Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits, 0);
93 atomic_set(&transaction->t_handle_count, 0);
94 INIT_LIST_HEAD(&transaction->t_inode_list);
95 INIT_LIST_HEAD(&transaction->t_private_list);
96
97 /* Set up the commit timer for the new transaction. */
98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 add_timer(&journal->j_commit_timer);
100
101 J_ASSERT(journal->j_running_transaction == NULL);
102 journal->j_running_transaction = transaction;
103 transaction->t_max_wait = 0;
104 transaction->t_start = jiffies;
105 transaction->t_requested = 0;
106
107 return transaction;
108 }
109
110 /*
111 * Handle management.
112 *
113 * A handle_t is an object which represents a single atomic update to a
114 * filesystem, and which tracks all of the modifications which form part
115 * of that one update.
116 */
117
118 /*
119 * Update transaction's maximum wait time, if debugging is enabled.
120 *
121 * In order for t_max_wait to be reliable, it must be protected by a
122 * lock. But doing so will mean that start_this_handle() can not be
123 * run in parallel on SMP systems, which limits our scalability. So
124 * unless debugging is enabled, we no longer update t_max_wait, which
125 * means that maximum wait time reported by the jbd2_run_stats
126 * tracepoint will always be zero.
127 */
128 static inline void update_t_max_wait(transaction_t *transaction,
129 unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132 if (jbd2_journal_enable_debug &&
133 time_after(transaction->t_start, ts)) {
134 ts = jbd2_time_diff(ts, transaction->t_start);
135 spin_lock(&transaction->t_handle_lock);
136 if (ts > transaction->t_max_wait)
137 transaction->t_max_wait = ts;
138 spin_unlock(&transaction->t_handle_lock);
139 }
140 #endif
141 }
142
143 /*
144 * start_this_handle: Given a handle, deal with any locking or stalling
145 * needed to make sure that there is enough journal space for the handle
146 * to begin. Attach the handle to a transaction and set up the
147 * transaction's buffer credits.
148 */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151 gfp_t gfp_mask)
152 {
153 transaction_t *transaction, *new_transaction = NULL;
154 tid_t tid;
155 int needed, need_to_start;
156 int nblocks = handle->h_buffer_credits;
157 unsigned long ts = jiffies;
158
159 if (nblocks > journal->j_max_transaction_buffers) {
160 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161 current->comm, nblocks,
162 journal->j_max_transaction_buffers);
163 return -ENOSPC;
164 }
165
166 alloc_transaction:
167 if (!journal->j_running_transaction) {
168 new_transaction = kmem_cache_zalloc(transaction_cache,
169 gfp_mask);
170 if (!new_transaction) {
171 /*
172 * If __GFP_FS is not present, then we may be
173 * being called from inside the fs writeback
174 * layer, so we MUST NOT fail. Since
175 * __GFP_NOFAIL is going away, we will arrange
176 * to retry the allocation ourselves.
177 */
178 if ((gfp_mask & __GFP_FS) == 0) {
179 congestion_wait(BLK_RW_ASYNC, HZ/50);
180 goto alloc_transaction;
181 }
182 return -ENOMEM;
183 }
184 }
185
186 jbd_debug(3, "New handle %p going live.\n", handle);
187
188 /*
189 * We need to hold j_state_lock until t_updates has been incremented,
190 * for proper journal barrier handling
191 */
192 repeat:
193 read_lock(&journal->j_state_lock);
194 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195 if (is_journal_aborted(journal) ||
196 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197 read_unlock(&journal->j_state_lock);
198 jbd2_journal_free_transaction(new_transaction);
199 return -EROFS;
200 }
201
202 /* Wait on the journal's transaction barrier if necessary */
203 if (journal->j_barrier_count) {
204 read_unlock(&journal->j_state_lock);
205 wait_event(journal->j_wait_transaction_locked,
206 journal->j_barrier_count == 0);
207 goto repeat;
208 }
209
210 if (!journal->j_running_transaction) {
211 read_unlock(&journal->j_state_lock);
212 if (!new_transaction)
213 goto alloc_transaction;
214 write_lock(&journal->j_state_lock);
215 if (!journal->j_running_transaction &&
216 !journal->j_barrier_count) {
217 jbd2_get_transaction(journal, new_transaction);
218 new_transaction = NULL;
219 }
220 write_unlock(&journal->j_state_lock);
221 goto repeat;
222 }
223
224 transaction = journal->j_running_transaction;
225
226 /*
227 * If the current transaction is locked down for commit, wait for the
228 * lock to be released.
229 */
230 if (transaction->t_state == T_LOCKED) {
231 DEFINE_WAIT(wait);
232
233 prepare_to_wait(&journal->j_wait_transaction_locked,
234 &wait, TASK_UNINTERRUPTIBLE);
235 read_unlock(&journal->j_state_lock);
236 schedule();
237 finish_wait(&journal->j_wait_transaction_locked, &wait);
238 goto repeat;
239 }
240
241 /*
242 * If there is not enough space left in the log to write all potential
243 * buffers requested by this operation, we need to stall pending a log
244 * checkpoint to free some more log space.
245 */
246 needed = atomic_add_return(nblocks,
247 &transaction->t_outstanding_credits);
248
249 if (needed > journal->j_max_transaction_buffers) {
250 /*
251 * If the current transaction is already too large, then start
252 * to commit it: we can then go back and attach this handle to
253 * a new transaction.
254 */
255 DEFINE_WAIT(wait);
256
257 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260 TASK_UNINTERRUPTIBLE);
261 tid = transaction->t_tid;
262 need_to_start = !tid_geq(journal->j_commit_request, tid);
263 read_unlock(&journal->j_state_lock);
264 if (need_to_start)
265 jbd2_log_start_commit(journal, tid);
266 schedule();
267 finish_wait(&journal->j_wait_transaction_locked, &wait);
268 goto repeat;
269 }
270
271 /*
272 * The commit code assumes that it can get enough log space
273 * without forcing a checkpoint. This is *critical* for
274 * correctness: a checkpoint of a buffer which is also
275 * associated with a committing transaction creates a deadlock,
276 * so commit simply cannot force through checkpoints.
277 *
278 * We must therefore ensure the necessary space in the journal
279 * *before* starting to dirty potentially checkpointed buffers
280 * in the new transaction.
281 *
282 * The worst part is, any transaction currently committing can
283 * reduce the free space arbitrarily. Be careful to account for
284 * those buffers when checkpointing.
285 */
286
287 /*
288 * @@@ AKPM: This seems rather over-defensive. We're giving commit
289 * a _lot_ of headroom: 1/4 of the journal plus the size of
290 * the committing transaction. Really, we only need to give it
291 * committing_transaction->t_outstanding_credits plus "enough" for
292 * the log control blocks.
293 * Also, this test is inconsistent with the matching one in
294 * jbd2_journal_extend().
295 */
296 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298 atomic_sub(nblocks, &transaction->t_outstanding_credits);
299 read_unlock(&journal->j_state_lock);
300 write_lock(&journal->j_state_lock);
301 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302 __jbd2_log_wait_for_space(journal);
303 write_unlock(&journal->j_state_lock);
304 goto repeat;
305 }
306
307 /* OK, account for the buffers that this operation expects to
308 * use and add the handle to the running transaction.
309 */
310 update_t_max_wait(transaction, ts);
311 handle->h_transaction = transaction;
312 handle->h_requested_credits = nblocks;
313 handle->h_start_jiffies = jiffies;
314 atomic_inc(&transaction->t_updates);
315 atomic_inc(&transaction->t_handle_count);
316 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317 handle, nblocks,
318 atomic_read(&transaction->t_outstanding_credits),
319 __jbd2_log_space_left(journal));
320 read_unlock(&journal->j_state_lock);
321
322 lock_map_acquire(&handle->h_lockdep_map);
323 jbd2_journal_free_transaction(new_transaction);
324 return 0;
325 }
326
327 static struct lock_class_key jbd2_handle_key;
328
329 /* Allocate a new handle. This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333 if (!handle)
334 return NULL;
335 memset(handle, 0, sizeof(*handle));
336 handle->h_buffer_credits = nblocks;
337 handle->h_ref = 1;
338
339 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
340 &jbd2_handle_key, 0);
341
342 return handle;
343 }
344
345 /**
346 * handle_t *jbd2_journal_start() - Obtain a new handle.
347 * @journal: Journal to start transaction on.
348 * @nblocks: number of block buffer we might modify
349 *
350 * We make sure that the transaction can guarantee at least nblocks of
351 * modified buffers in the log. We block until the log can guarantee
352 * that much space.
353 *
354 * This function is visible to journal users (like ext3fs), so is not
355 * called with the journal already locked.
356 *
357 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
358 * on failure.
359 */
360 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
361 unsigned int type, unsigned int line_no)
362 {
363 handle_t *handle = journal_current_handle();
364 int err;
365
366 if (!journal)
367 return ERR_PTR(-EROFS);
368
369 if (handle) {
370 J_ASSERT(handle->h_transaction->t_journal == journal);
371 handle->h_ref++;
372 return handle;
373 }
374
375 handle = new_handle(nblocks);
376 if (!handle)
377 return ERR_PTR(-ENOMEM);
378
379 current->journal_info = handle;
380
381 err = start_this_handle(journal, handle, gfp_mask);
382 if (err < 0) {
383 jbd2_free_handle(handle);
384 current->journal_info = NULL;
385 return ERR_PTR(err);
386 }
387 handle->h_type = type;
388 handle->h_line_no = line_no;
389 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
390 handle->h_transaction->t_tid, type,
391 line_no, nblocks);
392 return handle;
393 }
394 EXPORT_SYMBOL(jbd2__journal_start);
395
396
397 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
398 {
399 return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
400 }
401 EXPORT_SYMBOL(jbd2_journal_start);
402
403
404 /**
405 * int jbd2_journal_extend() - extend buffer credits.
