Linux-2.6.12-rc2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jfs / jfs_logmgr.c
1 /*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 /*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62 #include <linux/fs.h>
63 #include <linux/blkdev.h>
64 #include <linux/interrupt.h>
65 #include <linux/smp_lock.h>
66 #include <linux/completion.h>
67 #include <linux/buffer_head.h> /* for sync_blockdev() */
68 #include <linux/bio.h>
69 #include <linux/suspend.h>
70 #include <linux/delay.h>
71 #include "jfs_incore.h"
72 #include "jfs_filsys.h"
73 #include "jfs_metapage.h"
74 #include "jfs_txnmgr.h"
75 #include "jfs_debug.h"
76
77
78 /*
79 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
80 */
81 static struct lbuf *log_redrive_list;
82 static DEFINE_SPINLOCK(log_redrive_lock);
83 DECLARE_WAIT_QUEUE_HEAD(jfs_IO_thread_wait);
84
85
86 /*
87 * log read/write serialization (per log)
88 */
89 #define LOG_LOCK_INIT(log) init_MUTEX(&(log)->loglock)
90 #define LOG_LOCK(log) down(&((log)->loglock))
91 #define LOG_UNLOCK(log) up(&((log)->loglock))
92
93
94 /*
95 * log group commit serialization (per log)
96 */
97
98 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
99 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
100 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
101 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
102
103 /*
104 * log sync serialization (per log)
105 */
106 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
107 #define LOGSYNC_BARRIER(logsize) ((logsize)/4)
108 /*
109 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
110 #define LOGSYNC_BARRIER(logsize) ((logsize)/2)
111 */
112
113
114 /*
115 * log buffer cache synchronization
116 */
117 static DEFINE_SPINLOCK(jfsLCacheLock);
118
119 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
120 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
121
122 /*
123 * See __SLEEP_COND in jfs_locks.h
124 */
125 #define LCACHE_SLEEP_COND(wq, cond, flags) \
126 do { \
127 if (cond) \
128 break; \
129 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
130 } while (0)
131
132 #define LCACHE_WAKEUP(event) wake_up(event)
133
134
135 /*
136 * lbuf buffer cache (lCache) control
137 */
138 /* log buffer manager pageout control (cumulative, inclusive) */
139 #define lbmREAD 0x0001
140 #define lbmWRITE 0x0002 /* enqueue at tail of write queue;
141 * init pageout if at head of queue;
142 */
143 #define lbmRELEASE 0x0004 /* remove from write queue
144 * at completion of pageout;
145 * do not free/recycle it yet:
146 * caller will free it;
147 */
148 #define lbmSYNC 0x0008 /* do not return to freelist
149 * when removed from write queue;
150 */
151 #define lbmFREE 0x0010 /* return to freelist
152 * at completion of pageout;
153 * the buffer may be recycled;
154 */
155 #define lbmDONE 0x0020
156 #define lbmERROR 0x0040
157 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
158 * of log page
159 */
160 #define lbmDIRECT 0x0100
161
162 /*
163 * Global list of active external journals
164 */
165 static LIST_HEAD(jfs_external_logs);
166 static struct jfs_log *dummy_log = NULL;
167 static DECLARE_MUTEX(jfs_log_sem);
168
169 /*
170 * external references
171 */
172 extern void txLazyUnlock(struct tblock * tblk);
173 extern int jfs_stop_threads;
174 extern struct completion jfsIOwait;
175 extern int jfs_tlocks_low;
176
177 /*
178 * forward references
179 */
180 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
181 struct lrd * lrd, struct tlock * tlck);
182
183 static int lmNextPage(struct jfs_log * log);
184 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
185 int activate);
186
187 static int open_inline_log(struct super_block *sb);
188 static int open_dummy_log(struct super_block *sb);
189 static int lbmLogInit(struct jfs_log * log);
190 static void lbmLogShutdown(struct jfs_log * log);
191 static struct lbuf *lbmAllocate(struct jfs_log * log, int);
192 static void lbmFree(struct lbuf * bp);
193 static void lbmfree(struct lbuf * bp);
194 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
195 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
196 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
197 static int lbmIOWait(struct lbuf * bp, int flag);
198 static bio_end_io_t lbmIODone;
199 static void lbmStartIO(struct lbuf * bp);
200 static void lmGCwrite(struct jfs_log * log, int cant_block);
201 static int lmLogSync(struct jfs_log * log, int nosyncwait);
202
203
204
205 /*
206 * statistics
207 */
208 #ifdef CONFIG_JFS_STATISTICS
209 static struct lmStat {
210 uint commit; /* # of commit */
211 uint pagedone; /* # of page written */
212 uint submitted; /* # of pages submitted */
213 uint full_page; /* # of full pages submitted */
214 uint partial_page; /* # of partial pages submitted */
215 } lmStat;
216 #endif
217
218
219 /*
220 * NAME: lmLog()
221 *
222 * FUNCTION: write a log record;
223 *
224 * PARAMETER:
225 *
226 * RETURN: lsn - offset to the next log record to write (end-of-log);
227 * -1 - error;
228 *
229 * note: todo: log error handler
230 */
231 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
232 struct tlock * tlck)
233 {
234 int lsn;
235 int diffp, difft;
236 struct metapage *mp = NULL;
237
238 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
239 log, tblk, lrd, tlck);
240
241 LOG_LOCK(log);
242
243 /* log by (out-of-transaction) JFS ? */
244 if (tblk == NULL)
245 goto writeRecord;
246
247 /* log from page ? */
248 if (tlck == NULL ||
249 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
250 goto writeRecord;
251
252 /*
253 * initialize/update page/transaction recovery lsn
254 */
255 lsn = log->lsn;
256
257 LOGSYNC_LOCK(log);
258
259 /*
260 * initialize page lsn if first log write of the page
261 */
262 if (mp->lsn == 0) {
263 mp->log = log;
264 mp->lsn = lsn;
265 log->count++;
266
267 /* insert page at tail of logsynclist */
268 list_add_tail(&mp->synclist, &log->synclist);
269 }
270
271 /*
272 * initialize/update lsn of tblock of the page
273 *
274 * transaction inherits oldest lsn of pages associated
275 * with allocation/deallocation of resources (their
276 * log records are used to reconstruct allocation map
277 * at recovery time: inode for inode allocation map,
278 * B+-tree index of extent descriptors for block
279 * allocation map);
280 * allocation map pages inherit transaction lsn at
281 * commit time to allow forwarding log syncpt past log
282 * records associated with allocation/deallocation of
283 * resources only after persistent map of these map pages
284 * have been updated and propagated to home.
