * b. be owner of victim, or
1817 * c. have CAP_FOWNER capability
1818 * 6. If the victim is append-only or immutable we can't do antyhing with
1819 * links pointing to it.
1820 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1821 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1822 * 9. We can't remove a root or mountpoint.
1823 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1824 * nfs_async_unlink().
1825 */
1826 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1827 {
1828 int error;
1829
1830 if (!victim->d_inode)
1831 return -ENOENT;
1832
1833 BUG_ON(victim->d_parent->d_inode != dir);
1834 audit_inode_child(victim, dir);
1835
1836 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1837 if (error)
1838 return error;
1839 if (IS_APPEND(dir))
1840 return -EPERM;
1841 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1842 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1843 return -EPERM;
1844 if (isdir) {
1845 if (!S_ISDIR(victim->d_inode->i_mode))
1846 return -ENOTDIR;
1847 if (IS_ROOT(victim))
1848 return -EBUSY;
1849 } else if (S_ISDIR(victim->d_inode->i_mode))
1850 return -EISDIR;
1851 if (IS_DEADDIR(dir))
1852 return -ENOENT;
1853 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1854 return -EBUSY;
1855 return 0;
1856 }
1857
1858 /* Check whether we can create an object with dentry child in directory
1859 * dir.
1860 * 1. We can't do it if child already exists (open has special treatment for
1861 * this case, but since we are inlined it's OK)
1862 * 2. We can't do it if dir is read-only (done in permission())
1863 * 3. We should have write and exec permissions on dir
1864 * 4. We can't do it if dir is immutable (done in permission())
1865 */
1866 static inline int may_create(struct inode *dir, struct dentry *child)
1867 {
1868 if (child->d_inode)
1869 return -EEXIST;
1870 if (IS_DEADDIR(dir))
1871 return -ENOENT;
1872 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1873 }
1874
1875 /*
1876 * p1 and p2 should be directories on the same fs.
1877 */
1878 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1879 {
1880 struct dentry *p;
1881
1882 if (p1 == p2) {
1883 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1884 return NULL;
1885 }
1886
1887 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1888
1889 p = d_ancestor(p2, p1);
1890 if (p) {
1891 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1892 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1893 return p;
1894 }
1895
1896 p = d_ancestor(p1, p2);
1897 if (p) {
1898 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1899 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1900 return p;
1901 }
1902
1903 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1904 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1905 return NULL;
1906 }
1907
1908 void unlock_rename(struct dentry *p1, struct dentry *p2)
1909 {
1910 mutex_unlock(&p1->d_inode->i_mutex);
1911 if (p1 != p2) {
1912 mutex_unlock(&p2->d_inode->i_mutex);
1913 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1914 }
1915 }
1916
1917 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1918 struct nameidata *nd)
1919 {
1920 int error = may_create(dir, dentry);
1921
1922 if (error)
1923 return error;
1924
1925 if (!dir->i_op->create)
1926 return -EACCES; /* shouldn't it be ENOSYS? */
1927 mode &= S_IALLUGO;
1928 mode |= S_IFREG;
1929 error = security_inode_create(dir, dentry, mode);
1930 if (error)
1931 return error;
1932 error = dir->i_op->create(dir, dentry, mode, nd);
1933 if (!error)
1934 fsnotify_create(dir, dentry);
1935 return error;
1936 }
1937
1938 static int may_open(struct path *path, int acc_mode, int flag)
1939 {
1940 struct dentry *dentry = path->dentry;
1941 struct inode *inode = dentry->d_inode;
1942 int error;
1943
1944 /* O_PATH? */
1945 if (!acc_mode)
1946 return 0;
1947
1948 if (!inode)
1949 return -ENOENT;
1950
1951 switch (inode->i_mode & S_IFMT) {
1952 case S_IFLNK:
1953 return -ELOOP;
1954 case S_IFDIR:
1955 if (acc_mode & MAY_WRITE)
1956 return -EISDIR;
1957 break;
1958 case S_IFBLK:
1959 case S_IFCHR:
1960 if (path->mnt->mnt_flags & MNT_NODEV)
1961 return -EACCES;
1962 /*FALLTHRU*/
1963 case S_IFIFO:
1964 case S_IFSOCK:
1965 flag &= ~O_TRUNC;
1966 break;
1967 }
1968
1969 error = inode_permission(inode, acc_mode);
1970 if (error)
1971 return error;
1972
1973 /*
1974 * An append-only file must be opened in append mode for writing.
1975 */
1976 if (IS_APPEND(inode)) {
1977 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1978 return -EPERM;
1979 if (flag & O_TRUNC)
1980 return -EPERM;
1981 }
1982
1983 /* O_NOATIME can only be set by the owner or superuser */
1984 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1985 return -EPERM;
1986
1987 /*
1988 * Ensure there are no outstanding leases on the file.
1989 */
1990 return break_lease(inode, flag);
1991 }
1992
1993 static int handle_truncate(struct file *filp)
1994 {
1995 struct path *path = &filp->f_path;
1996 struct inode *inode = path->dentry->d_inode;
1997 int error = get_write_access(inode);
1998 if (error)
1999 return error;
2000 /*
2001 * Refuse to truncate files with mandatory locks held on them.
2002 */
2003 error = locks_verify_locked(inode);
2004 if (!error)
2005 error = security_path_truncate(path);
2006 if (!error) {
2007 error = do_truncate(path->dentry, 0,
2008 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2009 filp);
2010 }
2011 put_write_access(inode);
2012 return error;
2013 }
2014
2015 /*
2016 * Note that while the flag value (low two bits) for sys_open means:
2017 * 00 - read-only
2018 * 01 - write-only
2019 * 10 - read-write
2020 * 11 - special
2021 * it is changed into
2022 * 00 - no permissions needed
2023 * 01 - read-permission
2024 * 10 - write-permission
2025 * 11 - read-write
2026 * for the internal routines (ie open_namei()/follow_link() etc)
2027 * This is more logical, and also allows the 00 "no perm needed"
2028 * to be used for symlinks (where the permissions are checked
2029 * later).