406 * @handle: handle to 'extend'
407 * @nblocks: nr blocks to try to extend by.
408 *
409 * Some transactions, such as large extends and truncates, can be done
410 * atomically all at once or in several stages. The operation requests
411 * a credit for a number of buffer modications in advance, but can
412 * extend its credit if it needs more.
413 *
414 * jbd2_journal_extend tries to give the running handle more buffer credits.
415 * It does not guarantee that allocation - this is a best-effort only.
416 * The calling process MUST be able to deal cleanly with a failure to
417 * extend here.
418 *
419 * Return 0 on success, non-zero on failure.
420 *
421 * return code < 0 implies an error
422 * return code > 0 implies normal transaction-full status.
423 */
424 int jbd2_journal_extend(handle_t *handle, int nblocks)
425 {
426 transaction_t *transaction = handle->h_transaction;
427 journal_t *journal = transaction->t_journal;
428 int result;
429 int wanted;
430
431 result = -EIO;
432 if (is_handle_aborted(handle))
433 goto out;
434
435 result = 1;
436
437 read_lock(&journal->j_state_lock);
438
439 /* Don't extend a locked-down transaction! */
440 if (handle->h_transaction->t_state != T_RUNNING) {
441 jbd_debug(3, "denied handle %p %d blocks: "
442 "transaction not running\n", handle, nblocks);
443 goto error_out;
444 }
445
446 spin_lock(&transaction->t_handle_lock);
447 wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
448
449 if (wanted > journal->j_max_transaction_buffers) {
450 jbd_debug(3, "denied handle %p %d blocks: "
451 "transaction too large\n", handle, nblocks);
452 goto unlock;
453 }
454
455 if (wanted > __jbd2_log_space_left(journal)) {
456 jbd_debug(3, "denied handle %p %d blocks: "
457 "insufficient log space\n", handle, nblocks);
458 goto unlock;
459 }
460
461 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
462 handle->h_transaction->t_tid,
463 handle->h_type, handle->h_line_no,
464 handle->h_buffer_credits,
465 nblocks);
466
467 handle->h_buffer_credits += nblocks;
468 handle->h_requested_credits += nblocks;
469 atomic_add(nblocks, &transaction->t_outstanding_credits);
470 result = 0;
471
472 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
473 unlock:
474 spin_unlock(&transaction->t_handle_lock);
475 error_out:
476 read_unlock(&journal->j_state_lock);
477 out:
478 return result;
479 }
480
481
482 /**
483 * int jbd2_journal_restart() - restart a handle .
484 * @handle: handle to restart
485 * @nblocks: nr credits requested
486 *
487 * Restart a handle for a multi-transaction filesystem
488 * operation.
489 *
490 * If the jbd2_journal_extend() call above fails to grant new buffer credits
491 * to a running handle, a call to jbd2_journal_restart will commit the
492 * handle's transaction so far and reattach the handle to a new
493 * transaction capabable of guaranteeing the requested number of
494 * credits.
495 */
496 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
497 {
498 transaction_t *transaction = handle->h_transaction;
499 journal_t *journal = transaction->t_journal;
500 tid_t tid;
501 int need_to_start, ret;
502
503 /* If we've had an abort of any type, don't even think about
504 * actually doing the restart! */
505 if (is_handle_aborted(handle))
506 return 0;
507
508 /*
509 * First unlink the handle from its current transaction, and start the
510 * commit on that.
511 */
512 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
513 J_ASSERT(journal_current_handle() == handle);
514
515 read_lock(&journal->j_state_lock);
516 spin_lock(&transaction->t_handle_lock);
517 atomic_sub(handle->h_buffer_credits,
518 &transaction->t_outstanding_credits);
519 if (atomic_dec_and_test(&transaction->t_updates))
520 wake_up(&journal->j_wait_updates);
521 spin_unlock(&transaction->t_handle_lock);
522
523 jbd_debug(2, "restarting handle %p\n", handle);
524 tid = transaction->t_tid;
525 need_to_start = !tid_geq(journal->j_commit_request, tid);
526 read_unlock(&journal->j_state_lock);
527 if (need_to_start)
528 jbd2_log_start_commit(journal, tid);
529
530 lock_map_release(&handle->h_lockdep_map);
531 handle->h_buffer_credits = nblocks;
532 ret = start_this_handle(journal, handle, gfp_mask);
533 return ret;
534 }
535 EXPORT_SYMBOL(jbd2__journal_restart);
536
537
538 int jbd2_journal_restart(handle_t *handle, int nblocks)
539 {
540 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
541 }
542 EXPORT_SYMBOL(jbd2_journal_restart);
543
544 /**
545 * void jbd2_journal_lock_updates () - establish a transaction barrier.
546 * @journal: Journal to establish a barrier on.
547 *
548 * This locks out any further updates from being started, and blocks
549 * until all existing updates have completed, returning only once the
550 * journal is in a quiescent state with no updates running.
551 *
552 * The journal lock should not be held on entry.
553 */
554 void jbd2_journal_lock_updates(journal_t *journal)
555 {
556 DEFINE_WAIT(wait);
557
558 write_lock(&journal->j_state_lock);
559 ++journal->j_barrier_count;
560
561 /* Wait until there are no running updates */
562 while (1) {
563 transaction_t *transaction = journal->j_running_transaction;
564
565 if (!transaction)
566 break;
567
568 spin_lock(&transaction->t_handle_lock);
569 prepare_to_wait(&journal->j_wait_updates, &wait,
570 TASK_UNINTERRUPTIBLE);
571 if (!atomic_read(&transaction->t_updates)) {
572 spin_unlock(&transaction->t_handle_lock);
573 finish_wait(&journal->j_wait_updates, &wait);
574 break;
575 }
576 spin_unlock(&transaction->t_handle_lock);
577 write_unlock(&journal->j_state_lock);
578 schedule();
579 finish_wait(&journal->j_wait_updates, &wait);
580 write_lock(&journal->j_state_lock);
581 }
582 write_unlock(&journal->j_state_lock);
583
584 /*
585 * We have now established a barrier against other normal updates, but
586 * we also need to barrier against other jbd2_journal_lock_updates() calls
587 * to make sure that we serialise special journal-locked operations
588 * too.
589 */
590 mutex_lock(&journal->j_barrier);
591 }
592
593 /**
594 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
595 * @journal: Journal to release the barrier on.
596 *
597 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
598 *
599 * Should be called without the journal lock held.
600 */
601 void jbd2_journal_unlock_updates (journal_t *journal)
602 {
603 J_ASSERT(journal->j_barrier_count != 0);
604
605 mutex_unlock(&journal->j_barrier);
606 write_lock(&journal->j_state_lock);
607 --journal->j_barrier_count;
608 write_unlock(&journal->j_state_lock);
609 wake_up(&journal->j_wait_transaction_locked);
610 }
611
612 static void warn_dirty_buffer(struct buffer_head *bh)
613 {
614 char b[BDEVNAME_SIZE];
615
616 printk(KERN_WARNING
617 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
618 "There's a risk of filesystem corruption in case of system "
619 "crash.\n",
620 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
621 }
622
623 /*
624 * If the buffer is already part of the current transaction, then there
625 * is nothing we need to do. If it is already part of a prior
626 * transaction which we are still committing to disk, then we need to
627 * make sure that we do not overwrite the old copy: we do copy-out to
628 * preserve the copy going to disk. We also account the buffer against
629 * the handle's metadata buffer credits (unless the buffer is already
630 * part of the transaction, that is).
631 *
632 */
633 static int
634 do_get_write_access(handle_t *handle, struct journal_head *jh,
635 int force_copy)
636 {
637 struct buffer_head *bh;
638 transaction_t *transaction;
639 journal_t *journal;
640 int error;
641 char *frozen_buffer = NULL;
642 int need_copy = 0;
643
644 if (is_handle_aborted(handle))
645 return -EROFS;
646
647 transaction = handle->h_transaction;
648 journal = transaction->t_journal;
649
650 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
651
652 JBUFFER_TRACE(jh, "entry");
653 repeat:
654 bh = jh2bh(jh);
655
656 /* @@@ Need to check for errors here at some point. */
657
658 lock_buffer(bh);
659 jbd_lock_bh_state(bh);
660
661 /* We now hold the buffer lock so it is safe to query the buffer
662 * state. Is the buffer dirty?
663 *
664 * If so, there are two possibilities. The buffer may be
665 * non-journaled, and undergoing a quite legitimate writeback.
666 * Otherwise, it is journaled, and we don't expect dirty buffers
667 * in that state (the buffers should be marked JBD_Dirty
668 * instead.) So either the IO is being done under our own
669 * control and this is a bug, or it's a third party IO such as
670 * dump(8) (which may leave the buffer scheduled for read ---
671 * ie. locked but not dirty) or tune2fs (which may actually have
672 * the buffer dirtied, ugh.) */
673
674 if (buffer_dirty(bh)) {
675 /*
676 * First question: is this buffer already part of the current
677 * transaction or the existing committing transaction?
678 */
679 if (jh->b_transaction) {
680 J_ASSERT_JH(jh,
681 jh->b_transaction == transaction ||
682 jh->b_transaction ==
683 journal->j_committing_transaction);
684 if (jh->b_next_transaction)
685 J_ASSERT_JH(jh, jh->b_next_transaction ==
686 transaction);
687 warn_dirty_buffer(bh);
688 }
689 /*
690 * In any case we need to clean the dirty flag and we must
691 * do it under the buffer lock to be sure we don't race
692 * with running write-out.
