916da8c4158b0c01d834ead4b056b014eb1797a1
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / libfs.c
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h> /* sync_mapping_buffers */
16
17 #include <asm/uaccess.h>
18
19 #include "internal.h"
20
21 static inline int simple_positive(struct dentry *dentry)
22 {
23 return dentry->d_inode && !d_unhashed(dentry);
24 }
25
26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 struct kstat *stat)
28 {
29 struct inode *inode = dentry->d_inode;
30 generic_fillattr(inode, stat);
31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 return 0;
33 }
34
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
36 {
37 buf->f_type = dentry->d_sb->s_magic;
38 buf->f_bsize = PAGE_CACHE_SIZE;
39 buf->f_namelen = NAME_MAX;
40 return 0;
41 }
42
43 /*
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
46 */
47 static int simple_delete_dentry(const struct dentry *dentry)
48 {
49 return 1;
50 }
51
52 /*
53 * Lookup the data. This is trivial - if the dentry didn't already
54 * exist, we know it is negative. Set d_op to delete negative dentries.
55 */
56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
57 {
58 static const struct dentry_operations simple_dentry_operations = {
59 .d_delete = simple_delete_dentry,
60 };
61
62 if (dentry->d_name.len > NAME_MAX)
63 return ERR_PTR(-ENAMETOOLONG);
64 d_set_d_op(dentry, &simple_dentry_operations);
65 d_add(dentry, NULL);
66 return NULL;
67 }
68
69 int dcache_dir_open(struct inode *inode, struct file *file)
70 {
71 static struct qstr cursor_name = QSTR_INIT(".", 1);
72
73 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
74
75 return file->private_data ? 0 : -ENOMEM;
76 }
77
78 int dcache_dir_close(struct inode *inode, struct file *file)
79 {
80 dput(file->private_data);
81 return 0;
82 }
83
84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
85 {
86 struct dentry *dentry = file->f_path.dentry;
87 mutex_lock(&dentry->d_inode->i_mutex);
88 switch (whence) {
89 case 1:
90 offset += file->f_pos;
91 case 0:
92 if (offset >= 0)
93 break;
94 default:
95 mutex_unlock(&dentry->d_inode->i_mutex);
96 return -EINVAL;
97 }
98 if (offset != file->f_pos) {
99 file->f_pos = offset;
100 if (file->f_pos >= 2) {
101 struct list_head *p;
102 struct dentry *cursor = file->private_data;
103 loff_t n = file->f_pos - 2;
104
105 spin_lock(&dentry->d_lock);
106 /* d_lock not required for cursor */
107 list_del(&cursor->d_u.d_child);
108 p = dentry->d_subdirs.next;
109 while (n && p != &dentry->d_subdirs) {
110 struct dentry *next;
111 next = list_entry(p, struct dentry, d_u.d_child);
112 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 if (simple_positive(next))
114 n--;
115 spin_unlock(&next->d_lock);
116 p = p->next;
117 }
118 list_add_tail(&cursor->d_u.d_child, p);
119 spin_unlock(&dentry->d_lock);
120 }
121 }
122 mutex_unlock(&dentry->d_inode->i_mutex);
123 return offset;
124 }
125
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode *inode)
128 {
129 return (inode->i_mode >> 12) & 15;
130 }
131
132 /*
133 * Directory is locked and all positive dentries in it are safe, since
134 * for ramfs-type trees they can't go away without unlink() or rmdir(),
135 * both impossible due to the lock on directory.
