Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110 return 1;
111
112 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117 __u32 csum, old_csum;
118
119 old_csum = sb->s_checksum;
120 sb->s_checksum = 0;
121 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122 sb->s_checksum = old_csum;
123
124 return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130 return 1;
131
132 return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138 return;
139
140 sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
147 static void commit_timeout(unsigned long __data)
148 {
149 struct task_struct * p = (struct task_struct *) __data;
150
151 wake_up_process(p);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk.
163 *
164 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165 * of the data in that part of the log has been rewritten elsewhere on
166 * the disk. Flushing these old buffers to reclaim space in the log is
167 * known as checkpointing, and this thread is responsible for that job.
168 */
169
170 static int kjournald2(void *arg)
171 {
172 journal_t *journal = arg;
173 transaction_t *transaction;
174
175 /*
176 * Set up an interval timer which can be used to trigger a commit wakeup
177 * after the commit interval expires
178 */
179 setup_timer(&journal->j_commit_timer, commit_timeout,
180 (unsigned long)current);
181
182 set_freezable();
183
184 /* Record that the journal thread is running */
185 journal->j_task = current;
186 wake_up(&journal->j_wait_done_commit);
187
188 /*
189 * And now, wait forever for commit wakeup events.
190 */
191 write_lock(&journal->j_state_lock);
192
193 loop:
194 if (journal->j_flags & JBD2_UNMOUNT)
195 goto end_loop;
196
197 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198 journal->j_commit_sequence, journal->j_commit_request);
199
200 if (journal->j_commit_sequence != journal->j_commit_request) {
201 jbd_debug(1, "OK, requests differ\n");
202 write_unlock(&journal->j_state_lock);
203 del_timer_sync(&journal->j_commit_timer);
204 jbd2_journal_commit_transaction(journal);
205 write_lock(&journal->j_state_lock);
206 goto loop;
207 }
208
209 wake_up(&journal->j_wait_done_commit);
210 if (freezing(current)) {
211 /*
212 * The simpler the better. Flushing journal isn't a
213 * good idea, because that depends on threads that may
214 * be already stopped.
215 */
216 jbd_debug(1, "Now suspending kjournald2\n");
217 write_unlock(&journal->j_state_lock);
218 try_to_freeze();
219 write_lock(&journal->j_state_lock);
220 } else {
221 /*
222 * We assume on resume that commits are already there,
223 * so we don't sleep
224 */
225 DEFINE_WAIT(wait);
226 int should_sleep = 1;
227
228 prepare_to_wait(&journal->j_wait_commit, &wait,
229 TASK_INTERRUPTIBLE);
230 if (journal->j_commit_sequence != journal->j_commit_request)
231 should_sleep = 0;
232 transaction = journal->j_running_transaction;
233 if (transaction && time_after_eq(jiffies,
234 transaction->t_expires))
235 should_sleep = 0;
236 if (journal->j_flags & JBD2_UNMOUNT)
237 should_sleep = 0;
238 if (should_sleep) {
239 write_unlock(&journal->j_state_lock);
240 schedule();
241 write_lock(&journal->j_state_lock);
242 }
243 finish_wait(&journal->j_wait_commit, &wait);
244 }
245
246 jbd_debug(1, "kjournald2 wakes\n");
247
248 /*
249 * Were we woken up by a commit wakeup event?
250 */
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253 journal->j_commit_request = transaction->t_tid;
254 jbd_debug(1, "woke because of timeout\n");
255 }
256 goto loop;
257
258 end_loop:
259 write_unlock(&journal->j_state_lock);
260 del_timer_sync(&journal->j_commit_timer);
261 journal->j_task = NULL;
262 wake_up(&journal->j_wait_done_commit);
263 jbd_debug(1, "Journal thread exiting.\n");
264 return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269 struct task_struct *t;
270
271 t = kthread_run(kjournald2, journal, "jbd2/%s",
272 journal->j_devname);
273 if (IS_ERR(t))
274 return PTR_ERR(t);
275
276 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277 return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282 write_lock(&journal->j_state_lock);
283 journal->j_flags |= JBD2_UNMOUNT;
284
285 while (journal->j_task) {
286 wake_up(&journal->j_wait_commit);
287 write_unlock(&journal->j_state_lock);
288 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289 write_lock(&journal->j_state_lock);
290 }
291 write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296 *
297 * Writes a metadata buffer to a given disk block. The actual IO is not
298 * performed but a new buffer_head is constructed which labels the data
299 * to be written with the correct destination disk block.
300 *
301 * Any magic-number escaping which needs to be done will cause a
302 * copy-out here. If the buffer happens to start with the
303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304 * magic number is only written to the log for descripter blocks. In
305 * this case, we copy the data and replace the first word with 0, and we
306 * return a result code which indicates that this buffer needs to be
307 * marked as an escaped buffer in the corresponding log descriptor
308 * block. The missing word can then be restored when the block is read
309 * during recovery.
310 *
311 * If the source buffer has already been modified by a new transaction
312 * since we took the last commit snapshot, we use the frozen copy of
313 * that data for IO. If we end up using the existing buffer_head's data
314 * for the write, then we *have* to lock the buffer to prevent anyone
315 * else from using and possibly modifying it while the IO is in
316 * progress.
317 *
318 * The function returns a pointer to the buffer_heads to be used for IO.
319 *
320 * We assume that the journal has already been locked in this function.
321 *
322 * Return value:
323 * <0: Error
324 * >=0: Finished OK
325 *
326 * On success:
327 * Bit 0 set == escape performed on the data
328 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
329 */
330
331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
332 struct journal_head *jh_in,
333 struct journal_head **jh_out,
334 unsigned long long blocknr)
335 {
336 int need_copy_out = 0;
337 int done_copy_out = 0;
338 int do_escape = 0;
339 char *mapped_data;
340 struct buffer_head *new_bh;
341 struct journal_head *new_jh;
342 struct page *new_page;
343 unsigned int new_offset;
344 struct buffer_head *bh_in = jh2bh(jh_in);
345 journal_t *journal = transaction->t_journal;
346
347 /*
348 * The buffer really shouldn't be locked: only the current committing
349 * transaction is allowed to write it, so nobody else is allowed
350 * to do any IO.
351 *
352 * akpm: except if we're journalling data, and write() output is
353 * also part of a shared mapping, and another thread has
354 * decided to launch a writepage() against this buffer.
355 */
356 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
357
358 retry_alloc:
359 new_bh = alloc_buffer_head(GFP_NOFS);
360 if (!new_bh) {
361 /*
362 * Failure is not an option, but __GFP_NOFAIL is going
363 * away; so we retry ourselves here.
364 */
365 congestion_wait(BLK_RW_ASYNC, HZ/50);
366 goto retry_alloc;
367 }
368
369 /* keep subsequent assertions sane */
370 atomic_set(&new_bh->b_count, 1);
371 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
372
373 /*
374 * If a new transaction has already done a buffer copy-out, then
375 * we use that version of the data for the commit.
376 */
377 jbd_lock_bh_state(bh_in);
378 repeat:
379 if (jh_in->b_frozen_data) {
380 done_copy_out = 1;
381 new_page = virt_to_page(jh_in->b_frozen_data);
382 new_offset = offset_in_page(jh_in->b_frozen_data);
383 } else {
384 new_page = jh2bh(jh_in)->b_page;
385 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
386 }
387
388 mapped_data = kmap_atomic(new_page);
389 /*
390 * Fire data frozen trigger if data already wasn't frozen. Do this
391 * before checking for escaping, as the trigger may modify the magic
392 * offset. If a copy-out happens afterwards, it will have the correct
393 * data in the buffer.
394 */
395 if (!done_copy_out)
396 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
397 jh_in->b_triggers);
398
399 /*
400 * Check for escaping
401 */
402 if (*((__be32 *)(mapped_data + new_offset)) ==
403 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
404 need_copy_out = 1;
405 do_escape = 1;
406 }
407 kunmap_atomic(mapped_data);
408
409 /*
410 * Do we need to do a data copy?
411 */
412 if (need_copy_out && !done_copy_out) {
413 char *tmp;
414
415 jbd_unlock_bh_state(bh_in);
416 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
417 if (!tmp) {
418 jbd2_journal_put_journal_head(new_jh);
419 return -ENOMEM;
420 }
421 jbd_lock_bh_state(bh_in);
422 if (jh_in->b_frozen_data) {
423 jbd2_free(tmp, bh_in->b_size);
424 goto repeat;
425 }
426
427 jh_in->b_frozen_data = tmp;
428 mapped_data = kmap_atomic(new_page);
429 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
430 kunmap_atomic(mapped_data);
431
432 new_page = virt_to_page(tmp);
433 new_offset = offset_in_page(tmp);
434 done_copy_out = 1;
435
436 /*
437 * This isn't strictly necessary, as we're using frozen
438 * data for the escaping, but it keeps consistency with
439 * b_frozen_data usage.
440 */
441 jh_in->b_frozen_triggers = jh_in->b_triggers;
442 }
443
444 /*
445 * Did we need to do an escaping? Now we've done all the
446 * copying, we can finally do so.