693 */
694 JBUFFER_TRACE(jh, "Journalling dirty buffer");
695 clear_buffer_dirty(bh);
696 set_buffer_jbddirty(bh);
697 }
698
699 unlock_buffer(bh);
700
701 error = -EROFS;
702 if (is_handle_aborted(handle)) {
703 jbd_unlock_bh_state(bh);
704 goto out;
705 }
706 error = 0;
707
708 /*
709 * The buffer is already part of this transaction if b_transaction or
710 * b_next_transaction points to it
711 */
712 if (jh->b_transaction == transaction ||
713 jh->b_next_transaction == transaction)
714 goto done;
715
716 /*
717 * this is the first time this transaction is touching this buffer,
718 * reset the modified flag
719 */
720 jh->b_modified = 0;
721
722 /*
723 * If there is already a copy-out version of this buffer, then we don't
724 * need to make another one
725 */
726 if (jh->b_frozen_data) {
727 JBUFFER_TRACE(jh, "has frozen data");
728 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
729 jh->b_next_transaction = transaction;
730 goto done;
731 }
732
733 /* Is there data here we need to preserve? */
734
735 if (jh->b_transaction && jh->b_transaction != transaction) {
736 JBUFFER_TRACE(jh, "owned by older transaction");
737 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
738 J_ASSERT_JH(jh, jh->b_transaction ==
739 journal->j_committing_transaction);
740
741 /* There is one case we have to be very careful about.
742 * If the committing transaction is currently writing
743 * this buffer out to disk and has NOT made a copy-out,
744 * then we cannot modify the buffer contents at all
745 * right now. The essence of copy-out is that it is the
746 * extra copy, not the primary copy, which gets
747 * journaled. If the primary copy is already going to
748 * disk then we cannot do copy-out here. */
749
750 if (jh->b_jlist == BJ_Shadow) {
751 DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
752 wait_queue_head_t *wqh;
753
754 wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
755
756 JBUFFER_TRACE(jh, "on shadow: sleep");
757 jbd_unlock_bh_state(bh);
758 /* commit wakes up all shadow buffers after IO */
759 for ( ; ; ) {
760 prepare_to_wait(wqh, &wait.wait,
761 TASK_UNINTERRUPTIBLE);
762 if (jh->b_jlist != BJ_Shadow)
763 break;
764 schedule();
765 }
766 finish_wait(wqh, &wait.wait);
767 goto repeat;
768 }
769
770 /* Only do the copy if the currently-owning transaction
771 * still needs it. If it is on the Forget list, the
772 * committing transaction is past that stage. The
773 * buffer had better remain locked during the kmalloc,
774 * but that should be true --- we hold the journal lock
775 * still and the buffer is already on the BUF_JOURNAL
776 * list so won't be flushed.
777 *
778 * Subtle point, though: if this is a get_undo_access,
779 * then we will be relying on the frozen_data to contain
780 * the new value of the committed_data record after the
781 * transaction, so we HAVE to force the frozen_data copy
782 * in that case. */
783
784 if (jh->b_jlist != BJ_Forget || force_copy) {
785 JBUFFER_TRACE(jh, "generate frozen data");
786 if (!frozen_buffer) {
787 JBUFFER_TRACE(jh, "allocate memory for buffer");
788 jbd_unlock_bh_state(bh);
789 frozen_buffer =
790 jbd2_alloc(jh2bh(jh)->b_size,
791 GFP_NOFS);
792 if (!frozen_buffer) {
793 printk(KERN_EMERG
794 "%s: OOM for frozen_buffer\n",
795 __func__);
796 JBUFFER_TRACE(jh, "oom!");
797 error = -ENOMEM;
798 jbd_lock_bh_state(bh);
799 goto done;
800 }
801 goto repeat;
802 }
803 jh->b_frozen_data = frozen_buffer;
804 frozen_buffer = NULL;
805 need_copy = 1;
806 }
807 jh->b_next_transaction = transaction;
808 }
809
810
811 /*
812 * Finally, if the buffer is not journaled right now, we need to make
813 * sure it doesn't get written to disk before the caller actually
814 * commits the new data
815 */
816 if (!jh->b_transaction) {
817 JBUFFER_TRACE(jh, "no transaction");
818 J_ASSERT_JH(jh, !jh->b_next_transaction);
819 JBUFFER_TRACE(jh, "file as BJ_Reserved");
820 spin_lock(&journal->j_list_lock);
821 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
822 spin_unlock(&journal->j_list_lock);
823 }
824
825 done:
826 if (need_copy) {
827 struct page *page;
828 int offset;
829 char *source;
830
831 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
832 "Possible IO failure.\n");
833 page = jh2bh(jh)->b_page;
834 offset = offset_in_page(jh2bh(jh)->b_data);
835 source = kmap_atomic(page);
836 /* Fire data frozen trigger just before we copy the data */
837 jbd2_buffer_frozen_trigger(jh, source + offset,
838 jh->b_triggers);
839 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
840 kunmap_atomic(source);
841
842 /*
843 * Now that the frozen data is saved off, we need to store
844 * any matching triggers.
845 */
846 jh->b_frozen_triggers = jh->b_triggers;
847 }
848 jbd_unlock_bh_state(bh);
849
850 /*
851 * If we are about to journal a buffer, then any revoke pending on it is
852 * no longer valid
853 */
854 jbd2_journal_cancel_revoke(handle, jh);
855
856 out:
857 if (unlikely(frozen_buffer)) /* It's usually NULL */
858 jbd2_free(frozen_buffer, bh->b_size);
859
860 JBUFFER_TRACE(jh, "exit");
861 return error;
862 }
863
864 /**
865 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
866 * @handle: transaction to add buffer modifications to
867 * @bh: bh to be used for metadata writes
868 *
869 * Returns an error code or 0 on success.
870 *
871 * In full data journalling mode the buffer may be of type BJ_AsyncData,
872 * because we're write()ing a buffer which is also part of a shared mapping.
873 */
874
875 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
876 {
877 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
878 int rc;
879
880 /* We do not want to get caught playing with fields which the
881 * log thread also manipulates. Make sure that the buffer
882 * completes any outstanding IO before proceeding. */
883 rc = do_get_write_access(handle, jh, 0);
884 jbd2_journal_put_journal_head(jh);
885 return rc;
886 }
887
888
889 /*
890 * When the user wants to journal a newly created buffer_head
891 * (ie. getblk() returned a new buffer and we are going to populate it
892 * manually rather than reading off disk), then we need to keep the
893 * buffer_head locked until it has been completely filled with new
894 * data. In this case, we should be able to make the assertion that
895 * the bh is not already part of an existing transaction.
896 *
897 * The buffer should already be locked by the caller by this point.
898 * There is no lock ranking violation: it was a newly created,
899 * unlocked buffer beforehand. */
900
901 /**
902 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
903 * @handle: transaction to new buffer to
904 * @bh: new buffer.
905 *
906 * Call this if you create a new bh.
907 */
908 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
909 {
910 transaction_t *transaction = handle->h_transaction;
911 journal_t *journal = transaction->t_journal;
912 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
913 int err;
914
915 jbd_debug(5, "journal_head %p\n", jh);
916 err = -EROFS;
917 if (is_handle_aborted(handle))
918 goto out;
919 err = 0;
920
921 JBUFFER_TRACE(jh, "entry");
922 /*
923 * The buffer may already belong to this transaction due to pre-zeroing
924 * in the filesystem's new_block code. It may also be on the previous,
925 * committing transaction's lists, but it HAS to be in Forget state in
926 * that case: the transaction must have deleted the buffer for it to be
927 * reused here.
928 */
929 jbd_lock_bh_state(bh);
930 spin_lock(&journal->j_list_lock);
931 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
932 jh->b_transaction == NULL ||
933 (jh->b_transaction == journal->j_committing_transaction &&
934 jh->b_jlist == BJ_Forget)));
935
936 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
938
939 if (jh->b_transaction == NULL) {
940 /*
941 * Previous jbd2_journal_forget() could have left the buffer
942 * with jbddirty bit set because it was being committed. When
943 * the commit finished, we've filed the buffer for
944 * checkpointing and marked it dirty. Now we are reallocating
945 * the buffer so the transaction freeing it must have
946 * committed and so it's safe to clear the dirty bit.
947 */
948 clear_buffer_dirty(jh2bh(jh));
949 /* first access by this transaction */
950 jh->b_modified = 0;
951
952 JBUFFER_TRACE(jh, "file as BJ_Reserved");
953 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
954 } else if (jh->b_transaction == journal->j_committing_transaction) {
955 /* first access by this transaction */
956 jh->b_modified = 0;
957
958 JBUFFER_TRACE(jh, "set next transaction");
959 jh->b_next_transaction = transaction;
960 }
961 spin_unlock(&journal->j_list_lock);
962 jbd_unlock_bh_state(bh);
963
964 /*
965 * akpm: I added this. ext3_alloc_branch can pick up new indirect
966 * blocks which contain freed but then revoked metadata. We need
967 * to cancel the revoke in case we end up freeing it yet again
968 * and the reallocating as data - this would cause a second revoke,
969 * which hits an assertion error.