136 */
137
138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
139 {
140 struct dentry *dentry = filp->f_path.dentry;
141 struct dentry *cursor = filp->private_data;
142 struct list_head *p, *q = &cursor->d_u.d_child;
143 ino_t ino;
144 int i = filp->f_pos;
145
146 switch (i) {
147 case 0:
148 ino = dentry->d_inode->i_ino;
149 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 break;
151 filp->f_pos++;
152 i++;
153 /* fallthrough */
154 case 1:
155 ino = parent_ino(dentry);
156 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 break;
158 filp->f_pos++;
159 i++;
160 /* fallthrough */
161 default:
162 spin_lock(&dentry->d_lock);
163 if (filp->f_pos == 2)
164 list_move(q, &dentry->d_subdirs);
165
166 for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
167 struct dentry *next;
168 next = list_entry(p, struct dentry, d_u.d_child);
169 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
170 if (!simple_positive(next)) {
171 spin_unlock(&next->d_lock);
172 continue;
173 }
174
175 spin_unlock(&next->d_lock);
176 spin_unlock(&dentry->d_lock);
177 if (filldir(dirent, next->d_name.name,
178 next->d_name.len, filp->f_pos,
179 next->d_inode->i_ino,
180 dt_type(next->d_inode)) < 0)
181 return 0;
182 spin_lock(&dentry->d_lock);
183 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
184 /* next is still alive */
185 list_move(q, p);
186 spin_unlock(&next->d_lock);
187 p = q;
188 filp->f_pos++;
189 }
190 spin_unlock(&dentry->d_lock);
191 }
192 return 0;
193 }
194
195 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
196 {
197 return -EISDIR;
198 }
199
200 const struct file_operations simple_dir_operations = {
201 .open = dcache_dir_open,
202 .release = dcache_dir_close,
203 .llseek = dcache_dir_lseek,
204 .read = generic_read_dir,
205 .readdir = dcache_readdir,
206 .fsync = noop_fsync,
207 };
208
209 const struct inode_operations simple_dir_inode_operations = {
210 .lookup = simple_lookup,
211 };
212
213 static const struct super_operations simple_super_operations = {
214 .statfs = simple_statfs,
215 };
216
217 /*
218 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219 * will never be mountable)
220 */
221 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
222 const struct super_operations *ops,
223 const struct dentry_operations *dops, unsigned long magic)
224 {
225 struct super_block *s;
226 struct dentry *dentry;
227 struct inode *root;
228 struct qstr d_name = QSTR_INIT(name, strlen(name));
229
230 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
231 if (IS_ERR(s))
232 return ERR_CAST(s);
233
234 s->s_maxbytes = MAX_LFS_FILESIZE;
235 s->s_blocksize = PAGE_SIZE;
236 s->s_blocksize_bits = PAGE_SHIFT;
237 s->s_magic = magic;
238 s->s_op = ops ? ops : &simple_super_operations;
239 s->s_time_gran = 1;
240 root = new_inode(s);
241 if (!root)
242 goto Enomem;
243 /*
244 * since this is the first inode, make it number 1. New inodes created
245 * after this must take care not to collide with it (by passing
246 * max_reserved of 1 to iunique).
247 */
248 root->i_ino = 1;
249 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
250 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
251 dentry = __d_alloc(s, &d_name);
252 if (!dentry) {
253 iput(root);
254 goto Enomem;
255 }
256 d_instantiate(dentry, root);
257 s->s_root = dentry;
258 s->s_d_op = dops;
259 s->s_flags |= MS_ACTIVE;
260 return dget(s->s_root);
261
262 Enomem:
263 deactivate_locked_super(s);
264 return ERR_PTR(-ENOMEM);
265 }
266
267 int simple_open(struct inode *inode, struct file *file)
268 {
269 if (inode->i_private)
270 file->private_data = inode->i_private;
271 return 0;
272 }
273
274 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
275 {
276 struct inode *inode = old_dentry->d_inode;
277
278 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
279 inc_nlink(inode);
280 ihold(inode);
281 dget(dentry);
282 d_instantiate(dentry, inode);
283 return 0;
284 }
285
286 int simple_empty(struct dentry *dentry)
287 {
288 struct dentry *child;
289 int ret = 0;
290
291 spin_lock(&dentry->d_lock);
292 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
293 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
294 if (simple_positive(child)) {
295 spin_unlock(&child->d_lock);
296 goto out;
297 }
298 spin_unlock(&child->d_lock);
299 }
300 ret = 1;
301 out:
302 spin_unlock(&dentry->d_lock);
303 return ret;
304 }
305
306 int simple_unlink(struct inode *dir, struct dentry *dentry)
307 {
308 struct inode *inode = dentry->d_inode;
309
310 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
311 drop_nlink(inode);
312 dput(dentry);
313 return 0;
314 }
315
316 int simple_rmdir(struct inode *dir, struct dentry *dentry)
317 {
318 if (!simple_empty(dentry))
319 return -ENOTEMPTY;
320
321 drop_nlink(dentry->d_inode);
322 simple_unlink(dir, dentry);
323 drop_nlink(dir);
324 return 0;
325 }
326
327 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
328 struct inode *new_dir, struct dentry *new_dentry)
329 {
330 struct inode *inode = old_dentry->d_inode;
331 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
332
333 if (!simple_empty(new_dentry))
334 return -ENOTEMPTY;
335
336 if (new_dentry->d_inode) {
337 simple_unlink(new_dir, new_dentry);
338 if (they_are_dirs) {
339 drop_nlink(new_dentry->d_inode);
340 drop_nlink(old_dir);
341 }
342 } else if (they_are_dirs) {
343 drop_nlink(old_dir);
344 inc_nlink(new_dir);
345 }
346
347 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
348 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
349
350 return 0;
351 }
352
353 /**
354 * simple_setattr - setattr for simple filesystem
355 * @dentry: dentry
356 * @iattr: iattr structure
357 *
358 * Returns 0 on success, -error on failure.