447 */
448 if (do_escape) {
449 mapped_data = kmap_atomic(new_page);
450 *((unsigned int *)(mapped_data + new_offset)) = 0;
451 kunmap_atomic(mapped_data);
452 }
453
454 set_bh_page(new_bh, new_page, new_offset);
455 new_jh->b_transaction = NULL;
456 new_bh->b_size = jh2bh(jh_in)->b_size;
457 new_bh->b_bdev = transaction->t_journal->j_dev;
458 new_bh->b_blocknr = blocknr;
459 set_buffer_mapped(new_bh);
460 set_buffer_dirty(new_bh);
461
462 *jh_out = new_jh;
463
464 /*
465 * The to-be-written buffer needs to get moved to the io queue,
466 * and the original buffer whose contents we are shadowing or
467 * copying is moved to the transaction's shadow queue.
468 */
469 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
470 spin_lock(&journal->j_list_lock);
471 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
472 spin_unlock(&journal->j_list_lock);
473 jbd_unlock_bh_state(bh_in);
474
475 JBUFFER_TRACE(new_jh, "file as BJ_IO");
476 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
477
478 return do_escape | (done_copy_out << 1);
479 }
480
481 /*
482 * Allocation code for the journal file. Manage the space left in the
483 * journal, so that we can begin checkpointing when appropriate.
484 */
485
486 /*
487 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
488 *
489 * Called with the journal already locked.
490 *
491 * Called under j_state_lock
492 */
493
494 int __jbd2_log_space_left(journal_t *journal)
495 {
496 int left = journal->j_free;
497
498 /* assert_spin_locked(&journal->j_state_lock); */
499
500 /*
501 * Be pessimistic here about the number of those free blocks which
502 * might be required for log descriptor control blocks.
503 */
504
505 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
506
507 left -= MIN_LOG_RESERVED_BLOCKS;
508
509 if (left <= 0)
510 return 0;
511 left -= (left >> 3);
512 return left;
513 }
514
515 /*
516 * Called with j_state_lock locked for writing.
517 * Returns true if a transaction commit was started.
518 */
519 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
520 {
521 /* Return if the txn has already requested to be committed */
522 if (journal->j_commit_request == target)
523 return 0;
524
525 /*
526 * The only transaction we can possibly wait upon is the
527 * currently running transaction (if it exists). Otherwise,
528 * the target tid must be an old one.
529 */
530 if (journal->j_running_transaction &&
531 journal->j_running_transaction->t_tid == target) {
532 /*
533 * We want a new commit: OK, mark the request and wakeup the
534 * commit thread. We do _not_ do the commit ourselves.
535 */
536
537 journal->j_commit_request = target;
538 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
539 journal->j_commit_request,
540 journal->j_commit_sequence);
541 journal->j_running_transaction->t_requested = jiffies;
542 wake_up(&journal->j_wait_commit);
543 return 1;
544 } else if (!tid_geq(journal->j_commit_request, target))
545 /* This should never happen, but if it does, preserve
546 the evidence before kjournald goes into a loop and
547 increments j_commit_sequence beyond all recognition. */
548 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
549 journal->j_commit_request,
550 journal->j_commit_sequence,
551 target, journal->j_running_transaction ?
552 journal->j_running_transaction->t_tid : 0);
553 return 0;
554 }
555
556 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
557 {
558 int ret;
559
560 write_lock(&journal->j_state_lock);
561 ret = __jbd2_log_start_commit(journal, tid);
562 write_unlock(&journal->j_state_lock);
563 return ret;
564 }
565
566 /*
567 * Force and wait upon a commit if the calling process is not within
568 * transaction. This is used for forcing out undo-protected data which contains
569 * bitmaps, when the fs is running out of space.
570 *
571 * We can only force the running transaction if we don't have an active handle;
572 * otherwise, we will deadlock.
573 *
574 * Returns true if a transaction was started.
575 */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 transaction_t *transaction = NULL;
579 tid_t tid;
580 int need_to_start = 0;
581
582 read_lock(&journal->j_state_lock);
583 if (journal->j_running_transaction && !current->journal_info) {
584 transaction = journal->j_running_transaction;
585 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
586 need_to_start = 1;
587 } else if (journal->j_committing_transaction)
588 transaction = journal->j_committing_transaction;
589
590 if (!transaction) {
591 read_unlock(&journal->j_state_lock);
592 return 0; /* Nothing to retry */
593 }
594
595 tid = transaction->t_tid;
596 read_unlock(&journal->j_state_lock);
597 if (need_to_start)
598 jbd2_log_start_commit(journal, tid);
599 jbd2_log_wait_commit(journal, tid);
600 return 1;
601 }
602
603 /*
604 * Start a commit of the current running transaction (if any). Returns true
605 * if a transaction is going to be committed (or is currently already
606 * committing), and fills its tid in at *ptid
607 */
608 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
609 {
610 int ret = 0;
611
612 write_lock(&journal->j_state_lock);
613 if (journal->j_running_transaction) {
614 tid_t tid = journal->j_running_transaction->t_tid;
615
616 __jbd2_log_start_commit(journal, tid);
617 /* There's a running transaction and we've just made sure
618 * it's commit has been scheduled. */
619 if (ptid)
620 *ptid = tid;
621 ret = 1;
622 } else if (journal->j_committing_transaction) {
623 /*
624 * If commit has been started, then we have to wait for
625 * completion of that transaction.
626 */
627 if (ptid)
628 *ptid = journal->j_committing_transaction->t_tid;
629 ret = 1;
630 }
631 write_unlock(&journal->j_state_lock);
632 return ret;
633 }
634
635 /*
636 * Return 1 if a given transaction has not yet sent barrier request
637 * connected with a transaction commit. If 0 is returned, transaction
638 * may or may not have sent the barrier. Used to avoid sending barrier
639 * twice in common cases.
640 */
641 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
642 {
643 int ret = 0;
644 transaction_t *commit_trans;
645
646 if (!(journal->j_flags & JBD2_BARRIER))
647 return 0;
648 read_lock(&journal->j_state_lock);
649 /* Transaction already committed? */
650 if (tid_geq(journal->j_commit_sequence, tid))
651 goto out;
652 commit_trans = journal->j_committing_transaction;
653 if (!commit_trans || commit_trans->t_tid != tid) {
654 ret = 1;
655 goto out;
656 }
657 /*
658 * Transaction is being committed and we already proceeded to
659 * submitting a flush to fs partition?
660 */
661 if (journal->j_fs_dev != journal->j_dev) {
662 if (!commit_trans->t_need_data_flush ||
663 commit_trans->t_state >= T_COMMIT_DFLUSH)
664 goto out;
665 } else {
666 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
667 goto out;
668 }
669 ret = 1;
670 out:
671 read_unlock(&journal->j_state_lock);
672 return ret;
673 }
674 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
675
676 /*
677 * Wait for a specified commit to complete.
678 * The caller may not hold the journal lock.
679 */
680 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
681 {
682 int err = 0;
683
684 read_lock(&journal->j_state_lock);
685 #ifdef CONFIG_JBD2_DEBUG
686 if (!tid_geq(journal->j_commit_request, tid)) {
687 printk(KERN_EMERG
688 "%s: error: j_commit_request=%d, tid=%d\n",
689 __func__, journal->j_commit_request, tid);
690 }
691 #endif
692 while (tid_gt(tid, journal->j_commit_sequence)) {
693 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
694 tid, journal->j_commit_sequence);
695 wake_up(&journal->j_wait_commit);
696 read_unlock(&journal->j_state_lock);
697 wait_event(journal->j_wait_done_commit,
698 !tid_gt(tid, journal->j_commit_sequence));
699 read_lock(&journal->j_state_lock);
700 }
701 read_unlock(&journal->j_state_lock);
702
703 if (unlikely(is_journal_aborted(journal))) {
704 printk(KERN_EMERG "journal commit I/O error\n");
705 err = -EIO;
706 }
707 return err;
708 }
709
710 /*
711 * Log buffer allocation routines:
712 */
713
714 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
715 {
716 unsigned long blocknr;
717
718 write_lock(&journal->j_state_lock);
719 J_ASSERT(journal->j_free > 1);
720
721 blocknr = journal->j_head;
722 journal->j_head++;
723 journal->j_free--;
724 if (journal->j_head == journal->j_last)
725 journal->j_head = journal->j_first;
726 write_unlock(&journal->j_state_lock);
727 return jbd2_journal_bmap(journal, blocknr, retp);
728 }
729
730 /*
731 * Conversion of logical to physical block numbers for the journal
732 *
733 * On external journals the journal blocks are identity-mapped, so
734 * this is a no-op. If needed, we can use j_blk_offset - everything is
735 * ready.
736 */
737 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
738 unsigned long long *retp)
739 {
740 int err = 0;
741 unsigned long long ret;
742
743 if (journal->j_inode) {
744 ret = bmap(journal->j_inode, blocknr);
745 if (ret)
746 *retp = ret;
747 else {
748 printk(KERN_ALERT "%s: journal block not found "
749 "at offset %lu on %s\n",
750 __func__, blocknr, journal->j_devname);
751 err = -EIO;
752 __journal_abort_soft(journal, err);
753 }
754 } else {
755 *retp = blocknr; /* +journal->j_blk_offset */
756 }
757 return err;
758 }
759
760 /*
761 * We play buffer_head aliasing tricks to write data/metadata blocks to
762 * the journal without copying their contents, but for journal
763 * descriptor blocks we do need to generate bona fide buffers.