970 */
971 JBUFFER_TRACE(jh, "cancelling revoke");
972 jbd2_journal_cancel_revoke(handle, jh);
973 out:
974 jbd2_journal_put_journal_head(jh);
975 return err;
976 }
977
978 /**
979 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
980 * non-rewindable consequences
981 * @handle: transaction
982 * @bh: buffer to undo
983 *
984 * Sometimes there is a need to distinguish between metadata which has
985 * been committed to disk and that which has not. The ext3fs code uses
986 * this for freeing and allocating space, we have to make sure that we
987 * do not reuse freed space until the deallocation has been committed,
988 * since if we overwrote that space we would make the delete
989 * un-rewindable in case of a crash.
990 *
991 * To deal with that, jbd2_journal_get_undo_access requests write access to a
992 * buffer for parts of non-rewindable operations such as delete
993 * operations on the bitmaps. The journaling code must keep a copy of
994 * the buffer's contents prior to the undo_access call until such time
995 * as we know that the buffer has definitely been committed to disk.
996 *
997 * We never need to know which transaction the committed data is part
998 * of, buffers touched here are guaranteed to be dirtied later and so
999 * will be committed to a new transaction in due course, at which point
1000 * we can discard the old committed data pointer.
1001 *
1002 * Returns error number or 0 on success.
1003 */
1004 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1005 {
1006 int err;
1007 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1008 char *committed_data = NULL;
1009
1010 JBUFFER_TRACE(jh, "entry");
1011
1012 /*
1013 * Do this first --- it can drop the journal lock, so we want to
1014 * make sure that obtaining the committed_data is done
1015 * atomically wrt. completion of any outstanding commits.
1016 */
1017 err = do_get_write_access(handle, jh, 1);
1018 if (err)
1019 goto out;
1020
1021 repeat:
1022 if (!jh->b_committed_data) {
1023 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1024 if (!committed_data) {
1025 printk(KERN_EMERG "%s: No memory for committed data\n",
1026 __func__);
1027 err = -ENOMEM;
1028 goto out;
1029 }
1030 }
1031
1032 jbd_lock_bh_state(bh);
1033 if (!jh->b_committed_data) {
1034 /* Copy out the current buffer contents into the
1035 * preserved, committed copy. */
1036 JBUFFER_TRACE(jh, "generate b_committed data");
1037 if (!committed_data) {
1038 jbd_unlock_bh_state(bh);
1039 goto repeat;
1040 }
1041
1042 jh->b_committed_data = committed_data;
1043 committed_data = NULL;
1044 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1045 }
1046 jbd_unlock_bh_state(bh);
1047 out:
1048 jbd2_journal_put_journal_head(jh);
1049 if (unlikely(committed_data))
1050 jbd2_free(committed_data, bh->b_size);
1051 return err;
1052 }
1053
1054 /**
1055 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1056 * @bh: buffer to trigger on
1057 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1058 *
1059 * Set any triggers on this journal_head. This is always safe, because
1060 * triggers for a committing buffer will be saved off, and triggers for
1061 * a running transaction will match the buffer in that transaction.
1062 *
1063 * Call with NULL to clear the triggers.
1064 */
1065 void jbd2_journal_set_triggers(struct buffer_head *bh,
1066 struct jbd2_buffer_trigger_type *type)
1067 {
1068 struct journal_head *jh = bh2jh(bh);
1069
1070 jh->b_triggers = type;
1071 }
1072
1073 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1074 struct jbd2_buffer_trigger_type *triggers)
1075 {
1076 struct buffer_head *bh = jh2bh(jh);
1077
1078 if (!triggers || !triggers->t_frozen)
1079 return;
1080
1081 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1082 }
1083
1084 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1085 struct jbd2_buffer_trigger_type *triggers)
1086 {
1087 if (!triggers || !triggers->t_abort)
1088 return;
1089
1090 triggers->t_abort(triggers, jh2bh(jh));
1091 }
1092
1093
1094
1095 /**
1096 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1097 * @handle: transaction to add buffer to.
1098 * @bh: buffer to mark
1099 *
1100 * mark dirty metadata which needs to be journaled as part of the current
1101 * transaction.
1102 *
1103 * The buffer must have previously had jbd2_journal_get_write_access()
1104 * called so that it has a valid journal_head attached to the buffer
1105 * head.
1106 *
1107 * The buffer is placed on the transaction's metadata list and is marked
1108 * as belonging to the transaction.
1109 *
1110 * Returns error number or 0 on success.
1111 *
1112 * Special care needs to be taken if the buffer already belongs to the
1113 * current committing transaction (in which case we should have frozen
1114 * data present for that commit). In that case, we don't relink the
1115 * buffer: that only gets done when the old transaction finally
1116 * completes its commit.
1117 */
1118 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1119 {
1120 transaction_t *transaction = handle->h_transaction;
1121 journal_t *journal = transaction->t_journal;
1122 struct journal_head *jh = bh2jh(bh);
1123 int ret = 0;
1124
1125 jbd_debug(5, "journal_head %p\n", jh);
1126 JBUFFER_TRACE(jh, "entry");
1127 if (is_handle_aborted(handle))
1128 goto out;
1129 if (!buffer_jbd(bh)) {
1130 ret = -EUCLEAN;
1131 goto out;
1132 }
1133
1134 jbd_lock_bh_state(bh);
1135
1136 if (jh->b_modified == 0) {
1137 /*
1138 * This buffer's got modified and becoming part
1139 * of the transaction. This needs to be done
1140 * once a transaction -bzzz
1141 */
1142 jh->b_modified = 1;
1143 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1144 handle->h_buffer_credits--;
1145 }
1146
1147 /*
1148 * fastpath, to avoid expensive locking. If this buffer is already
1149 * on the running transaction's metadata list there is nothing to do.
1150 * Nobody can take it off again because there is a handle open.
1151 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1152 * result in this test being false, so we go in and take the locks.
1153 */
1154 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1155 JBUFFER_TRACE(jh, "fastpath");
1156 if (unlikely(jh->b_transaction !=
1157 journal->j_running_transaction)) {
1158 printk(KERN_EMERG "JBD: %s: "
1159 "jh->b_transaction (%llu, %p, %u) != "
1160 "journal->j_running_transaction (%p, %u)",
1161 journal->j_devname,
1162 (unsigned long long) bh->b_blocknr,
1163 jh->b_transaction,
1164 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1165 journal->j_running_transaction,
1166 journal->j_running_transaction ?
1167 journal->j_running_transaction->t_tid : 0);
1168 ret = -EINVAL;
1169 }
1170 goto out_unlock_bh;
1171 }
1172
1173 set_buffer_jbddirty(bh);
1174
1175 /*
1176 * Metadata already on the current transaction list doesn't
1177 * need to be filed. Metadata on another transaction's list must
1178 * be committing, and will be refiled once the commit completes:
1179 * leave it alone for now.
1180 */
1181 if (jh->b_transaction != transaction) {
1182 JBUFFER_TRACE(jh, "already on other transaction");
1183 if (unlikely(jh->b_transaction !=
1184 journal->j_committing_transaction)) {
1185 printk(KERN_EMERG "JBD: %s: "
1186 "jh->b_transaction (%llu, %p, %u) != "
1187 "journal->j_committing_transaction (%p, %u)",
1188 journal->j_devname,
1189 (unsigned long long) bh->b_blocknr,
1190 jh->b_transaction,
1191 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1192 journal->j_committing_transaction,
1193 journal->j_committing_transaction ?
1194 journal->j_committing_transaction->t_tid : 0);
1195 ret = -EINVAL;
1196 }
1197 if (unlikely(jh->b_next_transaction != transaction)) {
1198 printk(KERN_EMERG "JBD: %s: "
1199 "jh->b_next_transaction (%llu, %p, %u) != "
1200 "transaction (%p, %u)",
1201 journal->j_devname,
1202 (unsigned long long) bh->b_blocknr,
1203 jh->b_next_transaction,
1204 jh->b_next_transaction ?
1205 jh->b_next_transaction->t_tid : 0,
1206 transaction, transaction->t_tid);
1207 ret = -EINVAL;
1208 }
1209 /* And this case is illegal: we can't reuse another
1210 * transaction's data buffer, ever. */
1211 goto out_unlock_bh;
1212 }
1213
1214 /* That test should have eliminated the following case: */
1215 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1216
1217 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1218 spin_lock(&journal->j_list_lock);
1219 __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1220 spin_unlock(&journal->j_list_lock);
1221 out_unlock_bh:
1222 jbd_unlock_bh_state(bh);
1223 out:
1224 JBUFFER_TRACE(jh, "exit");
1225 WARN_ON(ret); /* All errors are bugs, so dump the stack */
1226 return ret;
1227 }
1228
1229 /**
1230 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1231 * @handle: transaction handle
1232 * @bh: bh to 'forget'
1233 *
1234 * We can only do the bforget if there are no commits pending against the
1235 * buffer. If the buffer is dirty in the current running transaction we
1236 * can safely unlink it.
1237 *
1238 * bh may not be a journalled buffer at all - it may be a non-JBD
1239 * buffer which came off the hashtable. Check for this.
1240 *
1241 * Decrements bh->b_count by one.
1242 *
1243 * Allow this call even if the handle has aborted --- it may be part of
1244 * the caller's cleanup after an abort.
1245 */
1246 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1247 {
1248 transaction_t *transaction = handle->h_transaction;
1249 journal_t *journal = transaction->t_journal;
1250 struct journal_head *jh;
1251 int drop_reserve = 0;
1252 int err = 0;
1253 int was_modified = 0;
1254
1255 BUFFER_TRACE(bh, "entry");
1256
1257 jbd_lock_bh_state(bh);
1258 spin_lock(&journal->j_list_lock);
1259
1260 if (!buffer_jbd(bh))
1261 goto not_jbd;
1262 jh = bh2jh(bh);
1263
1264 /* Critical error: attempting to delete a bitmap buffer, maybe?