359 *
360 * simple_setattr is a simple ->setattr implementation without a proper
361 * implementation of size changes.
362 *
363 * It can either be used for in-memory filesystems or special files
364 * on simple regular filesystems. Anything that needs to change on-disk
365 * or wire state on size changes needs its own setattr method.
366 */
367 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
368 {
369 struct inode *inode = dentry->d_inode;
370 int error;
371
372 error = inode_change_ok(inode, iattr);
373 if (error)
374 return error;
375
376 if (iattr->ia_valid & ATTR_SIZE)
377 truncate_setsize(inode, iattr->ia_size);
378 setattr_copy(inode, iattr);
379 mark_inode_dirty(inode);
380 return 0;
381 }
382 EXPORT_SYMBOL(simple_setattr);
383
384 int simple_readpage(struct file *file, struct page *page)
385 {
386 clear_highpage(page);
387 flush_dcache_page(page);
388 SetPageUptodate(page);
389 unlock_page(page);
390 return 0;
391 }
392
393 int simple_write_begin(struct file *file, struct address_space *mapping,
394 loff_t pos, unsigned len, unsigned flags,
395 struct page **pagep, void **fsdata)
396 {
397 struct page *page;
398 pgoff_t index;
399
400 index = pos >> PAGE_CACHE_SHIFT;
401
402 page = grab_cache_page_write_begin(mapping, index, flags);
403 if (!page)
404 return -ENOMEM;
405
406 *pagep = page;
407
408 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
409 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
410
411 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
412 }
413 return 0;
414 }
415
416 /**
417 * simple_write_end - .write_end helper for non-block-device FSes
418 * @available: See .write_end of address_space_operations
419 * @file: "
420 * @mapping: "
421 * @pos: "
422 * @len: "
423 * @copied: "
424 * @page: "
425 * @fsdata: "
426 *
427 * simple_write_end does the minimum needed for updating a page after writing is
428 * done. It has the same API signature as the .write_end of
429 * address_space_operations vector. So it can just be set onto .write_end for
430 * FSes that don't need any other processing. i_mutex is assumed to be held.
431 * Block based filesystems should use generic_write_end().
432 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
433 * is not called, so a filesystem that actually does store data in .write_inode
434 * should extend on what's done here with a call to mark_inode_dirty() in the
435 * case that i_size has changed.
436 */
437 int simple_write_end(struct file *file, struct address_space *mapping,
438 loff_t pos, unsigned len, unsigned copied,
439 struct page *page, void *fsdata)
440 {
441 struct inode *inode = page->mapping->host;
442 loff_t last_pos = pos + copied;
443
444 /* zero the stale part of the page if we did a short copy */
445 if (copied < len) {
446 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
447
448 zero_user(page, from + copied, len - copied);
449 }
450
451 if (!PageUptodate(page))
452 SetPageUptodate(page);
453 /*
454 * No need to use i_size_read() here, the i_size
455 * cannot change under us because we hold the i_mutex.
456 */
457 if (last_pos > inode->i_size)
458 i_size_write(inode, last_pos);
459
460 set_page_dirty(page);
461 unlock_page(page);
462 page_cache_release(page);
463
464 return copied;
465 }
466
467 /*
468 * the inodes created here are not hashed. If you use iunique to generate
469 * unique inode values later for this filesystem, then you must take care
470 * to pass it an appropriate max_reserved value to avoid collisions.