2030 *
2031 */
2032 static inline int open_to_namei_flags(int flag)
2033 {
2034 if ((flag+1) & O_ACCMODE)
2035 flag++;
2036 return flag;
2037 }
2038
2039 /*
2040 * Handle the last step of open()
2041 */
2042 static struct file *do_last(struct nameidata *nd, struct path *path,
2043 const struct open_flags *op, const char *pathname)
2044 {
2045 struct dentry *dir = nd->path.dentry;
2046 struct dentry *dentry;
2047 int open_flag = op->open_flag;
2048 int will_truncate = open_flag & O_TRUNC;
2049 int want_write = 0;
2050 int acc_mode = op->acc_mode;
2051 struct file *filp;
2052 int error;
2053
2054 nd->flags &= ~LOOKUP_PARENT;
2055 nd->flags |= op->intent;
2056
2057 switch (nd->last_type) {
2058 case LAST_DOTDOT:
2059 case LAST_DOT:
2060 error = handle_dots(nd, nd->last_type);
2061 if (error)
2062 return ERR_PTR(error);
2063 /* fallthrough */
2064 case LAST_ROOT:
2065 error = complete_walk(nd);
2066 if (error)
2067 return ERR_PTR(error);
2068 audit_inode(pathname, nd->path.dentry);
2069 if (open_flag & O_CREAT) {
2070 error = -EISDIR;
2071 goto exit;
2072 }
2073 goto ok;
2074 case LAST_BIND:
2075 error = complete_walk(nd);
2076 if (error)
2077 return ERR_PTR(error);
2078 audit_inode(pathname, dir);
2079 goto ok;
2080 }
2081
2082 if (!(open_flag & O_CREAT)) {
2083 int symlink_ok = 0;
2084 if (nd->last.name[nd->last.len])
2085 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2086 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2087 symlink_ok = 1;
2088 /* we _can_ be in RCU mode here */
2089 error = walk_component(nd, path, &nd->last, LAST_NORM,
2090 !symlink_ok);
2091 if (error < 0)
2092 return ERR_PTR(error);
2093 if (error) /* symlink */
2094 return NULL;
2095 /* sayonara */
2096 error = complete_walk(nd);
2097 if (error)
2098 return ERR_PTR(-ECHILD);
2099
2100 error = -ENOTDIR;
2101 if (nd->flags & LOOKUP_DIRECTORY) {
2102 if (!nd->inode->i_op->lookup)
2103 goto exit;
2104 }
2105 audit_inode(pathname, nd->path.dentry);
2106 goto ok;
2107 }
2108
2109 /* create side of things */
2110 error = complete_walk(nd);
2111 if (error)
2112 return ERR_PTR(error);
2113
2114 audit_inode(pathname, dir);
2115 error = -EISDIR;
2116 /* trailing slashes? */
2117 if (nd->last.name[nd->last.len])
2118 goto exit;
2119
2120 mutex_lock(&dir->d_inode->i_mutex);
2121
2122 dentry = lookup_hash(nd);
2123 error = PTR_ERR(dentry);
2124 if (IS_ERR(dentry)) {
2125 mutex_unlock(&dir->d_inode->i_mutex);
2126 goto exit;
2127 }
2128
2129 path->dentry = dentry;
2130 path->mnt = nd->path.mnt;
2131
2132 /* Negative dentry, just create the file */
2133 if (!dentry->d_inode) {
2134 int mode = op->mode;
2135 if (!IS_POSIXACL(dir->d_inode))
2136 mode &= ~current_umask();
2137 /*
2138 * This write is needed to ensure that a
2139 * rw->ro transition does not occur between
2140 * the time when the file is created and when
2141 * a permanent write count is taken through
2142 * the 'struct file' in nameidata_to_filp().
2143 */
2144 error = mnt_want_write(nd->path.mnt);
2145 if (error)
2146 goto exit_mutex_unlock;
2147 want_write = 1;
2148 /* Don't check for write permission, don't truncate */
2149 open_flag &= ~O_TRUNC;
2150 will_truncate = 0;
2151 acc_mode = MAY_OPEN;
2152 error = security_path_mknod(&nd->path, dentry, mode, 0);
2153 if (error)
2154 goto exit_mutex_unlock;
2155 error = vfs_create(dir->d_inode, dentry, mode, nd);
2156 if (error)
2157 goto exit_mutex_unlock;
2158 mutex_unlock(&dir->d_inode->i_mutex);
2159 dput(nd->path.dentry);
2160 nd->path.dentry = dentry;
2161 goto common;
2162 }
2163
2164 /*
2165 * It already exists.