1265 * Don't do any jbd operations, and return an error. */
1266 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1267 "inconsistent data on disk")) {
1268 err = -EIO;
1269 goto not_jbd;
1270 }
1271
1272 /* keep track of whether or not this transaction modified us */
1273 was_modified = jh->b_modified;
1274
1275 /*
1276 * The buffer's going from the transaction, we must drop
1277 * all references -bzzz
1278 */
1279 jh->b_modified = 0;
1280
1281 if (jh->b_transaction == handle->h_transaction) {
1282 J_ASSERT_JH(jh, !jh->b_frozen_data);
1283
1284 /* If we are forgetting a buffer which is already part
1285 * of this transaction, then we can just drop it from
1286 * the transaction immediately. */
1287 clear_buffer_dirty(bh);
1288 clear_buffer_jbddirty(bh);
1289
1290 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1291
1292 /*
1293 * we only want to drop a reference if this transaction
1294 * modified the buffer
1295 */
1296 if (was_modified)
1297 drop_reserve = 1;
1298
1299 /*
1300 * We are no longer going to journal this buffer.
1301 * However, the commit of this transaction is still
1302 * important to the buffer: the delete that we are now
1303 * processing might obsolete an old log entry, so by
1304 * committing, we can satisfy the buffer's checkpoint.
1305 *
1306 * So, if we have a checkpoint on the buffer, we should
1307 * now refile the buffer on our BJ_Forget list so that
1308 * we know to remove the checkpoint after we commit.
1309 */
1310
1311 if (jh->b_cp_transaction) {
1312 __jbd2_journal_temp_unlink_buffer(jh);
1313 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1314 } else {
1315 __jbd2_journal_unfile_buffer(jh);
1316 if (!buffer_jbd(bh)) {
1317 spin_unlock(&journal->j_list_lock);
1318 jbd_unlock_bh_state(bh);
1319 __bforget(bh);
1320 goto drop;
1321 }
1322 }
1323 } else if (jh->b_transaction) {
1324 J_ASSERT_JH(jh, (jh->b_transaction ==
1325 journal->j_committing_transaction));
1326 /* However, if the buffer is still owned by a prior
1327 * (committing) transaction, we can't drop it yet... */
1328 JBUFFER_TRACE(jh, "belongs to older transaction");
1329 /* ... but we CAN drop it from the new transaction if we
1330 * have also modified it since the original commit. */
1331
1332 if (jh->b_next_transaction) {
1333 J_ASSERT(jh->b_next_transaction == transaction);
1334 jh->b_next_transaction = NULL;
1335
1336 /*
1337 * only drop a reference if this transaction modified
1338 * the buffer
1339 */
1340 if (was_modified)
1341 drop_reserve = 1;
1342 }
1343 }
1344
1345 not_jbd:
1346 spin_unlock(&journal->j_list_lock);
1347 jbd_unlock_bh_state(bh);
1348 __brelse(bh);
1349 drop:
1350 if (drop_reserve) {
1351 /* no need to reserve log space for this block -bzzz */
1352 handle->h_buffer_credits++;
1353 }
1354 return err;
1355 }
1356
1357 /**
1358 * int jbd2_journal_stop() - complete a transaction
1359 * @handle: tranaction to complete.
1360 *
1361 * All done for a particular handle.
1362 *
1363 * There is not much action needed here. We just return any remaining
1364 * buffer credits to the transaction and remove the handle. The only
1365 * complication is that we need to start a commit operation if the
1366 * filesystem is marked for synchronous update.
1367 *
1368 * jbd2_journal_stop itself will not usually return an error, but it may
1369 * do so in unusual circumstances. In particular, expect it to
1370 * return -EIO if a jbd2_journal_abort has been executed since the
1371 * transaction began.
1372 */
1373 int jbd2_journal_stop(handle_t *handle)
1374 {
1375 transaction_t *transaction = handle->h_transaction;
1376 journal_t *journal = transaction->t_journal;
1377 int err, wait_for_commit = 0;
1378 tid_t tid;
1379 pid_t pid;
1380
1381 J_ASSERT(journal_current_handle() == handle);
1382
1383 if (is_handle_aborted(handle))
1384 err = -EIO;
1385 else {
1386 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1387 err = 0;
1388 }
1389
1390 if (--handle->h_ref > 0) {
1391 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1392 handle->h_ref);
1393 return err;
1394 }
1395
1396 jbd_debug(4, "Handle %p going down\n", handle);
1397 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1398 handle->h_transaction->t_tid,
1399 handle->h_type, handle->h_line_no,
1400 jiffies - handle->h_start_jiffies,
1401 handle->h_sync, handle->h_requested_credits,
1402 (handle->h_requested_credits -
1403 handle->h_buffer_credits));
1404
1405 /*
1406 * Implement synchronous transaction batching. If the handle
1407 * was synchronous, don't force a commit immediately. Let's
1408 * yield and let another thread piggyback onto this
1409 * transaction. Keep doing that while new threads continue to
1410 * arrive. It doesn't cost much - we're about to run a commit
1411 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1412 * operations by 30x or more...
1413 *
1414 * We try and optimize the sleep time against what the
1415 * underlying disk can do, instead of having a static sleep
1416 * time. This is useful for the case where our storage is so
1417 * fast that it is more optimal to go ahead and force a flush
1418 * and wait for the transaction to be committed than it is to
1419 * wait for an arbitrary amount of time for new writers to
1420 * join the transaction. We achieve this by measuring how
1421 * long it takes to commit a transaction, and compare it with
1422 * how long this transaction has been running, and if run time
1423 * < commit time then we sleep for the delta and commit. This
1424 * greatly helps super fast disks that would see slowdowns as
1425 * more threads started doing fsyncs.
1426 *
1427 * But don't do this if this process was the most recent one
1428 * to perform a synchronous write. We do this to detect the
1429 * case where a single process is doing a stream of sync
1430 * writes. No point in waiting for joiners in that case.
1431 */
1432 pid = current->pid;
1433 if (handle->h_sync && journal->j_last_sync_writer != pid) {
1434 u64 commit_time, trans_time;
1435
1436 journal->j_last_sync_writer = pid;
1437
1438 read_lock(&journal->j_state_lock);
1439 commit_time = journal->j_average_commit_time;
1440 read_unlock(&journal->j_state_lock);
1441
1442 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1443 transaction->t_start_time));
1444
1445 commit_time = max_t(u64, commit_time,
1446 1000*journal->j_min_batch_time);
1447 commit_time = min_t(u64, commit_time,
1448 1000*journal->j_max_batch_time);
1449
1450 if (trans_time < commit_time) {
1451 ktime_t expires = ktime_add_ns(ktime_get(),
1452 commit_time);
1453 set_current_state(TASK_UNINTERRUPTIBLE);
1454 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1455 }
1456 }
1457
1458 if (handle->h_sync)
1459 transaction->t_synchronous_commit = 1;
1460 current->journal_info = NULL;
1461 atomic_sub(handle->h_buffer_credits,
1462 &transaction->t_outstanding_credits);
1463
1464 /*
1465 * If the handle is marked SYNC, we need to set another commit
1466 * going! We also want to force a commit if the current
1467 * transaction is occupying too much of the log, or if the
1468 * transaction is too old now.
1469 */
1470 if (handle->h_sync ||
1471 (atomic_read(&transaction->t_outstanding_credits) >
1472 journal->j_max_transaction_buffers) ||
1473 time_after_eq(jiffies, transaction->t_expires)) {
1474 /* Do this even for aborted journals: an abort still
1475 * completes the commit thread, it just doesn't write
1476 * anything to disk. */
1477
1478 jbd_debug(2, "transaction too old, requesting commit for "
1479 "handle %p\n", handle);
1480 /* This is non-blocking */
1481 jbd2_log_start_commit(journal, transaction->t_tid);
1482
1483 /*
1484 * Special case: JBD2_SYNC synchronous updates require us
1485 * to wait for the commit to complete.
1486 */
1487 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1488 wait_for_commit = 1;
1489 }
1490
1491 /*
1492 * Once we drop t_updates, if it goes to zero the transaction
1493 * could start committing on us and eventually disappear. So
1494 * once we do this, we must not dereference transaction
1495 * pointer again.
1496 */
1497 tid = transaction->t_tid;
1498 if (atomic_dec_and_test(&transaction->t_updates)) {
1499 wake_up(&journal->j_wait_updates);
1500 if (journal->j_barrier_count)
1501 wake_up(&journal->j_wait_transaction_locked);
1502 }
1503
1504 if (wait_for_commit)
1505 err = jbd2_log_wait_commit(journal, tid);
1506
1507 lock_map_release(&handle->h_lockdep_map);
1508
1509 jbd2_free_handle(handle);
1510 return err;
1511 }
1512
1513 /**
1514 * int jbd2_journal_force_commit() - force any uncommitted transactions
1515 * @journal: journal to force
1516 *
1517 * For synchronous operations: force any uncommitted transactions
1518 * to disk. May seem kludgy, but it reuses all the handle batching
1519 * code in a very simple manner.
1520 */
1521 int jbd2_journal_force_commit(journal_t *journal)
1522 {
1523 handle_t *handle;
1524 int ret;
1525
1526 handle = jbd2_journal_start(journal, 1);
1527 if (IS_ERR(handle)) {
1528 ret = PTR_ERR(handle);
1529 } else {
1530 handle->h_sync = 1;
1531 ret = jbd2_journal_stop(handle);
1532 }
1533 return ret;
1534 }
1535
1536 /*
1537 *
1538 * List management code snippets: various functions for manipulating the
1539 * transaction buffer lists.