764 *
765 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
766 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
767 * But we don't bother doing that, so there will be coherency problems with
768 * mmaps of blockdevs which hold live JBD-controlled filesystems.
769 */
770 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
771 {
772 struct buffer_head *bh;
773 unsigned long long blocknr;
774 int err;
775
776 err = jbd2_journal_next_log_block(journal, &blocknr);
777
778 if (err)
779 return NULL;
780
781 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
782 if (!bh)
783 return NULL;
784 lock_buffer(bh);
785 memset(bh->b_data, 0, journal->j_blocksize);
786 set_buffer_uptodate(bh);
787 unlock_buffer(bh);
788 BUFFER_TRACE(bh, "return this buffer");
789 return jbd2_journal_add_journal_head(bh);
790 }
791
792 /*
793 * Return tid of the oldest transaction in the journal and block in the journal
794 * where the transaction starts.
795 *
796 * If the journal is now empty, return which will be the next transaction ID
797 * we will write and where will that transaction start.
798 *
799 * The return value is 0 if journal tail cannot be pushed any further, 1 if
800 * it can.
801 */
802 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
803 unsigned long *block)
804 {
805 transaction_t *transaction;
806 int ret;
807
808 read_lock(&journal->j_state_lock);
809 spin_lock(&journal->j_list_lock);
810 transaction = journal->j_checkpoint_transactions;
811 if (transaction) {
812 *tid = transaction->t_tid;
813 *block = transaction->t_log_start;
814 } else if ((transaction = journal->j_committing_transaction) != NULL) {
815 *tid = transaction->t_tid;
816 *block = transaction->t_log_start;
817 } else if ((transaction = journal->j_running_transaction) != NULL) {
818 *tid = transaction->t_tid;
819 *block = journal->j_head;
820 } else {
821 *tid = journal->j_transaction_sequence;
822 *block = journal->j_head;
823 }
824 ret = tid_gt(*tid, journal->j_tail_sequence);
825 spin_unlock(&journal->j_list_lock);
826 read_unlock(&journal->j_state_lock);
827
828 return ret;
829 }
830
831 /*
832 * Update information in journal structure and in on disk journal superblock
833 * about log tail. This function does not check whether information passed in
834 * really pushes log tail further. It's responsibility of the caller to make
835 * sure provided log tail information is valid (e.g. by holding
836 * j_checkpoint_mutex all the time between computing log tail and calling this
837 * function as is the case with jbd2_cleanup_journal_tail()).
838 *
839 * Requires j_checkpoint_mutex
840 */
841 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
842 {
843 unsigned long freed;
844
845 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
846
847 /*
848 * We cannot afford for write to remain in drive's caches since as
849 * soon as we update j_tail, next transaction can start reusing journal
850 * space and if we lose sb update during power failure we'd replay
851 * old transaction with possibly newly overwritten data.
852 */
853 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
854 write_lock(&journal->j_state_lock);
855 freed = block - journal->j_tail;
856 if (block < journal->j_tail)
857 freed += journal->j_last - journal->j_first;
858
859 trace_jbd2_update_log_tail(journal, tid, block, freed);
860 jbd_debug(1,
861 "Cleaning journal tail from %d to %d (offset %lu), "
862 "freeing %lu\n",
863 journal->j_tail_sequence, tid, block, freed);
864
865 journal->j_free += freed;
866 journal->j_tail_sequence = tid;
867 journal->j_tail = block;
868 write_unlock(&journal->j_state_lock);
869 }
870
871 /*
872 * This is a variaon of __jbd2_update_log_tail which checks for validity of
873 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
874 * with other threads updating log tail.
875 */
876 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
877 {
878 mutex_lock(&journal->j_checkpoint_mutex);
879 if (tid_gt(tid, journal->j_tail_sequence))
880 __jbd2_update_log_tail(journal, tid, block);
881 mutex_unlock(&journal->j_checkpoint_mutex);
882 }
883
884 struct jbd2_stats_proc_session {
885 journal_t *journal;
886 struct transaction_stats_s *stats;
887 int start;
888 int max;
889 };
890
891 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
892 {
893 return *pos ? NULL : SEQ_START_TOKEN;
894 }
895
896 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
897 {
898 return NULL;
899 }
900
901 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
902 {
903 struct jbd2_stats_proc_session *s = seq->private;
904
905 if (v != SEQ_START_TOKEN)
906 return 0;
907 seq_printf(seq, "%lu transactions (%lu requested), "
908 "each up to %u blocks\n",
909 s->stats->ts_tid, s->stats->ts_requested,
910 s->journal->j_max_transaction_buffers);
911 if (s->stats->ts_tid == 0)
912 return 0;
913 seq_printf(seq, "average: \n %ums waiting for transaction\n",
914 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
915 seq_printf(seq, " %ums request delay\n",
916 (s->stats->ts_requested == 0) ? 0 :
917 jiffies_to_msecs(s->stats->run.rs_request_delay /
918 s->stats->ts_requested));
919 seq_printf(seq, " %ums running transaction\n",
920 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
921 seq_printf(seq, " %ums transaction was being locked\n",
922 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
923 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
924 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
925 seq_printf(seq, " %ums logging transaction\n",
926 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
927 seq_printf(seq, " %lluus average transaction commit time\n",
928 div_u64(s->journal->j_average_commit_time, 1000));
929 seq_printf(seq, " %lu handles per transaction\n",
930 s->stats->run.rs_handle_count / s->stats->ts_tid);
931 seq_printf(seq, " %lu blocks per transaction\n",
932 s->stats->run.rs_blocks / s->stats->ts_tid);
933 seq_printf(seq, " %lu logged blocks per transaction\n",
934 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
935 return 0;
936 }
937
938 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
939 {
940 }
941
942 static const struct seq_operations jbd2_seq_info_ops = {
943 .start = jbd2_seq_info_start,
944 .next = jbd2_seq_info_next,
945 .stop = jbd2_seq_info_stop,
946 .show = jbd2_seq_info_show,
947 };
948
949 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
950 {
951 journal_t *journal = PDE(inode)->data;
952 struct jbd2_stats_proc_session *s;
953 int rc, size;
954
955 s = kmalloc(sizeof(*s), GFP_KERNEL);
956 if (s == NULL)
957 return -ENOMEM;
958 size = sizeof(struct transaction_stats_s);
959 s->stats = kmalloc(size, GFP_KERNEL);
960 if (s->stats == NULL) {
961 kfree(s);
962 return -ENOMEM;
963 }
964 spin_lock(&journal->j_history_lock);
965 memcpy(s->stats, &journal->j_stats, size);
966 s->journal = journal;
967 spin_unlock(&journal->j_history_lock);
968
969 rc = seq_open(file, &jbd2_seq_info_ops);
970 if (rc == 0) {
971 struct seq_file *m = file->private_data;
972 m->private = s;
973 } else {
974 kfree(s->stats);
975 kfree(s);
976 }
977 return rc;
978
979 }
980
981 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
982 {
983 struct seq_file *seq = file->private_data;
984 struct jbd2_stats_proc_session *s = seq->private;
985 kfree(s->stats);
986 kfree(s);
987 return seq_release(inode, file);
988 }
989
990 static const struct file_operations jbd2_seq_info_fops = {
991 .owner = THIS_MODULE,
992 .open = jbd2_seq_info_open,
993 .read = seq_read,
994 .llseek = seq_lseek,
995 .release = jbd2_seq_info_release,
996 };
997
998 static struct proc_dir_entry *proc_jbd2_stats;
999
1000 static void jbd2_stats_proc_init(journal_t *journal)
1001 {
1002 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1003 if (journal->j_proc_entry) {
1004 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1005 &jbd2_seq_info_fops, journal);
1006 }
1007 }
1008
1009 static void jbd2_stats_proc_exit(journal_t *journal)
1010 {
1011 remove_proc_entry("info", journal->j_proc_entry);
1012 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1013 }
1014
1015 /*
1016 * Management for journal control blocks: functions to create and
1017 * destroy journal_t structures, and to initialise and read existing
1018 * journal blocks from disk. */
1019
1020 /* First: create and setup a journal_t object in memory. We initialise
1021 * very few fields yet: that has to wait until we have created the
1022 * journal structures from from scratch, or loaded them from disk. */
1023
1024 static journal_t * journal_init_common (void)
1025 {
1026 journal_t *journal;
1027 int err;
1028
1029 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1030 if (!journal)
1031 return NULL;
1032
1033 init_waitqueue_head(&journal->j_wait_transaction_locked);
1034 init_waitqueue_head(&journal->j_wait_logspace);
1035 init_waitqueue_head(&journal->j_wait_done_commit);
1036 init_waitqueue_head(&journal->j_wait_checkpoint);
1037 init_waitqueue_head(&journal->j_wait_commit);
1038 init_waitqueue_head(&journal->j_wait_updates);
1039 mutex_init(&journal->j_barrier);
1040 mutex_init(&journal->j_checkpoint_mutex);
1041 spin_lock_init(&journal->j_revoke_lock);
1042 spin_lock_init(&journal->j_list_lock);
1043 rwlock_init(&journal->j_state_lock);
1044
1045 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1046 journal->j_min_batch_time = 0;
1047 journal->j_max_batch_time = 15000; /* 15ms */
1048
1049 /* The journal is marked for error until we succeed with recovery! */
1050 journal->j_flags = JBD2_ABORT;
1051
1052 /* Set up a default-sized revoke table for the new mount. */
1053 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1054 if (err) {
1055 kfree(journal);
1056 return NULL;
1057 }
1058
1059 spin_lock_init(&journal->j_history_lock);
1060
1061 return journal;
1062 }
1063
1064 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1065 *
1066 * Create a journal structure assigned some fixed set of disk blocks to
1067 * the journal. We don't actually touch those disk blocks yet, but we
1068 * need to set up all of the mapping information to tell the journaling
1069 * system where the journal blocks are.