2166 */
2167 mutex_unlock(&dir->d_inode->i_mutex);
2168 audit_inode(pathname, path->dentry);
2169
2170 error = -EEXIST;
2171 if (open_flag & O_EXCL)
2172 goto exit_dput;
2173
2174 error = follow_managed(path, nd->flags);
2175 if (error < 0)
2176 goto exit_dput;
2177
2178 error = -ENOENT;
2179 if (!path->dentry->d_inode)
2180 goto exit_dput;
2181
2182 if (path->dentry->d_inode->i_op->follow_link)
2183 return NULL;
2184
2185 path_to_nameidata(path, nd);
2186 nd->inode = path->dentry->d_inode;
2187 error = -EISDIR;
2188 if (S_ISDIR(nd->inode->i_mode))
2189 goto exit;
2190 ok:
2191 if (!S_ISREG(nd->inode->i_mode))
2192 will_truncate = 0;
2193
2194 if (will_truncate) {
2195 error = mnt_want_write(nd->path.mnt);
2196 if (error)
2197 goto exit;
2198 want_write = 1;
2199 }
2200 common:
2201 error = may_open(&nd->path, acc_mode, open_flag);
2202 if (error)
2203 goto exit;
2204 filp = nameidata_to_filp(nd);
2205 if (!IS_ERR(filp)) {
2206 error = ima_file_check(filp, op->acc_mode);
2207 if (error) {
2208 fput(filp);
2209 filp = ERR_PTR(error);
2210 }
2211 }
2212 if (!IS_ERR(filp)) {
2213 if (will_truncate) {
2214 error = handle_truncate(filp);
2215 if (error) {
2216 fput(filp);
2217 filp = ERR_PTR(error);
2218 }
2219 }
2220 }
2221 out:
2222 if (want_write)
2223 mnt_drop_write(nd->path.mnt);
2224 path_put(&nd->path);
2225 return filp;
2226
2227 exit_mutex_unlock:
2228 mutex_unlock(&dir->d_inode->i_mutex);
2229 exit_dput:
2230 path_put_conditional(path, nd);
2231 exit:
2232 filp = ERR_PTR(error);
2233 goto out;
2234 }
2235
2236 static struct file *path_openat(int dfd, const char *pathname,
2237 struct nameidata *nd, const struct open_flags *op, int flags)
2238 {
2239 struct file *base = NULL;
2240 struct file *filp;
2241 struct path path;
2242 int error;
2243
2244 filp = get_empty_filp();
2245 if (!filp)
2246 return ERR_PTR(-ENFILE);
2247
2248 filp->f_flags = op->open_flag;
2249 nd->intent.open.file = filp;
2250 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2251 nd->intent.open.create_mode = op->mode;
2252
2253 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2254 if (unlikely(error))
2255 goto out_filp;
2256
2257 current->total_link_count = 0;
2258 error = link_path_walk(pathname, nd);
2259 if (unlikely(error))
2260 goto out_filp;
2261
2262 filp = do_last(nd, &path, op, pathname);
2263 while (unlikely(!filp)) { /* trailing symlink */
2264 struct path link = path;
2265 void *cookie;
2266 if (!(nd->flags & LOOKUP_FOLLOW)) {
2267 path_put_conditional(&path, nd);
2268 path_put(&nd->path);
2269 filp = ERR_PTR(-ELOOP);
2270 break;
2271 }
2272 nd->flags |= LOOKUP_PARENT;
2273 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2274 error = follow_link(&link, nd, &cookie);
2275 if (unlikely(error))
2276 filp = ERR_PTR(error);
2277 else
2278 filp = do_last(nd, &path, op, pathname);
2279 put_link(nd, &link, cookie);
2280 }
2281 out:
2282 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2283 path_put(&nd->root);
2284 if (base)
2285 fput(base);
2286 release_open_intent(nd);
2287 return filp;
2288
2289 out_filp:
2290 filp = ERR_PTR(error);
2291 goto out;
2292 }
2293
2294 struct file *do_filp_open(int dfd, const char *pathname,
2295 const struct open_flags *op, int flags)
2296 {
2297 struct nameidata nd;
2298 struct file *filp;
2299
2300 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2301 if (unlikely(filp == ERR_PTR(-ECHILD)))
2302 filp = path_openat(dfd, pathname, &nd, op, flags);
2303 if (unlikely(filp == ERR_PTR(-ESTALE)))
2304 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2305 return filp;
2306 }
2307
2308 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2309 const char *name, const struct open_flags *op, int flags)
2310 {
2311 struct nameidata nd;
2312 struct file *file;
2313
2314 nd.root.mnt = mnt;
2315 nd.root.dentry = dentry;
2316
2317 flags |= LOOKUP_ROOT;
2318
2319 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2320 return ERR_PTR(-ELOOP);
2321
2322 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2323 if (unlikely(file == ERR_PTR(-ECHILD)))
2324 file = path_openat(-1, name, &nd, op, flags);
2325 if (unlikely(file == ERR_PTR(-ESTALE)))
2326 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2327 return file;
2328 }
2329
2330 /**
2331 * lookup_create - lookup a dentry, creating it if it doesn't exist
2332 * @nd: nameidata info
2333 * @is_dir: directory flag
2334 *
2335 * Simple function to lookup and return a dentry and create it
2336 * if it doesn't exist. Is SMP-safe.
2337 *
2338 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2339 */
2340 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2341 {
2342 struct dentry *dentry = ERR_PTR(-EEXIST);
2343
2344 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2345 /*
2346 * Yucky last component or no last component at all?
2347 * (foo/., foo/.., /////)
2348 */
2349 if (nd->last_type != LAST_NORM)
2350 goto fail;
2351 nd->flags &= ~LOOKUP_PARENT;
2352 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2353 nd->intent.open.flags = O_EXCL;
2354
2355 /*
2356 * Do the final lookup.
2357 */
2358 dentry = lookup_hash(nd);
2359 if (IS_ERR(dentry))
2360 goto fail;
2361
2362 if (dentry->d_inode)
2363 goto eexist;
2364 /*
2365 * Special case - lookup gave negative, but... we had foo/bar/
2366 * From the vfs_mknod() POV we just have a negative dentry -
2367 * all is fine. Let's be bastards - you had / on the end, you've
2368 * been asking for (non-existent) directory. -ENOENT for you.