471 */
472 int simple_fill_super(struct super_block *s, unsigned long magic,
473 struct tree_descr *files)
474 {
475 struct inode *inode;
476 struct dentry *root;
477 struct dentry *dentry;
478 int i;
479
480 s->s_blocksize = PAGE_CACHE_SIZE;
481 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
482 s->s_magic = magic;
483 s->s_op = &simple_super_operations;
484 s->s_time_gran = 1;
485
486 inode = new_inode(s);
487 if (!inode)
488 return -ENOMEM;
489 /*
490 * because the root inode is 1, the files array must not contain an
491 * entry at index 1
492 */
493 inode->i_ino = 1;
494 inode->i_mode = S_IFDIR | 0755;
495 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
496 inode->i_op = &simple_dir_inode_operations;
497 inode->i_fop = &simple_dir_operations;
498 set_nlink(inode, 2);
499 root = d_make_root(inode);
500 if (!root)
501 return -ENOMEM;
502 for (i = 0; !files->name || files->name[0]; i++, files++) {
503 if (!files->name)
504 continue;
505
506 /* warn if it tries to conflict with the root inode */
507 if (unlikely(i == 1))
508 printk(KERN_WARNING "%s: %s passed in a files array"
509 "with an index of 1!\n", __func__,
510 s->s_type->name);
511
512 dentry = d_alloc_name(root, files->name);
513 if (!dentry)
514 goto out;
515 inode = new_inode(s);
516 if (!inode) {
517 dput(dentry);
518 goto out;
519 }
520 inode->i_mode = S_IFREG | files->mode;
521 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
522 inode->i_fop = files->ops;
523 inode->i_ino = i;
524 d_add(dentry, inode);
525 }
526 s->s_root = root;
527 return 0;
528 out:
529 d_genocide(root);
530 shrink_dcache_parent(root);
531 dput(root);
532 return -ENOMEM;
533 }
534
535 static DEFINE_SPINLOCK(pin_fs_lock);
536
537 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
538 {
539 struct vfsmount *mnt = NULL;
540 spin_lock(&pin_fs_lock);
541 if (unlikely(!*mount)) {
542 spin_unlock(&pin_fs_lock);
543 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
544 if (IS_ERR(mnt))
545 return PTR_ERR(mnt);
546 spin_lock(&pin_fs_lock);
547 if (!*mount)
548 *mount = mnt;
549 }
550 mntget(*mount);
551 ++*count;
552 spin_unlock(&pin_fs_lock);
553 mntput(mnt);
554 return 0;
555 }
556
557 void simple_release_fs(struct vfsmount **mount, int *count)
558 {
559 struct vfsmount *mnt;
560 spin_lock(&pin_fs_lock);
561 mnt = *mount;
562 if (!--*count)
563 *mount = NULL;
564 spin_unlock(&pin_fs_lock);
565 mntput(mnt);
566 }
567
568 /**
569 * simple_read_from_buffer - copy data from the buffer to user space
570 * @to: the user space buffer to read to
571 * @count: the maximum number of bytes to read
572 * @ppos: the current position in the buffer
573 * @from: the buffer to read from
574 * @available: the size of the buffer
575 *
576 * The simple_read_from_buffer() function reads up to @count bytes from the
577 * buffer @from at offset @ppos into the user space address starting at @to.
578 *
579 * On success, the number of bytes read is returned and the offset @ppos is
580 * advanced by this number, or negative value is returned on error.
581 **/
582 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
583 const void *from, size_t available)
584 {
585 loff_t pos = *ppos;
586 size_t ret;
587
588 if (pos < 0)
589 return -EINVAL;
590 if (pos >= available || !count)
591 return 0;
592 if (count > available - pos)
593 count = available - pos;
594 ret = copy_to_user(to, from + pos, count);
595 if (ret == count)
596 return -EFAULT;
597 count -= ret;
598 *ppos = pos + count;
599 return count;
600 }
601
602 /**
603 * simple_write_to_buffer - copy data from user space to the buffer
604 * @to: the buffer to write to
605 * @available: the size of the buffer
606 * @ppos: the current position in the buffer
607 * @from: the user space buffer to read from
608 * @count: the maximum number of bytes to read
609 *
610 * The simple_write_to_buffer() function reads up to @count bytes from the user
611 * space address starting at @from into the buffer @to at offset @ppos.