1070 *
1071 */
1072
1073 /**
1074 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1075 * @bdev: Block device on which to create the journal
1076 * @fs_dev: Device which hold journalled filesystem for this journal.
1077 * @start: Block nr Start of journal.
1078 * @len: Length of the journal in blocks.
1079 * @blocksize: blocksize of journalling device
1080 *
1081 * Returns: a newly created journal_t *
1082 *
1083 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1084 * range of blocks on an arbitrary block device.
1085 *
1086 */
1087 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1088 struct block_device *fs_dev,
1089 unsigned long long start, int len, int blocksize)
1090 {
1091 journal_t *journal = journal_init_common();
1092 struct buffer_head *bh;
1093 char *p;
1094 int n;
1095
1096 if (!journal)
1097 return NULL;
1098
1099 /* journal descriptor can store up to n blocks -bzzz */
1100 journal->j_blocksize = blocksize;
1101 journal->j_dev = bdev;
1102 journal->j_fs_dev = fs_dev;
1103 journal->j_blk_offset = start;
1104 journal->j_maxlen = len;
1105 bdevname(journal->j_dev, journal->j_devname);
1106 p = journal->j_devname;
1107 while ((p = strchr(p, '/')))
1108 *p = '!';
1109 jbd2_stats_proc_init(journal);
1110 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1111 journal->j_wbufsize = n;
1112 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1113 if (!journal->j_wbuf) {
1114 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1115 __func__);
1116 goto out_err;
1117 }
1118
1119 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1120 if (!bh) {
1121 printk(KERN_ERR
1122 "%s: Cannot get buffer for journal superblock\n",
1123 __func__);
1124 goto out_err;
1125 }
1126 journal->j_sb_buffer = bh;
1127 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1128
1129 return journal;
1130 out_err:
1131 kfree(journal->j_wbuf);
1132 jbd2_stats_proc_exit(journal);
1133 kfree(journal);
1134 return NULL;
1135 }
1136
1137 /**
1138 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1139 * @inode: An inode to create the journal in
1140 *
1141 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1142 * the journal. The inode must exist already, must support bmap() and
1143 * must have all data blocks preallocated.
1144 */
1145 journal_t * jbd2_journal_init_inode (struct inode *inode)
1146 {
1147 struct buffer_head *bh;
1148 journal_t *journal = journal_init_common();
1149 char *p;
1150 int err;
1151 int n;
1152 unsigned long long blocknr;
1153
1154 if (!journal)
1155 return NULL;
1156
1157 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1158 journal->j_inode = inode;
1159 bdevname(journal->j_dev, journal->j_devname);
1160 p = journal->j_devname;
1161 while ((p = strchr(p, '/')))
1162 *p = '!';
1163 p = journal->j_devname + strlen(journal->j_devname);
1164 sprintf(p, "-%lu", journal->j_inode->i_ino);
1165 jbd_debug(1,
1166 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1167 journal, inode->i_sb->s_id, inode->i_ino,
1168 (long long) inode->i_size,
1169 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1170
1171 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1172 journal->j_blocksize = inode->i_sb->s_blocksize;
1173 jbd2_stats_proc_init(journal);
1174
1175 /* journal descriptor can store up to n blocks -bzzz */
1176 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1177 journal->j_wbufsize = n;
1178 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1179 if (!journal->j_wbuf) {
1180 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1181 __func__);
1182 goto out_err;
1183 }
1184
1185 err = jbd2_journal_bmap(journal, 0, &blocknr);
1186 /* If that failed, give up */
1187 if (err) {
1188 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1189 __func__);
1190 goto out_err;
1191 }
1192
1193 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1194 if (!bh) {
1195 printk(KERN_ERR
1196 "%s: Cannot get buffer for journal superblock\n",
1197 __func__);
1198 goto out_err;
1199 }
1200 journal->j_sb_buffer = bh;
1201 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1202
1203 return journal;
1204 out_err:
1205 kfree(journal->j_wbuf);
1206 jbd2_stats_proc_exit(journal);
1207 kfree(journal);
1208 return NULL;
1209 }
1210
1211 /*
1212 * If the journal init or create aborts, we need to mark the journal
1213 * superblock as being NULL to prevent the journal destroy from writing
1214 * back a bogus superblock.
1215 */
1216 static void journal_fail_superblock (journal_t *journal)
1217 {
1218 struct buffer_head *bh = journal->j_sb_buffer;
1219 brelse(bh);
1220 journal->j_sb_buffer = NULL;
1221 }
1222
1223 /*
1224 * Given a journal_t structure, initialise the various fields for
1225 * startup of a new journaling session. We use this both when creating
1226 * a journal, and after recovering an old journal to reset it for
1227 * subsequent use.
1228 */
1229
1230 static int journal_reset(journal_t *journal)
1231 {
1232 journal_superblock_t *sb = journal->j_superblock;
1233 unsigned long long first, last;
1234
1235 first = be32_to_cpu(sb->s_first);
1236 last = be32_to_cpu(sb->s_maxlen);
1237 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1238 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1239 first, last);
1240 journal_fail_superblock(journal);
1241 return -EINVAL;
1242 }
1243
1244 journal->j_first = first;
1245 journal->j_last = last;
1246
1247 journal->j_head = first;
1248 journal->j_tail = first;
1249 journal->j_free = last - first;
1250
1251 journal->j_tail_sequence = journal->j_transaction_sequence;
1252 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1253 journal->j_commit_request = journal->j_commit_sequence;
1254
1255 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1256
1257 /*
1258 * As a special case, if the on-disk copy is already marked as needing
1259 * no recovery (s_start == 0), then we can safely defer the superblock
1260 * update until the next commit by setting JBD2_FLUSHED. This avoids
1261 * attempting a write to a potential-readonly device.
1262 */
1263 if (sb->s_start == 0) {
1264 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1265 "(start %ld, seq %d, errno %d)\n",
1266 journal->j_tail, journal->j_tail_sequence,
1267 journal->j_errno);
1268 journal->j_flags |= JBD2_FLUSHED;
1269 } else {
1270 /* Lock here to make assertions happy... */
1271 mutex_lock(&journal->j_checkpoint_mutex);
1272 /*
1273 * Update log tail information. We use WRITE_FUA since new
1274 * transaction will start reusing journal space and so we
1275 * must make sure information about current log tail is on
1276 * disk before that.
1277 */
1278 jbd2_journal_update_sb_log_tail(journal,
1279 journal->j_tail_sequence,
1280 journal->j_tail,
1281 WRITE_FUA);
1282 mutex_unlock(&journal->j_checkpoint_mutex);
1283 }
1284 return jbd2_journal_start_thread(journal);
1285 }
1286
1287 static void jbd2_write_superblock(journal_t *journal, int write_op)
1288 {
1289 struct buffer_head *bh = journal->j_sb_buffer;
1290 int ret;
1291
1292 trace_jbd2_write_superblock(journal, write_op);
1293 if (!(journal->j_flags & JBD2_BARRIER))
1294 write_op &= ~(REQ_FUA | REQ_FLUSH);
1295 lock_buffer(bh);
1296 if (buffer_write_io_error(bh)) {
1297 /*
1298 * Oh, dear. A previous attempt to write the journal
1299 * superblock failed. This could happen because the
1300 * USB device was yanked out. Or it could happen to
1301 * be a transient write error and maybe the block will
1302 * be remapped. Nothing we can do but to retry the
1303 * write and hope for the best.
1304 */
1305 printk(KERN_ERR "JBD2: previous I/O error detected "
1306 "for journal superblock update for %s.\n",
1307 journal->j_devname);
1308 clear_buffer_write_io_error(bh);
1309 set_buffer_uptodate(bh);
1310 }
1311 get_bh(bh);
1312 bh->b_end_io = end_buffer_write_sync;
1313 ret = submit_bh(write_op, bh);
1314 wait_on_buffer(bh);
1315 if (buffer_write_io_error(bh)) {
1316 clear_buffer_write_io_error(bh);
1317 set_buffer_uptodate(bh);
1318 ret = -EIO;
1319 }
1320 if (ret) {
1321 printk(KERN_ERR "JBD2: Error %d detected when updating "
1322 "journal superblock for %s.\n", ret,
1323 journal->j_devname);
1324 }
1325 }
1326
1327 /**
1328 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1329 * @journal: The journal to update.
1330 * @tail_tid: TID of the new transaction at the tail of the log
1331 * @tail_block: The first block of the transaction at the tail of the log
1332 * @write_op: With which operation should we write the journal sb
1333 *
1334 * Update a journal's superblock information about log tail and write it to
1335 * disk, waiting for the IO to complete.
