crypto: AF_ALG - remove SGL terminator indicator when chaining
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / locks.c
1 /*
2 * linux/fs/locks.c
3 *
4 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
5 * Doug Evans (dje@spiff.uucp), August 07, 1992
6 *
7 * Deadlock detection added.
8 * FIXME: one thing isn't handled yet:
9 * - mandatory locks (requires lots of changes elsewhere)
10 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
11 *
12 * Miscellaneous edits, and a total rewrite of posix_lock_file() code.
13 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
14 *
15 * Converted file_lock_table to a linked list from an array, which eliminates
16 * the limits on how many active file locks are open.
17 * Chad Page (pageone@netcom.com), November 27, 1994
18 *
19 * Removed dependency on file descriptors. dup()'ed file descriptors now
20 * get the same locks as the original file descriptors, and a close() on
21 * any file descriptor removes ALL the locks on the file for the current
22 * process. Since locks still depend on the process id, locks are inherited
23 * after an exec() but not after a fork(). This agrees with POSIX, and both
24 * BSD and SVR4 practice.
25 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
26 *
27 * Scrapped free list which is redundant now that we allocate locks
28 * dynamically with kmalloc()/kfree().
29 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
30 *
31 * Implemented two lock personalities - FL_FLOCK and FL_POSIX.
32 *
33 * FL_POSIX locks are created with calls to fcntl() and lockf() through the
34 * fcntl() system call. They have the semantics described above.
35 *
36 * FL_FLOCK locks are created with calls to flock(), through the flock()
37 * system call, which is new. Old C libraries implement flock() via fcntl()
38 * and will continue to use the old, broken implementation.
39 *
40 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
41 * with a file pointer (filp). As a result they can be shared by a parent
42 * process and its children after a fork(). They are removed when the last
43 * file descriptor referring to the file pointer is closed (unless explicitly
44 * unlocked).
45 *
46 * FL_FLOCK locks never deadlock, an existing lock is always removed before
47 * upgrading from shared to exclusive (or vice versa). When this happens
48 * any processes blocked by the current lock are woken up and allowed to
49 * run before the new lock is applied.
50 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
51 *
52 * Removed some race conditions in flock_lock_file(), marked other possible
53 * races. Just grep for FIXME to see them.
54 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
55 *
56 * Addressed Dmitry's concerns. Deadlock checking no longer recursive.
57 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
58 * once we've checked for blocking and deadlocking.
59 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
60 *
61 * Initial implementation of mandatory locks. SunOS turned out to be
62 * a rotten model, so I implemented the "obvious" semantics.
63 * See 'Documentation/filesystems/mandatory-locking.txt' for details.
64 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
65 *
66 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to
67 * check if a file has mandatory locks, used by mmap(), open() and creat() to
68 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
69 * Manual, Section 2.
70 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
71 *
72 * Tidied up block list handling. Added '/proc/locks' interface.
73 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
74 *
75 * Fixed deadlock condition for pathological code that mixes calls to
76 * flock() and fcntl().
77 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
78 *
79 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
80 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
81 * guarantee sensible behaviour in the case where file system modules might
82 * be compiled with different options than the kernel itself.
83 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
84 *
85 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
86 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
87 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
88 *
89 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
90 * locks. Changed process synchronisation to avoid dereferencing locks that
91 * have already been freed.
92 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
93 *
94 * Made the block list a circular list to minimise searching in the list.
95 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
96 *
97 * Made mandatory locking a mount option. Default is not to allow mandatory
98 * locking.
99 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
100 *
101 * Some adaptations for NFS support.
102 * Olaf Kirch (okir@monad.swb.de), Dec 1996,
103 *
104 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
105 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
106 *
107 * Use slab allocator instead of kmalloc/kfree.
108 * Use generic list implementation from <linux/list.h>.
109 * Sped up posix_locks_deadlock by only considering blocked locks.
110 * Matthew Wilcox <willy@debian.org>, March, 2000.
111 *
112 * Leases and LOCK_MAND
113 * Matthew Wilcox <willy@debian.org>, June, 2000.
114 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
115 */
116
117 #include <linux/capability.h>
118 #include <linux/file.h>
119 #include <linux/fdtable.h>
120 #include <linux/fs.h>
121 #include <linux/init.h>
122 #include <linux/module.h>
123 #include <linux/security.h>
124 #include <linux/slab.h>
125 #include <linux/syscalls.h>
126 #include <linux/time.h>
127 #include <linux/rcupdate.h>
128 #include <linux/pid_namespace.h>
129
130 #include <asm/uaccess.h>
131
132 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX)
133 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK)
134 #define IS_LEASE(fl) (fl->fl_flags & FL_LEASE)
135
136 static bool lease_breaking(struct file_lock *fl)
137 {
138 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
139 }
140
141 static int target_leasetype(struct file_lock *fl)
142 {
143 if (fl->fl_flags & FL_UNLOCK_PENDING)
144 return F_UNLCK;
145 if (fl->fl_flags & FL_DOWNGRADE_PENDING)
146 return F_RDLCK;
147 return fl->fl_type;
148 }
149
150 int leases_enable = 1;
151 int lease_break_time = 45;
152
153 #define for_each_lock(inode, lockp) \
154 for (lockp = &inode->i_flock; *lockp != NULL; lockp = &(*lockp)->fl_next)
155
156 static LIST_HEAD(file_lock_list);
157 static LIST_HEAD(blocked_list);
158 static DEFINE_SPINLOCK(file_lock_lock);
159
160 /*
161 * Protects the two list heads above, plus the inode->i_flock list
162 */
163 void lock_flocks(void)
164 {
165 spin_lock(&file_lock_lock);
166 }
167 EXPORT_SYMBOL_GPL(lock_flocks);
168
169 void unlock_flocks(void)
170 {
171 spin_unlock(&file_lock_lock);
172 }
173 EXPORT_SYMBOL_GPL(unlock_flocks);
174
175 static struct kmem_cache *filelock_cache __read_mostly;
176
177 static void locks_init_lock_heads(struct file_lock *fl)
178 {
179 INIT_LIST_HEAD(&fl->fl_link);
180 INIT_LIST_HEAD(&fl->fl_block);
181 init_waitqueue_head(&fl->fl_wait);
182 }
183
184 /* Allocate an empty lock structure. */
185 struct file_lock *locks_alloc_lock(void)
186 {
187 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
188
189 if (fl)
190 locks_init_lock_heads(fl);
191
192 return fl;
193 }
194 EXPORT_SYMBOL_GPL(locks_alloc_lock);
195
196 void locks_release_private(struct file_lock *fl)
197 {
198 if (fl->fl_ops) {
199 if (fl->fl_ops->fl_release_private)
200 fl->fl_ops->fl_release_private(fl);
201 fl->fl_ops = NULL;
202 }
203 fl->fl_lmops = NULL;
204
205 }
206 EXPORT_SYMBOL_GPL(locks_release_private);
207
208 /* Free a lock which is not in use. */
209 void locks_free_lock(struct file_lock *fl)
210 {
211 BUG_ON(waitqueue_active(&fl->fl_wait));
212 BUG_ON(!list_empty(&fl->fl_block));
213 BUG_ON(!list_empty(&fl->fl_link));
214
215 locks_release_private(fl);
216 kmem_cache_free(filelock_cache, fl);
217 }
218 EXPORT_SYMBOL(locks_free_lock);
219
220 void locks_init_lock(struct file_lock *fl)
221 {
222 memset(fl, 0, sizeof(struct file_lock));
223 locks_init_lock_heads(fl);
224 }
225
226 EXPORT_SYMBOL(locks_init_lock);
227
228 static void locks_copy_private(struct file_lock *new, struct file_lock *fl)
229 {
230 if (fl->fl_ops) {
231 if (fl->fl_ops->fl_copy_lock)
232 fl->fl_ops->fl_copy_lock(new, fl);
233 new->fl_ops = fl->fl_ops;
234 }
235 if (fl->fl_lmops)
236 new->fl_lmops = fl->fl_lmops;
237 }
238
239 /*
240 * Initialize a new lock from an existing file_lock structure.
241 */
242 void __locks_copy_lock(struct file_lock *new, const struct file_lock *fl)
243 {
244 new->fl_owner = fl->fl_owner;
245 new->fl_pid = fl->fl_pid;
246 new->fl_file = NULL;
247 new->fl_flags = fl->fl_flags;
248 new->fl_type = fl->fl_type;
249 new->fl_start = fl->fl_start;
250 new->fl_end = fl->fl_end;
251 new->fl_ops = NULL;
252 new->fl_lmops = NULL;
253 }
254 EXPORT_SYMBOL(__locks_copy_lock);
255
256 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
257 {
258 locks_release_private(new);
259
260 __locks_copy_lock(new, fl);
261 new->fl_file = fl->fl_file;
262 new->fl_ops = fl->fl_ops;
263 new->fl_lmops = fl->fl_lmops;
264
265 locks_copy_private(new, fl);
266 }
267
268 EXPORT_SYMBOL(locks_copy_lock);
269
270 static inline int flock_translate_cmd(int cmd) {
271 if (cmd & LOCK_MAND)
272 return cmd & (LOCK_MAND | LOCK_RW);
273 switch (cmd) {
274 case LOCK_SH:
275 return F_RDLCK;
276 case LOCK_EX:
277 return F_WRLCK;
278 case LOCK_UN:
279 return F_UNLCK;
280 }
281 return -EINVAL;
282 }
283
284 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
285 static int flock_make_lock(struct file *filp, struct file_lock **lock,
286 unsigned int cmd)
287 {
288 struct file_lock *fl;
289 int type = flock_translate_cmd(cmd);
290 if (type < 0)
291 return type;
292
293 fl = locks_alloc_lock();
294 if (fl == NULL)
295 return -ENOMEM;
296
297 fl->fl_file = filp;
298 fl->fl_pid = current->tgid;
299 fl->fl_flags = FL_FLOCK;
300 fl->fl_type = type;
301 fl->fl_end = OFFSET_MAX;
302
303 *lock = fl;
304 return 0;
305 }
306
307 static int assign_type(struct file_lock *fl, long type)
308 {
309 switch (type) {
310 case F_RDLCK:
311 case F_WRLCK:
312 case F_UNLCK:
313 fl->fl_type = type;
314 break;
315 default:
316 return -EINVAL;
317 }
318 return 0;
319 }
320
321 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
322 * style lock.