612 *
613 * On success, the number of bytes written is returned and the offset @ppos is
614 * advanced by this number, or negative value is returned on error.
615 **/
616 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
617 const void __user *from, size_t count)
618 {
619 loff_t pos = *ppos;
620 size_t res;
621
622 if (pos < 0)
623 return -EINVAL;
624 if (pos >= available || !count)
625 return 0;
626 if (count > available - pos)
627 count = available - pos;
628 res = copy_from_user(to + pos, from, count);
629 if (res == count)
630 return -EFAULT;
631 count -= res;
632 *ppos = pos + count;
633 return count;
634 }
635
636 /**
637 * memory_read_from_buffer - copy data from the buffer
638 * @to: the kernel space buffer to read to
639 * @count: the maximum number of bytes to read
640 * @ppos: the current position in the buffer
641 * @from: the buffer to read from
642 * @available: the size of the buffer
643 *
644 * The memory_read_from_buffer() function reads up to @count bytes from the
645 * buffer @from at offset @ppos into the kernel space address starting at @to.
646 *
647 * On success, the number of bytes read is returned and the offset @ppos is
648 * advanced by this number, or negative value is returned on error.
649 **/
650 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
651 const void *from, size_t available)
652 {
653 loff_t pos = *ppos;
654
655 if (pos < 0)
656 return -EINVAL;
657 if (pos >= available)
658 return 0;
659 if (count > available - pos)
660 count = available - pos;
661 memcpy(to, from + pos, count);
662 *ppos = pos + count;
663
664 return count;
665 }
666
667 /*
668 * Transaction based IO.
669 * The file expects a single write which triggers the transaction, and then
670 * possibly a read which collects the result - which is stored in a
671 * file-local buffer.
672 */
673
674 void simple_transaction_set(struct file *file, size_t n)
675 {
676 struct simple_transaction_argresp *ar = file->private_data;
677
678 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
679
680 /*
681 * The barrier ensures that ar->size will really remain zero until
682 * ar->data is ready for reading.
683 */
684 smp_mb();
685 ar->size = n;
686 }
687
688 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
689 {
690 struct simple_transaction_argresp *ar;
691 static DEFINE_SPINLOCK(simple_transaction_lock);
692
693 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
694 return ERR_PTR(-EFBIG);
695
696 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
697 if (!ar)
698 return ERR_PTR(-ENOMEM);
699
700 spin_lock(&simple_transaction_lock);
701
702 /* only one write allowed per open */
703 if (file->private_data) {
704 spin_unlock(&simple_transaction_lock);
705 free_page((unsigned long)ar);
706 return ERR_PTR(-EBUSY);
707 }
708
709 file->private_data = ar;
710
711 spin_unlock(&simple_transaction_lock);
712
713 if (copy_from_user(ar->data, buf, size))
714 return ERR_PTR(-EFAULT);
715
716 return ar->data;
717 }
718
719 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
720 {
721 struct simple_transaction_argresp *ar = file->private_data;
722
723 if (!ar)
724 return 0;
725 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
726 }
727
728 int simple_transaction_release(struct inode *inode, struct file *file)
729 {
730 free_page((unsigned long)file->private_data);
731 return 0;
732 }
733
734 /* Simple attribute files */
735
736 struct simple_attr {
737 int (*get)(void *, u64 *);
738 int (*set)(void *, u64);
739 char get_buf[24]; /* enough to store a u64 and "\n\0" */
740 char set_buf[24];
741 void *data;
742 const char *fmt; /* format for read operation */
743 struct mutex mutex; /* protects access to these buffers */
744 };
745
746 /* simple_attr_open is called by an actual attribute open file operation
747 * to set the attribute specific access operations. */
748 int simple_attr_open(struct inode *inode, struct file *file,
749 int (*get)(void *, u64 *), int (*set)(void *, u64),
750 const char *fmt)
751 {
752 struct simple_attr *attr;
753
754 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
755 if (!attr)
756 return -ENOMEM;
757
758 attr->get = get;
759 attr->set = set;
760 attr->data = inode->i_private;
761 attr->fmt = fmt;
762 mutex_init(&attr->mutex);
763
764 file->private_data = attr;
765
766 return nonseekable_open(inode, file);