285 */
286 /*
287 * initialize transaction lsn:
288 */
289 if (tblk->lsn == 0) {
290 /* inherit lsn of its first page logged */
291 tblk->lsn = mp->lsn;
292 log->count++;
293
294 /* insert tblock after the page on logsynclist */
295 list_add(&tblk->synclist, &mp->synclist);
296 }
297 /*
298 * update transaction lsn:
299 */
300 else {
301 /* inherit oldest/smallest lsn of page */
302 logdiff(diffp, mp->lsn, log);
303 logdiff(difft, tblk->lsn, log);
304 if (diffp < difft) {
305 /* update tblock lsn with page lsn */
306 tblk->lsn = mp->lsn;
307
308 /* move tblock after page on logsynclist */
309 list_move(&tblk->synclist, &mp->synclist);
310 }
311 }
312
313 LOGSYNC_UNLOCK(log);
314
315 /*
316 * write the log record
317 */
318 writeRecord:
319 lsn = lmWriteRecord(log, tblk, lrd, tlck);
320
321 /*
322 * forward log syncpt if log reached next syncpt trigger
323 */
324 logdiff(diffp, lsn, log);
325 if (diffp >= log->nextsync)
326 lsn = lmLogSync(log, 0);
327
328 /* update end-of-log lsn */
329 log->lsn = lsn;
330
331 LOG_UNLOCK(log);
332
333 /* return end-of-log address */
334 return lsn;
335 }
336
337
338 /*
339 * NAME: lmWriteRecord()
340 *
341 * FUNCTION: move the log record to current log page
342 *
343 * PARAMETER: cd - commit descriptor
344 *
345 * RETURN: end-of-log address
346 *
347 * serialization: LOG_LOCK() held on entry/exit
348 */
349 static int
350 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
351 struct tlock * tlck)
352 {
353 int lsn = 0; /* end-of-log address */
354 struct lbuf *bp; /* dst log page buffer */
355 struct logpage *lp; /* dst log page */
356 caddr_t dst; /* destination address in log page */
357 int dstoffset; /* end-of-log offset in log page */
358 int freespace; /* free space in log page */
359 caddr_t p; /* src meta-data page */
360 caddr_t src;
361 int srclen;
362 int nbytes; /* number of bytes to move */
363 int i;
364 int len;
365 struct linelock *linelock;
366 struct lv *lv;
367 struct lvd *lvd;
368 int l2linesize;
369
370 len = 0;
371
372 /* retrieve destination log page to write */
373 bp = (struct lbuf *) log->bp;
374 lp = (struct logpage *) bp->l_ldata;
375 dstoffset = log->eor;
376
377 /* any log data to write ? */
378 if (tlck == NULL)
379 goto moveLrd;
380
381 /*
382 * move log record data
383 */
384 /* retrieve source meta-data page to log */
385 if (tlck->flag & tlckPAGELOCK) {
386 p = (caddr_t) (tlck->mp->data);
387 linelock = (struct linelock *) & tlck->lock;
388 }
389 /* retrieve source in-memory inode to log */
390 else if (tlck->flag & tlckINODELOCK) {
391 if (tlck->type & tlckDTREE)
392 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
393 else
394 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
395 linelock = (struct linelock *) & tlck->lock;
396 }
397 #ifdef _JFS_WIP
398 else if (tlck->flag & tlckINLINELOCK) {
399
400 inlinelock = (struct inlinelock *) & tlck;
401 p = (caddr_t) & inlinelock->pxd;
402 linelock = (struct linelock *) & tlck;
403 }
404 #endif /* _JFS_WIP */
405 else {
406 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
407 return 0; /* Probably should trap */
408 }
409 l2linesize = linelock->l2linesize;
410
411 moveData:
412 ASSERT(linelock->index <= linelock->maxcnt);
413
414 lv = linelock->lv;
415 for (i = 0; i < linelock->index; i++, lv++) {
416 if (lv->length == 0)
417 continue;
418
419 /* is page full ? */
420 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
421 /* page become full: move on to next page */
422 lmNextPage(log);
423
424 bp = log->bp;
425 lp = (struct logpage *) bp->l_ldata;
426 dstoffset = LOGPHDRSIZE;
427 }
428
429 /*
430 * move log vector data
431 */
432 src = (u8 *) p + (lv->offset << l2linesize);
433 srclen = lv->length << l2linesize;
434 len += srclen;
435 while (srclen > 0) {
436 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
437 nbytes = min(freespace, srclen);
438 dst = (caddr_t) lp + dstoffset;
439 memcpy(dst, src, nbytes);
440 dstoffset += nbytes;
441
442 /* is page not full ? */
443 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
444 break;
445
446 /* page become full: move on to next page */
447 lmNextPage(log);
448
449 bp = (struct lbuf *) log->bp;
450 lp = (struct logpage *) bp->l_ldata;
451 dstoffset = LOGPHDRSIZE;
452
453 srclen -= nbytes;
454 src += nbytes;
455 }
456
457 /*
458 * move log vector descriptor
459 */
460 len += 4;
461 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
462 lvd->offset = cpu_to_le16(lv->offset);
463 lvd->length = cpu_to_le16(lv->length);
464 dstoffset += 4;
465 jfs_info("lmWriteRecord: lv offset:%d length:%d",
466 lv->offset, lv->length);
467 }
468
469 if ((i = linelock->next)) {
470 linelock = (struct linelock *) lid_to_tlock(i);
471 goto moveData;
472 }
473
474 /*
475 * move log record descriptor
476 */
477 moveLrd:
478 lrd->length = cpu_to_le16(len);
479
480 src = (caddr_t) lrd;
481 srclen = LOGRDSIZE;
482
483 while (srclen > 0) {
484 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
485 nbytes = min(freespace, srclen);
486 dst = (caddr_t) lp + dstoffset;
487 memcpy(dst, src, nbytes);
488
489 dstoffset += nbytes;
490 srclen -= nbytes;
491
492 /* are there more to move than freespace of page ? */
493 if (srclen)
494 goto pageFull;
495
496 /*
497 * end of log record descriptor
498 */
499
500 /* update last log record eor */
501 log->eor = dstoffset;
502 bp->l_eor = dstoffset;
503 lsn = (log->page << L2LOGPSIZE) + dstoffset;
504
505 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
506 tblk->clsn = lsn;
507 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
508 bp->l_eor);
509
510 INCREMENT(lmStat.commit); /* # of commit */
511
512 /*
513 * enqueue tblock for group commit:
514 *
515 * enqueue tblock of non-trivial/synchronous COMMIT
516 * at tail of group commit queue
517 * (trivial/asynchronous COMMITs are ignored by
518 * group commit.)
519 */
520 LOGGC_LOCK(log);
521
522 /* init tblock gc state */
523 tblk->flag = tblkGC_QUEUE;
524 tblk->bp = log->bp;
525 tblk->pn = log->page;
526 tblk->eor = log->eor;
527
528 /* enqueue transaction to commit queue */
529 list_add_tail(&tblk->cqueue, &log->cqueue);
530
531 LOGGC_UNLOCK(log);
532 }
533
534 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
535 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
536
537 /* page not full ? */
538 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
539 return lsn;
540
541 pageFull:
542 /* page become full: move on to next page */
543 lmNextPage(log);
544
545 bp = (struct lbuf *) log->bp;
546 lp = (struct logpage *) bp->l_ldata;
547 dstoffset = LOGPHDRSIZE;
548 src += nbytes;
549 }
550
551 return lsn;
552 }
553
554
555 /*
556 * NAME: lmNextPage()
557 *
558 * FUNCTION: write current page and allocate next page.
559 *
560 * PARAMETER: log
561 *
562 * RETURN: 0
563 *
564 * serialization: LOG_LOCK() held on entry/exit
565 */
566 static int lmNextPage(struct jfs_log * log)
567 {
568 struct logpage *lp;
569 int lspn; /* log sequence page number */
570 int pn; /* current page number */
571 struct lbuf *bp;
572 struct lbuf *nextbp;
573 struct tblock *tblk;
574
575 /* get current log page number and log sequence page number */
576 pn = log->page;
577 bp = log->bp;
578 lp = (struct logpage *) bp->l_ldata;
579 lspn = le32_to_cpu(lp->h.page);
580
581 LOGGC_LOCK(log);
582
583 /*
584 * write or queue the full page at the tail of write queue
585 */
586 /* get the tail tblk on commit queue */
587 if (list_empty(&log->cqueue))
588 tblk = NULL;
589 else
590 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
591
592 /* every tblk who has COMMIT record on the current page,
593 * and has not been committed, must be on commit queue
594 * since tblk is queued at commit queueu at the time
595 * of writing its COMMIT record on the page before
596 * page becomes full (even though the tblk thread
597 * who wrote COMMIT record may have been suspended
598 * currently);
599 */
600
601 /* is page bound with outstanding tail tblk ? */
602 if (tblk && tblk->pn == pn) {
603 /* mark tblk for end-of-page */
604 tblk->flag |= tblkGC_EOP;
605
606 if (log->cflag & logGC_PAGEOUT) {
607 /* if page is not already on write queue,
608 * just enqueue (no lbmWRITE to prevent redrive)
609 * buffer to wqueue to ensure correct serial order
610 * of the pages since log pages will be added
611 * continuously
612 */
613 if (bp->l_wqnext == NULL)
614 lbmWrite(log, bp, 0, 0);
615 } else {
616 /*
617 * No current GC leader, initiate group commit
618 */
619 log->cflag |= logGC_PAGEOUT;
620 lmGCwrite(log, 0);
621 }
622 }
623 /* page is not bound with outstanding tblk:
624 * init write or mark it to be redriven (lbmWRITE)
625 */
626 else {
627 /* finalize the page */
628 bp->l_ceor = bp->l_eor;
629 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
630 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
631 }
632 LOGGC_UNLOCK(log);
633
634 /*
635 * allocate/initialize next page
636 */
637 /* if log wraps, the first data page of log is 2
638 * (0 never used, 1 is superblock).
639 */
640 log->page = (pn == log->size - 1) ? 2 : pn + 1;
641 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
642
643 /* allocate/initialize next log page buffer */
644 nextbp = lbmAllocate(log, log->page);
645 nextbp->l_eor = log->eor;
646 log->bp = nextbp;
647
648 /* initialize next log page */
649 lp = (struct logpage *) nextbp->l_ldata;
650 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
651 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
652
653 return 0;
654 }
655
656
657 /*
658 * NAME: lmGroupCommit()
659 *
660 * FUNCTION: group commit
661 * initiate pageout of the pages with COMMIT in the order of
662 * page number - redrive pageout of the page at the head of
663 * pageout queue until full page has been written.
664 *
665 * RETURN:
666 *
667 * NOTE:
668 * LOGGC_LOCK serializes log group commit queue, and
669 * transaction blocks on the commit queue.
670 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
671 */
672 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
673 {
674 int rc = 0;
675
676 LOGGC_LOCK(log);
677
678 /* group committed already ? */
679 if (tblk->flag & tblkGC_COMMITTED) {
680 if (tblk->flag & tblkGC_ERROR)
681 rc = -EIO;
682
683 LOGGC_UNLOCK(log);
684 return rc;
685 }
686 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
687
688 if (tblk->xflag & COMMIT_LAZY)
689 tblk->flag |= tblkGC_LAZY;
690
691 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
692 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
693 || jfs_tlocks_low)) {
694 /*
695 * No pageout in progress
696 *
697 * start group commit as its group leader.