323 */
324 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
325 struct flock *l)
326 {
327 off_t start, end;
328
329 switch (l->l_whence) {
330 case SEEK_SET:
331 start = 0;
332 break;
333 case SEEK_CUR:
334 start = filp->f_pos;
335 break;
336 case SEEK_END:
337 start = i_size_read(file_inode(filp));
338 break;
339 default:
340 return -EINVAL;
341 }
342
343 /* POSIX-1996 leaves the case l->l_len < 0 undefined;
344 POSIX-2001 defines it. */
345 start += l->l_start;
346 if (start < 0)
347 return -EINVAL;
348 fl->fl_end = OFFSET_MAX;
349 if (l->l_len > 0) {
350 end = start + l->l_len - 1;
351 fl->fl_end = end;
352 } else if (l->l_len < 0) {
353 end = start - 1;
354 fl->fl_end = end;
355 start += l->l_len;
356 if (start < 0)
357 return -EINVAL;
358 }
359 fl->fl_start = start; /* we record the absolute position */
360 if (fl->fl_end < fl->fl_start)
361 return -EOVERFLOW;
362
363 fl->fl_owner = current->files;
364 fl->fl_pid = current->tgid;
365 fl->fl_file = filp;
366 fl->fl_flags = FL_POSIX;
367 fl->fl_ops = NULL;
368 fl->fl_lmops = NULL;
369
370 return assign_type(fl, l->l_type);
371 }
372
373 #if BITS_PER_LONG == 32
374 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
375 struct flock64 *l)
376 {
377 loff_t start;
378
379 switch (l->l_whence) {
380 case SEEK_SET:
381 start = 0;
382 break;
383 case SEEK_CUR:
384 start = filp->f_pos;
385 break;
386 case SEEK_END:
387 start = i_size_read(file_inode(filp));
388 break;
389 default:
390 return -EINVAL;
391 }
392
393 start += l->l_start;
394 if (start < 0)
395 return -EINVAL;
396 fl->fl_end = OFFSET_MAX;
397 if (l->l_len > 0) {
398 fl->fl_end = start + l->l_len - 1;
399 } else if (l->l_len < 0) {
400 fl->fl_end = start - 1;
401 start += l->l_len;
402 if (start < 0)
403 return -EINVAL;
404 }
405 fl->fl_start = start; /* we record the absolute position */
406 if (fl->fl_end < fl->fl_start)
407 return -EOVERFLOW;
408
409 fl->fl_owner = current->files;
410 fl->fl_pid = current->tgid;
411 fl->fl_file = filp;
412 fl->fl_flags = FL_POSIX;
413 fl->fl_ops = NULL;
414 fl->fl_lmops = NULL;
415
416 return assign_type(fl, l->l_type);
417 }
418 #endif
419
420 /* default lease lock manager operations */
421 static void lease_break_callback(struct file_lock *fl)
422 {
423 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
424 }
425
426 static const struct lock_manager_operations lease_manager_ops = {
427 .lm_break = lease_break_callback,
428 .lm_change = lease_modify,
429 };
430
431 /*
432 * Initialize a lease, use the default lock manager operations
433 */
434 static int lease_init(struct file *filp, long type, struct file_lock *fl)
435 {
436 if (assign_type(fl, type) != 0)
437 return -EINVAL;
438
439 fl->fl_owner = current->files;
440 fl->fl_pid = current->tgid;
441
442 fl->fl_file = filp;
443 fl->fl_flags = FL_LEASE;
444 fl->fl_start = 0;
445 fl->fl_end = OFFSET_MAX;
446 fl->fl_ops = NULL;
447 fl->fl_lmops = &lease_manager_ops;
448 return 0;
449 }
450
451 /* Allocate a file_lock initialised to this type of lease */
452 static struct file_lock *lease_alloc(struct file *filp, long type)
453 {
454 struct file_lock *fl = locks_alloc_lock();
455 int error = -ENOMEM;
456
457 if (fl == NULL)
458 return ERR_PTR(error);
459
460 error = lease_init(filp, type, fl);
461 if (error) {
462 locks_free_lock(fl);
463 return ERR_PTR(error);
464 }
465 return fl;
466 }
467
468 /* Check if two locks overlap each other.
469 */
470 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
471 {
472 return ((fl1->fl_end >= fl2->fl_start) &&
473 (fl2->fl_end >= fl1->fl_start));
474 }
475
476 /*
477 * Check whether two locks have the same owner.
478 */
479 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
480 {
481 if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner)
482 return fl2->fl_lmops == fl1->fl_lmops &&
483 fl1->fl_lmops->lm_compare_owner(fl1, fl2);
484 return fl1->fl_owner == fl2->fl_owner;
485 }
486
487 /* Remove waiter from blocker's block list.
488 * When blocker ends up pointing to itself then the list is empty.
489 */
490 static void __locks_delete_block(struct file_lock *waiter)
491 {
492 list_del_init(&waiter->fl_block);
493 list_del_init(&waiter->fl_link);
494 waiter->fl_next = NULL;
495 }
496
497 /*
498 */
499 void locks_delete_block(struct file_lock *waiter)
500 {
501 lock_flocks();
502 __locks_delete_block(waiter);
503 unlock_flocks();
504 }
505 EXPORT_SYMBOL(locks_delete_block);
506
507 /* Insert waiter into blocker's block list.
508 * We use a circular list so that processes can be easily woken up in
509 * the order they blocked. The documentation doesn't require this but
510 * it seems like the reasonable thing to do.
511 */
512 static void locks_insert_block(struct file_lock *blocker,
513 struct file_lock *waiter)
514 {
515 BUG_ON(!list_empty(&waiter->fl_block));
516 list_add_tail(&waiter->fl_block, &blocker->fl_block);
517 waiter->fl_next = blocker;
518 if (IS_POSIX(blocker))
519 list_add(&waiter->fl_link, &blocked_list);
520 }
521
522 /* Wake up processes blocked waiting for blocker.
523 * If told to wait then schedule the processes until the block list
524 * is empty, otherwise empty the block list ourselves.
525 */
526 static void locks_wake_up_blocks(struct file_lock *blocker)
527 {
528 while (!list_empty(&blocker->fl_block)) {
529 struct file_lock *waiter;
530
531 waiter = list_first_entry(&blocker->fl_block,
532 struct file_lock, fl_block);
533 __locks_delete_block(waiter);
534 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
535 waiter->fl_lmops->lm_notify(waiter);
536 else
537 wake_up(&waiter->fl_wait);
538 }
539 }
540
541 /* Insert file lock fl into an inode's lock list at the position indicated
542 * by pos. At the same time add the lock to the global file lock list.
543 */
544 static void locks_insert_lock(struct file_lock **pos, struct file_lock *fl)
545 {
546 list_add(&fl->fl_link, &file_lock_list);
547
548 fl->fl_nspid = get_pid(task_tgid(current));
549
550 /* insert into file's list */
551 fl->fl_next = *pos;
552 *pos = fl;
553 }
554
555 /*
556 * Delete a lock and then free it.
557 * Wake up processes that are blocked waiting for this lock,
558 * notify the FS that the lock has been cleared and
559 * finally free the lock.
560 */
561 static void locks_delete_lock(struct file_lock **thisfl_p)
562 {
563 struct file_lock *fl = *thisfl_p;
564
565 *thisfl_p = fl->fl_next;
566 fl->fl_next = NULL;
567 list_del_init(&fl->fl_link);
568
569 if (fl->fl_nspid) {
570 put_pid(fl->fl_nspid);
571 fl->fl_nspid = NULL;
572 }
573
574 locks_wake_up_blocks(fl);
575 locks_free_lock(fl);
576 }
577
578 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
579 * checks for shared/exclusive status of overlapping locks.
580 */
581 static int locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
582 {
583 if (sys_fl->fl_type == F_WRLCK)
584 return 1;
585 if (caller_fl->fl_type == F_WRLCK)
586 return 1;
587 return 0;
588 }
589
590 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
591 * checking before calling the locks_conflict().
592 */
593 static int posix_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
594 {
595 /* POSIX locks owned by the same process do not conflict with
596 * each other.
597 */
598 if (!IS_POSIX(sys_fl) || posix_same_owner(caller_fl, sys_fl))
599 return (0);
600
601 /* Check whether they overlap */
602 if (!locks_overlap(caller_fl, sys_fl))
603 return 0;
604
605 return (locks_conflict(caller_fl, sys_fl));
606 }
607
608 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
609 * checking before calling the locks_conflict().