1336 */
1337 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1338 unsigned long tail_block, int write_op)
1339 {
1340 journal_superblock_t *sb = journal->j_superblock;
1341
1342 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1343 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1344 tail_block, tail_tid);
1345
1346 sb->s_sequence = cpu_to_be32(tail_tid);
1347 sb->s_start = cpu_to_be32(tail_block);
1348
1349 jbd2_write_superblock(journal, write_op);
1350
1351 /* Log is no longer empty */
1352 write_lock(&journal->j_state_lock);
1353 WARN_ON(!sb->s_sequence);
1354 journal->j_flags &= ~JBD2_FLUSHED;
1355 write_unlock(&journal->j_state_lock);
1356 }
1357
1358 /**
1359 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1360 * @journal: The journal to update.
1361 *
1362 * Update a journal's dynamic superblock fields to show that journal is empty.
1363 * Write updated superblock to disk waiting for IO to complete.
1364 */
1365 static void jbd2_mark_journal_empty(journal_t *journal)
1366 {
1367 journal_superblock_t *sb = journal->j_superblock;
1368
1369 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1370 read_lock(&journal->j_state_lock);
1371 /* Is it already empty? */
1372 if (sb->s_start == 0) {
1373 read_unlock(&journal->j_state_lock);
1374 return;
1375 }
1376 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1377 journal->j_tail_sequence);
1378
1379 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1380 sb->s_start = cpu_to_be32(0);
1381 read_unlock(&journal->j_state_lock);
1382
1383 jbd2_write_superblock(journal, WRITE_FUA);
1384
1385 /* Log is no longer empty */
1386 write_lock(&journal->j_state_lock);
1387 journal->j_flags |= JBD2_FLUSHED;
1388 write_unlock(&journal->j_state_lock);
1389 }
1390
1391
1392 /**
1393 * jbd2_journal_update_sb_errno() - Update error in the journal.
1394 * @journal: The journal to update.
1395 *
1396 * Update a journal's errno. Write updated superblock to disk waiting for IO
1397 * to complete.
1398 */
1399 void jbd2_journal_update_sb_errno(journal_t *journal)
1400 {
1401 journal_superblock_t *sb = journal->j_superblock;
1402
1403 read_lock(&journal->j_state_lock);
1404 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1405 journal->j_errno);
1406 sb->s_errno = cpu_to_be32(journal->j_errno);
1407 jbd2_superblock_csum_set(journal, sb);
1408 read_unlock(&journal->j_state_lock);
1409
1410 jbd2_write_superblock(journal, WRITE_SYNC);
1411 }
1412 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1413
1414 /*
1415 * Read the superblock for a given journal, performing initial
1416 * validation of the format.
1417 */
1418 static int journal_get_superblock(journal_t *journal)
1419 {
1420 struct buffer_head *bh;
1421 journal_superblock_t *sb;
1422 int err = -EIO;
1423
1424 bh = journal->j_sb_buffer;
1425
1426 J_ASSERT(bh != NULL);
1427 if (!buffer_uptodate(bh)) {
1428 ll_rw_block(READ, 1, &bh);
1429 wait_on_buffer(bh);
1430 if (!buffer_uptodate(bh)) {
1431 printk(KERN_ERR
1432 "JBD2: IO error reading journal superblock\n");
1433 goto out;
1434 }
1435 }
1436
1437 if (buffer_verified(bh))
1438 return 0;
1439
1440 sb = journal->j_superblock;
1441
1442 err = -EINVAL;
1443
1444 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1445 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1446 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1447 goto out;
1448 }
1449
1450 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1451 case JBD2_SUPERBLOCK_V1:
1452 journal->j_format_version = 1;
1453 break;
1454 case JBD2_SUPERBLOCK_V2:
1455 journal->j_format_version = 2;
1456 break;
1457 default:
1458 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1459 goto out;
1460 }
1461
1462 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1463 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1464 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1465 printk(KERN_WARNING "JBD2: journal file too short\n");
1466 goto out;
1467 }
1468
1469 if (be32_to_cpu(sb->s_first) == 0 ||
1470 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1471 printk(KERN_WARNING
1472 "JBD2: Invalid start block of journal: %u\n",
1473 be32_to_cpu(sb->s_first));
1474 goto out;
1475 }
1476
1477 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1478 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1479 /* Can't have checksum v1 and v2 on at the same time! */
1480 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1481 "at the same time!\n");
1482 goto out;
1483 }
1484
1485 if (!jbd2_verify_csum_type(journal, sb)) {
1486 printk(KERN_ERR "JBD: Unknown checksum type\n");
1487 goto out;
1488 }
1489
1490 /* Load the checksum driver */
1491 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1492 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1493 if (IS_ERR(journal->j_chksum_driver)) {
1494 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1495 err = PTR_ERR(journal->j_chksum_driver);
1496 journal->j_chksum_driver = NULL;
1497 goto out;
1498 }
1499 }
1500
1501 /* Check superblock checksum */
1502 if (!jbd2_superblock_csum_verify(journal, sb)) {
1503 printk(KERN_ERR "JBD: journal checksum error\n");
1504 goto out;
1505 }
1506
1507 /* Precompute checksum seed for all metadata */
1508 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1509 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1510 sizeof(sb->s_uuid));
1511
1512 set_buffer_verified(bh);
1513
1514 return 0;
1515
1516 out:
1517 journal_fail_superblock(journal);
1518 return err;
1519 }
1520
1521 /*
1522 * Load the on-disk journal superblock and read the key fields into the
1523 * journal_t.
1524 */
1525
1526 static int load_superblock(journal_t *journal)
1527 {
1528 int err;
1529 journal_superblock_t *sb;
1530
1531 err = journal_get_superblock(journal);
1532 if (err)
1533 return err;
1534
1535 sb = journal->j_superblock;
1536
1537 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1538 journal->j_tail = be32_to_cpu(sb->s_start);
1539 journal->j_first = be32_to_cpu(sb->s_first);
1540 journal->j_last = be32_to_cpu(sb->s_maxlen);
1541 journal->j_errno = be32_to_cpu(sb->s_errno);
1542
1543 return 0;
1544 }
1545
1546
1547 /**
1548 * int jbd2_journal_load() - Read journal from disk.
1549 * @journal: Journal to act on.
1550 *
1551 * Given a journal_t structure which tells us which disk blocks contain
1552 * a journal, read the journal from disk to initialise the in-memory
1553 * structures.
1554 */
1555 int jbd2_journal_load(journal_t *journal)
1556 {
1557 int err;
1558 journal_superblock_t *sb;
1559
1560 err = load_superblock(journal);
1561 if (err)
1562 return err;
1563
1564 sb = journal->j_superblock;
1565 /* If this is a V2 superblock, then we have to check the
1566 * features flags on it. */
1567
1568 if (journal->j_format_version >= 2) {
1569 if ((sb->s_feature_ro_compat &
1570 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1571 (sb->s_feature_incompat &
1572 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1573 printk(KERN_WARNING
1574 "JBD2: Unrecognised features on journal\n");
1575 return -EINVAL;
1576 }
1577 }
1578
1579 /*
1580 * Create a slab for this blocksize
1581 */
1582 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1583 if (err)
1584 return err;
1585
1586 /* Let the recovery code check whether it needs to recover any
1587 * data from the journal. */
1588 if (jbd2_journal_recover(journal))
1589 goto recovery_error;
1590
1591 if (journal->j_failed_commit) {
1592 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1593 "is corrupt.\n", journal->j_failed_commit,
1594 journal->j_devname);
1595 return -EIO;
1596 }
1597
1598 /* OK, we've finished with the dynamic journal bits:
1599 * reinitialise the dynamic contents of the superblock in memory
1600 * and reset them on disk. */
1601 if (journal_reset(journal))
1602 goto recovery_error;
1603
1604 journal->j_flags &= ~JBD2_ABORT;
1605 journal->j_flags |= JBD2_LOADED;
1606 return 0;
1607
1608 recovery_error:
1609 printk(KERN_WARNING "JBD2: recovery failed\n");
1610 return -EIO;
1611 }
1612
1613 /**
1614 * void jbd2_journal_destroy() - Release a journal_t structure.
1615 * @journal: Journal to act on.
1616 *
1617 * Release a journal_t structure once it is no longer in use by the
1618 * journaled object.
1619 * Return <0 if we couldn't clean up the journal.
1620 */
1621 int jbd2_journal_destroy(journal_t *journal)
1622 {
1623 int err = 0;
1624
1625 /* Wait for the commit thread to wake up and die. */
1626 journal_kill_thread(journal);
1627
1628 /* Force a final log commit */
1629 if (journal->j_running_transaction)
1630 jbd2_journal_commit_transaction(journal);
1631
1632 /* Force any old transactions to disk */
1633
1634 /* Totally anal locking here... */
1635 spin_lock(&journal->j_list_lock);
1636 while (journal->j_checkpoint_transactions != NULL) {
1637 spin_unlock(&journal->j_list_lock);
1638 mutex_lock(&journal->j_checkpoint_mutex);
1639 jbd2_log_do_checkpoint(journal);
1640 mutex_unlock(&journal->j_checkpoint_mutex);
1641 spin_lock(&journal->j_list_lock);
1642 }
1643
1644 J_ASSERT(journal->j_running_transaction == NULL);
1645 J_ASSERT(journal->j_committing_transaction == NULL);
1646 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1647 spin_unlock(&journal->j_list_lock);
1648
1649 if (journal->j_sb_buffer) {
1650 if (!is_journal_aborted(journal)) {
1651 mutex_lock(&journal->j_checkpoint_mutex);
1652 jbd2_mark_journal_empty(journal);
1653 mutex_unlock(&journal->j_checkpoint_mutex);
1654 } else
1655 err = -EIO;
1656 brelse(journal->j_sb_buffer);
1657 }
1658
1659 if (journal->j_proc_entry)
1660 jbd2_stats_proc_exit(journal);
1661 if (journal->j_inode)
1662 iput(journal->j_inode);
1663 if (journal->j_revoke)
1664 jbd2_journal_destroy_revoke(journal);
1665 if (journal->j_chksum_driver)
1666 crypto_free_shash(journal->j_chksum_driver);
1667 kfree(journal->j_wbuf);
1668 kfree(journal);
1669
1670 return err;
1671 }
1672
1673
1674 /**
1675 *int jbd2_journal_check_used_features () - Check if features specified are used.