698 */
699 log->cflag |= logGC_PAGEOUT;
700
701 lmGCwrite(log, 0);
702 }
703
704 if (tblk->xflag & COMMIT_LAZY) {
705 /*
706 * Lazy transactions can leave now
707 */
708 LOGGC_UNLOCK(log);
709 return 0;
710 }
711
712 /* lmGCwrite gives up LOGGC_LOCK, check again */
713
714 if (tblk->flag & tblkGC_COMMITTED) {
715 if (tblk->flag & tblkGC_ERROR)
716 rc = -EIO;
717
718 LOGGC_UNLOCK(log);
719 return rc;
720 }
721
722 /* upcount transaction waiting for completion
723 */
724 log->gcrtc++;
725 tblk->flag |= tblkGC_READY;
726
727 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
728 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
729
730 /* removed from commit queue */
731 if (tblk->flag & tblkGC_ERROR)
732 rc = -EIO;
733
734 LOGGC_UNLOCK(log);
735 return rc;
736 }
737
738 /*
739 * NAME: lmGCwrite()
740 *
741 * FUNCTION: group commit write
742 * initiate write of log page, building a group of all transactions
743 * with commit records on that page.
744 *
745 * RETURN: None
746 *
747 * NOTE:
748 * LOGGC_LOCK must be held by caller.
749 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
750 */
751 static void lmGCwrite(struct jfs_log * log, int cant_write)
752 {
753 struct lbuf *bp;
754 struct logpage *lp;
755 int gcpn; /* group commit page number */
756 struct tblock *tblk;
757 struct tblock *xtblk = NULL;
758
759 /*
760 * build the commit group of a log page
761 *
762 * scan commit queue and make a commit group of all
763 * transactions with COMMIT records on the same log page.
764 */
765 /* get the head tblk on the commit queue */
766 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
767
768 list_for_each_entry(tblk, &log->cqueue, cqueue) {
769 if (tblk->pn != gcpn)
770 break;
771
772 xtblk = tblk;
773
774 /* state transition: (QUEUE, READY) -> COMMIT */
775 tblk->flag |= tblkGC_COMMIT;
776 }
777 tblk = xtblk; /* last tblk of the page */
778
779 /*
780 * pageout to commit transactions on the log page.
781 */
782 bp = (struct lbuf *) tblk->bp;
783 lp = (struct logpage *) bp->l_ldata;
784 /* is page already full ? */
785 if (tblk->flag & tblkGC_EOP) {
786 /* mark page to free at end of group commit of the page */
787 tblk->flag &= ~tblkGC_EOP;
788 tblk->flag |= tblkGC_FREE;
789 bp->l_ceor = bp->l_eor;
790 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
791 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
792 cant_write);
793 INCREMENT(lmStat.full_page);
794 }
795 /* page is not yet full */
796 else {
797 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
798 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
799 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
800 INCREMENT(lmStat.partial_page);
801 }
802 }
803
804 /*
805 * NAME: lmPostGC()
806 *
807 * FUNCTION: group commit post-processing
808 * Processes transactions after their commit records have been written
809 * to disk, redriving log I/O if necessary.
810 *
811 * RETURN: None
812 *
813 * NOTE:
814 * This routine is called a interrupt time by lbmIODone
815 */
816 static void lmPostGC(struct lbuf * bp)
817 {
818 unsigned long flags;
819 struct jfs_log *log = bp->l_log;
820 struct logpage *lp;
821 struct tblock *tblk, *temp;
822
823 //LOGGC_LOCK(log);
824 spin_lock_irqsave(&log->gclock, flags);
825 /*
826 * current pageout of group commit completed.
827 *
828 * remove/wakeup transactions from commit queue who were
829 * group committed with the current log page
830 */
831 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
832 if (!(tblk->flag & tblkGC_COMMIT))
833 break;
834 /* if transaction was marked GC_COMMIT then
835 * it has been shipped in the current pageout
836 * and made it to disk - it is committed.
837 */
838
839 if (bp->l_flag & lbmERROR)
840 tblk->flag |= tblkGC_ERROR;
841
842 /* remove it from the commit queue */
843 list_del(&tblk->cqueue);
844 tblk->flag &= ~tblkGC_QUEUE;
845
846 if (tblk == log->flush_tblk) {
847 /* we can stop flushing the log now */
848 clear_bit(log_FLUSH, &log->flag);
849 log->flush_tblk = NULL;
850 }
851
852 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
853 tblk->flag);
854
855 if (!(tblk->xflag & COMMIT_FORCE))
856 /*
857 * Hand tblk over to lazy commit thread
858 */
859 txLazyUnlock(tblk);
860 else {
861 /* state transition: COMMIT -> COMMITTED */
862 tblk->flag |= tblkGC_COMMITTED;
863
864 if (tblk->flag & tblkGC_READY)
865 log->gcrtc--;
866
867 LOGGC_WAKEUP(tblk);
868 }
869
870 /* was page full before pageout ?
871 * (and this is the last tblk bound with the page)
872 */
873 if (tblk->flag & tblkGC_FREE)
874 lbmFree(bp);
875 /* did page become full after pageout ?
876 * (and this is the last tblk bound with the page)
877 */
878 else if (tblk->flag & tblkGC_EOP) {
879 /* finalize the page */
880 lp = (struct logpage *) bp->l_ldata;
881 bp->l_ceor = bp->l_eor;
882 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
883 jfs_info("lmPostGC: calling lbmWrite");
884 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
885 1);
886 }
887
888 }
889
890 /* are there any transactions who have entered lnGroupCommit()
891 * (whose COMMITs are after that of the last log page written.
892 * They are waiting for new group commit (above at (SLEEP 1))
893 * or lazy transactions are on a full (queued) log page,
894 * select the latest ready transaction as new group leader and
895 * wake her up to lead her group.
896 */
897 if ((!list_empty(&log->cqueue)) &&
898 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
899 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
900 /*
901 * Call lmGCwrite with new group leader
902 */
903 lmGCwrite(log, 1);
904
905 /* no transaction are ready yet (transactions are only just
906 * queued (GC_QUEUE) and not entered for group commit yet).
907 * the first transaction entering group commit
908 * will elect herself as new group leader.
909 */
910 else
911 log->cflag &= ~logGC_PAGEOUT;
912
913 //LOGGC_UNLOCK(log);
914 spin_unlock_irqrestore(&log->gclock, flags);
915 return;
916 }
917
918 /*
919 * NAME: lmLogSync()
920 *
921 * FUNCTION: write log SYNCPT record for specified log
922 * if new sync address is available
923 * (normally the case if sync() is executed by back-ground
924 * process).
925 * if not, explicitly run jfs_blogsync() to initiate
926 * getting of new sync address.
927 * calculate new value of i_nextsync which determines when
928 * this code is called again.
929 *
930 * this is called only from lmLog().
931 *
932 * PARAMETER: ip - pointer to logs inode.
933 *
934 * RETURN: 0
935 *
936 * serialization: LOG_LOCK() held on entry/exit
937 */
938 static int lmLogSync(struct jfs_log * log, int nosyncwait)
939 {
940 int logsize;
941 int written; /* written since last syncpt */
942 int free; /* free space left available */
943 int delta; /* additional delta to write normally */
944 int more; /* additional write granted */
945 struct lrd lrd;
946 int lsn;
947 struct logsyncblk *lp;
948
949 /*
950 * forward syncpt
951 */
952 /* if last sync is same as last syncpt,
953 * invoke sync point forward processing to update sync.
954 */
955
956 if (log->sync == log->syncpt) {
957 LOGSYNC_LOCK(log);
958 /* ToDo: push dirty metapages out to disk */
959 // bmLogSync(log);
960
961 if (list_empty(&log->synclist))
962 log->sync = log->lsn;
963 else {
964 lp = list_entry(log->synclist.next,
965 struct logsyncblk, synclist);
966 log->sync = lp->lsn;
967 }
968 LOGSYNC_UNLOCK(log);
969
970 }
971
972 /* if sync is different from last syncpt,
973 * write a SYNCPT record with syncpt = sync.
974 * reset syncpt = sync
975 */
976 if (log->sync != log->syncpt) {
977 struct jfs_sb_info *sbi;
978
979 /*
980 * We need to make sure all of the "written" metapages
981 * actually make it to disk
982 */
983 list_for_each_entry(sbi, &log->sb_list, log_list) {
984 if (sbi->flag & JFS_NOINTEGRITY)
985 continue;
986 filemap_fdatawrite(sbi->ipbmap->i_mapping);
987 filemap_fdatawrite(sbi->ipimap->i_mapping);
988 filemap_fdatawrite(sbi->sb->s_bdev->bd_inode->i_mapping);
989 }
990 list_for_each_entry(sbi, &log->sb_list, log_list) {
991 if (sbi->flag & JFS_NOINTEGRITY)
992 continue;
993 filemap_fdatawait(sbi->ipbmap->i_mapping);
994 filemap_fdatawait(sbi->ipimap->i_mapping);
995 filemap_fdatawait(sbi->sb->s_bdev->bd_inode->i_mapping);
996 }
997
998 lrd.logtid = 0;
999 lrd.backchain = 0;
1000 lrd.type = cpu_to_le16(LOG_SYNCPT);
1001 lrd.length = 0;
1002 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
1003 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1004
1005 log->syncpt = log->sync;
1006 } else
1007 lsn = log->lsn;
1008
1009 /*
1010 * setup next syncpt trigger (SWAG)
1011 */
1012 logsize = log->logsize;
1013
1014 logdiff(written, lsn, log);
1015 free = logsize - written;
1016 delta = LOGSYNC_DELTA(logsize);
1017 more = min(free / 2, delta);
1018 if (more < 2 * LOGPSIZE) {
1019 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1020 /*
1021 * log wrapping
1022 *
1023 * option 1 - panic ? No.!