1540 *
1541 */
1542
1543 /*
1544 * Append a buffer to a transaction list, given the transaction's list head
1545 * pointer.
1546 *
1547 * j_list_lock is held.
1548 *
1549 * jbd_lock_bh_state(jh2bh(jh)) is held.
1550 */
1551
1552 static inline void
1553 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1554 {
1555 if (!*list) {
1556 jh->b_tnext = jh->b_tprev = jh;
1557 *list = jh;
1558 } else {
1559 /* Insert at the tail of the list to preserve order */
1560 struct journal_head *first = *list, *last = first->b_tprev;
1561 jh->b_tprev = last;
1562 jh->b_tnext = first;
1563 last->b_tnext = first->b_tprev = jh;
1564 }
1565 }
1566
1567 /*
1568 * Remove a buffer from a transaction list, given the transaction's list
1569 * head pointer.
1570 *
1571 * Called with j_list_lock held, and the journal may not be locked.
1572 *
1573 * jbd_lock_bh_state(jh2bh(jh)) is held.
1574 */
1575
1576 static inline void
1577 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1578 {
1579 if (*list == jh) {
1580 *list = jh->b_tnext;
1581 if (*list == jh)
1582 *list = NULL;
1583 }
1584 jh->b_tprev->b_tnext = jh->b_tnext;
1585 jh->b_tnext->b_tprev = jh->b_tprev;
1586 }
1587
1588 /*
1589 * Remove a buffer from the appropriate transaction list.
1590 *
1591 * Note that this function can *change* the value of
1592 * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1593 * t_log_list or t_reserved_list. If the caller is holding onto a copy of one
1594 * of these pointers, it could go bad. Generally the caller needs to re-read
1595 * the pointer from the transaction_t.
1596 *
1597 * Called under j_list_lock.
1598 */
1599 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1600 {
1601 struct journal_head **list = NULL;
1602 transaction_t *transaction;
1603 struct buffer_head *bh = jh2bh(jh);
1604
1605 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1606 transaction = jh->b_transaction;
1607 if (transaction)
1608 assert_spin_locked(&transaction->t_journal->j_list_lock);
1609
1610 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1611 if (jh->b_jlist != BJ_None)
1612 J_ASSERT_JH(jh, transaction != NULL);
1613
1614 switch (jh->b_jlist) {
1615 case BJ_None:
1616 return;
1617 case BJ_Metadata:
1618 transaction->t_nr_buffers--;
1619 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1620 list = &transaction->t_buffers;
1621 break;
1622 case BJ_Forget:
1623 list = &transaction->t_forget;
1624 break;
1625 case BJ_IO:
1626 list = &transaction->t_iobuf_list;
1627 break;
1628 case BJ_Shadow:
1629 list = &transaction->t_shadow_list;
1630 break;
1631 case BJ_LogCtl:
1632 list = &transaction->t_log_list;
1633 break;
1634 case BJ_Reserved:
1635 list = &transaction->t_reserved_list;
1636 break;
1637 }
1638
1639 __blist_del_buffer(list, jh);
1640 jh->b_jlist = BJ_None;
1641 if (test_clear_buffer_jbddirty(bh))
1642 mark_buffer_dirty(bh); /* Expose it to the VM */
1643 }
1644
1645 /*
1646 * Remove buffer from all transactions.
1647 *
1648 * Called with bh_state lock and j_list_lock
1649 *
1650 * jh and bh may be already freed when this function returns.
1651 */
1652 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1653 {
1654 __jbd2_journal_temp_unlink_buffer(jh);
1655 jh->b_transaction = NULL;
1656 jbd2_journal_put_journal_head(jh);
1657 }
1658
1659 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1660 {
1661 struct buffer_head *bh = jh2bh(jh);
1662
1663 /* Get reference so that buffer cannot be freed before we unlock it */
1664 get_bh(bh);
1665 jbd_lock_bh_state(bh);
1666 spin_lock(&journal->j_list_lock);
1667 __jbd2_journal_unfile_buffer(jh);
1668 spin_unlock(&journal->j_list_lock);
1669 jbd_unlock_bh_state(bh);
1670 __brelse(bh);
1671 }
1672
1673 /*
1674 * Called from jbd2_journal_try_to_free_buffers().
1675 *
1676 * Called under jbd_lock_bh_state(bh)
1677 */
1678 static void
1679 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1680 {
1681 struct journal_head *jh;
1682
1683 jh = bh2jh(bh);
1684
1685 if (buffer_locked(bh) || buffer_dirty(bh))
1686 goto out;
1687
1688 if (jh->b_next_transaction != NULL)
1689 goto out;
1690
1691 spin_lock(&journal->j_list_lock);
1692 if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1693 /* written-back checkpointed metadata buffer */
1694 JBUFFER_TRACE(jh, "remove from checkpoint list");
1695 __jbd2_journal_remove_checkpoint(jh);
1696 }
1697 spin_unlock(&journal->j_list_lock);
1698 out:
1699 return;
1700 }
1701
1702 /**
1703 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1704 * @journal: journal for operation
1705 * @page: to try and free
1706 * @gfp_mask: we use the mask to detect how hard should we try to release
1707 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1708 * release the buffers.
1709 *
1710 *
1711 * For all the buffers on this page,
1712 * if they are fully written out ordered data, move them onto BUF_CLEAN
1713 * so try_to_free_buffers() can reap them.
1714 *
1715 * This function returns non-zero if we wish try_to_free_buffers()
1716 * to be called. We do this if the page is releasable by try_to_free_buffers().
1717 * We also do it if the page has locked or dirty buffers and the caller wants
1718 * us to perform sync or async writeout.
1719 *
1720 * This complicates JBD locking somewhat. We aren't protected by the
1721 * BKL here. We wish to remove the buffer from its committing or
1722 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1723 *
1724 * This may *change* the value of transaction_t->t_datalist, so anyone
1725 * who looks at t_datalist needs to lock against this function.
1726 *
1727 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1728 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1729 * will come out of the lock with the buffer dirty, which makes it
1730 * ineligible for release here.
1731 *
1732 * Who else is affected by this? hmm... Really the only contender
1733 * is do_get_write_access() - it could be looking at the buffer while
1734 * journal_try_to_free_buffer() is changing its state. But that
1735 * cannot happen because we never reallocate freed data as metadata
1736 * while the data is part of a transaction. Yes?
1737 *
1738 * Return 0 on failure, 1 on success
1739 */
1740 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1741 struct page *page, gfp_t gfp_mask)
1742 {
1743 struct buffer_head *head;
1744 struct buffer_head *bh;
1745 int ret = 0;
1746
1747 J_ASSERT(PageLocked(page));
1748
1749 head = page_buffers(page);
1750 bh = head;
1751 do {
1752 struct journal_head *jh;
1753
1754 /*
1755 * We take our own ref against the journal_head here to avoid
1756 * having to add tons of locking around each instance of
1757 * jbd2_journal_put_journal_head().
1758 */
1759 jh = jbd2_journal_grab_journal_head(bh);
1760 if (!jh)
1761 continue;
1762
1763 jbd_lock_bh_state(bh);
1764 __journal_try_to_free_buffer(journal, bh);
1765 jbd2_journal_put_journal_head(jh);
1766 jbd_unlock_bh_state(bh);
1767 if (buffer_jbd(bh))
1768 goto busy;
1769 } while ((bh = bh->b_this_page) != head);
1770
1771 ret = try_to_free_buffers(page);
1772
1773 busy:
1774 return ret;
1775 }
1776
1777 /*
1778 * This buffer is no longer needed. If it is on an older transaction's
1779 * checkpoint list we need to record it on this transaction's forget list
1780 * to pin this buffer (and hence its checkpointing transaction) down until
1781 * this transaction commits. If the buffer isn't on a checkpoint list, we
1782 * release it.
1783 * Returns non-zero if JBD no longer has an interest in the buffer.
1784 *
1785 * Called under j_list_lock.
1786 *
1787 * Called under jbd_lock_bh_state(bh).
1788 */
1789 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1790 {
1791 int may_free = 1;
1792 struct buffer_head *bh = jh2bh(jh);
1793
1794 if (jh->b_cp_transaction) {
1795 JBUFFER_TRACE(jh, "on running+cp transaction");
1796 __jbd2_journal_temp_unlink_buffer(jh);
1797 /*
1798 * We don't want to write the buffer anymore, clear the
1799 * bit so that we don't confuse checks in
1800 * __journal_file_buffer
1801 */
1802 clear_buffer_dirty(bh);
1803 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1804 may_free = 0;
1805 } else {
1806 JBUFFER_TRACE(jh, "on running transaction");
1807 __jbd2_journal_unfile_buffer(jh);
1808 }
1809 return may_free;
1810 }
1811
1812 /*
1813 * jbd2_journal_invalidatepage
1814 *
1815 * This code is tricky. It has a number of cases to deal with.
1816 *
1817 * There are two invariants which this code relies on:
1818 *
1819 * i_size must be updated on disk before we start calling invalidatepage on the
1820 * data.
1821 *
1822 * This is done in ext3 by defining an ext3_setattr method which
1823 * updates i_size before truncate gets going. By maintaining this
1824 * invariant, we can be sure that it is safe to throw away any buffers
1825 * attached to the current transaction: once the transaction commits,
1826 * we know that the data will not be needed.