610 */
611 static int flock_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
612 {
613 /* FLOCK locks referring to the same filp do not conflict with
614 * each other.
615 */
616 if (!IS_FLOCK(sys_fl) || (caller_fl->fl_file == sys_fl->fl_file))
617 return (0);
618 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
619 return 0;
620
621 return (locks_conflict(caller_fl, sys_fl));
622 }
623
624 void
625 posix_test_lock(struct file *filp, struct file_lock *fl)
626 {
627 struct file_lock *cfl;
628
629 lock_flocks();
630 for (cfl = file_inode(filp)->i_flock; cfl; cfl = cfl->fl_next) {
631 if (!IS_POSIX(cfl))
632 continue;
633 if (posix_locks_conflict(fl, cfl))
634 break;
635 }
636 if (cfl) {
637 __locks_copy_lock(fl, cfl);
638 if (cfl->fl_nspid)
639 fl->fl_pid = pid_vnr(cfl->fl_nspid);
640 } else
641 fl->fl_type = F_UNLCK;
642 unlock_flocks();
643 return;
644 }
645 EXPORT_SYMBOL(posix_test_lock);
646
647 /*
648 * Deadlock detection:
649 *
650 * We attempt to detect deadlocks that are due purely to posix file
651 * locks.
652 *
653 * We assume that a task can be waiting for at most one lock at a time.
654 * So for any acquired lock, the process holding that lock may be
655 * waiting on at most one other lock. That lock in turns may be held by
656 * someone waiting for at most one other lock. Given a requested lock
657 * caller_fl which is about to wait for a conflicting lock block_fl, we
658 * follow this chain of waiters to ensure we are not about to create a
659 * cycle.
660 *
661 * Since we do this before we ever put a process to sleep on a lock, we
662 * are ensured that there is never a cycle; that is what guarantees that
663 * the while() loop in posix_locks_deadlock() eventually completes.
664 *
665 * Note: the above assumption may not be true when handling lock
666 * requests from a broken NFS client. It may also fail in the presence
667 * of tasks (such as posix threads) sharing the same open file table.
668 *
669 * To handle those cases, we just bail out after a few iterations.
670 */
671
672 #define MAX_DEADLK_ITERATIONS 10
673
674 /* Find a lock that the owner of the given block_fl is blocking on. */
675 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
676 {
677 struct file_lock *fl;
678
679 list_for_each_entry(fl, &blocked_list, fl_link) {
680 if (posix_same_owner(fl, block_fl))
681 return fl->fl_next;
682 }
683 return NULL;
684 }
685
686 static int posix_locks_deadlock(struct file_lock *caller_fl,
687 struct file_lock *block_fl)
688 {
689 int i = 0;
690
691 while ((block_fl = what_owner_is_waiting_for(block_fl))) {
692 if (i++ > MAX_DEADLK_ITERATIONS)
693 return 0;
694 if (posix_same_owner(caller_fl, block_fl))
695 return 1;
696 }
697 return 0;
698 }
699
700 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
701 * after any leases, but before any posix locks.
702 *
703 * Note that if called with an FL_EXISTS argument, the caller may determine
704 * whether or not a lock was successfully freed by testing the return
705 * value for -ENOENT.
706 */
707 static int flock_lock_file(struct file *filp, struct file_lock *request)
708 {
709 struct file_lock *new_fl = NULL;
710 struct file_lock **before;
711 struct inode * inode = file_inode(filp);
712 int error = 0;
713 int found = 0;
714
715 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
716 new_fl = locks_alloc_lock();
717 if (!new_fl)
718 return -ENOMEM;
719 }
720
721 lock_flocks();
722 if (request->fl_flags & FL_ACCESS)
723 goto find_conflict;
724
725 for_each_lock(inode, before) {
726 struct file_lock *fl = *before;
727 if (IS_POSIX(fl))
728 break;
729 if (IS_LEASE(fl))
730 continue;
731 if (filp != fl->fl_file)
732 continue;
733 if (request->fl_type == fl->fl_type)
734 goto out;
735 found = 1;
736 locks_delete_lock(before);
737 break;
738 }
739
740 if (request->fl_type == F_UNLCK) {
741 if ((request->fl_flags & FL_EXISTS) && !found)
742 error = -ENOENT;
743 goto out;
744 }
745
746 /*
747 * If a higher-priority process was blocked on the old file lock,
748 * give it the opportunity to lock the file.
749 */
750 if (found) {
751 unlock_flocks();
752 cond_resched();
753 lock_flocks();
754 }
755
756 find_conflict:
757 for_each_lock(inode, before) {
758 struct file_lock *fl = *before;
759 if (IS_POSIX(fl))
760 break;
761 if (IS_LEASE(fl))
762 continue;
763 if (!flock_locks_conflict(request, fl))
764 continue;
765 error = -EAGAIN;
766 if (!(request->fl_flags & FL_SLEEP))
767 goto out;
768 error = FILE_LOCK_DEFERRED;
769 locks_insert_block(fl, request);
770 goto out;
771 }
772 if (request->fl_flags & FL_ACCESS)
773 goto out;
774 locks_copy_lock(new_fl, request);
775 locks_insert_lock(before, new_fl);
776 new_fl = NULL;
777 error = 0;
778
779 out:
780 unlock_flocks();
781 if (new_fl)
782 locks_free_lock(new_fl);
783 return error;
784 }
785
786 static int __posix_lock_file(struct inode *inode, struct file_lock *request, struct file_lock *conflock)
787 {
788 struct file_lock *fl;
789 struct file_lock *new_fl = NULL;
790 struct file_lock *new_fl2 = NULL;
791 struct file_lock *left = NULL;
792 struct file_lock *right = NULL;
793 struct file_lock **before;
794 int error, added = 0;
795
796 /*
797 * We may need two file_lock structures for this operation,
798 * so we get them in advance to avoid races.
799 *
800 * In some cases we can be sure, that no new locks will be needed
801 */
802 if (!(request->fl_flags & FL_ACCESS) &&
803 (request->fl_type != F_UNLCK ||
804 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
805 new_fl = locks_alloc_lock();
806 new_fl2 = locks_alloc_lock();
807 }
808
809 lock_flocks();
810 if (request->fl_type != F_UNLCK) {
811 for_each_lock(inode, before) {
812 fl = *before;
813 if (!IS_POSIX(fl))
814 continue;
815 if (!posix_locks_conflict(request, fl))
816 continue;
817 if (conflock)
818 __locks_copy_lock(conflock, fl);
819 error = -EAGAIN;
820 if (!(request->fl_flags & FL_SLEEP))
821 goto out;
822 error = -EDEADLK;
823 if (posix_locks_deadlock(request, fl))
824 goto out;
825 error = FILE_LOCK_DEFERRED;
826 locks_insert_block(fl, request);
827 goto out;
828 }
829 }
830
831 /* If we're just looking for a conflict, we're done. */
832 error = 0;
833 if (request->fl_flags & FL_ACCESS)
834 goto out;
835
836 /*
837 * Find the first old lock with the same owner as the new lock.
838 */
839
840 before = &inode->i_flock;
841
842 /* First skip locks owned by other processes. */
843 while ((fl = *before) && (!IS_POSIX(fl) ||
844 !posix_same_owner(request, fl))) {
845 before = &fl->fl_next;
846 }
847
848 /* Process locks with this owner. */
849 while ((fl = *before) && posix_same_owner(request, fl)) {
850 /* Detect adjacent or overlapping regions (if same lock type)
851 */
852 if (request->fl_type == fl->fl_type) {
853 /* In all comparisons of start vs end, use
854 * "start - 1" rather than "end + 1". If end
855 * is OFFSET_MAX, end + 1 will become negative.
856 */
857 if (fl->fl_end < request->fl_start - 1)
858 goto next_lock;
859 /* If the next lock in the list has entirely bigger
860 * addresses than the new one, insert the lock here.
861 */
862 if (fl->fl_start - 1 > request->fl_end)
863 break;
864
865 /* If we come here, the new and old lock are of the
866 * same type and adjacent or overlapping. Make one
867 * lock yielding from the lower start address of both
868 * locks to the higher end address.
869 */
870 if (fl->fl_start > request->fl_start)
871 fl->fl_start = request->fl_start;
872 else
873 request->fl_start = fl->fl_start;
874 if (fl->fl_end < request->fl_end)
875 fl->fl_end = request->fl_end;
876 else
877 request->fl_end = fl->fl_end;
878 if (added) {
879 locks_delete_lock(before);
880 continue;
881 }
882 request = fl;
883 added = 1;
884 }
885 else {
886 /* Processing for different lock types is a bit
887 * more complex.
888 */
889 if (fl->fl_end < request->fl_start)
890 goto next_lock;
891 if (fl->fl_start > request->fl_end)
892 break;
893 if (request->fl_type == F_UNLCK)
894 added = 1;
895 if (fl->fl_start < request->fl_start)
896 left = fl;
897 /* If the next lock in the list has a higher end
898 * address than the new one, insert the new one here.
899 */
900 if (fl->fl_end > request->fl_end) {
901 right = fl;
902 break;
903 }
904 if (fl->fl_start >= request->fl_start) {
905 /* The new lock completely replaces an old
906 * one (This may happen several times).
907 */
908 if (added) {
909 locks_delete_lock(before);
910 continue;
911 }
912 /* Replace the old lock with the new one.
913 * Wake up anybody waiting for the old one,
914 * as the change in lock type might satisfy
915 * their needs.