2369 */
2370 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2371 dput(dentry);
2372 dentry = ERR_PTR(-ENOENT);
2373 }
2374 return dentry;
2375 eexist:
2376 dput(dentry);
2377 dentry = ERR_PTR(-EEXIST);
2378 fail:
2379 return dentry;
2380 }
2381 EXPORT_SYMBOL_GPL(lookup_create);
2382
2383 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2384 {
2385 int error = may_create(dir, dentry);
2386
2387 if (error)
2388 return error;
2389
2390 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2391 !ns_capable(inode_userns(dir), CAP_MKNOD))
2392 return -EPERM;
2393
2394 if (!dir->i_op->mknod)
2395 return -EPERM;
2396
2397 error = devcgroup_inode_mknod(mode, dev);
2398 if (error)
2399 return error;
2400
2401 error = security_inode_mknod(dir, dentry, mode, dev);
2402 if (error)
2403 return error;
2404
2405 error = dir->i_op->mknod(dir, dentry, mode, dev);
2406 if (!error)
2407 fsnotify_create(dir, dentry);
2408 return error;
2409 }
2410
2411 static int may_mknod(mode_t mode)
2412 {
2413 switch (mode & S_IFMT) {
2414 case S_IFREG:
2415 case S_IFCHR:
2416 case S_IFBLK:
2417 case S_IFIFO:
2418 case S_IFSOCK:
2419 case 0: /* zero mode translates to S_IFREG */
2420 return 0;
2421 case S_IFDIR:
2422 return -EPERM;
2423 default:
2424 return -EINVAL;
2425 }
2426 }
2427
2428 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2429 unsigned, dev)
2430 {
2431 int error;
2432 char *tmp;
2433 struct dentry *dentry;
2434 struct nameidata nd;
2435
2436 if (S_ISDIR(mode))
2437 return -EPERM;
2438
2439 error = user_path_parent(dfd, filename, &nd, &tmp);
2440 if (error)
2441 return error;
2442
2443 dentry = lookup_create(&nd, 0);
2444 if (IS_ERR(dentry)) {
2445 error = PTR_ERR(dentry);
2446 goto out_unlock;
2447 }
2448 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2449 mode &= ~current_umask();
2450 error = may_mknod(mode);
2451 if (error)
2452 goto out_dput;
2453 error = mnt_want_write(nd.path.mnt);
2454 if (error)
2455 goto out_dput;
2456 error = security_path_mknod(&nd.path, dentry, mode, dev);
2457 if (error)
2458 goto out_drop_write;
2459 switch (mode & S_IFMT) {
2460 case 0: case S_IFREG:
2461 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2462 break;
2463 case S_IFCHR: case S_IFBLK:
2464 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2465 new_decode_dev(dev));
2466 break;
2467 case S_IFIFO: case S_IFSOCK:
2468 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2469 break;
2470 }
2471 out_drop_write:
2472 mnt_drop_write(nd.path.mnt);
2473 out_dput:
2474 dput(dentry);
2475 out_unlock:
2476 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2477 path_put(&nd.path);
2478 putname(tmp);
2479
2480 return error;
2481 }
2482
2483 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2484 {
2485 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2486 }
2487
2488 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2489 {
2490 int error = may_create(dir, dentry);
2491
2492 if (error)
2493 return error;
2494
2495 if (!dir->i_op->mkdir)
2496 return -EPERM;
2497
2498 mode &= (S_IRWXUGO|S_ISVTX);
2499 error = security_inode_mkdir(dir, dentry, mode);
2500 if (error)
2501 return error;
2502
2503 error = dir->i_op->mkdir(dir, dentry, mode);
2504 if (!error)
2505 fsnotify_mkdir(dir, dentry);
2506 return error;
2507 }
2508
2509 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2510 {
2511 int error = 0;
2512 char * tmp;
2513 struct dentry *dentry;
2514 struct nameidata nd;
2515
2516 error = user_path_parent(dfd, pathname, &nd, &tmp);
2517 if (error)
2518 goto out_err;
2519
2520 dentry = lookup_create(&nd, 1);
2521 error = PTR_ERR(dentry);
2522 if (IS_ERR(dentry))
2523 goto out_unlock;
2524
2525 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2526 mode &= ~current_umask();
2527 error = mnt_want_write(nd.path.mnt);
2528 if (error)
2529 goto out_dput;
2530 error = security_path_mkdir(&nd.path, dentry, mode);
2531 if (error)
2532 goto out_drop_write;
2533 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2534 out_drop_write:
2535 mnt_drop_write(nd.path.mnt);
2536 out_dput:
2537 dput(dentry);
2538 out_unlock:
2539 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2540 path_put(&nd.path);
2541 putname(tmp);
2542 out_err:
2543 return error;
2544 }
2545
2546 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2547 {
2548 return sys_mkdirat(AT_FDCWD, pathname, mode);
2549 }
2550
2551 /*
2552 * The dentry_unhash() helper will try to drop the dentry early: we
2553 * should have a usage count of 2 if we're the only user of this
2554 * dentry, and if that is true (possibly after pruning the dcache),
2555 * then we drop the dentry now.
2556 *
2557 * A low-level filesystem can, if it choses, legally
2558 * do a
2559 *
2560 * if (!d_unhashed(dentry))
2561 * return -EBUSY;
2562 *
2563 * if it cannot handle the case of removing a directory
2564 * that is still in use by something else..