1827 *
1828 * Note however that we can *not* throw away data belonging to the
1829 * previous, committing transaction!
1830 *
1831 * Any disk blocks which *are* part of the previous, committing
1832 * transaction (and which therefore cannot be discarded immediately) are
1833 * not going to be reused in the new running transaction
1834 *
1835 * The bitmap committed_data images guarantee this: any block which is
1836 * allocated in one transaction and removed in the next will be marked
1837 * as in-use in the committed_data bitmap, so cannot be reused until
1838 * the next transaction to delete the block commits. This means that
1839 * leaving committing buffers dirty is quite safe: the disk blocks
1840 * cannot be reallocated to a different file and so buffer aliasing is
1841 * not possible.
1842 *
1843 *
1844 * The above applies mainly to ordered data mode. In writeback mode we
1845 * don't make guarantees about the order in which data hits disk --- in
1846 * particular we don't guarantee that new dirty data is flushed before
1847 * transaction commit --- so it is always safe just to discard data
1848 * immediately in that mode. --sct
1849 */
1850
1851 /*
1852 * The journal_unmap_buffer helper function returns zero if the buffer
1853 * concerned remains pinned as an anonymous buffer belonging to an older
1854 * transaction.
1855 *
1856 * We're outside-transaction here. Either or both of j_running_transaction
1857 * and j_committing_transaction may be NULL.
1858 */
1859 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1860 int partial_page)
1861 {
1862 transaction_t *transaction;
1863 struct journal_head *jh;
1864 int may_free = 1;
1865
1866 BUFFER_TRACE(bh, "entry");
1867
1868 /*
1869 * It is safe to proceed here without the j_list_lock because the
1870 * buffers cannot be stolen by try_to_free_buffers as long as we are
1871 * holding the page lock. --sct
1872 */
1873
1874 if (!buffer_jbd(bh))
1875 goto zap_buffer_unlocked;
1876
1877 /* OK, we have data buffer in journaled mode */
1878 write_lock(&journal->j_state_lock);
1879 jbd_lock_bh_state(bh);
1880 spin_lock(&journal->j_list_lock);
1881
1882 jh = jbd2_journal_grab_journal_head(bh);
1883 if (!jh)
1884 goto zap_buffer_no_jh;
1885
1886 /*
1887 * We cannot remove the buffer from checkpoint lists until the
1888 * transaction adding inode to orphan list (let's call it T)
1889 * is committed. Otherwise if the transaction changing the
1890 * buffer would be cleaned from the journal before T is
1891 * committed, a crash will cause that the correct contents of
1892 * the buffer will be lost. On the other hand we have to
1893 * clear the buffer dirty bit at latest at the moment when the
1894 * transaction marking the buffer as freed in the filesystem
1895 * structures is committed because from that moment on the
1896 * block can be reallocated and used by a different page.
1897 * Since the block hasn't been freed yet but the inode has
1898 * already been added to orphan list, it is safe for us to add
1899 * the buffer to BJ_Forget list of the newest transaction.
1900 *
1901 * Also we have to clear buffer_mapped flag of a truncated buffer
1902 * because the buffer_head may be attached to the page straddling
1903 * i_size (can happen only when blocksize < pagesize) and thus the
1904 * buffer_head can be reused when the file is extended again. So we end
1905 * up keeping around invalidated buffers attached to transactions'
1906 * BJ_Forget list just to stop checkpointing code from cleaning up
1907 * the transaction this buffer was modified in.
1908 */
1909 transaction = jh->b_transaction;
1910 if (transaction == NULL) {
1911 /* First case: not on any transaction. If it
1912 * has no checkpoint link, then we can zap it:
1913 * it's a writeback-mode buffer so we don't care
1914 * if it hits disk safely. */
1915 if (!jh->b_cp_transaction) {
1916 JBUFFER_TRACE(jh, "not on any transaction: zap");
1917 goto zap_buffer;
1918 }
1919
1920 if (!buffer_dirty(bh)) {
1921 /* bdflush has written it. We can drop it now */
1922 goto zap_buffer;
1923 }
1924
1925 /* OK, it must be in the journal but still not
1926 * written fully to disk: it's metadata or
1927 * journaled data... */
1928
1929 if (journal->j_running_transaction) {
1930 /* ... and once the current transaction has
1931 * committed, the buffer won't be needed any
1932 * longer. */
1933 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1934 may_free = __dispose_buffer(jh,
1935 journal->j_running_transaction);
1936 goto zap_buffer;
1937 } else {
1938 /* There is no currently-running transaction. So the
1939 * orphan record which we wrote for this file must have
1940 * passed into commit. We must attach this buffer to
1941 * the committing transaction, if it exists. */
1942 if (journal->j_committing_transaction) {
1943 JBUFFER_TRACE(jh, "give to committing trans");
1944 may_free = __dispose_buffer(jh,
1945 journal->j_committing_transaction);
1946 goto zap_buffer;
1947 } else {
1948 /* The orphan record's transaction has
1949 * committed. We can cleanse this buffer */
1950 clear_buffer_jbddirty(bh);
1951 goto zap_buffer;
1952 }
1953 }
1954 } else if (transaction == journal->j_committing_transaction) {
1955 JBUFFER_TRACE(jh, "on committing transaction");
1956 /*
1957 * The buffer is committing, we simply cannot touch
1958 * it. If the page is straddling i_size we have to wait
1959 * for commit and try again.
1960 */
1961 if (partial_page) {
1962 jbd2_journal_put_journal_head(jh);
1963 spin_unlock(&journal->j_list_lock);
1964 jbd_unlock_bh_state(bh);
1965 write_unlock(&journal->j_state_lock);
1966 return -EBUSY;
1967 }
1968 /*
1969 * OK, buffer won't be reachable after truncate. We just set
1970 * j_next_transaction to the running transaction (if there is
1971 * one) and mark buffer as freed so that commit code knows it
1972 * should clear dirty bits when it is done with the buffer.
1973 */
1974 set_buffer_freed(bh);
1975 if (journal->j_running_transaction && buffer_jbddirty(bh))
1976 jh->b_next_transaction = journal->j_running_transaction;
1977 jbd2_journal_put_journal_head(jh);
1978 spin_unlock(&journal->j_list_lock);
1979 jbd_unlock_bh_state(bh);
1980 write_unlock(&journal->j_state_lock);
1981 return 0;
1982 } else {
1983 /* Good, the buffer belongs to the running transaction.
1984 * We are writing our own transaction's data, not any
1985 * previous one's, so it is safe to throw it away
1986 * (remember that we expect the filesystem to have set
1987 * i_size already for this truncate so recovery will not
1988 * expose the disk blocks we are discarding here.) */
1989 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1990 JBUFFER_TRACE(jh, "on running transaction");
1991 may_free = __dispose_buffer(jh, transaction);
1992 }
1993
1994 zap_buffer:
1995 /*
1996 * This is tricky. Although the buffer is truncated, it may be reused
1997 * if blocksize < pagesize and it is attached to the page straddling
1998 * EOF. Since the buffer might have been added to BJ_Forget list of the
1999 * running transaction, journal_get_write_access() won't clear
2000 * b_modified and credit accounting gets confused. So clear b_modified
2001 * here.
2002 */
2003 jh->b_modified = 0;
2004 jbd2_journal_put_journal_head(jh);
2005 zap_buffer_no_jh:
2006 spin_unlock(&journal->j_list_lock);
2007 jbd_unlock_bh_state(bh);
2008 write_unlock(&journal->j_state_lock);
2009 zap_buffer_unlocked:
2010 clear_buffer_dirty(bh);
2011 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2012 clear_buffer_mapped(bh);
2013 clear_buffer_req(bh);
2014 clear_buffer_new(bh);
2015 clear_buffer_delay(bh);
2016 clear_buffer_unwritten(bh);
2017 bh->b_bdev = NULL;
2018 return may_free;
2019 }
2020
2021 /**
2022 * void jbd2_journal_invalidatepage()
2023 * @journal: journal to use for flush...
2024 * @page: page to flush
2025 * @offset: length of page to invalidate.
2026 *
2027 * Reap page buffers containing data after offset in page. Can return -EBUSY
2028 * if buffers are part of the committing transaction and the page is straddling
2029 * i_size. Caller then has to wait for current commit and try again.
2030 */
2031 int jbd2_journal_invalidatepage(journal_t *journal,
2032 struct page *page,
2033 unsigned long offset)
2034 {
2035 struct buffer_head *head, *bh, *next;
2036 unsigned int curr_off = 0;
2037 int may_free = 1;
2038 int ret = 0;
2039
2040 if (!PageLocked(page))
2041 BUG();
2042 if (!page_has_buffers(page))
2043 return 0;
2044
2045 /* We will potentially be playing with lists other than just the
2046 * data lists (especially for journaled data mode), so be
2047 * cautious in our locking. */
2048
2049 head = bh = page_buffers(page);
2050 do {
2051 unsigned int next_off = curr_off + bh->b_size;
2052 next = bh->b_this_page;
2053
2054 if (offset <= curr_off) {
2055 /* This block is wholly outside the truncation point */
2056 lock_buffer(bh);
2057 ret = journal_unmap_buffer(journal, bh, offset > 0);
2058 unlock_buffer(bh);
2059 if (ret < 0)
2060 return ret;
2061 may_free &= ret;
2062 }
2063 curr_off = next_off;
2064 bh = next;
2065
2066 } while (bh != head);
2067
2068 if (!offset) {
2069 if (may_free && try_to_free_buffers(page))
2070 J_ASSERT(!page_has_buffers(page));
2071 }
2072 return 0;
2073 }
2074
2075 /*
2076 * File a buffer on the given transaction list.