916 */
917 locks_wake_up_blocks(fl);
918 fl->fl_start = request->fl_start;
919 fl->fl_end = request->fl_end;
920 fl->fl_type = request->fl_type;
921 locks_release_private(fl);
922 locks_copy_private(fl, request);
923 request = fl;
924 added = 1;
925 }
926 }
927 /* Go on to next lock.
928 */
929 next_lock:
930 before = &fl->fl_next;
931 }
932
933 /*
934 * The above code only modifies existing locks in case of
935 * merging or replacing. If new lock(s) need to be inserted
936 * all modifications are done bellow this, so it's safe yet to
937 * bail out.
938 */
939 error = -ENOLCK; /* "no luck" */
940 if (right && left == right && !new_fl2)
941 goto out;
942
943 error = 0;
944 if (!added) {
945 if (request->fl_type == F_UNLCK) {
946 if (request->fl_flags & FL_EXISTS)
947 error = -ENOENT;
948 goto out;
949 }
950
951 if (!new_fl) {
952 error = -ENOLCK;
953 goto out;
954 }
955 locks_copy_lock(new_fl, request);
956 locks_insert_lock(before, new_fl);
957 new_fl = NULL;
958 }
959 if (right) {
960 if (left == right) {
961 /* The new lock breaks the old one in two pieces,
962 * so we have to use the second new lock.
963 */
964 left = new_fl2;
965 new_fl2 = NULL;
966 locks_copy_lock(left, right);
967 locks_insert_lock(before, left);
968 }
969 right->fl_start = request->fl_end + 1;
970 locks_wake_up_blocks(right);
971 }
972 if (left) {
973 left->fl_end = request->fl_start - 1;
974 locks_wake_up_blocks(left);
975 }
976 out:
977 unlock_flocks();
978 /*
979 * Free any unused locks.
980 */
981 if (new_fl)
982 locks_free_lock(new_fl);
983 if (new_fl2)
984 locks_free_lock(new_fl2);
985 return error;
986 }
987
988 /**
989 * posix_lock_file - Apply a POSIX-style lock to a file
990 * @filp: The file to apply the lock to
991 * @fl: The lock to be applied
992 * @conflock: Place to return a copy of the conflicting lock, if found.
993 *
994 * Add a POSIX style lock to a file.
995 * We merge adjacent & overlapping locks whenever possible.
996 * POSIX locks are sorted by owner task, then by starting address
997 *
998 * Note that if called with an FL_EXISTS argument, the caller may determine
999 * whether or not a lock was successfully freed by testing the return
1000 * value for -ENOENT.
1001 */
1002 int posix_lock_file(struct file *filp, struct file_lock *fl,
1003 struct file_lock *conflock)
1004 {
1005 return __posix_lock_file(file_inode(filp), fl, conflock);
1006 }
1007 EXPORT_SYMBOL(posix_lock_file);
1008
1009 /**
1010 * posix_lock_file_wait - Apply a POSIX-style lock to a file
1011 * @filp: The file to apply the lock to
1012 * @fl: The lock to be applied
1013 *
1014 * Add a POSIX style lock to a file.
1015 * We merge adjacent & overlapping locks whenever possible.
1016 * POSIX locks are sorted by owner task, then by starting address
1017 */
1018 int posix_lock_file_wait(struct file *filp, struct file_lock *fl)
1019 {
1020 int error;
1021 might_sleep ();
1022 for (;;) {
1023 error = posix_lock_file(filp, fl, NULL);
1024 if (error != FILE_LOCK_DEFERRED)
1025 break;
1026 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
1027 if (!error)
1028 continue;
1029
1030 locks_delete_block(fl);
1031 break;
1032 }
1033 return error;
1034 }
1035 EXPORT_SYMBOL(posix_lock_file_wait);
1036
1037 /**
1038 * locks_mandatory_locked - Check for an active lock
1039 * @inode: the file to check
1040 *
1041 * Searches the inode's list of locks to find any POSIX locks which conflict.
1042 * This function is called from locks_verify_locked() only.
1043 */
1044 int locks_mandatory_locked(struct inode *inode)
1045 {
1046 fl_owner_t owner = current->files;
1047 struct file_lock *fl;
1048
1049 /*
1050 * Search the lock list for this inode for any POSIX locks.
1051 */
1052 lock_flocks();
1053 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) {
1054 if (!IS_POSIX(fl))
1055 continue;
1056 if (fl->fl_owner != owner)
1057 break;
1058 }
1059 unlock_flocks();
1060 return fl ? -EAGAIN : 0;
1061 }
1062
1063 /**
1064 * locks_mandatory_area - Check for a conflicting lock
1065 * @read_write: %FLOCK_VERIFY_WRITE for exclusive access, %FLOCK_VERIFY_READ
1066 * for shared
1067 * @inode: the file to check
1068 * @filp: how the file was opened (if it was)
1069 * @offset: start of area to check
1070 * @count: length of area to check
1071 *
1072 * Searches the inode's list of locks to find any POSIX locks which conflict.
1073 * This function is called from rw_verify_area() and
1074 * locks_verify_truncate().
1075 */
1076 int locks_mandatory_area(int read_write, struct inode *inode,
1077 struct file *filp, loff_t offset,
1078 size_t count)
1079 {
1080 struct file_lock fl;
1081 int error;
1082
1083 locks_init_lock(&fl);
1084 fl.fl_owner = current->files;
1085 fl.fl_pid = current->tgid;
1086 fl.fl_file = filp;
1087 fl.fl_flags = FL_POSIX | FL_ACCESS;
1088 if (filp && !(filp->f_flags & O_NONBLOCK))
1089 fl.fl_flags |= FL_SLEEP;
1090 fl.fl_type = (read_write == FLOCK_VERIFY_WRITE) ? F_WRLCK : F_RDLCK;
1091 fl.fl_start = offset;
1092 fl.fl_end = offset + count - 1;
1093
1094 for (;;) {
1095 error = __posix_lock_file(inode, &fl, NULL);
1096 if (error != FILE_LOCK_DEFERRED)
1097 break;
1098 error = wait_event_interruptible(fl.fl_wait, !fl.fl_next);
1099 if (!error) {
1100 /*
1101 * If we've been sleeping someone might have
1102 * changed the permissions behind our back.
1103 */
1104 if (__mandatory_lock(inode))
1105 continue;
1106 }
1107
1108 locks_delete_block(&fl);
1109 break;
1110 }
1111
1112 return error;
1113 }
1114
1115 EXPORT_SYMBOL(locks_mandatory_area);
1116
1117 static void lease_clear_pending(struct file_lock *fl, int arg)
1118 {
1119 switch (arg) {
1120 case F_UNLCK:
1121 fl->fl_flags &= ~FL_UNLOCK_PENDING;
1122 /* fall through: */
1123 case F_RDLCK:
1124 fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1125 }
1126 }
1127
1128 /* We already had a lease on this file; just change its type */
1129 int lease_modify(struct file_lock **before, int arg)
1130 {
1131 struct file_lock *fl = *before;
1132 int error = assign_type(fl, arg);
1133
1134 if (error)
1135 return error;
1136 lease_clear_pending(fl, arg);
1137 locks_wake_up_blocks(fl);
1138 if (arg == F_UNLCK) {
1139 struct file *filp = fl->fl_file;
1140
1141 f_delown(filp);
1142 filp->f_owner.signum = 0;
1143 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1144 if (fl->fl_fasync != NULL) {
1145 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1146 fl->fl_fasync = NULL;
1147 }
1148 locks_delete_lock(before);
1149 }
1150 return 0;
1151 }
1152
1153 EXPORT_SYMBOL(lease_modify);
1154
1155 static bool past_time(unsigned long then)
1156 {
1157 if (!then)
1158 /* 0 is a special value meaning "this never expires": */
1159 return false;
1160 return time_after(jiffies, then);
1161 }
1162
1163 static void time_out_leases(struct inode *inode)
1164 {
1165 struct file_lock **before;
1166 struct file_lock *fl;
1167
1168 before = &inode->i_flock;
1169 while ((fl = *before) && IS_LEASE(fl) && lease_breaking(fl)) {
1170 if (past_time(fl->fl_downgrade_time))
1171 lease_modify(before, F_RDLCK);
1172 if (past_time(fl->fl_break_time))
1173 lease_modify(before, F_UNLCK);
1174 if (fl == *before) /* lease_modify may have freed fl */
1175 before = &fl->fl_next;
1176 }
1177 }
1178
1179 /**
1180 * __break_lease - revoke all outstanding leases on file
1181 * @inode: the inode of the file to return
1182 * @mode: the open mode (read or write)
1183 *
1184 * break_lease (inlined for speed) has checked there already is at least
1185 * some kind of lock (maybe a lease) on this file. Leases are broken on
1186 * a call to open() or truncate(). This function can sleep unless you
1187 * specified %O_NONBLOCK to your open().