1676 * @journal: Journal to check.
1677 * @compat: bitmask of compatible features
1678 * @ro: bitmask of features that force read-only mount
1679 * @incompat: bitmask of incompatible features
1680 *
1681 * Check whether the journal uses all of a given set of
1682 * features. Return true (non-zero) if it does.
1683 **/
1684
1685 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1686 unsigned long ro, unsigned long incompat)
1687 {
1688 journal_superblock_t *sb;
1689
1690 if (!compat && !ro && !incompat)
1691 return 1;
1692 /* Load journal superblock if it is not loaded yet. */
1693 if (journal->j_format_version == 0 &&
1694 journal_get_superblock(journal) != 0)
1695 return 0;
1696 if (journal->j_format_version == 1)
1697 return 0;
1698
1699 sb = journal->j_superblock;
1700
1701 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1702 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1703 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1704 return 1;
1705
1706 return 0;
1707 }
1708
1709 /**
1710 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1711 * @journal: Journal to check.
1712 * @compat: bitmask of compatible features
1713 * @ro: bitmask of features that force read-only mount
1714 * @incompat: bitmask of incompatible features
1715 *
1716 * Check whether the journaling code supports the use of
1717 * all of a given set of features on this journal. Return true
1718 * (non-zero) if it can. */
1719
1720 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1721 unsigned long ro, unsigned long incompat)
1722 {
1723 if (!compat && !ro && !incompat)
1724 return 1;
1725
1726 /* We can support any known requested features iff the
1727 * superblock is in version 2. Otherwise we fail to support any
1728 * extended sb features. */
1729
1730 if (journal->j_format_version != 2)
1731 return 0;
1732
1733 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1734 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1735 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1736 return 1;
1737
1738 return 0;
1739 }
1740
1741 /**
1742 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1743 * @journal: Journal to act on.
1744 * @compat: bitmask of compatible features
1745 * @ro: bitmask of features that force read-only mount
1746 * @incompat: bitmask of incompatible features
1747 *
1748 * Mark a given journal feature as present on the
1749 * superblock. Returns true if the requested features could be set.
1750 *
1751 */
1752
1753 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1754 unsigned long ro, unsigned long incompat)
1755 {
1756 #define INCOMPAT_FEATURE_ON(f) \
1757 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1758 #define COMPAT_FEATURE_ON(f) \
1759 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1760 journal_superblock_t *sb;
1761
1762 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1763 return 1;
1764
1765 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1766 return 0;
1767
1768 /* Asking for checksumming v2 and v1? Only give them v2. */
1769 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1770 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1771 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1772
1773 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1774 compat, ro, incompat);
1775
1776 sb = journal->j_superblock;
1777
1778 /* If enabling v2 checksums, update superblock */
1779 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1780 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1781 sb->s_feature_compat &=
1782 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1783
1784 /* Load the checksum driver */
1785 if (journal->j_chksum_driver == NULL) {
1786 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1787 0, 0);
1788 if (IS_ERR(journal->j_chksum_driver)) {
1789 printk(KERN_ERR "JBD: Cannot load crc32c "
1790 "driver.\n");
1791 journal->j_chksum_driver = NULL;
1792 return 0;
1793 }
1794 }
1795
1796 /* Precompute checksum seed for all metadata */
1797 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1798 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1799 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1800 sb->s_uuid,
1801 sizeof(sb->s_uuid));
1802 }
1803
1804 /* If enabling v1 checksums, downgrade superblock */
1805 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1806 sb->s_feature_incompat &=
1807 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1808
1809 sb->s_feature_compat |= cpu_to_be32(compat);
1810 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1811 sb->s_feature_incompat |= cpu_to_be32(incompat);
1812
1813 return 1;
1814 #undef COMPAT_FEATURE_ON
1815 #undef INCOMPAT_FEATURE_ON
1816 }
1817
1818 /*
1819 * jbd2_journal_clear_features () - Clear a given journal feature in the
1820 * superblock
1821 * @journal: Journal to act on.
1822 * @compat: bitmask of compatible features
1823 * @ro: bitmask of features that force read-only mount
1824 * @incompat: bitmask of incompatible features
1825 *
1826 * Clear a given journal feature as present on the
1827 * superblock.
1828 */
1829 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1830 unsigned long ro, unsigned long incompat)
1831 {
1832 journal_superblock_t *sb;
1833
1834 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1835 compat, ro, incompat);
1836
1837 sb = journal->j_superblock;
1838
1839 sb->s_feature_compat &= ~cpu_to_be32(compat);
1840 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1841 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1842 }
1843 EXPORT_SYMBOL(jbd2_journal_clear_features);
1844
1845 /**
1846 * int jbd2_journal_flush () - Flush journal
1847 * @journal: Journal to act on.
1848 *
1849 * Flush all data for a given journal to disk and empty the journal.
1850 * Filesystems can use this when remounting readonly to ensure that
1851 * recovery does not need to happen on remount.
1852 */
1853
1854 int jbd2_journal_flush(journal_t *journal)
1855 {
1856 int err = 0;
1857 transaction_t *transaction = NULL;
1858
1859 write_lock(&journal->j_state_lock);
1860
1861 /* Force everything buffered to the log... */
1862 if (journal->j_running_transaction) {
1863 transaction = journal->j_running_transaction;
1864 __jbd2_log_start_commit(journal, transaction->t_tid);
1865 } else if (journal->j_committing_transaction)
1866 transaction = journal->j_committing_transaction;
1867
1868 /* Wait for the log commit to complete... */
1869 if (transaction) {
1870 tid_t tid = transaction->t_tid;
1871
1872 write_unlock(&journal->j_state_lock);
1873 jbd2_log_wait_commit(journal, tid);
1874 } else {
1875 write_unlock(&journal->j_state_lock);
1876 }
1877
1878 /* ...and flush everything in the log out to disk. */
1879 spin_lock(&journal->j_list_lock);
1880 while (!err && journal->j_checkpoint_transactions != NULL) {
1881 spin_unlock(&journal->j_list_lock);
1882 mutex_lock(&journal->j_checkpoint_mutex);
1883 err = jbd2_log_do_checkpoint(journal);
1884 mutex_unlock(&journal->j_checkpoint_mutex);
1885 spin_lock(&journal->j_list_lock);
1886 }
1887 spin_unlock(&journal->j_list_lock);
1888
1889 if (is_journal_aborted(journal))
1890 return -EIO;
1891
1892 mutex_lock(&journal->j_checkpoint_mutex);
1893 jbd2_cleanup_journal_tail(journal);
1894
1895 /* Finally, mark the journal as really needing no recovery.
1896 * This sets s_start==0 in the underlying superblock, which is
1897 * the magic code for a fully-recovered superblock. Any future
1898 * commits of data to the journal will restore the current
1899 * s_start value. */
1900 jbd2_mark_journal_empty(journal);
1901 mutex_unlock(&journal->j_checkpoint_mutex);
1902 write_lock(&journal->j_state_lock);
1903 J_ASSERT(!journal->j_running_transaction);
1904 J_ASSERT(!journal->j_committing_transaction);
1905 J_ASSERT(!journal->j_checkpoint_transactions);
1906 J_ASSERT(journal->j_head == journal->j_tail);
1907 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1908 write_unlock(&journal->j_state_lock);
1909 return 0;
1910 }
1911
1912 /**
1913 * int jbd2_journal_wipe() - Wipe journal contents
1914 * @journal: Journal to act on.
1915 * @write: flag (see below)
1916 *
1917 * Wipe out all of the contents of a journal, safely. This will produce
1918 * a warning if the journal contains any valid recovery information.
1919 * Must be called between journal_init_*() and jbd2_journal_load().
1920 *
1921 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1922 * we merely suppress recovery.
1923 */
1924
1925 int jbd2_journal_wipe(journal_t *journal, int write)
1926 {
1927 int err = 0;
1928
1929 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1930
1931 err = load_superblock(journal);
1932 if (err)
1933 return err;
1934
1935 if (!journal->j_tail)
1936 goto no_recovery;
1937
1938 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1939 write ? "Clearing" : "Ignoring");
1940
1941 err = jbd2_journal_skip_recovery(journal);
1942 if (write) {
1943 /* Lock to make assertions happy... */
1944 mutex_lock(&journal->j_checkpoint_mutex);
1945 jbd2_mark_journal_empty(journal);
1946 mutex_unlock(&journal->j_checkpoint_mutex);
1947 }
1948
1949 no_recovery:
1950 return err;
1951 }
1952
1953 /*
1954 * Journal abort has very specific semantics, which we describe
1955 * for journal abort.