1024 * option 2 - shutdown file systems
1025 * associated with log ?
1026 * option 3 - extend log ?
1027 */
1028 /*
1029 * option 4 - second chance
1030 *
1031 * mark log wrapped, and continue.
1032 * when all active transactions are completed,
1033 * mark log vaild for recovery.
1034 * if crashed during invalid state, log state
1035 * implies invald log, forcing fsck().
1036 */
1037 /* mark log state log wrap in log superblock */
1038 /* log->state = LOGWRAP; */
1039
1040 /* reset sync point computation */
1041 log->syncpt = log->sync = lsn;
1042 log->nextsync = delta;
1043 } else
1044 /* next syncpt trigger = written + more */
1045 log->nextsync = written + more;
1046
1047 /* return if lmLogSync() from outside of transaction, e.g., sync() */
1048 if (nosyncwait)
1049 return lsn;
1050
1051 /* if number of bytes written from last sync point is more
1052 * than 1/4 of the log size, stop new transactions from
1053 * starting until all current transactions are completed
1054 * by setting syncbarrier flag.
1055 */
1056 if (written > LOGSYNC_BARRIER(logsize) && logsize > 32 * LOGPSIZE) {
1057 set_bit(log_SYNCBARRIER, &log->flag);
1058 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1059 log->syncpt);
1060 /*
1061 * We may have to initiate group commit
1062 */
1063 jfs_flush_journal(log, 0);
1064 }
1065
1066 return lsn;
1067 }
1068
1069
1070 /*
1071 * NAME: lmLogOpen()
1072 *
1073 * FUNCTION: open the log on first open;
1074 * insert filesystem in the active list of the log.
1075 *
1076 * PARAMETER: ipmnt - file system mount inode
1077 * iplog - log inode (out)
1078 *
1079 * RETURN:
1080 *
1081 * serialization:
1082 */
1083 int lmLogOpen(struct super_block *sb)
1084 {
1085 int rc;
1086 struct block_device *bdev;
1087 struct jfs_log *log;
1088 struct jfs_sb_info *sbi = JFS_SBI(sb);
1089
1090 if (sbi->flag & JFS_NOINTEGRITY)
1091 return open_dummy_log(sb);
1092
1093 if (sbi->mntflag & JFS_INLINELOG)
1094 return open_inline_log(sb);
1095
1096 down(&jfs_log_sem);
1097 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1098 if (log->bdev->bd_dev == sbi->logdev) {
1099 if (memcmp(log->uuid, sbi->loguuid,
1100 sizeof(log->uuid))) {
1101 jfs_warn("wrong uuid on JFS journal\n");
1102 up(&jfs_log_sem);
1103 return -EINVAL;
1104 }
1105 /*
1106 * add file system to log active file system list
1107 */
1108 if ((rc = lmLogFileSystem(log, sbi, 1))) {
1109 up(&jfs_log_sem);
1110 return rc;
1111 }
1112 goto journal_found;
1113 }
1114 }
1115
1116 if (!(log = kmalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1117 up(&jfs_log_sem);
1118 return -ENOMEM;
1119 }
1120 memset(log, 0, sizeof(struct jfs_log));
1121 INIT_LIST_HEAD(&log->sb_list);
1122 init_waitqueue_head(&log->syncwait);
1123
1124 /*
1125 * external log as separate logical volume
1126 *
1127 * file systems to log may have n-to-1 relationship;
1128 */
1129
1130 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1131 if (IS_ERR(bdev)) {
1132 rc = -PTR_ERR(bdev);
1133 goto free;
1134 }
1135
1136 if ((rc = bd_claim(bdev, log))) {
1137 goto close;
1138 }
1139
1140 log->bdev = bdev;
1141 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1142
1143 /*
1144 * initialize log:
1145 */
1146 if ((rc = lmLogInit(log)))
1147 goto unclaim;
1148
1149 list_add(&log->journal_list, &jfs_external_logs);
1150
1151 /*
1152 * add file system to log active file system list
1153 */
1154 if ((rc = lmLogFileSystem(log, sbi, 1)))
1155 goto shutdown;
1156
1157 journal_found:
1158 LOG_LOCK(log);
1159 list_add(&sbi->log_list, &log->sb_list);
1160 sbi->log = log;
1161 LOG_UNLOCK(log);
1162
1163 up(&jfs_log_sem);
1164 return 0;
1165
1166 /*
1167 * unwind on error
1168 */
1169 shutdown: /* unwind lbmLogInit() */
1170 list_del(&log->journal_list);
1171 lbmLogShutdown(log);
1172
1173 unclaim:
1174 bd_release(bdev);
1175
1176 close: /* close external log device */
1177 blkdev_put(bdev);
1178
1179 free: /* free log descriptor */
1180 up(&jfs_log_sem);
1181 kfree(log);
1182
1183 jfs_warn("lmLogOpen: exit(%d)", rc);
1184 return rc;
1185 }
1186
1187 static int open_inline_log(struct super_block *sb)
1188 {
1189 struct jfs_log *log;
1190 int rc;
1191
1192 if (!(log = kmalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1193 return -ENOMEM;
1194 memset(log, 0, sizeof(struct jfs_log));
1195 INIT_LIST_HEAD(&log->sb_list);
1196 init_waitqueue_head(&log->syncwait);
1197
1198 set_bit(log_INLINELOG, &log->flag);
1199 log->bdev = sb->s_bdev;
1200 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1201 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1202 (L2LOGPSIZE - sb->s_blocksize_bits);
1203 log->l2bsize = sb->s_blocksize_bits;
1204 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1205
1206 /*
1207 * initialize log.
1208 */
1209 if ((rc = lmLogInit(log))) {
1210 kfree(log);
1211 jfs_warn("lmLogOpen: exit(%d)", rc);
1212 return rc;
1213 }
1214
1215 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1216 JFS_SBI(sb)->log = log;
1217
1218 return rc;
1219 }
1220
1221 static int open_dummy_log(struct super_block *sb)
1222 {
1223 int rc;
1224
1225 down(&jfs_log_sem);
1226 if (!dummy_log) {
1227 dummy_log = kmalloc(sizeof(struct jfs_log), GFP_KERNEL);
1228 if (!dummy_log) {
1229 up(&jfs_log_sem);
1230 return -ENOMEM;
1231 }
1232 memset(dummy_log, 0, sizeof(struct jfs_log));
1233 INIT_LIST_HEAD(&dummy_log->sb_list);
1234 init_waitqueue_head(&dummy_log->syncwait);
1235 dummy_log->no_integrity = 1;
1236 /* Make up some stuff */
1237 dummy_log->base = 0;
1238 dummy_log->size = 1024;
1239 rc = lmLogInit(dummy_log);
1240 if (rc) {
1241 kfree(dummy_log);
1242 dummy_log = NULL;
1243 up(&jfs_log_sem);
1244 return rc;
1245 }
1246 }
1247
1248 LOG_LOCK(dummy_log);
1249 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1250 JFS_SBI(sb)->log = dummy_log;
1251 LOG_UNLOCK(dummy_log);
1252 up(&jfs_log_sem);
1253
1254 return 0;
1255 }
1256
1257 /*
1258 * NAME: lmLogInit()
1259 *
1260 * FUNCTION: log initialization at first log open.
1261 *
1262 * logredo() (or logformat()) should have been run previously.
1263 * initialize the log from log superblock.
1264 * set the log state in the superblock to LOGMOUNT and
1265 * write SYNCPT log record.
1266 *
1267 * PARAMETER: log - log structure
1268 *
1269 * RETURN: 0 - if ok
1270 * -EINVAL - bad log magic number or superblock dirty
1271 * error returned from logwait()
1272 *
1273 * serialization: single first open thread
1274 */
1275 int lmLogInit(struct jfs_log * log)
1276 {
1277 int rc = 0;
1278 struct lrd lrd;
1279 struct logsuper *logsuper;
1280 struct lbuf *bpsuper;
1281 struct lbuf *bp;
1282 struct logpage *lp;
1283 int lsn = 0;
1284
1285 jfs_info("lmLogInit: log:0x%p", log);
1286
1287 /* initialize the group commit serialization lock */
1288 LOGGC_LOCK_INIT(log);
1289
1290 /* allocate/initialize the log write serialization lock */
1291 LOG_LOCK_INIT(log);
1292
1293 LOGSYNC_LOCK_INIT(log);
1294
1295 INIT_LIST_HEAD(&log->synclist);
1296
1297 INIT_LIST_HEAD(&log->cqueue);
1298 log->flush_tblk = NULL;
1299
1300 log->count = 0;
1301
1302 /*
1303 * initialize log i/o
1304 */
1305 if ((rc = lbmLogInit(log)))
1306 return rc;
1307
1308 if (!test_bit(log_INLINELOG, &log->flag))
1309 log->l2bsize = L2LOGPSIZE;
1310
1311 /* check for disabled journaling to disk */
1312 if (log->no_integrity) {
1313 /*
1314 * Journal pages will still be filled. When the time comes
1315 * to actually do the I/O, the write is not done, and the
1316 * endio routine is called directly.