1188 */
1189 int __break_lease(struct inode *inode, unsigned int mode)
1190 {
1191 int error = 0;
1192 struct file_lock *new_fl, *flock;
1193 struct file_lock *fl;
1194 unsigned long break_time;
1195 int i_have_this_lease = 0;
1196 int want_write = (mode & O_ACCMODE) != O_RDONLY;
1197
1198 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1199 if (IS_ERR(new_fl))
1200 return PTR_ERR(new_fl);
1201
1202 lock_flocks();
1203
1204 time_out_leases(inode);
1205
1206 flock = inode->i_flock;
1207 if ((flock == NULL) || !IS_LEASE(flock))
1208 goto out;
1209
1210 if (!locks_conflict(flock, new_fl))
1211 goto out;
1212
1213 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next)
1214 if (fl->fl_owner == current->files)
1215 i_have_this_lease = 1;
1216
1217 break_time = 0;
1218 if (lease_break_time > 0) {
1219 break_time = jiffies + lease_break_time * HZ;
1220 if (break_time == 0)
1221 break_time++; /* so that 0 means no break time */
1222 }
1223
1224 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) {
1225 if (want_write) {
1226 if (fl->fl_flags & FL_UNLOCK_PENDING)
1227 continue;
1228 fl->fl_flags |= FL_UNLOCK_PENDING;
1229 fl->fl_break_time = break_time;
1230 } else {
1231 if (lease_breaking(flock))
1232 continue;
1233 fl->fl_flags |= FL_DOWNGRADE_PENDING;
1234 fl->fl_downgrade_time = break_time;
1235 }
1236 fl->fl_lmops->lm_break(fl);
1237 }
1238
1239 if (i_have_this_lease || (mode & O_NONBLOCK)) {
1240 error = -EWOULDBLOCK;
1241 goto out;
1242 }
1243
1244 restart:
1245 break_time = flock->fl_break_time;
1246 if (break_time != 0)
1247 break_time -= jiffies;
1248 if (break_time == 0)
1249 break_time++;
1250 locks_insert_block(flock, new_fl);
1251 unlock_flocks();
1252 error = wait_event_interruptible_timeout(new_fl->fl_wait,
1253 !new_fl->fl_next, break_time);
1254 lock_flocks();
1255 __locks_delete_block(new_fl);
1256 if (error >= 0) {
1257 if (error == 0)
1258 time_out_leases(inode);
1259 /*
1260 * Wait for the next conflicting lease that has not been
1261 * broken yet
1262 */
1263 for (flock = inode->i_flock; flock && IS_LEASE(flock);
1264 flock = flock->fl_next) {
1265 if (locks_conflict(new_fl, flock))
1266 goto restart;
1267 }
1268 error = 0;
1269 }
1270
1271 out:
1272 unlock_flocks();
1273 locks_free_lock(new_fl);
1274 return error;
1275 }
1276
1277 EXPORT_SYMBOL(__break_lease);
1278
1279 /**
1280 * lease_get_mtime - get the last modified time of an inode
1281 * @inode: the inode
1282 * @time: pointer to a timespec which will contain the last modified time
1283 *
1284 * This is to force NFS clients to flush their caches for files with
1285 * exclusive leases. The justification is that if someone has an
1286 * exclusive lease, then they could be modifying it.
1287 */
1288 void lease_get_mtime(struct inode *inode, struct timespec *time)
1289 {
1290 struct file_lock *flock = inode->i_flock;
1291 if (flock && IS_LEASE(flock) && (flock->fl_type == F_WRLCK))
1292 *time = current_fs_time(inode->i_sb);
1293 else
1294 *time = inode->i_mtime;
1295 }
1296
1297 EXPORT_SYMBOL(lease_get_mtime);
1298
1299 /**
1300 * fcntl_getlease - Enquire what lease is currently active
1301 * @filp: the file
1302 *
1303 * The value returned by this function will be one of
1304 * (if no lease break is pending):
1305 *
1306 * %F_RDLCK to indicate a shared lease is held.
1307 *
1308 * %F_WRLCK to indicate an exclusive lease is held.
1309 *
1310 * %F_UNLCK to indicate no lease is held.
1311 *
1312 * (if a lease break is pending):
1313 *
1314 * %F_RDLCK to indicate an exclusive lease needs to be
1315 * changed to a shared lease (or removed).
1316 *
1317 * %F_UNLCK to indicate the lease needs to be removed.
1318 *
1319 * XXX: sfr & willy disagree over whether F_INPROGRESS
1320 * should be returned to userspace.
1321 */
1322 int fcntl_getlease(struct file *filp)
1323 {
1324 struct file_lock *fl;
1325 int type = F_UNLCK;
1326
1327 lock_flocks();
1328 time_out_leases(file_inode(filp));
1329 for (fl = file_inode(filp)->i_flock; fl && IS_LEASE(fl);
1330 fl = fl->fl_next) {
1331 if (fl->fl_file == filp) {
1332 type = target_leasetype(fl);
1333 break;
1334 }
1335 }
1336 unlock_flocks();
1337 return type;
1338 }
1339
1340 int generic_add_lease(struct file *filp, long arg, struct file_lock **flp)
1341 {
1342 struct file_lock *fl, **before, **my_before = NULL, *lease;
1343 struct dentry *dentry = filp->f_path.dentry;
1344 struct inode *inode = dentry->d_inode;
1345 int error;
1346
1347 lease = *flp;
1348
1349 error = -EAGAIN;
1350 if ((arg == F_RDLCK) && (atomic_read(&inode->i_writecount) > 0))
1351 goto out;
1352 if ((arg == F_WRLCK)
1353 && ((dentry->d_count > 1)
1354 || (atomic_read(&inode->i_count) > 1)))
1355 goto out;
1356
1357 /*
1358 * At this point, we know that if there is an exclusive
1359 * lease on this file, then we hold it on this filp
1360 * (otherwise our open of this file would have blocked).
1361 * And if we are trying to acquire an exclusive lease,
1362 * then the file is not open by anyone (including us)
1363 * except for this filp.
1364 */
1365 error = -EAGAIN;
1366 for (before = &inode->i_flock;
1367 ((fl = *before) != NULL) && IS_LEASE(fl);
1368 before = &fl->fl_next) {
1369 if (fl->fl_file == filp) {
1370 my_before = before;
1371 continue;
1372 }
1373 /*
1374 * No exclusive leases if someone else has a lease on
1375 * this file:
1376 */
1377 if (arg == F_WRLCK)
1378 goto out;
1379 /*
1380 * Modifying our existing lease is OK, but no getting a
1381 * new lease if someone else is opening for write:
1382 */
1383 if (fl->fl_flags & FL_UNLOCK_PENDING)
1384 goto out;
1385 }
1386
1387 if (my_before != NULL) {
1388 error = lease->fl_lmops->lm_change(my_before, arg);
1389 if (!error)
1390 *flp = *my_before;
1391 goto out;
1392 }
1393
1394 error = -EINVAL;
1395 if (!leases_enable)
1396 goto out;
1397
1398 locks_insert_lock(before, lease);
1399 return 0;
1400
1401 out:
1402 return error;
1403 }
1404
1405 int generic_delete_lease(struct file *filp, struct file_lock **flp)
1406 {
1407 struct file_lock *fl, **before;
1408 struct dentry *dentry = filp->f_path.dentry;
1409 struct inode *inode = dentry->d_inode;
1410
1411 for (before = &inode->i_flock;
1412 ((fl = *before) != NULL) && IS_LEASE(fl);
1413 before = &fl->fl_next) {
1414 if (fl->fl_file != filp)
1415 continue;
1416 return (*flp)->fl_lmops->lm_change(before, F_UNLCK);
1417 }
1418 return -EAGAIN;
1419 }
1420
1421 /**
1422 * generic_setlease - sets a lease on an open file
1423 * @filp: file pointer
1424 * @arg: type of lease to obtain
1425 * @flp: input - file_lock to use, output - file_lock inserted
1426 *
1427 * The (input) flp->fl_lmops->lm_break function is required
1428 * by break_lease().
1429 *
1430 * Called with file_lock_lock held.
1431 */
1432 int generic_setlease(struct file *filp, long arg, struct file_lock **flp)
1433 {
1434 struct dentry *dentry = filp->f_path.dentry;
1435 struct inode *inode = dentry->d_inode;
1436 int error;
1437
1438 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1439 return -EACCES;
1440 if (!S_ISREG(inode->i_mode))
1441 return -EINVAL;
1442 error = security_file_lock(filp, arg);
1443 if (error)
1444 return error;
1445
1446 time_out_leases(inode);
1447
1448 BUG_ON(!(*flp)->fl_lmops->lm_break);
1449
1450 switch (arg) {
1451 case F_UNLCK:
1452 return generic_delete_lease(filp, flp);
1453 case F_RDLCK:
1454 case F_WRLCK:
1455 return generic_add_lease(filp, arg, flp);
1456 default:
1457 return -EINVAL;
1458 }
1459 }
1460 EXPORT_SYMBOL(generic_setlease);
1461
1462 static int __vfs_setlease(struct file *filp, long arg, struct file_lock **lease)
1463 {
1464 if (filp->f_op && filp->f_op->setlease)
1465 return filp->f_op->setlease(filp, arg, lease);
1466 else
1467 return generic_setlease(filp, arg, lease);
1468 }
1469
1470 /**
1471 * vfs_setlease - sets a lease on an open file
1472 * @filp: file pointer
1473 * @arg: type of lease to obtain
1474 * @lease: file_lock to use
1475 *
1476 * Call this to establish a lease on the file.
1477 * The (*lease)->fl_lmops->lm_break operation must be set; if not,
1478 * break_lease will oops!
1479 *
1480 * This will call the filesystem's setlease file method, if
1481 * defined. Note that there is no getlease method; instead, the
1482 * filesystem setlease method should call back to setlease() to
1483 * add a lease to the inode's lease list, where fcntl_getlease() can
1484 * find it. Since fcntl_getlease() only reports whether the current
1485 * task holds a lease, a cluster filesystem need only do this for
1486 * leases held by processes on this node.