2565 */
2566 void dentry_unhash(struct dentry *dentry)
2567 {
2568 shrink_dcache_parent(dentry);
2569 spin_lock(&dentry->d_lock);
2570 if (dentry->d_count == 1)
2571 __d_drop(dentry);
2572 spin_unlock(&dentry->d_lock);
2573 }
2574
2575 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2576 {
2577 int error = may_delete(dir, dentry, 1);
2578
2579 if (error)
2580 return error;
2581
2582 if (!dir->i_op->rmdir)
2583 return -EPERM;
2584
2585 mutex_lock(&dentry->d_inode->i_mutex);
2586
2587 error = -EBUSY;
2588 if (d_mountpoint(dentry))
2589 goto out;
2590
2591 error = security_inode_rmdir(dir, dentry);
2592 if (error)
2593 goto out;
2594
2595 shrink_dcache_parent(dentry);
2596 error = dir->i_op->rmdir(dir, dentry);
2597 if (error)
2598 goto out;
2599
2600 dentry->d_inode->i_flags |= S_DEAD;
2601 dont_mount(dentry);
2602
2603 out:
2604 mutex_unlock(&dentry->d_inode->i_mutex);
2605 if (!error)
2606 d_delete(dentry);
2607 return error;
2608 }
2609
2610 static long do_rmdir(int dfd, const char __user *pathname)
2611 {
2612 int error = 0;
2613 char * name;
2614 struct dentry *dentry;
2615 struct nameidata nd;
2616
2617 error = user_path_parent(dfd, pathname, &nd, &name);
2618 if (error)
2619 return error;
2620
2621 switch(nd.last_type) {
2622 case LAST_DOTDOT:
2623 error = -ENOTEMPTY;
2624 goto exit1;
2625 case LAST_DOT:
2626 error = -EINVAL;
2627 goto exit1;
2628 case LAST_ROOT:
2629 error = -EBUSY;
2630 goto exit1;
2631 }
2632
2633 nd.flags &= ~LOOKUP_PARENT;
2634
2635 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2636 dentry = lookup_hash(&nd);
2637 error = PTR_ERR(dentry);
2638 if (IS_ERR(dentry))
2639 goto exit2;
2640 if (!dentry->d_inode) {
2641 error = -ENOENT;
2642 goto exit3;
2643 }
2644 error = mnt_want_write(nd.path.mnt);
2645 if (error)
2646 goto exit3;
2647 error = security_path_rmdir(&nd.path, dentry);
2648 if (error)
2649 goto exit4;
2650 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2651 exit4:
2652 mnt_drop_write(nd.path.mnt);
2653 exit3:
2654 dput(dentry);
2655 exit2:
2656 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2657 exit1:
2658 path_put(&nd.path);
2659 putname(name);
2660 return error;
2661 }
2662
2663 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2664 {
2665 return do_rmdir(AT_FDCWD, pathname);
2666 }
2667
2668 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2669 {
2670 int error = may_delete(dir, dentry, 0);
2671
2672 if (error)
2673 return error;
2674
2675 if (!dir->i_op->unlink)
2676 return -EPERM;
2677
2678 mutex_lock(&dentry->d_inode->i_mutex);
2679 if (d_mountpoint(dentry))
2680 error = -EBUSY;
2681 else {
2682 error = security_inode_unlink(dir, dentry);
2683 if (!error) {
2684 error = dir->i_op->unlink(dir, dentry);
2685 if (!error)
2686 dont_mount(dentry);
2687 }
2688 }
2689 mutex_unlock(&dentry->d_inode->i_mutex);
2690
2691 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2692 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2693 fsnotify_link_count(dentry->d_inode);
2694 d_delete(dentry);
2695 }
2696
2697 return error;
2698 }
2699
2700 /*
2701 * Make sure that the actual truncation of the file will occur outside its
2702 * directory's i_mutex. Truncate can take a long time if there is a lot of
2703 * writeout happening, and we don't want to prevent access to the directory
2704 * while waiting on the I/O.
2705 */
2706 static long do_unlinkat(int dfd, const char __user *pathname)
2707 {
2708 int error;
2709 char *name;
2710 struct dentry *dentry;
2711 struct nameidata nd;
2712 struct inode *inode = NULL;
2713
2714 error = user_path_parent(dfd, pathname, &nd, &name);
2715 if (error)
2716 return error;
2717
2718 error = -EISDIR;
2719 if (nd.last_type != LAST_NORM)
2720 goto exit1;
2721
2722 nd.flags &= ~LOOKUP_PARENT;
2723
2724 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2725 dentry = lookup_hash(&nd);
2726 error = PTR_ERR(dentry);
2727 if (!IS_ERR(dentry)) {
2728 /* Why not before? Because we want correct error value */
2729 if (nd.last.name[nd.last.len])
2730 goto slashes;
2731 inode = dentry->d_inode;
2732 if (!inode)
2733 goto slashes;
2734 ihold(inode);
2735 error = mnt_want_write(nd.path.mnt);
2736 if (error)
2737 goto exit2;
2738 error = security_path_unlink(&nd.path, dentry);
2739 if (error)
2740 goto exit3;
2741 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2742 exit3:
2743 mnt_drop_write(nd.path.mnt);
2744 exit2:
2745 dput(dentry);
2746 }
2747 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2748 if (inode)
2749 iput(inode); /* truncate the inode here */
2750 exit1:
2751 path_put(&nd.path);
2752 putname(name);
2753 return error;
2754
2755 slashes:
2756 error = !dentry->d_inode ? -ENOENT :
2757 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2758 goto exit2;
2759 }
2760
2761 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2762 {
2763 if ((flag & ~AT_REMOVEDIR) != 0)
2764 return -EINVAL;
2765
2766 if (flag & AT_REMOVEDIR)
2767 return do_rmdir(dfd, pathname);
2768
2769 return do_unlinkat(dfd, pathname);
2770 }
2771
2772 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2773 {
2774 return do_unlinkat(AT_FDCWD, pathname);
2775 }
2776
2777 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2778 {
2779 int error = may_create(dir, dentry);
2780
2781 if (error)
2782 return error;
2783
2784 if (!dir->i_op->symlink)
2785 return -EPERM;
2786
2787 error = security_inode_symlink(dir, dentry, oldname);
2788 if (error)
2789 return error;
2790
2791 error = dir->i_op->symlink(dir, dentry, oldname);
2792 if (!error)
2793 fsnotify_create(dir, dentry);
2794 return error;
2795 }
2796
2797 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2798 int, newdfd, const char __user *, newname)
2799 {
2800 int error;
2801 char *from;
2802 char *to;
2803 struct dentry *dentry;
2804 struct nameidata nd;
2805
2806 from = getname(oldname);
2807 if (IS_ERR(from))
2808 return PTR_ERR(from);
2809
2810 error = user_path_parent(newdfd, newname, &nd, &to);
2811 if (error)
2812 goto out_putname;
2813
2814 dentry = lookup_create(&nd, 0);
2815 error = PTR_ERR(dentry);
2816 if (IS_ERR(dentry))
2817 goto out_unlock;
2818
2819 error = mnt_want_write(nd.path.mnt);
2820 if (error)
2821 goto out_dput;
2822 error = security_path_symlink(&nd.path, dentry, from);
2823 if (error)
2824 goto out_drop_write;
2825 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2826 out_drop_write:
2827 mnt_drop_write(nd.path.mnt);
2828 out_dput:
2829 dput(dentry);
2830 out_unlock:
2831 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2832 path_put(&nd.path);
2833 putname(to);
2834 out_putname:
2835 putname(from);
2836 return error;
2837 }
2838
2839 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2840 {
2841 return sys_symlinkat(oldname, AT_FDCWD, newname);
2842 }
2843
2844 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2845 {
2846 struct inode *inode = old_dentry->d_inode;
2847 int error;
2848
2849 if (!inode)
2850 return -ENOENT;
2851
2852 error = may_create(dir, new_dentry);
2853 if (error)
2854 return error;
2855
2856 if (dir->i_sb != inode->i_sb)
2857 return -EXDEV;
2858
2859 /*
2860 * A link to an append-only or immutable file cannot be created.