1956 *
1957 * Two internal functions, which provide abort to the jbd layer
1958 * itself are here.
1959 */
1960
1961 /*
1962 * Quick version for internal journal use (doesn't lock the journal).
1963 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1964 * and don't attempt to make any other journal updates.
1965 */
1966 void __jbd2_journal_abort_hard(journal_t *journal)
1967 {
1968 transaction_t *transaction;
1969
1970 if (journal->j_flags & JBD2_ABORT)
1971 return;
1972
1973 printk(KERN_ERR "Aborting journal on device %s.\n",
1974 journal->j_devname);
1975
1976 write_lock(&journal->j_state_lock);
1977 journal->j_flags |= JBD2_ABORT;
1978 transaction = journal->j_running_transaction;
1979 if (transaction)
1980 __jbd2_log_start_commit(journal, transaction->t_tid);
1981 write_unlock(&journal->j_state_lock);
1982 }
1983
1984 /* Soft abort: record the abort error status in the journal superblock,
1985 * but don't do any other IO. */
1986 static void __journal_abort_soft (journal_t *journal, int errno)
1987 {
1988 if (journal->j_flags & JBD2_ABORT)
1989 return;
1990
1991 if (!journal->j_errno)
1992 journal->j_errno = errno;
1993
1994 __jbd2_journal_abort_hard(journal);
1995
1996 if (errno)
1997 jbd2_journal_update_sb_errno(journal);
1998 }
1999
2000 /**
2001 * void jbd2_journal_abort () - Shutdown the journal immediately.
2002 * @journal: the journal to shutdown.
2003 * @errno: an error number to record in the journal indicating
2004 * the reason for the shutdown.
2005 *
2006 * Perform a complete, immediate shutdown of the ENTIRE
2007 * journal (not of a single transaction). This operation cannot be
2008 * undone without closing and reopening the journal.
2009 *
2010 * The jbd2_journal_abort function is intended to support higher level error
2011 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2012 * mode.
2013 *
2014 * Journal abort has very specific semantics. Any existing dirty,
2015 * unjournaled buffers in the main filesystem will still be written to
2016 * disk by bdflush, but the journaling mechanism will be suspended
2017 * immediately and no further transaction commits will be honoured.
2018 *
2019 * Any dirty, journaled buffers will be written back to disk without
2020 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2021 * filesystem, but we _do_ attempt to leave as much data as possible
2022 * behind for fsck to use for cleanup.
2023 *
2024 * Any attempt to get a new transaction handle on a journal which is in
2025 * ABORT state will just result in an -EROFS error return. A
2026 * jbd2_journal_stop on an existing handle will return -EIO if we have
2027 * entered abort state during the update.
2028 *
2029 * Recursive transactions are not disturbed by journal abort until the
2030 * final jbd2_journal_stop, which will receive the -EIO error.
2031 *
2032 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2033 * which will be recorded (if possible) in the journal superblock. This
2034 * allows a client to record failure conditions in the middle of a
2035 * transaction without having to complete the transaction to record the
2036 * failure to disk. ext3_error, for example, now uses this
2037 * functionality.
2038 *
2039 * Errors which originate from within the journaling layer will NOT
2040 * supply an errno; a null errno implies that absolutely no further
2041 * writes are done to the journal (unless there are any already in
2042 * progress).
2043 *
2044 */
2045
2046 void jbd2_journal_abort(journal_t *journal, int errno)
2047 {
2048 __journal_abort_soft(journal, errno);
2049 }
2050
2051 /**
2052 * int jbd2_journal_errno () - returns the journal's error state.
2053 * @journal: journal to examine.
2054 *
2055 * This is the errno number set with jbd2_journal_abort(), the last
2056 * time the journal was mounted - if the journal was stopped
2057 * without calling abort this will be 0.
2058 *
2059 * If the journal has been aborted on this mount time -EROFS will
2060 * be returned.
2061 */
2062 int jbd2_journal_errno(journal_t *journal)
2063 {
2064 int err;
2065
2066 read_lock(&journal->j_state_lock);
2067 if (journal->j_flags & JBD2_ABORT)
2068 err = -EROFS;
2069 else
2070 err = journal->j_errno;
2071 read_unlock(&journal->j_state_lock);
2072 return err;
2073 }
2074
2075 /**
2076 * int jbd2_journal_clear_err () - clears the journal's error state
2077 * @journal: journal to act on.
2078 *
2079 * An error must be cleared or acked to take a FS out of readonly
2080 * mode.
2081 */
2082 int jbd2_journal_clear_err(journal_t *journal)
2083 {
2084 int err = 0;
2085
2086 write_lock(&journal->j_state_lock);
2087 if (journal->j_flags & JBD2_ABORT)
2088 err = -EROFS;
2089 else
2090 journal->j_errno = 0;
2091 write_unlock(&journal->j_state_lock);
2092 return err;
2093 }
2094
2095 /**
2096 * void jbd2_journal_ack_err() - Ack journal err.
2097 * @journal: journal to act on.
2098 *
2099 * An error must be cleared or acked to take a FS out of readonly
2100 * mode.
2101 */
2102 void jbd2_journal_ack_err(journal_t *journal)
2103 {
2104 write_lock(&journal->j_state_lock);
2105 if (journal->j_errno)
2106 journal->j_flags |= JBD2_ACK_ERR;
2107 write_unlock(&journal->j_state_lock);
2108 }
2109
2110 int jbd2_journal_blocks_per_page(struct inode *inode)
2111 {
2112 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2113 }
2114
2115 /*
2116 * helper functions to deal with 32 or 64bit block numbers.
2117 */
2118 size_t journal_tag_bytes(journal_t *journal)
2119 {
2120 journal_block_tag_t tag;
2121 size_t x = 0;
2122
2123 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2124 x += sizeof(tag.t_checksum);
2125
2126 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2127 return x + JBD2_TAG_SIZE64;
2128 else
2129 return x + JBD2_TAG_SIZE32;
2130 }
2131
2132 /*
2133 * JBD memory management
2134 *
2135 * These functions are used to allocate block-sized chunks of memory
2136 * used for making copies of buffer_head data. Very often it will be
2137 * page-sized chunks of data, but sometimes it will be in
2138 * sub-page-size chunks. (For example, 16k pages on Power systems
2139 * with a 4k block file system.) For blocks smaller than a page, we
2140 * use a SLAB allocator. There are slab caches for each block size,
2141 * which are allocated at mount time, if necessary, and we only free
2142 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2143 * this reason we don't need to a mutex to protect access to
2144 * jbd2_slab[] allocating or releasing memory; only in
2145 * jbd2_journal_create_slab().
2146 */
2147 #define JBD2_MAX_SLABS 8
2148 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2149
2150 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2151 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2152 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2153 };
2154
2155
2156 static void jbd2_journal_destroy_slabs(void)
2157 {
2158 int i;
2159
2160 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2161 if (jbd2_slab[i])
2162 kmem_cache_destroy(jbd2_slab[i]);
2163 jbd2_slab[i] = NULL;
2164 }
2165 }
2166
2167 static int jbd2_journal_create_slab(size_t size)
2168 {
2169 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2170 int i = order_base_2(size) - 10;
2171 size_t slab_size;
2172
2173 if (size == PAGE_SIZE)
2174 return 0;
2175
2176 if (i >= JBD2_MAX_SLABS)
2177 return -EINVAL;
2178
2179 if (unlikely(i < 0))
2180 i = 0;
2181 mutex_lock(&jbd2_slab_create_mutex);
2182 if (jbd2_slab[i]) {
2183 mutex_unlock(&jbd2_slab_create_mutex);
2184 return 0; /* Already created */
2185 }
2186
2187 slab_size = 1 << (i+10);
2188 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2189 slab_size, 0, NULL);
2190 mutex_unlock(&jbd2_slab_create_mutex);
2191 if (!jbd2_slab[i]) {
2192 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2193 return -ENOMEM;
2194 }
2195 return 0;
2196 }
2197
2198 static struct kmem_cache *get_slab(size_t size)
2199 {
2200 int i = order_base_2(size) - 10;
2201
2202 BUG_ON(i >= JBD2_MAX_SLABS);
2203 if (unlikely(i < 0))
2204 i = 0;
2205 BUG_ON(jbd2_slab[i] == NULL);
2206 return jbd2_slab[i];
2207 }
2208
2209 void *jbd2_alloc(size_t size, gfp_t flags)
2210 {
2211 void *ptr;
2212
2213 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2214
2215 flags |= __GFP_REPEAT;
2216 if (size == PAGE_SIZE)
2217 ptr = (void *)__get_free_pages(flags, 0);
2218 else if (size > PAGE_SIZE) {
2219 int order = get_order(size);
2220
2221 if (order < 3)
2222 ptr = (void *)__get_free_pages(flags, order);
2223 else
2224 ptr = vmalloc(size);
2225 } else
2226 ptr = kmem_cache_alloc(get_slab(size), flags);
2227
2228 /* Check alignment; SLUB has gotten this wrong in the past,
2229 * and this can lead to user data corruption! */
2230 BUG_ON(((unsigned long) ptr) & (size-1));
2231
2232 return ptr;
2233 }
2234
2235 void jbd2_free(void *ptr, size_t size)
2236 {
2237 if (size == PAGE_SIZE) {
2238 free_pages((unsigned long)ptr, 0);
2239 return;
2240 }
2241 if (size > PAGE_SIZE) {
2242 int order = get_order(size);
2243
2244 if (order < 3)
2245 free_pages((unsigned long)ptr, order);
2246 else
2247 vfree(ptr);
2248 return;
2249 }
2250 kmem_cache_free(get_slab(size), ptr);
2251 };
2252
2253 /*
2254 * Journal_head storage management
2255 */
2256 static struct kmem_cache *jbd2_journal_head_cache;
2257 #ifdef CONFIG_JBD2_DEBUG
2258 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2259 #endif
2260
2261 static int jbd2_journal_init_journal_head_cache(void)
2262 {
2263 int retval;
2264
2265 J_ASSERT(jbd2_journal_head_cache == NULL);
2266 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2267 sizeof(struct journal_head),
2268 0, /* offset */
2269 SLAB_TEMPORARY, /* flags */
2270 NULL); /* ctor */
2271 retval = 0;
2272 if (!jbd2_journal_head_cache) {
2273 retval = -ENOMEM;
2274 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2275 }
2276 return retval;
2277 }
2278
2279 static void jbd2_journal_destroy_journal_head_cache(void)
2280 {
2281 if (jbd2_journal_head_cache) {
2282 kmem_cache_destroy(jbd2_journal_head_cache);
2283 jbd2_journal_head_cache = NULL;
2284 }
2285 }
2286
2287 /*
2288 * journal_head splicing and dicing
2289 */
2290 static struct journal_head *journal_alloc_journal_head(void)
2291 {
2292 struct journal_head *ret;
2293
2294 #ifdef CONFIG_JBD2_DEBUG
2295 atomic_inc(&nr_journal_heads);
2296 #endif
2297 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2298 if (!ret) {
2299 jbd_debug(1, "out of memory for journal_head\n");
2300 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2301 while (!ret) {
2302 yield();
2303 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2304 }
2305 }
2306 return ret;
2307 }
2308
2309 static void journal_free_journal_head(struct journal_head *jh)
2310 {
2311 #ifdef CONFIG_JBD2_DEBUG
2312 atomic_dec(&nr_journal_heads);
2313 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2314 #endif
2315 kmem_cache_free(jbd2_journal_head_cache, jh);
2316 }
2317
2318 /*
2319 * A journal_head is attached to a buffer_head whenever JBD has an
2320 * interest in the buffer.