1487 *
1488 * There is also no break_lease method; filesystems that
1489 * handle their own leases should break leases themselves from the
1490 * filesystem's open, create, and (on truncate) setattr methods.
1491 *
1492 * Warning: the only current setlease methods exist only to disable
1493 * leases in certain cases. More vfs changes may be required to
1494 * allow a full filesystem lease implementation.
1495 */
1496
1497 int vfs_setlease(struct file *filp, long arg, struct file_lock **lease)
1498 {
1499 int error;
1500
1501 lock_flocks();
1502 error = __vfs_setlease(filp, arg, lease);
1503 unlock_flocks();
1504
1505 return error;
1506 }
1507 EXPORT_SYMBOL_GPL(vfs_setlease);
1508
1509 static int do_fcntl_delete_lease(struct file *filp)
1510 {
1511 struct file_lock fl, *flp = &fl;
1512
1513 lease_init(filp, F_UNLCK, flp);
1514
1515 return vfs_setlease(filp, F_UNLCK, &flp);
1516 }
1517
1518 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
1519 {
1520 struct file_lock *fl, *ret;
1521 struct fasync_struct *new;
1522 int error;
1523
1524 fl = lease_alloc(filp, arg);
1525 if (IS_ERR(fl))
1526 return PTR_ERR(fl);
1527
1528 new = fasync_alloc();
1529 if (!new) {
1530 locks_free_lock(fl);
1531 return -ENOMEM;
1532 }
1533 ret = fl;
1534 lock_flocks();
1535 error = __vfs_setlease(filp, arg, &ret);
1536 if (error) {
1537 unlock_flocks();
1538 locks_free_lock(fl);
1539 goto out_free_fasync;
1540 }
1541 if (ret != fl)
1542 locks_free_lock(fl);
1543
1544 /*
1545 * fasync_insert_entry() returns the old entry if any.
1546 * If there was no old entry, then it used 'new' and
1547 * inserted it into the fasync list. Clear new so that
1548 * we don't release it here.
1549 */
1550 if (!fasync_insert_entry(fd, filp, &ret->fl_fasync, new))
1551 new = NULL;
1552
1553 error = __f_setown(filp, task_pid(current), PIDTYPE_PID, 0);
1554 unlock_flocks();
1555
1556 out_free_fasync:
1557 if (new)
1558 fasync_free(new);
1559 return error;
1560 }
1561
1562 /**
1563 * fcntl_setlease - sets a lease on an open file
1564 * @fd: open file descriptor
1565 * @filp: file pointer
1566 * @arg: type of lease to obtain
1567 *
1568 * Call this fcntl to establish a lease on the file.
1569 * Note that you also need to call %F_SETSIG to
1570 * receive a signal when the lease is broken.
1571 */
1572 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
1573 {
1574 if (arg == F_UNLCK)
1575 return do_fcntl_delete_lease(filp);
1576 return do_fcntl_add_lease(fd, filp, arg);
1577 }
1578
1579 /**
1580 * flock_lock_file_wait - Apply a FLOCK-style lock to a file
1581 * @filp: The file to apply the lock to
1582 * @fl: The lock to be applied
1583 *
1584 * Add a FLOCK style lock to a file.
1585 */
1586 int flock_lock_file_wait(struct file *filp, struct file_lock *fl)
1587 {
1588 int error;
1589 might_sleep();
1590 for (;;) {
1591 error = flock_lock_file(filp, fl);
1592 if (error != FILE_LOCK_DEFERRED)
1593 break;
1594 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
1595 if (!error)
1596 continue;
1597
1598 locks_delete_block(fl);
1599 break;
1600 }
1601 return error;
1602 }
1603
1604 EXPORT_SYMBOL(flock_lock_file_wait);
1605
1606 /**
1607 * sys_flock: - flock() system call.
1608 * @fd: the file descriptor to lock.
1609 * @cmd: the type of lock to apply.
1610 *
1611 * Apply a %FL_FLOCK style lock to an open file descriptor.
1612 * The @cmd can be one of
1613 *
1614 * %LOCK_SH -- a shared lock.
1615 *
1616 * %LOCK_EX -- an exclusive lock.
1617 *
1618 * %LOCK_UN -- remove an existing lock.
1619 *
1620 * %LOCK_MAND -- a `mandatory' flock. This exists to emulate Windows Share Modes.
1621 *
1622 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
1623 * processes read and write access respectively.
1624 */
1625 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
1626 {
1627 struct fd f = fdget(fd);
1628 struct file_lock *lock;
1629 int can_sleep, unlock;
1630 int error;
1631
1632 error = -EBADF;
1633 if (!f.file)
1634 goto out;
1635
1636 can_sleep = !(cmd & LOCK_NB);
1637 cmd &= ~LOCK_NB;
1638 unlock = (cmd == LOCK_UN);
1639
1640 if (!unlock && !(cmd & LOCK_MAND) &&
1641 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
1642 goto out_putf;
1643
1644 error = flock_make_lock(f.file, &lock, cmd);
1645 if (error)
1646 goto out_putf;
1647 if (can_sleep)
1648 lock->fl_flags |= FL_SLEEP;
1649
1650 error = security_file_lock(f.file, lock->fl_type);
1651 if (error)
1652 goto out_free;
1653
1654 if (f.file->f_op && f.file->f_op->flock)
1655 error = f.file->f_op->flock(f.file,
1656 (can_sleep) ? F_SETLKW : F_SETLK,
1657 lock);
1658 else
1659 error = flock_lock_file_wait(f.file, lock);
1660
1661 out_free:
1662 locks_free_lock(lock);
1663
1664 out_putf:
1665 fdput(f);
1666 out:
1667 return error;
1668 }
1669
1670 /**
1671 * vfs_test_lock - test file byte range lock
1672 * @filp: The file to test lock for
1673 * @fl: The lock to test; also used to hold result
1674 *
1675 * Returns -ERRNO on failure. Indicates presence of conflicting lock by
1676 * setting conf->fl_type to something other than F_UNLCK.
1677 */
1678 int vfs_test_lock(struct file *filp, struct file_lock *fl)
1679 {
1680 if (filp->f_op && filp->f_op->lock)
1681 return filp->f_op->lock(filp, F_GETLK, fl);
1682 posix_test_lock(filp, fl);
1683 return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(vfs_test_lock);
1686
1687 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
1688 {
1689 flock->l_pid = fl->fl_pid;
1690 #if BITS_PER_LONG == 32
1691 /*
1692 * Make sure we can represent the posix lock via
1693 * legacy 32bit flock.
1694 */
1695 if (fl->fl_start > OFFT_OFFSET_MAX)
1696 return -EOVERFLOW;
1697 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
1698 return -EOVERFLOW;
1699 #endif
1700 flock->l_start = fl->fl_start;
1701 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
1702 fl->fl_end - fl->fl_start + 1;
1703 flock->l_whence = 0;
1704 flock->l_type = fl->fl_type;
1705 return 0;
1706 }
1707
1708 #if BITS_PER_LONG == 32
1709 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
1710 {
1711 flock->l_pid = fl->fl_pid;
1712 flock->l_start = fl->fl_start;
1713 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
1714 fl->fl_end - fl->fl_start + 1;
1715 flock->l_whence = 0;
1716 flock->l_type = fl->fl_type;
1717 }
1718 #endif
1719
1720 /* Report the first existing lock that would conflict with l.
1721 * This implements the F_GETLK command of fcntl().
1722 */
1723 int fcntl_getlk(struct file *filp, struct flock __user *l)
1724 {
1725 struct file_lock file_lock;
1726 struct flock flock;
1727 int error;
1728
1729 error = -EFAULT;
1730 if (copy_from_user(&flock, l, sizeof(flock)))
1731 goto out;
1732 error = -EINVAL;
1733 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK))
1734 goto out;
1735
1736 error = flock_to_posix_lock(filp, &file_lock, &flock);
1737 if (error)
1738 goto out;
1739
1740 error = vfs_test_lock(filp, &file_lock);
1741 if (error)
1742 goto out;
1743
1744 flock.l_type = file_lock.fl_type;
1745 if (file_lock.fl_type != F_UNLCK) {
1746 error = posix_lock_to_flock(&flock, &file_lock);
1747 if (error)
1748 goto out;
1749 }
1750 error = -EFAULT;
1751 if (!copy_to_user(l, &flock, sizeof(flock)))
1752 error = 0;
1753 out:
1754 return error;
1755 }
1756
1757 /**
1758 * vfs_lock_file - file byte range lock
1759 * @filp: The file to apply the lock to
1760 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
1761 * @fl: The lock to be applied
1762 * @conf: Place to return a copy of the conflicting lock, if found.
1763 *
1764 * A caller that doesn't care about the conflicting lock may pass NULL
1765 * as the final argument.
1766 *
1767 * If the filesystem defines a private ->lock() method, then @conf will
1768 * be left unchanged; so a caller that cares should initialize it to
1769 * some acceptable default.
1770 *
1771 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
1772 * locks, the ->lock() interface may return asynchronously, before the lock has
1773 * been granted or denied by the underlying filesystem, if (and only if)
1774 * lm_grant is set. Callers expecting ->lock() to return asynchronously
1775 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
1776 * the request is for a blocking lock. When ->lock() does return asynchronously,
1777 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
1778 * request completes.