2861 */
2862 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2863 return -EPERM;
2864 if (!dir->i_op->link)
2865 return -EPERM;
2866 if (S_ISDIR(inode->i_mode))
2867 return -EPERM;
2868
2869 error = security_inode_link(old_dentry, dir, new_dentry);
2870 if (error)
2871 return error;
2872
2873 mutex_lock(&inode->i_mutex);
2874 /* Make sure we don't allow creating hardlink to an unlinked file */
2875 if (inode->i_nlink == 0)
2876 error = -ENOENT;
2877 else
2878 error = dir->i_op->link(old_dentry, dir, new_dentry);
2879 mutex_unlock(&inode->i_mutex);
2880 if (!error)
2881 fsnotify_link(dir, inode, new_dentry);
2882 return error;
2883 }
2884
2885 /*
2886 * Hardlinks are often used in delicate situations. We avoid
2887 * security-related surprises by not following symlinks on the
2888 * newname. --KAB
2889 *
2890 * We don't follow them on the oldname either to be compatible
2891 * with linux 2.0, and to avoid hard-linking to directories
2892 * and other special files. --ADM
2893 */
2894 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2895 int, newdfd, const char __user *, newname, int, flags)
2896 {
2897 struct dentry *new_dentry;
2898 struct nameidata nd;
2899 struct path old_path;
2900 int how = 0;
2901 int error;
2902 char *to;
2903
2904 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2905 return -EINVAL;
2906 /*
2907 * To use null names we require CAP_DAC_READ_SEARCH
2908 * This ensures that not everyone will be able to create
2909 * handlink using the passed filedescriptor.
2910 */
2911 if (flags & AT_EMPTY_PATH) {
2912 if (!capable(CAP_DAC_READ_SEARCH))
2913 return -ENOENT;
2914 how = LOOKUP_EMPTY;
2915 }
2916
2917 if (flags & AT_SYMLINK_FOLLOW)
2918 how |= LOOKUP_FOLLOW;
2919
2920 error = user_path_at(olddfd, oldname, how, &old_path);
2921 if (error)
2922 return error;
2923
2924 error = user_path_parent(newdfd, newname, &nd, &to);
2925 if (error)
2926 goto out;
2927 error = -EXDEV;
2928 if (old_path.mnt != nd.path.mnt)
2929 goto out_release;
2930 new_dentry = lookup_create(&nd, 0);
2931 error = PTR_ERR(new_dentry);
2932 if (IS_ERR(new_dentry))
2933 goto out_unlock;
2934 error = mnt_want_write(nd.path.mnt);
2935 if (error)
2936 goto out_dput;
2937 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2938 if (error)
2939 goto out_drop_write;
2940 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2941 out_drop_write:
2942 mnt_drop_write(nd.path.mnt);
2943 out_dput:
2944 dput(new_dentry);
2945 out_unlock:
2946 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2947 out_release:
2948 path_put(&nd.path);
2949 putname(to);
2950 out:
2951 path_put(&old_path);
2952
2953 return error;
2954 }
2955
2956 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2957 {
2958 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2959 }
2960
2961 /*
2962 * The worst of all namespace operations - renaming directory. "Perverted"
2963 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2964 * Problems:
2965 * a) we can get into loop creation. Check is done in is_subdir().
2966 * b) race potential - two innocent renames can create a loop together.
2967 * That's where 4.4 screws up. Current fix: serialization on
2968 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2969 * story.
2970 * c) we have to lock _three_ objects - parents and victim (if it exists).
2971 * And that - after we got ->i_mutex on parents (until then we don't know
2972 * whether the target exists). Solution: try to be smart with locking
2973 * order for inodes. We rely on the fact that tree topology may change
2974 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2975 * move will be locked. Thus we can rank directories by the tree
2976 * (ancestors first) and rank all non-directories after them.
2977 * That works since everybody except rename does "lock parent, lookup,
2978 * lock child" and rename is under ->s_vfs_rename_mutex.
2979 * HOWEVER, it relies on the assumption that any object with ->lookup()
2980 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2981 * we'd better make sure that there's no link(2) for them.