767 }
768
769 int simple_attr_release(struct inode *inode, struct file *file)
770 {
771 kfree(file->private_data);
772 return 0;
773 }
774
775 /* read from the buffer that is filled with the get function */
776 ssize_t simple_attr_read(struct file *file, char __user *buf,
777 size_t len, loff_t *ppos)
778 {
779 struct simple_attr *attr;
780 size_t size;
781 ssize_t ret;
782
783 attr = file->private_data;
784
785 if (!attr->get)
786 return -EACCES;
787
788 ret = mutex_lock_interruptible(&attr->mutex);
789 if (ret)
790 return ret;
791
792 if (*ppos) { /* continued read */
793 size = strlen(attr->get_buf);
794 } else { /* first read */
795 u64 val;
796 ret = attr->get(attr->data, &val);
797 if (ret)
798 goto out;
799
800 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
801 attr->fmt, (unsigned long long)val);
802 }
803
804 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
805 out:
806 mutex_unlock(&attr->mutex);
807 return ret;
808 }
809
810 /* interpret the buffer as a number to call the set function with */
811 ssize_t simple_attr_write(struct file *file, const char __user *buf,
812 size_t len, loff_t *ppos)
813 {
814 struct simple_attr *attr;
815 u64 val;
816 size_t size;
817 ssize_t ret;
818
819 attr = file->private_data;
820 if (!attr->set)
821 return -EACCES;
822
823 ret = mutex_lock_interruptible(&attr->mutex);
824 if (ret)
825 return ret;
826
827 ret = -EFAULT;
828 size = min(sizeof(attr->set_buf) - 1, len);
829 if (copy_from_user(attr->set_buf, buf, size))
830 goto out;
831
832 attr->set_buf[size] = '\0';
833 val = simple_strtoll(attr->set_buf, NULL, 0);
834 ret = attr->set(attr->data, val);
835 if (ret == 0)
836 ret = len; /* on success, claim we got the whole input */
837 out:
838 mutex_unlock(&attr->mutex);
839 return ret;
840 }
841
842 /**
843 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
844 * @sb: filesystem to do the file handle conversion on
845 * @fid: file handle to convert
846 * @fh_len: length of the file handle in bytes
847 * @fh_type: type of file handle
848 * @get_inode: filesystem callback to retrieve inode
849 *
850 * This function decodes @fid as long as it has one of the well-known
851 * Linux filehandle types and calls @get_inode on it to retrieve the
852 * inode for the object specified in the file handle.
853 */
854 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
855 int fh_len, int fh_type, struct inode *(*get_inode)
856 (struct super_block *sb, u64 ino, u32 gen))
857 {
858 struct inode *inode = NULL;
859
860 if (fh_len < 2)
861 return NULL;
862
863 switch (fh_type) {
864 case FILEID_INO32_GEN:
865 case FILEID_INO32_GEN_PARENT:
866 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
867 break;
868 }
869
870 return d_obtain_alias(inode);
871 }
872 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
873
874 /**
875 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
876 * @sb: filesystem to do the file handle conversion on
877 * @fid: file handle to convert
878 * @fh_len: length of the file handle in bytes
879 * @fh_type: type of file handle
880 * @get_inode: filesystem callback to retrieve inode
881 *
882 * This function decodes @fid as long as it has one of the well-known
883 * Linux filehandle types and calls @get_inode on it to retrieve the
884 * inode for the _parent_ object specified in the file handle if it
885 * is specified in the file handle, or NULL otherwise.
886 */
887 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
888 int fh_len, int fh_type, struct inode *(*get_inode)
889 (struct super_block *sb, u64 ino, u32 gen))
890 {
891 struct inode *inode = NULL;
892
893 if (fh_len <= 2)
894 return NULL;
895
896 switch (fh_type) {
897 case FILEID_INO32_GEN_PARENT:
898 inode = get_inode(sb, fid->i32.parent_ino,
899 (fh_len > 3 ? fid->i32.parent_gen : 0));
900 break;
901 }
902
903 return d_obtain_alias(inode);
904 }
905 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
906
907 /**
908 * generic_file_fsync - generic fsync implementation for simple filesystems
909 * @file: file to synchronize
910 * @datasync: only synchronize essential metadata if true
911 *
912 * This is a generic implementation of the fsync method for simple
913 * filesystems which track all non-inode metadata in the buffers list
914 * hanging off the address_space structure.