1779 * If the request is for non-blocking lock the file system should return
1780 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
1781 * with the result. If the request timed out the callback routine will return a
1782 * nonzero return code and the file system should release the lock. The file
1783 * system is also responsible to keep a corresponding posix lock when it
1784 * grants a lock so the VFS can find out which locks are locally held and do
1785 * the correct lock cleanup when required.
1786 * The underlying filesystem must not drop the kernel lock or call
1787 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
1788 * return code.
1789 */
1790 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
1791 {
1792 if (filp->f_op && filp->f_op->lock)
1793 return filp->f_op->lock(filp, cmd, fl);
1794 else
1795 return posix_lock_file(filp, fl, conf);
1796 }
1797 EXPORT_SYMBOL_GPL(vfs_lock_file);
1798
1799 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
1800 struct file_lock *fl)
1801 {
1802 int error;
1803
1804 error = security_file_lock(filp, fl->fl_type);
1805 if (error)
1806 return error;
1807
1808 for (;;) {
1809 error = vfs_lock_file(filp, cmd, fl, NULL);
1810 if (error != FILE_LOCK_DEFERRED)
1811 break;
1812 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
1813 if (!error)
1814 continue;
1815
1816 locks_delete_block(fl);
1817 break;
1818 }
1819
1820 return error;
1821 }
1822
1823 /* Apply the lock described by l to an open file descriptor.
1824 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
1825 */
1826 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
1827 struct flock __user *l)
1828 {
1829 struct file_lock *file_lock = locks_alloc_lock();
1830 struct flock flock;
1831 struct inode *inode;
1832 struct file *f;
1833 int error;
1834
1835 if (file_lock == NULL)
1836 return -ENOLCK;
1837
1838 /*
1839 * This might block, so we do it before checking the inode.
1840 */
1841 error = -EFAULT;
1842 if (copy_from_user(&flock, l, sizeof(flock)))
1843 goto out;
1844
1845 inode = file_inode(filp);
1846
1847 /* Don't allow mandatory locks on files that may be memory mapped
1848 * and shared.
1849 */
1850 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
1851 error = -EAGAIN;
1852 goto out;
1853 }
1854
1855 error = flock_to_posix_lock(filp, file_lock, &flock);
1856 if (error)
1857 goto out;
1858 if (cmd == F_SETLKW) {
1859 file_lock->fl_flags |= FL_SLEEP;
1860 }
1861
1862 error = -EBADF;
1863 switch (flock.l_type) {
1864 case F_RDLCK:
1865 if (!(filp->f_mode & FMODE_READ))
1866 goto out;
1867 break;
1868 case F_WRLCK:
1869 if (!(filp->f_mode & FMODE_WRITE))
1870 goto out;
1871 break;
1872 case F_UNLCK:
1873 break;
1874 default:
1875 error = -EINVAL;
1876 goto out;
1877 }
1878
1879 error = do_lock_file_wait(filp, cmd, file_lock);
1880
1881 /*
1882 * Attempt to detect a close/fcntl race and recover by
1883 * releasing the lock that was just acquired.
1884 */
1885 if (!error && file_lock->fl_type != F_UNLCK) {
1886 /*
1887 * We need that spin_lock here - it prevents reordering between
1888 * update of inode->i_flock and check for it done in
1889 * close(). rcu_read_lock() wouldn't do.
1890 */
1891 spin_lock(&current->files->file_lock);
1892 f = fcheck(fd);
1893 spin_unlock(&current->files->file_lock);
1894 if (f != filp) {
1895 file_lock->fl_type = F_UNLCK;
1896 error = do_lock_file_wait(filp, cmd, file_lock);
1897 WARN_ON_ONCE(error);
1898 error = -EBADF;
1899 }
1900 }
1901 out:
1902 locks_free_lock(file_lock);
1903 return error;
1904 }
1905
1906 #if BITS_PER_LONG == 32
1907 /* Report the first existing lock that would conflict with l.
1908 * This implements the F_GETLK command of fcntl().
1909 */
1910 int fcntl_getlk64(struct file *filp, struct flock64 __user *l)
1911 {
1912 struct file_lock file_lock;
1913 struct flock64 flock;
1914 int error;
1915
1916 error = -EFAULT;
1917 if (copy_from_user(&flock, l, sizeof(flock)))
1918 goto out;
1919 error = -EINVAL;
1920 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK))
1921 goto out;
1922
1923 error = flock64_to_posix_lock(filp, &file_lock, &flock);
1924 if (error)
1925 goto out;
1926
1927 error = vfs_test_lock(filp, &file_lock);
1928 if (error)
1929 goto out;
1930
1931 flock.l_type = file_lock.fl_type;
1932 if (file_lock.fl_type != F_UNLCK)
1933 posix_lock_to_flock64(&flock, &file_lock);
1934
1935 error = -EFAULT;
1936 if (!copy_to_user(l, &flock, sizeof(flock)))
1937 error = 0;
1938
1939 out:
1940 return error;
1941 }
1942
1943 /* Apply the lock described by l to an open file descriptor.
1944 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
1945 */
1946 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
1947 struct flock64 __user *l)
1948 {
1949 struct file_lock *file_lock = locks_alloc_lock();
1950 struct flock64 flock;
1951 struct inode *inode;
1952 struct file *f;
1953 int error;
1954
1955 if (file_lock == NULL)
1956 return -ENOLCK;
1957
1958 /*
1959 * This might block, so we do it before checking the inode.
1960 */
1961 error = -EFAULT;
1962 if (copy_from_user(&flock, l, sizeof(flock)))
1963 goto out;
1964
1965 inode = file_inode(filp);
1966
1967 /* Don't allow mandatory locks on files that may be memory mapped
1968 * and shared.
1969 */
1970 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
1971 error = -EAGAIN;
1972 goto out;
1973 }
1974
1975 error = flock64_to_posix_lock(filp, file_lock, &flock);
1976 if (error)
1977 goto out;
1978 if (cmd == F_SETLKW64) {
1979 file_lock->fl_flags |= FL_SLEEP;
1980 }
1981
1982 error = -EBADF;
1983 switch (flock.l_type) {
1984 case F_RDLCK:
1985 if (!(filp->f_mode & FMODE_READ))
1986 goto out;
1987 break;
1988 case F_WRLCK:
1989 if (!(filp->f_mode & FMODE_WRITE))
1990 goto out;
1991 break;
1992 case F_UNLCK:
1993 break;
1994 default:
1995 error = -EINVAL;
1996 goto out;
1997 }
1998
1999 error = do_lock_file_wait(filp, cmd, file_lock);
2000
2001 /*
2002 * Attempt to detect a close/fcntl race and recover by
2003 * releasing the lock that was just acquired.
2004 */
2005 if (!error && file_lock->fl_type != F_UNLCK) {
2006 /*
2007 * We need that spin_lock here - it prevents reordering between
2008 * update of inode->i_flock and check for it done in
2009 * close(). rcu_read_lock() wouldn't do.
2010 */
2011 spin_lock(&current->files->file_lock);
2012 f = fcheck(fd);
2013 spin_unlock(&current->files->file_lock);
2014 if (f != filp) {
2015 file_lock->fl_type = F_UNLCK;
2016 error = do_lock_file_wait(filp, cmd, file_lock);
2017 WARN_ON_ONCE(error);
2018 error = -EBADF;
2019 }
2020 }
2021 out:
2022 locks_free_lock(file_lock);
2023 return error;
2024 }
2025 #endif /* BITS_PER_LONG == 32 */
2026
2027 /*
2028 * This function is called when the file is being removed
2029 * from the task's fd array. POSIX locks belonging to this task
2030 * are deleted at this time.
2031 */
2032 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2033 {
2034 struct file_lock lock;
2035
2036 /*
2037 * If there are no locks held on this file, we don't need to call
2038 * posix_lock_file(). Another process could be setting a lock on this
2039 * file at the same time, but we wouldn't remove that lock anyway.
2040 */
2041 if (!file_inode(filp)->i_flock)
2042 return;
2043
2044 lock.fl_type = F_UNLCK;
2045 lock.fl_flags = FL_POSIX | FL_CLOSE;
2046 lock.fl_start = 0;
2047 lock.fl_end = OFFSET_MAX;
2048 lock.fl_owner = owner;
2049 lock.fl_pid = current->tgid;
2050 lock.fl_file = filp;
2051 lock.fl_ops = NULL;
2052 lock.fl_lmops = NULL;
2053
2054 vfs_lock_file(filp, F_SETLK, &lock, NULL);
2055
2056 if (lock.fl_ops && lock.fl_ops->fl_release_private)
2057 lock.fl_ops->fl_release_private(&lock);
2058 }
2059
2060 EXPORT_SYMBOL(locks_remove_posix);
2061
2062 /*
2063 * This function is called on the last close of an open file.