2077 */
2078 void __jbd2_journal_file_buffer(struct journal_head *jh,
2079 transaction_t *transaction, int jlist)
2080 {
2081 struct journal_head **list = NULL;
2082 int was_dirty = 0;
2083 struct buffer_head *bh = jh2bh(jh);
2084
2085 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2086 assert_spin_locked(&transaction->t_journal->j_list_lock);
2087
2088 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2089 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2090 jh->b_transaction == NULL);
2091
2092 if (jh->b_transaction && jh->b_jlist == jlist)
2093 return;
2094
2095 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2096 jlist == BJ_Shadow || jlist == BJ_Forget) {
2097 /*
2098 * For metadata buffers, we track dirty bit in buffer_jbddirty
2099 * instead of buffer_dirty. We should not see a dirty bit set
2100 * here because we clear it in do_get_write_access but e.g.
2101 * tune2fs can modify the sb and set the dirty bit at any time
2102 * so we try to gracefully handle that.
2103 */
2104 if (buffer_dirty(bh))
2105 warn_dirty_buffer(bh);
2106 if (test_clear_buffer_dirty(bh) ||
2107 test_clear_buffer_jbddirty(bh))
2108 was_dirty = 1;
2109 }
2110
2111 if (jh->b_transaction)
2112 __jbd2_journal_temp_unlink_buffer(jh);
2113 else
2114 jbd2_journal_grab_journal_head(bh);
2115 jh->b_transaction = transaction;
2116
2117 switch (jlist) {
2118 case BJ_None:
2119 J_ASSERT_JH(jh, !jh->b_committed_data);
2120 J_ASSERT_JH(jh, !jh->b_frozen_data);
2121 return;
2122 case BJ_Metadata:
2123 transaction->t_nr_buffers++;
2124 list = &transaction->t_buffers;
2125 break;
2126 case BJ_Forget:
2127 list = &transaction->t_forget;
2128 break;
2129 case BJ_IO:
2130 list = &transaction->t_iobuf_list;
2131 break;
2132 case BJ_Shadow:
2133 list = &transaction->t_shadow_list;
2134 break;
2135 case BJ_LogCtl:
2136 list = &transaction->t_log_list;
2137 break;
2138 case BJ_Reserved:
2139 list = &transaction->t_reserved_list;
2140 break;
2141 }
2142
2143 __blist_add_buffer(list, jh);
2144 jh->b_jlist = jlist;
2145
2146 if (was_dirty)
2147 set_buffer_jbddirty(bh);
2148 }
2149
2150 void jbd2_journal_file_buffer(struct journal_head *jh,
2151 transaction_t *transaction, int jlist)
2152 {
2153 jbd_lock_bh_state(jh2bh(jh));
2154 spin_lock(&transaction->t_journal->j_list_lock);
2155 __jbd2_journal_file_buffer(jh, transaction, jlist);
2156 spin_unlock(&transaction->t_journal->j_list_lock);
2157 jbd_unlock_bh_state(jh2bh(jh));
2158 }
2159
2160 /*
2161 * Remove a buffer from its current buffer list in preparation for
2162 * dropping it from its current transaction entirely. If the buffer has
2163 * already started to be used by a subsequent transaction, refile the
2164 * buffer on that transaction's metadata list.
2165 *
2166 * Called under j_list_lock
2167 * Called under jbd_lock_bh_state(jh2bh(jh))
2168 *
2169 * jh and bh may be already free when this function returns
2170 */
2171 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2172 {
2173 int was_dirty, jlist;
2174 struct buffer_head *bh = jh2bh(jh);
2175
2176 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2177 if (jh->b_transaction)
2178 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2179
2180 /* If the buffer is now unused, just drop it. */
2181 if (jh->b_next_transaction == NULL) {
2182 __jbd2_journal_unfile_buffer(jh);
2183 return;
2184 }
2185
2186 /*
2187 * It has been modified by a later transaction: add it to the new
2188 * transaction's metadata list.
2189 */
2190
2191 was_dirty = test_clear_buffer_jbddirty(bh);
2192 __jbd2_journal_temp_unlink_buffer(jh);
2193 /*
2194 * We set b_transaction here because b_next_transaction will inherit
2195 * our jh reference and thus __jbd2_journal_file_buffer() must not
2196 * take a new one.
2197 */
2198 jh->b_transaction = jh->b_next_transaction;
2199 jh->b_next_transaction = NULL;
2200 if (buffer_freed(bh))
2201 jlist = BJ_Forget;
2202 else if (jh->b_modified)
2203 jlist = BJ_Metadata;
2204 else
2205 jlist = BJ_Reserved;
2206 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2207 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2208
2209 if (was_dirty)
2210 set_buffer_jbddirty(bh);
2211 }
2212
2213 /*
2214 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2215 * bh reference so that we can safely unlock bh.
2216 *
2217 * The jh and bh may be freed by this call.
2218 */
2219 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2220 {
2221 struct buffer_head *bh = jh2bh(jh);
2222
2223 /* Get reference so that buffer cannot be freed before we unlock it */
2224 get_bh(bh);
2225 jbd_lock_bh_state(bh);
2226 spin_lock(&journal->j_list_lock);
2227 __jbd2_journal_refile_buffer(jh);
2228 jbd_unlock_bh_state(bh);
2229 spin_unlock(&journal->j_list_lock);
2230 __brelse(bh);
2231 }
2232
2233 /*
2234 * File inode in the inode list of the handle's transaction
2235 */
2236 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2237 {
2238 transaction_t *transaction = handle->h_transaction;
2239 journal_t *journal = transaction->t_journal;
2240
2241 if (is_handle_aborted(handle))
2242 return -EIO;
2243
2244 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2245 transaction->t_tid);
2246
2247 /*
2248 * First check whether inode isn't already on the transaction's
2249 * lists without taking the lock. Note that this check is safe
2250 * without the lock as we cannot race with somebody removing inode
2251 * from the transaction. The reason is that we remove inode from the
2252 * transaction only in journal_release_jbd_inode() and when we commit
2253 * the transaction. We are guarded from the first case by holding
2254 * a reference to the inode. We are safe against the second case
2255 * because if jinode->i_transaction == transaction, commit code
2256 * cannot touch the transaction because we hold reference to it,
2257 * and if jinode->i_next_transaction == transaction, commit code
2258 * will only file the inode where we want it.
2259 */
2260 if (jinode->i_transaction == transaction ||
2261 jinode->i_next_transaction == transaction)
2262 return 0;
2263
2264 spin_lock(&journal->j_list_lock);
2265
2266 if (jinode->i_transaction == transaction ||
2267 jinode->i_next_transaction == transaction)
2268 goto done;
2269
2270 /*
2271 * We only ever set this variable to 1 so the test is safe. Since
2272 * t_need_data_flush is likely to be set, we do the test to save some
2273 * cacheline bouncing
2274 */
2275 if (!transaction->t_need_data_flush)
2276 transaction->t_need_data_flush = 1;
2277 /* On some different transaction's list - should be
2278 * the committing one */
2279 if (jinode->i_transaction) {
2280 J_ASSERT(jinode->i_next_transaction == NULL);
2281 J_ASSERT(jinode->i_transaction ==
2282 journal->j_committing_transaction);
2283 jinode->i_next_transaction = transaction;
2284 goto done;
2285 }
2286 /* Not on any transaction list... */
2287 J_ASSERT(!jinode->i_next_transaction);
2288 jinode->i_transaction = transaction;
2289 list_add(&jinode->i_list, &transaction->t_inode_list);
2290 done:
2291 spin_unlock(&journal->j_list_lock);
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * File truncate and transaction commit interact with each other in a
2298 * non-trivial way. If a transaction writing data block A is
2299 * committing, we cannot discard the data by truncate until we have
2300 * written them. Otherwise if we crashed after the transaction with
2301 * write has committed but before the transaction with truncate has
2302 * committed, we could see stale data in block A. This function is a
2303 * helper to solve this problem. It starts writeout of the truncated
2304 * part in case it is in the committing transaction.
2305 *
2306 * Filesystem code must call this function when inode is journaled in
2307 * ordered mode before truncation happens and after the inode has been
2308 * placed on orphan list with the new inode size. The second condition
2309 * avoids the race that someone writes new data and we start
2310 * committing the transaction after this function has been called but
2311 * before a transaction for truncate is started (and furthermore it
2312 * allows us to optimize the case where the addition to orphan list
2313 * happens in the same transaction as write --- we don't have to write
2314 * any data in such case).
2315 */
2316 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2317 struct jbd2_inode *jinode,
2318 loff_t new_size)
2319 {
2320 transaction_t *inode_trans, *commit_trans;
2321 int ret = 0;
2322
2323 /* This is a quick check to avoid locking if not necessary */
2324 if (!jinode->i_transaction)
2325 goto out;
2326 /* Locks are here just to force reading of recent values, it is
2327 * enough that the transaction was not committing before we started
2328 * a transaction adding the inode to orphan list */
2329 read_lock(&journal->j_state_lock);
2330 commit_trans = journal->j_committing_transaction;
2331 read_unlock(&journal->j_state_lock);
2332 spin_lock(&journal->j_list_lock);
2333 inode_trans = jinode->i_transaction;
2334 spin_unlock(&journal->j_list_lock);
2335 if (inode_trans == commit_trans) {
2336 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2337 new_size, LLONG_MAX);
2338 if (ret)
2339 jbd2_journal_abort(journal, ret);
2340 }
2341 out:
2342 return ret;
2343 }