2982 * d) conversion from fhandle to dentry may come in the wrong moment - when
2983 * we are removing the target. Solution: we will have to grab ->i_mutex
2984 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2985 * ->i_mutex on parents, which works but leads to some truly excessive
2986 * locking].
2987 */
2988 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2989 struct inode *new_dir, struct dentry *new_dentry)
2990 {
2991 int error = 0;
2992 struct inode *target = new_dentry->d_inode;
2993
2994 /*
2995 * If we are going to change the parent - check write permissions,
2996 * we'll need to flip '..'.
2997 */
2998 if (new_dir != old_dir) {
2999 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3000 if (error)
3001 return error;
3002 }
3003
3004 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3005 if (error)
3006 return error;
3007
3008 if (target)
3009 mutex_lock(&target->i_mutex);
3010
3011 error = -EBUSY;
3012 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3013 goto out;
3014
3015 if (target)
3016 shrink_dcache_parent(new_dentry);
3017 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3018 if (error)
3019 goto out;
3020
3021 if (target) {
3022 target->i_flags |= S_DEAD;
3023 dont_mount(new_dentry);
3024 }
3025 out:
3026 if (target)
3027 mutex_unlock(&target->i_mutex);
3028 if (!error)
3029 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3030 d_move(old_dentry,new_dentry);
3031 return error;
3032 }
3033
3034 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3035 struct inode *new_dir, struct dentry *new_dentry)
3036 {
3037 struct inode *target = new_dentry->d_inode;
3038 int error;
3039
3040 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3041 if (error)
3042 return error;
3043
3044 dget(new_dentry);
3045 if (target)
3046 mutex_lock(&target->i_mutex);
3047
3048 error = -EBUSY;
3049 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3050 goto out;
3051
3052 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3053 if (error)
3054 goto out;
3055
3056 if (target)
3057 dont_mount(new_dentry);
3058 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3059 d_move(old_dentry, new_dentry);
3060 out:
3061 if (target)
3062 mutex_unlock(&target->i_mutex);
3063 dput(new_dentry);
3064 return error;
3065 }
3066
3067 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3068 struct inode *new_dir, struct dentry *new_dentry)
3069 {
3070 int error;
3071 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3072 const unsigned char *old_name;
3073
3074 if (old_dentry->d_inode == new_dentry->d_inode)
3075 return 0;
3076
3077 error = may_delete(old_dir, old_dentry, is_dir);
3078 if (error)
3079 return error;
3080
3081 if (!new_dentry->d_inode)
3082 error = may_create(new_dir, new_dentry);
3083 else
3084 error = may_delete(new_dir, new_dentry, is_dir);
3085 if (error)
3086 return error;
3087
3088 if (!old_dir->i_op->rename)
3089 return -EPERM;
3090
3091 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3092
3093 if (is_dir)
3094 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3095 else
3096 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3097 if (!error)
3098 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3099 new_dentry->d_inode, old_dentry);
3100 fsnotify_oldname_free(old_name);
3101
3102 return error;
3103 }
3104
3105 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3106 int, newdfd, const char __user *, newname)
3107 {
3108 struct dentry *old_dir, *new_dir;
3109 struct dentry *old_dentry, *new_dentry;
3110 struct dentry *trap;
3111 struct nameidata oldnd, newnd;
3112 char *from;
3113 char *to;
3114 int error;
3115
3116 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3117 if (error)
3118 goto exit;
3119
3120 error = user_path_parent(newdfd, newname, &newnd, &to);
3121 if (error)
3122 goto exit1;
3123
3124 error = -EXDEV;
3125 if (oldnd.path.mnt != newnd.path.mnt)
3126 goto exit2;
3127
3128 old_dir = oldnd.path.dentry;
3129 error = -EBUSY;
3130 if (oldnd.last_type != LAST_NORM)
3131 goto exit2;
3132
3133 new_dir = newnd.path.dentry;
3134 if (newnd.last_type != LAST_NORM)
3135 goto exit2;
3136
3137 oldnd.flags &= ~LOOKUP_PARENT;
3138 newnd.flags &= ~LOOKUP_PARENT;
3139 newnd.flags |= LOOKUP_RENAME_TARGET;
3140
3141 trap = lock_rename(new_dir, old_dir);
3142
3143 old_dentry = lookup_hash(&oldnd);
3144 error = PTR_ERR(old_dentry);
3145 if (IS_ERR(old_dentry))
3146 goto exit3;
3147 /* source must exist */
3148 error = -ENOENT;
3149 if (!old_dentry->d_inode)
3150 goto exit4;
3151 /* unless the source is a directory trailing slashes give -ENOTDIR */
3152 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3153 error = -ENOTDIR;
3154 if (oldnd.last.name[oldnd.last.len])
3155 goto exit4;
3156 if (newnd.last.name[newnd.last.len])
3157 goto exit4;
3158 }
3159 /* source should not be ancestor of target */
3160 error = -EINVAL;
3161 if (old_dentry == trap)
3162 goto exit4;
3163 new_dentry = lookup_hash(&newnd);
3164 error = PTR_ERR(new_dentry);
3165 if (IS_ERR(new_dentry))
3166 goto exit4;
3167 /* target should not be an ancestor of source */
3168 error = -ENOTEMPTY;
3169 if (new_dentry == trap)
3170 goto exit5;
3171
3172 error = mnt_want_write(oldnd.path.mnt);
3173 if (error)
3174 goto exit5;
3175 error = security_path_rename(&oldnd.path, old_dentry,
3176 &newnd.path, new_dentry);
3177 if (error)
3178 goto exit6;
3179 error = vfs_rename(old_dir->d_inode, old_dentry,
3180 new_dir->d_inode, new_dentry);
3181 exit6:
3182 mnt_drop_write(oldnd.path.mnt);
3183 exit5:
3184 dput(new_dentry);
3185 exit4:
3186 dput(old_dentry);
3187 exit3:
3188 unlock_rename(new_dir, old_dir);
3189 exit2:
3190 path_put(&newnd.path);
3191 putname(to);
3192 exit1:
3193 path_put(&oldnd.path);
3194 putname(from);
3195 exit:
3196 return error;
3197 }
3198
3199 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3200 {
3201 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3202 }
3203
3204 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3205 {
3206 int len;
3207
3208 len = PTR_ERR(link);
3209 if (IS_ERR(link))
3210 goto out;
3211
3212 len = strlen(link);
3213 if (len > (unsigned) buflen)
3214 len = buflen;
3215 if (copy_to_user(buffer, link, len))
3216 len = -EFAULT;
3217 out:
3218 return len;
3219 }
3220
3221 /*
3222 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3223 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3224 * using) it for any given inode is up to filesystem.