1317 */
1318 bp = lbmAllocate(log , 0);
1319 log->bp = bp;
1320 bp->l_pn = bp->l_eor = 0;
1321 } else {
1322 /*
1323 * validate log superblock
1324 */
1325 if ((rc = lbmRead(log, 1, &bpsuper)))
1326 goto errout10;
1327
1328 logsuper = (struct logsuper *) bpsuper->l_ldata;
1329
1330 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1331 jfs_warn("*** Log Format Error ! ***");
1332 rc = -EINVAL;
1333 goto errout20;
1334 }
1335
1336 /* logredo() should have been run successfully. */
1337 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1338 jfs_warn("*** Log Is Dirty ! ***");
1339 rc = -EINVAL;
1340 goto errout20;
1341 }
1342
1343 /* initialize log from log superblock */
1344 if (test_bit(log_INLINELOG,&log->flag)) {
1345 if (log->size != le32_to_cpu(logsuper->size)) {
1346 rc = -EINVAL;
1347 goto errout20;
1348 }
1349 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1350 "size:0x%x", log,
1351 (unsigned long long) log->base, log->size);
1352 } else {
1353 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1354 jfs_warn("wrong uuid on JFS log device");
1355 goto errout20;
1356 }
1357 log->size = le32_to_cpu(logsuper->size);
1358 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1359 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1360 "size:0x%x", log,
1361 (unsigned long long) log->base, log->size);
1362 }
1363
1364 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1365 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1366
1367 /*
1368 * initialize for log append write mode
1369 */
1370 /* establish current/end-of-log page/buffer */
1371 if ((rc = lbmRead(log, log->page, &bp)))
1372 goto errout20;
1373
1374 lp = (struct logpage *) bp->l_ldata;
1375
1376 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1377 le32_to_cpu(logsuper->end), log->page, log->eor,
1378 le16_to_cpu(lp->h.eor));
1379
1380 log->bp = bp;
1381 bp->l_pn = log->page;
1382 bp->l_eor = log->eor;
1383
1384 /* if current page is full, move on to next page */
1385 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1386 lmNextPage(log);
1387
1388 /*
1389 * initialize log syncpoint
1390 */
1391 /*
1392 * write the first SYNCPT record with syncpoint = 0
1393 * (i.e., log redo up to HERE !);
1394 * remove current page from lbm write queue at end of pageout
1395 * (to write log superblock update), but do not release to
1396 * freelist;
1397 */
1398 lrd.logtid = 0;
1399 lrd.backchain = 0;
1400 lrd.type = cpu_to_le16(LOG_SYNCPT);
1401 lrd.length = 0;
1402 lrd.log.syncpt.sync = 0;
1403 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1404 bp = log->bp;
1405 bp->l_ceor = bp->l_eor;
1406 lp = (struct logpage *) bp->l_ldata;
1407 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1408 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1409 if ((rc = lbmIOWait(bp, 0)))
1410 goto errout30;
1411
1412 /*
1413 * update/write superblock
1414 */
1415 logsuper->state = cpu_to_le32(LOGMOUNT);
1416 log->serial = le32_to_cpu(logsuper->serial) + 1;
1417 logsuper->serial = cpu_to_le32(log->serial);
1418 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1419 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1420 goto errout30;
1421 }
1422
1423 /* initialize logsync parameters */
1424 log->logsize = (log->size - 2) << L2LOGPSIZE;
1425 log->lsn = lsn;
1426 log->syncpt = lsn;
1427 log->sync = log->syncpt;
1428 log->nextsync = LOGSYNC_DELTA(log->logsize);
1429
1430 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1431 log->lsn, log->syncpt, log->sync);
1432
1433 /*
1434 * initialize for lazy/group commit
1435 */
1436 log->clsn = lsn;
1437
1438 return 0;
1439
1440 /*
1441 * unwind on error
1442 */
1443 errout30: /* release log page */
1444 log->wqueue = NULL;
1445 bp->l_wqnext = NULL;
1446 lbmFree(bp);
1447
1448 errout20: /* release log superblock */
1449 lbmFree(bpsuper);
1450
1451 errout10: /* unwind lbmLogInit() */
1452 lbmLogShutdown(log);
1453
1454 jfs_warn("lmLogInit: exit(%d)", rc);
1455 return rc;
1456 }
1457
1458
1459 /*
1460 * NAME: lmLogClose()
1461 *
1462 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1463 * and close it on last close.
1464 *
1465 * PARAMETER: sb - superblock
1466 *
1467 * RETURN: errors from subroutines
1468 *
1469 * serialization:
1470 */
1471 int lmLogClose(struct super_block *sb)
1472 {
1473 struct jfs_sb_info *sbi = JFS_SBI(sb);
1474 struct jfs_log *log = sbi->log;
1475 struct block_device *bdev;
1476 int rc = 0;
1477
1478 jfs_info("lmLogClose: log:0x%p", log);
1479
1480 down(&jfs_log_sem);
1481 LOG_LOCK(log);
1482 list_del(&sbi->log_list);
1483 LOG_UNLOCK(log);
1484 sbi->log = NULL;
1485
1486 /*
1487 * We need to make sure all of the "written" metapages
1488 * actually make it to disk
1489 */
1490 sync_blockdev(sb->s_bdev);
1491
1492 if (test_bit(log_INLINELOG, &log->flag)) {
1493 /*
1494 * in-line log in host file system
1495 */
1496 rc = lmLogShutdown(log);
1497 kfree(log);
1498 goto out;
1499 }
1500
1501 if (!log->no_integrity)
1502 lmLogFileSystem(log, sbi, 0);
1503
1504 if (!list_empty(&log->sb_list))
1505 goto out;
1506
1507 /*
1508 * TODO: ensure that the dummy_log is in a state to allow
1509 * lbmLogShutdown to deallocate all the buffers and call
1510 * kfree against dummy_log. For now, leave dummy_log & its
1511 * buffers in memory, and resuse if another no-integrity mount
1512 * is requested.
1513 */
1514 if (log->no_integrity)
1515 goto out;
1516
1517 /*
1518 * external log as separate logical volume
1519 */
1520 list_del(&log->journal_list);
1521 bdev = log->bdev;
1522 rc = lmLogShutdown(log);
1523
1524 bd_release(bdev);
1525 blkdev_put(bdev);
1526
1527 kfree(log);
1528
1529 out:
1530 up(&jfs_log_sem);
1531 jfs_info("lmLogClose: exit(%d)", rc);
1532 return rc;
1533 }
1534
1535
1536 /*
1537 * NAME: jfs_flush_journal()
1538 *
1539 * FUNCTION: initiate write of any outstanding transactions to the journal
1540 * and optionally wait until they are all written to disk
1541 *
1542 * wait == 0 flush until latest txn is committed, don't wait
1543 * wait == 1 flush until latest txn is committed, wait
1544 * wait > 1 flush until all txn's are complete, wait
1545 */
1546 void jfs_flush_journal(struct jfs_log *log, int wait)
1547 {
1548 int i;
1549 struct tblock *target = NULL;
1550
1551 /* jfs_write_inode may call us during read-only mount */
1552 if (!log)
1553 return;
1554
1555 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1556
1557 LOGGC_LOCK(log);
1558
1559 if (!list_empty(&log->cqueue)) {
1560 /*
1561 * This ensures that we will keep writing to the journal as long
1562 * as there are unwritten commit records
1563 */
1564 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1565
1566 if (test_bit(log_FLUSH, &log->flag)) {
1567 /*
1568 * We're already flushing.
1569 * if flush_tblk is NULL, we are flushing everything,
1570 * so leave it that way. Otherwise, update it to the
1571 * latest transaction
1572 */
1573 if (log->flush_tblk)
1574 log->flush_tblk = target;
1575 } else {
1576 /* Only flush until latest transaction is committed */
1577 log->flush_tblk = target;
1578 set_bit(log_FLUSH, &log->flag);
1579
1580 /*
1581 * Initiate I/O on outstanding transactions
1582 */
1583 if (!(log->cflag & logGC_PAGEOUT)) {
1584 log->cflag |= logGC_PAGEOUT;
1585 lmGCwrite(log, 0);
1586 }
1587 }
1588 }
1589 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1590 /* Flush until all activity complete */
1591 set_bit(log_FLUSH, &log->flag);
1592 log->flush_tblk = NULL;
1593 }
1594
1595 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1596 DECLARE_WAITQUEUE(__wait, current);
1597
1598 add_wait_queue(&target->gcwait, &__wait);
1599 set_current_state(TASK_UNINTERRUPTIBLE);
1600 LOGGC_UNLOCK(log);
1601 schedule();
1602 current->state = TASK_RUNNING;
1603 LOGGC_LOCK(log);
1604 remove_wait_queue(&target->gcwait, &__wait);
1605 }
1606 LOGGC_UNLOCK(log);
1607
1608 if (wait < 2)
1609 return;
1610
1611 /*
1612 * If there was recent activity, we may need to wait
1613 * for the lazycommit thread to catch up
1614 */
1615 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1616 for (i = 0; i < 800; i++) { /* Too much? */
1617 msleep(250);
1618 if (list_empty(&log->cqueue) &&
1619 list_empty(&log->synclist))
1620 break;
1621 }
1622 }
1623 assert(list_empty(&log->cqueue));
1624 assert(list_empty(&log->synclist));
1625 clear_bit(log_FLUSH, &log->flag);
1626 }
1627
1628 /*
1629 * NAME: lmLogShutdown()
1630 *
1631 * FUNCTION: log shutdown at last LogClose().