915 */
916 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
917 int datasync)
918 {
919 struct inode *inode = file->f_mapping->host;
920 int err;
921 int ret;
922
923 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
924 if (err)
925 return err;
926
927 mutex_lock(&inode->i_mutex);
928 ret = sync_mapping_buffers(inode->i_mapping);
929 if (!(inode->i_state & I_DIRTY))
930 goto out;
931 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
932 goto out;
933
934 err = sync_inode_metadata(inode, 1);
935 if (ret == 0)
936 ret = err;
937 out:
938 mutex_unlock(&inode->i_mutex);
939 return ret;
940 }
941 EXPORT_SYMBOL(generic_file_fsync);
942
943 /**
944 * generic_check_addressable - Check addressability of file system
945 * @blocksize_bits: log of file system block size
946 * @num_blocks: number of blocks in file system
947 *
948 * Determine whether a file system with @num_blocks blocks (and a
949 * block size of 2**@blocksize_bits) is addressable by the sector_t
950 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
951 */
952 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
953 {
954 u64 last_fs_block = num_blocks - 1;
955 u64 last_fs_page =
956 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
957
958 if (unlikely(num_blocks == 0))
959 return 0;
960
961 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
962 return -EINVAL;
963
964 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
965 (last_fs_page > (pgoff_t)(~0ULL))) {
966 return -EFBIG;
967 }
968 return 0;
969 }
970 EXPORT_SYMBOL(generic_check_addressable);
971
972 /*
973 * No-op implementation of ->fsync for in-memory filesystems.
974 */
975 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
976 {
977 return 0;
978 }
979
980 EXPORT_SYMBOL(dcache_dir_close);
981 EXPORT_SYMBOL(dcache_dir_lseek);
982 EXPORT_SYMBOL(dcache_dir_open);
983 EXPORT_SYMBOL(dcache_readdir);
984 EXPORT_SYMBOL(generic_read_dir);
985 EXPORT_SYMBOL(mount_pseudo);
986 EXPORT_SYMBOL(simple_write_begin);
987 EXPORT_SYMBOL(simple_write_end);
988 EXPORT_SYMBOL(simple_dir_inode_operations);
989 EXPORT_SYMBOL(simple_dir_operations);
990 EXPORT_SYMBOL(simple_empty);
991 EXPORT_SYMBOL(simple_fill_super);
992 EXPORT_SYMBOL(simple_getattr);
993 EXPORT_SYMBOL(simple_open);
994 EXPORT_SYMBOL(simple_link);
995 EXPORT_SYMBOL(simple_lookup);
996 EXPORT_SYMBOL(simple_pin_fs);
997 EXPORT_SYMBOL(simple_readpage);
998 EXPORT_SYMBOL(simple_release_fs);
999 EXPORT_SYMBOL(simple_rename);
1000 EXPORT_SYMBOL(simple_rmdir);
1001 EXPORT_SYMBOL(simple_statfs);
1002 EXPORT_SYMBOL(noop_fsync);
1003 EXPORT_SYMBOL(simple_unlink);
1004 EXPORT_SYMBOL(simple_read_from_buffer);
1005 EXPORT_SYMBOL(simple_write_to_buffer);
1006 EXPORT_SYMBOL(memory_read_from_buffer);
1007 EXPORT_SYMBOL(simple_transaction_set);
1008 EXPORT_SYMBOL(simple_transaction_get);
1009 EXPORT_SYMBOL(simple_transaction_read);
1010 EXPORT_SYMBOL(simple_transaction_release);
1011 EXPORT_SYMBOL_GPL(simple_attr_open);
1012 EXPORT_SYMBOL_GPL(simple_attr_release);
1013 EXPORT_SYMBOL_GPL(simple_attr_read);
1014 EXPORT_SYMBOL_GPL(simple_attr_write);