3225 */
3226 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3227 {
3228 struct nameidata nd;
3229 void *cookie;
3230 int res;
3231
3232 nd.depth = 0;
3233 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3234 if (IS_ERR(cookie))
3235 return PTR_ERR(cookie);
3236
3237 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3238 if (dentry->d_inode->i_op->put_link)
3239 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3240 return res;
3241 }
3242
3243 int vfs_follow_link(struct nameidata *nd, const char *link)
3244 {
3245 return __vfs_follow_link(nd, link);
3246 }
3247
3248 /* get the link contents into pagecache */
3249 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3250 {
3251 char *kaddr;
3252 struct page *page;
3253 struct address_space *mapping = dentry->d_inode->i_mapping;
3254 page = read_mapping_page(mapping, 0, NULL);
3255 if (IS_ERR(page))
3256 return (char*)page;
3257 *ppage = page;
3258 kaddr = kmap(page);
3259 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3260 return kaddr;
3261 }
3262
3263 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3264 {
3265 struct page *page = NULL;
3266 char *s = page_getlink(dentry, &page);
3267 int res = vfs_readlink(dentry,buffer,buflen,s);
3268 if (page) {
3269 kunmap(page);
3270 page_cache_release(page);
3271 }
3272 return res;
3273 }
3274
3275 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3276 {
3277 struct page *page = NULL;
3278 nd_set_link(nd, page_getlink(dentry, &page));
3279 return page;
3280 }
3281
3282 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3283 {
3284 struct page *page = cookie;
3285
3286 if (page) {
3287 kunmap(page);
3288 page_cache_release(page);
3289 }
3290 }
3291
3292 /*
3293 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3294 */
3295 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3296 {
3297 struct address_space *mapping = inode->i_mapping;
3298 struct page *page;
3299 void *fsdata;
3300 int err;
3301 char *kaddr;
3302 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3303 if (nofs)
3304 flags |= AOP_FLAG_NOFS;
3305
3306 retry:
3307 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3308 flags, &page, &fsdata);
3309 if (err)
3310 goto fail;
3311
3312 kaddr = kmap_atomic(page, KM_USER0);
3313 memcpy(kaddr, symname, len-1);
3314 kunmap_atomic(kaddr, KM_USER0);
3315
3316 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3317 page, fsdata);
3318 if (err < 0)
3319 goto fail;
3320 if (err < len-1)
3321 goto retry;
3322
3323 mark_inode_dirty(inode);
3324 return 0;
3325 fail:
3326 return err;
3327 }
3328
3329 int page_symlink(struct inode *inode, const char *symname, int len)
3330 {
3331 return __page_symlink(inode, symname, len,
3332 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3333 }
3334
3335 const struct inode_operations page_symlink_inode_operations = {
3336 .readlink = generic_readlink,
3337 .follow_link = page_follow_link_light,
3338 .put_link = page_put_link,
3339 };
3340
3341 EXPORT_SYMBOL(user_path_at);
3342 EXPORT_SYMBOL(follow_down_one);
3343 EXPORT_SYMBOL(follow_down);
3344 EXPORT_SYMBOL(follow_up);
3345 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3346 EXPORT_SYMBOL(getname);
3347 EXPORT_SYMBOL(lock_rename);
3348 EXPORT_SYMBOL(lookup_one_len);
3349 EXPORT_SYMBOL(page_follow_link_light);
3350 EXPORT_SYMBOL(page_put_link);
3351 EXPORT_SYMBOL(page_readlink);
3352 EXPORT_SYMBOL(__page_symlink);
3353 EXPORT_SYMBOL(page_symlink);
3354 EXPORT_SYMBOL(page_symlink_inode_operations);
3355 EXPORT_SYMBOL(kern_path_parent);
3356 EXPORT_SYMBOL(kern_path);
3357 EXPORT_SYMBOL(vfs_path_lookup);
3358 EXPORT_SYMBOL(inode_permission);
3359 EXPORT_SYMBOL(file_permission);
3360 EXPORT_SYMBOL(unlock_rename);
3361 EXPORT_SYMBOL(vfs_create);
3362 EXPORT_SYMBOL(vfs_follow_link);
3363 EXPORT_SYMBOL(vfs_link);
3364 EXPORT_SYMBOL(vfs_mkdir);
3365 EXPORT_SYMBOL(vfs_mknod);
3366 EXPORT_SYMBOL(generic_permission);
3367 EXPORT_SYMBOL(vfs_readlink);
3368 EXPORT_SYMBOL(vfs_rename);
3369 EXPORT_SYMBOL(vfs_rmdir);
3370 EXPORT_SYMBOL(vfs_symlink);
3371 EXPORT_SYMBOL(vfs_unlink);
3372 EXPORT_SYMBOL(dentry_unhash);
3373 EXPORT_SYMBOL(generic_readlink);