1632 *
1633 * write log syncpt record.
1634 * update super block to set redone flag to 0.
1635 *
1636 * PARAMETER: log - log inode
1637 *
1638 * RETURN: 0 - success
1639 *
1640 * serialization: single last close thread
1641 */
1642 int lmLogShutdown(struct jfs_log * log)
1643 {
1644 int rc;
1645 struct lrd lrd;
1646 int lsn;
1647 struct logsuper *logsuper;
1648 struct lbuf *bpsuper;
1649 struct lbuf *bp;
1650 struct logpage *lp;
1651
1652 jfs_info("lmLogShutdown: log:0x%p", log);
1653
1654 jfs_flush_journal(log, 2);
1655
1656 /*
1657 * write the last SYNCPT record with syncpoint = 0
1658 * (i.e., log redo up to HERE !)
1659 */
1660 lrd.logtid = 0;
1661 lrd.backchain = 0;
1662 lrd.type = cpu_to_le16(LOG_SYNCPT);
1663 lrd.length = 0;
1664 lrd.log.syncpt.sync = 0;
1665
1666 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1667 bp = log->bp;
1668 lp = (struct logpage *) bp->l_ldata;
1669 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1670 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1671 lbmIOWait(log->bp, lbmFREE);
1672
1673 /*
1674 * synchronous update log superblock
1675 * mark log state as shutdown cleanly
1676 * (i.e., Log does not need to be replayed).
1677 */
1678 if ((rc = lbmRead(log, 1, &bpsuper)))
1679 goto out;
1680
1681 logsuper = (struct logsuper *) bpsuper->l_ldata;
1682 logsuper->state = cpu_to_le32(LOGREDONE);
1683 logsuper->end = cpu_to_le32(lsn);
1684 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1685 rc = lbmIOWait(bpsuper, lbmFREE);
1686
1687 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1688 lsn, log->page, log->eor);
1689
1690 out:
1691 /*
1692 * shutdown per log i/o
1693 */
1694 lbmLogShutdown(log);
1695
1696 if (rc) {
1697 jfs_warn("lmLogShutdown: exit(%d)", rc);
1698 }
1699 return rc;
1700 }
1701
1702
1703 /*
1704 * NAME: lmLogFileSystem()
1705 *
1706 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1707 * file system into/from log active file system list.
1708 *
1709 * PARAMETE: log - pointer to logs inode.
1710 * fsdev - kdev_t of filesystem.
1711 * serial - pointer to returned log serial number
1712 * activate - insert/remove device from active list.
1713 *
1714 * RETURN: 0 - success
1715 * errors returned by vms_iowait().
1716 */
1717 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1718 int activate)
1719 {
1720 int rc = 0;
1721 int i;
1722 struct logsuper *logsuper;
1723 struct lbuf *bpsuper;
1724 char *uuid = sbi->uuid;
1725
1726 /*
1727 * insert/remove file system device to log active file system list.
1728 */
1729 if ((rc = lbmRead(log, 1, &bpsuper)))
1730 return rc;
1731
1732 logsuper = (struct logsuper *) bpsuper->l_ldata;
1733 if (activate) {
1734 for (i = 0; i < MAX_ACTIVE; i++)
1735 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1736 memcpy(logsuper->active[i].uuid, uuid, 16);
1737 sbi->aggregate = i;
1738 break;
1739 }
1740 if (i == MAX_ACTIVE) {
1741 jfs_warn("Too many file systems sharing journal!");
1742 lbmFree(bpsuper);
1743 return -EMFILE; /* Is there a better rc? */
1744 }
1745 } else {
1746 for (i = 0; i < MAX_ACTIVE; i++)
1747 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1748 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1749 break;
1750 }
1751 if (i == MAX_ACTIVE) {
1752 jfs_warn("Somebody stomped on the journal!");
1753 lbmFree(bpsuper);
1754 return -EIO;
1755 }
1756
1757 }
1758
1759 /*
1760 * synchronous write log superblock:
1761 *
1762 * write sidestream bypassing write queue:
1763 * at file system mount, log super block is updated for
1764 * activation of the file system before any log record
1765 * (MOUNT record) of the file system, and at file system
1766 * unmount, all meta data for the file system has been
1767 * flushed before log super block is updated for deactivation
1768 * of the file system.
1769 */
1770 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1771 rc = lbmIOWait(bpsuper, lbmFREE);
1772
1773 return rc;
1774 }
1775
1776 /*
1777 * log buffer manager (lbm)
1778 * ------------------------
1779 *
1780 * special purpose buffer manager supporting log i/o requirements.
1781 *
1782 * per log write queue:
1783 * log pageout occurs in serial order by fifo write queue and
1784 * restricting to a single i/o in pregress at any one time.
1785 * a circular singly-linked list
1786 * (log->wrqueue points to the tail, and buffers are linked via
1787 * bp->wrqueue field), and
1788 * maintains log page in pageout ot waiting for pageout in serial pageout.
1789 */
1790
1791 /*
1792 * lbmLogInit()
1793 *
1794 * initialize per log I/O setup at lmLogInit()
1795 */
1796 static int lbmLogInit(struct jfs_log * log)
1797 { /* log inode */
1798 int i;
1799 struct lbuf *lbuf;
1800
1801 jfs_info("lbmLogInit: log:0x%p", log);
1802
1803 /* initialize current buffer cursor */
1804 log->bp = NULL;
1805
1806 /* initialize log device write queue */
1807 log->wqueue = NULL;
1808
1809 /*
1810 * Each log has its own buffer pages allocated to it. These are
1811 * not managed by the page cache. This ensures that a transaction
1812 * writing to the log does not block trying to allocate a page from
1813 * the page cache (for the log). This would be bad, since page
1814 * allocation waits on the kswapd thread that may be committing inodes
1815 * which would cause log activity. Was that clear? I'm trying to
1816 * avoid deadlock here.
1817 */
1818 init_waitqueue_head(&log->free_wait);
1819
1820 log->lbuf_free = NULL;
1821
1822 for (i = 0; i < LOGPAGES; i++) {
1823 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1824 if (lbuf == 0)
1825 goto error;
1826 lbuf->l_ldata = (char *) get_zeroed_page(GFP_KERNEL);
1827 if (lbuf->l_ldata == 0) {
1828 kfree(lbuf);
1829 goto error;
1830 }
1831 lbuf->l_log = log;
1832 init_waitqueue_head(&lbuf->l_ioevent);
1833
1834 lbuf->l_freelist = log->lbuf_free;
1835 log->lbuf_free = lbuf;
1836 }
1837
1838 return (0);
1839
1840 error:
1841 lbmLogShutdown(log);
1842 return -ENOMEM;
1843 }
1844
1845
1846 /*
1847 * lbmLogShutdown()
1848 *
1849 * finalize per log I/O setup at lmLogShutdown()
1850 */
1851 static void lbmLogShutdown(struct jfs_log * log)
1852 {
1853 struct lbuf *lbuf;
1854
1855 jfs_info("lbmLogShutdown: log:0x%p", log);
1856
1857 lbuf = log->lbuf_free;
1858 while (lbuf) {
1859 struct lbuf *next = lbuf->l_freelist;
1860 free_page((unsigned long) lbuf->l_ldata);
1861 kfree(lbuf);
1862 lbuf = next;
1863 }
1864
1865 log->bp = NULL;
1866 }
1867
1868
1869 /*
1870 * lbmAllocate()
1871 *
1872 * allocate an empty log buffer
1873 */
1874 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1875 {
1876 struct lbuf *bp;
1877 unsigned long flags;
1878
1879 /*
1880 * recycle from log buffer freelist if any
1881 */
1882 LCACHE_LOCK(flags);
1883 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1884 log->lbuf_free = bp->l_freelist;
1885 LCACHE_UNLOCK(flags);
1886
1887 bp->l_flag = 0;
1888
1889 bp->l_wqnext = NULL;
1890 bp->l_freelist = NULL;
1891
1892 bp->l_pn = pn;
1893 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1894 bp->l_ceor = 0;
1895
1896 return bp;
1897 }
1898
1899
1900 /*
1901 * lbmFree()
1902 *
1903 * release a log buffer to freelist
1904 */
1905 static void lbmFree(struct lbuf * bp)
1906 {
1907 unsigned long flags;
1908
1909 LCACHE_LOCK(flags);
1910
1911 lbmfree(bp);
1912
1913 LCACHE_UNLOCK(flags);
1914 }
1915
1916 static void lbmfree(struct lbuf * bp)
1917 {
1918 struct jfs_log *log = bp->l_log;
1919
1920 assert(bp->l_wqnext == NULL);
1921
1922 /*
1923 * return the buffer to head of freelist
1924 */
1925 bp->l_freelist = log->lbuf_free;
1926 log->lbuf_free = bp;
1927
1928 wake_up(&log->free_wait);
1929 return;
1930 }
1931
1932
1933 /*
1934 * NAME: lbmRedrive
1935 *
1936 * FUNCTION: add a log buffer to the the log redrive list
1937 *
1938 * PARAMETER:
1939 * bp - log buffer
1940 *
1941 * NOTES:
1942 * Takes log_redrive_lock.