2064 */
2065 void locks_remove_flock(struct file *filp)
2066 {
2067 struct inode * inode = file_inode(filp);
2068 struct file_lock *fl;
2069 struct file_lock **before;
2070
2071 if (!inode->i_flock)
2072 return;
2073
2074 if (filp->f_op && filp->f_op->flock) {
2075 struct file_lock fl = {
2076 .fl_pid = current->tgid,
2077 .fl_file = filp,
2078 .fl_flags = FL_FLOCK,
2079 .fl_type = F_UNLCK,
2080 .fl_end = OFFSET_MAX,
2081 };
2082 filp->f_op->flock(filp, F_SETLKW, &fl);
2083 if (fl.fl_ops && fl.fl_ops->fl_release_private)
2084 fl.fl_ops->fl_release_private(&fl);
2085 }
2086
2087 lock_flocks();
2088 before = &inode->i_flock;
2089
2090 while ((fl = *before) != NULL) {
2091 if (fl->fl_file == filp) {
2092 if (IS_FLOCK(fl)) {
2093 locks_delete_lock(before);
2094 continue;
2095 }
2096 if (IS_LEASE(fl)) {
2097 lease_modify(before, F_UNLCK);
2098 continue;
2099 }
2100 /* What? */
2101 BUG();
2102 }
2103 before = &fl->fl_next;
2104 }
2105 unlock_flocks();
2106 }
2107
2108 /**
2109 * posix_unblock_lock - stop waiting for a file lock
2110 * @filp: how the file was opened
2111 * @waiter: the lock which was waiting
2112 *
2113 * lockd needs to block waiting for locks.
2114 */
2115 int
2116 posix_unblock_lock(struct file *filp, struct file_lock *waiter)
2117 {
2118 int status = 0;
2119
2120 lock_flocks();
2121 if (waiter->fl_next)
2122 __locks_delete_block(waiter);
2123 else
2124 status = -ENOENT;
2125 unlock_flocks();
2126 return status;
2127 }
2128
2129 EXPORT_SYMBOL(posix_unblock_lock);
2130
2131 /**
2132 * vfs_cancel_lock - file byte range unblock lock
2133 * @filp: The file to apply the unblock to
2134 * @fl: The lock to be unblocked
2135 *
2136 * Used by lock managers to cancel blocked requests
2137 */
2138 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2139 {
2140 if (filp->f_op && filp->f_op->lock)
2141 return filp->f_op->lock(filp, F_CANCELLK, fl);
2142 return 0;
2143 }
2144
2145 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2146
2147 #ifdef CONFIG_PROC_FS
2148 #include <linux/proc_fs.h>
2149 #include <linux/seq_file.h>
2150
2151 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2152 loff_t id, char *pfx)
2153 {
2154 struct inode *inode = NULL;
2155 unsigned int fl_pid;
2156
2157 if (fl->fl_nspid)
2158 fl_pid = pid_vnr(fl->fl_nspid);
2159 else
2160 fl_pid = fl->fl_pid;
2161
2162 if (fl->fl_file != NULL)
2163 inode = file_inode(fl->fl_file);
2164
2165 seq_printf(f, "%lld:%s ", id, pfx);
2166 if (IS_POSIX(fl)) {
2167 seq_printf(f, "%6s %s ",
2168 (fl->fl_flags & FL_ACCESS) ? "ACCESS" : "POSIX ",
2169 (inode == NULL) ? "*NOINODE*" :
2170 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2171 } else if (IS_FLOCK(fl)) {
2172 if (fl->fl_type & LOCK_MAND) {
2173 seq_printf(f, "FLOCK MSNFS ");
2174 } else {
2175 seq_printf(f, "FLOCK ADVISORY ");
2176 }
2177 } else if (IS_LEASE(fl)) {
2178 seq_printf(f, "LEASE ");
2179 if (lease_breaking(fl))
2180 seq_printf(f, "BREAKING ");
2181 else if (fl->fl_file)
2182 seq_printf(f, "ACTIVE ");
2183 else
2184 seq_printf(f, "BREAKER ");
2185 } else {
2186 seq_printf(f, "UNKNOWN UNKNOWN ");
2187 }
2188 if (fl->fl_type & LOCK_MAND) {
2189 seq_printf(f, "%s ",
2190 (fl->fl_type & LOCK_READ)
2191 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ "
2192 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2193 } else {
2194 seq_printf(f, "%s ",
2195 (lease_breaking(fl))
2196 ? (fl->fl_type == F_UNLCK) ? "UNLCK" : "READ "
2197 : (fl->fl_type == F_WRLCK) ? "WRITE" : "READ ");
2198 }
2199 if (inode) {
2200 #ifdef WE_CAN_BREAK_LSLK_NOW
2201 seq_printf(f, "%d %s:%ld ", fl_pid,
2202 inode->i_sb->s_id, inode->i_ino);
2203 #else
2204 /* userspace relies on this representation of dev_t ;-( */
2205 seq_printf(f, "%d %02x:%02x:%ld ", fl_pid,
2206 MAJOR(inode->i_sb->s_dev),
2207 MINOR(inode->i_sb->s_dev), inode->i_ino);
2208 #endif
2209 } else {
2210 seq_printf(f, "%d <none>:0 ", fl_pid);
2211 }
2212 if (IS_POSIX(fl)) {
2213 if (fl->fl_end == OFFSET_MAX)
2214 seq_printf(f, "%Ld EOF\n", fl->fl_start);
2215 else
2216 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2217 } else {
2218 seq_printf(f, "0 EOF\n");
2219 }
2220 }
2221
2222 static int locks_show(struct seq_file *f, void *v)
2223 {
2224 struct file_lock *fl, *bfl;
2225
2226 fl = list_entry(v, struct file_lock, fl_link);
2227
2228 lock_get_status(f, fl, *((loff_t *)f->private), "");
2229
2230 list_for_each_entry(bfl, &fl->fl_block, fl_block)
2231 lock_get_status(f, bfl, *((loff_t *)f->private), " ->");
2232
2233 return 0;
2234 }
2235
2236 static void *locks_start(struct seq_file *f, loff_t *pos)
2237 {
2238 loff_t *p = f->private;
2239
2240 lock_flocks();
2241 *p = (*pos + 1);
2242 return seq_list_start(&file_lock_list, *pos);
2243 }
2244
2245 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2246 {
2247 loff_t *p = f->private;
2248 ++*p;
2249 return seq_list_next(v, &file_lock_list, pos);
2250 }
2251
2252 static void locks_stop(struct seq_file *f, void *v)
2253 {
2254 unlock_flocks();
2255 }
2256
2257 static const struct seq_operations locks_seq_operations = {
2258 .start = locks_start,
2259 .next = locks_next,
2260 .stop = locks_stop,
2261 .show = locks_show,
2262 };
2263
2264 static int locks_open(struct inode *inode, struct file *filp)
2265 {
2266 return seq_open_private(filp, &locks_seq_operations, sizeof(loff_t));
2267 }
2268
2269 static const struct file_operations proc_locks_operations = {
2270 .open = locks_open,
2271 .read = seq_read,
2272 .llseek = seq_lseek,
2273 .release = seq_release_private,
2274 };
2275
2276 static int __init proc_locks_init(void)
2277 {
2278 proc_create("locks", 0, NULL, &proc_locks_operations);
2279 return 0;
2280 }
2281 module_init(proc_locks_init);
2282 #endif
2283
2284 /**
2285 * lock_may_read - checks that the region is free of locks
2286 * @inode: the inode that is being read
2287 * @start: the first byte to read
2288 * @len: the number of bytes to read
2289 *
2290 * Emulates Windows locking requirements. Whole-file
2291 * mandatory locks (share modes) can prohibit a read and
2292 * byte-range POSIX locks can prohibit a read if they overlap.
2293 *
2294 * N.B. this function is only ever called
2295 * from knfsd and ownership of locks is never checked.
2296 */
2297 int lock_may_read(struct inode *inode, loff_t start, unsigned long len)
2298 {
2299 struct file_lock *fl;
2300 int result = 1;
2301 lock_flocks();
2302 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) {
2303 if (IS_POSIX(fl)) {
2304 if (fl->fl_type == F_RDLCK)
2305 continue;
2306 if ((fl->fl_end < start) || (fl->fl_start > (start + len)))
2307 continue;
2308 } else if (IS_FLOCK(fl)) {
2309 if (!(fl->fl_type & LOCK_MAND))
2310 continue;
2311 if (fl->fl_type & LOCK_READ)
2312 continue;
2313 } else
2314 continue;
2315 result = 0;
2316 break;
2317 }
2318 unlock_flocks();
2319 return result;
2320 }
2321
2322 EXPORT_SYMBOL(lock_may_read);
2323
2324 /**
2325 * lock_may_write - checks that the region is free of locks
2326 * @inode: the inode that is being written
2327 * @start: the first byte to write
2328 * @len: the number of bytes to write
2329 *
2330 * Emulates Windows locking requirements. Whole-file
2331 * mandatory locks (share modes) can prohibit a write and
2332 * byte-range POSIX locks can prohibit a write if they overlap.
2333 *
2334 * N.B. this function is only ever called
2335 * from knfsd and ownership of locks is never checked.
2336 */
2337 int lock_may_write(struct inode *inode, loff_t start, unsigned long len)
2338 {
2339 struct file_lock *fl;
2340 int result = 1;
2341 lock_flocks();
2342 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) {
2343 if (IS_POSIX(fl)) {
2344 if ((fl->fl_end < start) || (fl->fl_start > (start + len)))
2345 continue;
2346 } else if (IS_FLOCK(fl)) {
2347 if (!(fl->fl_type & LOCK_MAND))
2348 continue;
2349 if (fl->fl_type & LOCK_WRITE)
2350 continue;
2351 } else
2352 continue;
2353 result = 0;
2354 break;
2355 }
2356 unlock_flocks();
2357 return result;
2358 }
2359
2360 EXPORT_SYMBOL(lock_may_write);
2361
2362 static int __init filelock_init(void)
2363 {
2364 filelock_cache = kmem_cache_create("file_lock_cache",
2365 sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2366
2367 return 0;
2368 }
2369
2370 core_initcall(filelock_init);