1943 */
1944 static inline void lbmRedrive(struct lbuf *bp)
1945 {
1946 unsigned long flags;
1947
1948 spin_lock_irqsave(&log_redrive_lock, flags);
1949 bp->l_redrive_next = log_redrive_list;
1950 log_redrive_list = bp;
1951 spin_unlock_irqrestore(&log_redrive_lock, flags);
1952
1953 wake_up(&jfs_IO_thread_wait);
1954 }
1955
1956
1957 /*
1958 * lbmRead()
1959 */
1960 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1961 {
1962 struct bio *bio;
1963 struct lbuf *bp;
1964
1965 /*
1966 * allocate a log buffer
1967 */
1968 *bpp = bp = lbmAllocate(log, pn);
1969 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1970
1971 bp->l_flag |= lbmREAD;
1972
1973 bio = bio_alloc(GFP_NOFS, 1);
1974
1975 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
1976 bio->bi_bdev = log->bdev;
1977 bio->bi_io_vec[0].bv_page = virt_to_page(bp->l_ldata);
1978 bio->bi_io_vec[0].bv_len = LOGPSIZE;
1979 bio->bi_io_vec[0].bv_offset = 0;
1980
1981 bio->bi_vcnt = 1;
1982 bio->bi_idx = 0;
1983 bio->bi_size = LOGPSIZE;
1984
1985 bio->bi_end_io = lbmIODone;
1986 bio->bi_private = bp;
1987 submit_bio(READ_SYNC, bio);
1988
1989 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
1990
1991 return 0;
1992 }
1993
1994
1995 /*
1996 * lbmWrite()
1997 *
1998 * buffer at head of pageout queue stays after completion of
1999 * partial-page pageout and redriven by explicit initiation of
2000 * pageout by caller until full-page pageout is completed and
2001 * released.
2002 *
2003 * device driver i/o done redrives pageout of new buffer at
2004 * head of pageout queue when current buffer at head of pageout
2005 * queue is released at the completion of its full-page pageout.
2006 *
2007 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2008 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2009 */
2010 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2011 int cant_block)
2012 {
2013 struct lbuf *tail;
2014 unsigned long flags;
2015
2016 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2017
2018 /* map the logical block address to physical block address */
2019 bp->l_blkno =
2020 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2021
2022 LCACHE_LOCK(flags); /* disable+lock */
2023
2024 /*
2025 * initialize buffer for device driver
2026 */
2027 bp->l_flag = flag;
2028
2029 /*
2030 * insert bp at tail of write queue associated with log
2031 *
2032 * (request is either for bp already/currently at head of queue
2033 * or new bp to be inserted at tail)
2034 */
2035 tail = log->wqueue;
2036
2037 /* is buffer not already on write queue ? */
2038 if (bp->l_wqnext == NULL) {
2039 /* insert at tail of wqueue */
2040 if (tail == NULL) {
2041 log->wqueue = bp;
2042 bp->l_wqnext = bp;
2043 } else {
2044 log->wqueue = bp;
2045 bp->l_wqnext = tail->l_wqnext;
2046 tail->l_wqnext = bp;
2047 }
2048
2049 tail = bp;
2050 }
2051
2052 /* is buffer at head of wqueue and for write ? */
2053 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2054 LCACHE_UNLOCK(flags); /* unlock+enable */
2055 return;
2056 }
2057
2058 LCACHE_UNLOCK(flags); /* unlock+enable */
2059
2060 if (cant_block)
2061 lbmRedrive(bp);
2062 else if (flag & lbmSYNC)
2063 lbmStartIO(bp);
2064 else {
2065 LOGGC_UNLOCK(log);
2066 lbmStartIO(bp);
2067 LOGGC_LOCK(log);
2068 }
2069 }
2070
2071
2072 /*
2073 * lbmDirectWrite()
2074 *
2075 * initiate pageout bypassing write queue for sidestream
2076 * (e.g., log superblock) write;
2077 */
2078 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2079 {
2080 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2081 bp, flag, bp->l_pn);
2082
2083 /*
2084 * initialize buffer for device driver
2085 */
2086 bp->l_flag = flag | lbmDIRECT;
2087
2088 /* map the logical block address to physical block address */
2089 bp->l_blkno =
2090 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2091
2092 /*
2093 * initiate pageout of the page
2094 */
2095 lbmStartIO(bp);
2096 }
2097
2098
2099 /*
2100 * NAME: lbmStartIO()
2101 *
2102 * FUNCTION: Interface to DD strategy routine
2103 *
2104 * RETURN: none
2105 *
2106 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2107 */
2108 static void lbmStartIO(struct lbuf * bp)
2109 {
2110 struct bio *bio;
2111 struct jfs_log *log = bp->l_log;
2112
2113 jfs_info("lbmStartIO\n");
2114
2115 bio = bio_alloc(GFP_NOFS, 1);
2116 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2117 bio->bi_bdev = log->bdev;
2118 bio->bi_io_vec[0].bv_page = virt_to_page(bp->l_ldata);
2119 bio->bi_io_vec[0].bv_len = LOGPSIZE;
2120 bio->bi_io_vec[0].bv_offset = 0;
2121
2122 bio->bi_vcnt = 1;
2123 bio->bi_idx = 0;
2124 bio->bi_size = LOGPSIZE;
2125
2126 bio->bi_end_io = lbmIODone;
2127 bio->bi_private = bp;
2128
2129 /* check if journaling to disk has been disabled */
2130 if (!log->no_integrity) {
2131 submit_bio(WRITE_SYNC, bio);
2132 INCREMENT(lmStat.submitted);
2133 }
2134 else {
2135 bio->bi_size = 0;
2136 lbmIODone(bio, 0, 0); /* 2nd argument appears to not be used => 0
2137 * 3rd argument appears to not be used => 0
2138 */
2139 }
2140 }
2141
2142
2143 /*
2144 * lbmIOWait()
2145 */
2146 static int lbmIOWait(struct lbuf * bp, int flag)
2147 {
2148 unsigned long flags;
2149 int rc = 0;
2150
2151 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2152
2153 LCACHE_LOCK(flags); /* disable+lock */
2154
2155 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2156
2157 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2158
2159 if (flag & lbmFREE)
2160 lbmfree(bp);
2161
2162 LCACHE_UNLOCK(flags); /* unlock+enable */
2163
2164 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2165 return rc;
2166 }
2167
2168 /*
2169 * lbmIODone()
2170 *
2171 * executed at INTIODONE level
2172 */
2173 static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error)
2174 {
2175 struct lbuf *bp = bio->bi_private;
2176 struct lbuf *nextbp, *tail;
2177 struct jfs_log *log;
2178 unsigned long flags;
2179
2180 if (bio->bi_size)
2181 return 1;
2182
2183 /*
2184 * get back jfs buffer bound to the i/o buffer
2185 */
2186 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2187
2188 LCACHE_LOCK(flags); /* disable+lock */
2189
2190 bp->l_flag |= lbmDONE;
2191
2192 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2193 bp->l_flag |= lbmERROR;
2194
2195 jfs_err("lbmIODone: I/O error in JFS log");
2196 }
2197
2198 bio_put(bio);
2199
2200 /*
2201 * pagein completion
2202 */
2203 if (bp->l_flag & lbmREAD) {
2204 bp->l_flag &= ~lbmREAD;
2205
2206 LCACHE_UNLOCK(flags); /* unlock+enable */
2207
2208 /* wakeup I/O initiator */
2209 LCACHE_WAKEUP(&bp->l_ioevent);
2210
2211 return 0;
2212 }
2213
2214 /*
2215 * pageout completion
2216 *
2217 * the bp at the head of write queue has completed pageout.
2218 *
2219 * if single-commit/full-page pageout, remove the current buffer
2220 * from head of pageout queue, and redrive pageout with
2221 * the new buffer at head of pageout queue;
2222 * otherwise, the partial-page pageout buffer stays at
2223 * the head of pageout queue to be redriven for pageout
2224 * by lmGroupCommit() until full-page pageout is completed.
2225 */
2226 bp->l_flag &= ~lbmWRITE;
2227 INCREMENT(lmStat.pagedone);
2228
2229 /* update committed lsn */
2230 log = bp->l_log;
2231 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2232
2233 if (bp->l_flag & lbmDIRECT) {
2234 LCACHE_WAKEUP(&bp->l_ioevent);
2235 LCACHE_UNLOCK(flags);
2236 return 0;
2237 }
2238
2239 tail = log->wqueue;
2240
2241 /* single element queue */
2242 if (bp == tail) {
2243 /* remove head buffer of full-page pageout
2244 * from log device write queue
2245 */
2246 if (bp->l_flag & lbmRELEASE) {
2247 log->wqueue = NULL;
2248 bp->l_wqnext = NULL;
2249 }
2250 }
2251 /* multi element queue */
2252 else {
2253 /* remove head buffer of full-page pageout
2254 * from log device write queue
2255 */
2256 if (bp->l_flag & lbmRELEASE) {
2257 nextbp = tail->l_wqnext = bp->l_wqnext;
2258 bp->l_wqnext = NULL;
2259
2260 /*
2261 * redrive pageout of next page at head of write queue:
2262 * redrive next page without any bound tblk
2263 * (i.e., page w/o any COMMIT records), or
2264 * first page of new group commit which has been
2265 * queued after current page (subsequent pageout
2266 * is performed synchronously, except page without
2267 * any COMMITs) by lmGroupCommit() as indicated
2268 * by lbmWRITE flag;
2269 */
2270 if (nextbp->l_flag & lbmWRITE) {
2271 /*
2272 * We can't do the I/O at interrupt time.
2273 * The jfsIO thread can do it
2274 */
2275 lbmRedrive(nextbp);
2276 }
2277 }
2278 }
2279
2280 /*
2281 * synchronous pageout:
2282 *
2283 * buffer has not necessarily been removed from write queue
2284 * (e.g., synchronous write of partial-page with COMMIT):
2285 * leave buffer for i/o initiator to dispose
2286 */
2287 if (bp->l_flag & lbmSYNC) {
2288 LCACHE_UNLOCK(flags); /* unlock+enable */
2289
2290 /* wakeup I/O initiator */
2291 LCACHE_WAKEUP(&bp->l_ioevent);
2292 }
2293
2294 /*
2295 * Group Commit pageout:
2296 */
2297 else if (bp->l_flag & lbmGC) {
2298 LCACHE_UNLOCK(flags);
2299 lmPostGC(bp);
2300 }
2301
2302 /*
2303 * asynchronous pageout:
2304 *
2305 * buffer must have been removed from write queue:
2306 * insert buffer at head of freelist where it can be recycled
2307 */
2308 else {
2309 assert(bp->l_flag & lbmRELEASE);
2310 assert(bp->l_flag & lbmFREE);
2311 lbmfree(bp);
2312
2313 LCACHE_UNLOCK(flags); /* unlock+enable */
2314 }
2315
2316 return 0;
2317 }
2318
2319 int jfsIOWait(void *arg)
2320 {
2321 struct lbuf *bp;
2322
2323 daemonize("jfsIO");
2324
2325 complete(&jfsIOwait);
2326
2327 do {
2328 DECLARE_WAITQUEUE(wq, current);
2329
2330 spin_lock_irq(&log_redrive_lock);
2331 while ((bp = log_redrive_list) != 0) {
2332 log_redrive_list = bp->l_redrive_next;
2333 bp->l_redrive_next = NULL;
2334 spin_unlock_irq(&log_redrive_lock);
2335 lbmStartIO(bp);
2336 spin_lock_irq(&log_redrive_lock);
2337 }
2338 if (current->flags & PF_FREEZE) {
2339 spin_unlock_irq(&log_redrive_lock);
2340 refrigerator(PF_FREEZE);
2341 } else {
2342 add_wait_queue(&jfs_IO_thread_wait, &wq);
2343 set_current_state(TASK_INTERRUPTIBLE);
2344 spin_unlock_irq(&log_redrive_lock);
2345 schedule();
2346 current->state = TASK_RUNNING;
2347 remove_wait_queue(&jfs_IO_thread_wait, &wq);
2348 }
2349 } while (!jfs_stop_threads);
2350
2351 jfs_info("jfsIOWait being killed!");
2352 complete_and_exit(&jfsIOwait, 0);
2353 }
2354
2355 /*
2356 * NAME: lmLogFormat()/jfs_logform()
2357 *
2358 * FUNCTION: format file system log
2359 *
2360 * PARAMETERS:
2361 * log - volume log
2362 * logAddress - start address of log space in FS block
2363 * logSize - length of log space in FS block;
2364 *
2365 * RETURN: 0 - success
2366 * -EIO - i/o error
2367 *
2368 * XXX: We're synchronously writing one page at a time. This needs to
2369 * be improved by writing multiple pages at once.
2370 */
2371 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2372 {
2373 int rc = -EIO;
2374 struct jfs_sb_info *sbi;
2375 struct logsuper *logsuper;
2376 struct logpage *lp;
2377 int lspn; /* log sequence page number */
2378 struct lrd *lrd_ptr;
2379 int npages = 0;
2380 struct lbuf *bp;
2381
2382 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2383 (long long)logAddress, logSize);
2384
2385 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2386
2387 /* allocate a log buffer */
2388 bp = lbmAllocate(log, 1);
2389
2390 npages = logSize >> sbi->l2nbperpage;
2391
2392 /*
2393 * log space:
2394 *
2395 * page 0 - reserved;
2396 * page 1 - log superblock;
2397 * page 2 - log data page: A SYNC log record is written
2398 * into this page at logform time;
2399 * pages 3-N - log data page: set to empty log data pages;
2400 */
2401 /*
2402 * init log superblock: log page 1
2403 */
2404 logsuper = (struct logsuper *) bp->l_ldata;
2405
2406 logsuper->magic = cpu_to_le32(LOGMAGIC);
2407 logsuper->version = cpu_to_le32(LOGVERSION);
2408 logsuper->state = cpu_to_le32(LOGREDONE);
2409 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2410 logsuper->size = cpu_to_le32(npages);
2411 logsuper->bsize = cpu_to_le32(sbi->bsize);
2412 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2413 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2414
2415 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2416 bp->l_blkno = logAddress + sbi->nbperpage;
2417 lbmStartIO(bp);
2418 if ((rc = lbmIOWait(bp, 0)))
2419 goto exit;
2420
2421 /*
2422 * init pages 2 to npages-1 as log data pages:
2423 *
2424 * log page sequence number (lpsn) initialization:
2425 *
2426 * pn: 0 1 2 3 n-1
2427 * +-----+-----+=====+=====+===.....===+=====+
2428 * lspn: N-1 0 1 N-2
2429 * <--- N page circular file ---->
2430 *
2431 * the N (= npages-2) data pages of the log is maintained as
2432 * a circular file for the log records;
2433 * lpsn grows by 1 monotonically as each log page is written
2434 * to the circular file of the log;
2435 * and setLogpage() will not reset the page number even if
2436 * the eor is equal to LOGPHDRSIZE. In order for binary search
2437 * still work in find log end process, we have to simulate the
2438 * log wrap situation at the log format time.
2439 * The 1st log page written will have the highest lpsn. Then
2440 * the succeeding log pages will have ascending order of
2441 * the lspn starting from 0, ... (N-2)
2442 */
2443 lp = (struct logpage *) bp->l_ldata;
2444 /*
2445 * initialize 1st log page to be written: lpsn = N - 1,
2446 * write a SYNCPT log record is written to this page
2447 */
2448 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2449 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2450
2451 lrd_ptr = (struct lrd *) &lp->data;
2452 lrd_ptr->logtid = 0;
2453 lrd_ptr->backchain = 0;
2454 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2455 lrd_ptr->length = 0;
2456 lrd_ptr->log.syncpt.sync = 0;
2457
2458 bp->l_blkno += sbi->nbperpage;
2459 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2460 lbmStartIO(bp);
2461 if ((rc = lbmIOWait(bp, 0)))
2462 goto exit;
2463
2464 /*
2465 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2466 */
2467 for (lspn = 0; lspn < npages - 3; lspn++) {
2468 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2469 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2470
2471 bp->l_blkno += sbi->nbperpage;
2472 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2473 lbmStartIO(bp);
2474 if ((rc = lbmIOWait(bp, 0)))
2475 goto exit;
2476 }
2477
2478 rc = 0;
2479 exit:
2480 /*
2481 * finalize log
2482 */
2483 /* release the buffer */
2484 lbmFree(bp);
2485
2486 return rc;
2487 }
2488
2489 #ifdef CONFIG_JFS_STATISTICS
2490 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2491 int *eof, void *data)
2492 {
2493 int len = 0;
2494 off_t begin;
2495
2496 len += sprintf(buffer,
2497 "JFS Logmgr stats\n"
2498 "================\n"
2499 "commits = %d\n"
2500 "writes submitted = %d\n"
2501 "writes completed = %d\n"
2502 "full pages submitted = %d\n"
2503 "partial pages submitted = %d\n",
2504 lmStat.commit,
2505 lmStat.submitted,
2506 lmStat.pagedone,
2507 lmStat.full_page,
2508 lmStat.partial_page);
2509
2510 begin = offset;
2511 *start = buffer + begin;
2512 len -= begin;
2513
2514 if (len > length)
2515 len = length;
2516 else
2517 *eof = 1;
2518
2519 if (len < 0)
2520 len = 0;
2521
2522 return len;
2523 }
2524 #endif /* CONFIG_JFS_STATISTICS */