2321 *
2322 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2323 * is set. This bit is tested in core kernel code where we need to take
2324 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2325 * there.
2326 *
2327 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2328 *
2329 * When a buffer has its BH_JBD bit set it is immune from being released by
2330 * core kernel code, mainly via ->b_count.
2331 *
2332 * A journal_head is detached from its buffer_head when the journal_head's
2333 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2334 * transaction (b_cp_transaction) hold their references to b_jcount.
2335 *
2336 * Various places in the kernel want to attach a journal_head to a buffer_head
2337 * _before_ attaching the journal_head to a transaction. To protect the
2338 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2339 * journal_head's b_jcount refcount by one. The caller must call
2340 * jbd2_journal_put_journal_head() to undo this.
2341 *
2342 * So the typical usage would be:
2343 *
2344 * (Attach a journal_head if needed. Increments b_jcount)
2345 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2346 * ...
2347 * (Get another reference for transaction)
2348 * jbd2_journal_grab_journal_head(bh);
2349 * jh->b_transaction = xxx;
2350 * (Put original reference)
2351 * jbd2_journal_put_journal_head(jh);
2352 */
2353
2354 /*
2355 * Give a buffer_head a journal_head.
2356 *
2357 * May sleep.
2358 */
2359 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2360 {
2361 struct journal_head *jh;
2362 struct journal_head *new_jh = NULL;
2363
2364 repeat:
2365 if (!buffer_jbd(bh)) {
2366 new_jh = journal_alloc_journal_head();
2367 memset(new_jh, 0, sizeof(*new_jh));
2368 }
2369
2370 jbd_lock_bh_journal_head(bh);
2371 if (buffer_jbd(bh)) {
2372 jh = bh2jh(bh);
2373 } else {
2374 J_ASSERT_BH(bh,
2375 (atomic_read(&bh->b_count) > 0) ||
2376 (bh->b_page && bh->b_page->mapping));
2377
2378 if (!new_jh) {
2379 jbd_unlock_bh_journal_head(bh);
2380 goto repeat;
2381 }
2382
2383 jh = new_jh;
2384 new_jh = NULL; /* We consumed it */
2385 set_buffer_jbd(bh);
2386 bh->b_private = jh;
2387 jh->b_bh = bh;
2388 get_bh(bh);
2389 BUFFER_TRACE(bh, "added journal_head");
2390 }
2391 jh->b_jcount++;
2392 jbd_unlock_bh_journal_head(bh);
2393 if (new_jh)
2394 journal_free_journal_head(new_jh);
2395 return bh->b_private;
2396 }
2397
2398 /*
2399 * Grab a ref against this buffer_head's journal_head. If it ended up not
2400 * having a journal_head, return NULL
2401 */
2402 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2403 {
2404 struct journal_head *jh = NULL;
2405
2406 jbd_lock_bh_journal_head(bh);
2407 if (buffer_jbd(bh)) {
2408 jh = bh2jh(bh);
2409 jh->b_jcount++;
2410 }
2411 jbd_unlock_bh_journal_head(bh);
2412 return jh;
2413 }
2414
2415 static void __journal_remove_journal_head(struct buffer_head *bh)
2416 {
2417 struct journal_head *jh = bh2jh(bh);
2418
2419 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2420 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2421 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2422 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2423 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2424 J_ASSERT_BH(bh, buffer_jbd(bh));
2425 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2426 BUFFER_TRACE(bh, "remove journal_head");
2427 if (jh->b_frozen_data) {
2428 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2429 jbd2_free(jh->b_frozen_data, bh->b_size);
2430 }
2431 if (jh->b_committed_data) {
2432 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2433 jbd2_free(jh->b_committed_data, bh->b_size);
2434 }
2435 bh->b_private = NULL;
2436 jh->b_bh = NULL; /* debug, really */
2437 clear_buffer_jbd(bh);
2438 journal_free_journal_head(jh);
2439 }
2440
2441 /*
2442 * Drop a reference on the passed journal_head. If it fell to zero then
2443 * release the journal_head from the buffer_head.
2444 */
2445 void jbd2_journal_put_journal_head(struct journal_head *jh)
2446 {
2447 struct buffer_head *bh = jh2bh(jh);
2448
2449 jbd_lock_bh_journal_head(bh);
2450 J_ASSERT_JH(jh, jh->b_jcount > 0);
2451 --jh->b_jcount;
2452 if (!jh->b_jcount) {
2453 __journal_remove_journal_head(bh);
2454 jbd_unlock_bh_journal_head(bh);
2455 __brelse(bh);
2456 } else
2457 jbd_unlock_bh_journal_head(bh);
2458 }
2459
2460 /*
2461 * Initialize jbd inode head
2462 */
2463 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2464 {
2465 jinode->i_transaction = NULL;
2466 jinode->i_next_transaction = NULL;
2467 jinode->i_vfs_inode = inode;
2468 jinode->i_flags = 0;
2469 INIT_LIST_HEAD(&jinode->i_list);
2470 }
2471
2472 /*
2473 * Function to be called before we start removing inode from memory (i.e.,
2474 * clear_inode() is a fine place to be called from). It removes inode from
2475 * transaction's lists.
2476 */
2477 void jbd2_journal_release_jbd_inode(journal_t *journal,
2478 struct jbd2_inode *jinode)
2479 {
2480 if (!journal)
2481 return;
2482 restart:
2483 spin_lock(&journal->j_list_lock);
2484 /* Is commit writing out inode - we have to wait */
2485 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2486 wait_queue_head_t *wq;
2487 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2488 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2489 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2490 spin_unlock(&journal->j_list_lock);
2491 schedule();
2492 finish_wait(wq, &wait.wait);
2493 goto restart;
2494 }
2495
2496 if (jinode->i_transaction) {
2497 list_del(&jinode->i_list);
2498 jinode->i_transaction = NULL;
2499 }
2500 spin_unlock(&journal->j_list_lock);
2501 }
2502
2503
2504 #ifdef CONFIG_PROC_FS
2505
2506 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2507
2508 static void __init jbd2_create_jbd_stats_proc_entry(void)
2509 {
2510 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2511 }
2512
2513 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2514 {
2515 if (proc_jbd2_stats)
2516 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2517 }
2518
2519 #else
2520
2521 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2522 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2523
2524 #endif
2525
2526 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2527
2528 static int __init jbd2_journal_init_handle_cache(void)
2529 {
2530 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2531 if (jbd2_handle_cache == NULL) {
2532 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2533 return -ENOMEM;
2534 }
2535 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2536 if (jbd2_inode_cache == NULL) {
2537 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2538 kmem_cache_destroy(jbd2_handle_cache);
2539 return -ENOMEM;
2540 }
2541 return 0;
2542 }
2543
2544 static void jbd2_journal_destroy_handle_cache(void)
2545 {
2546 if (jbd2_handle_cache)
2547 kmem_cache_destroy(jbd2_handle_cache);
2548 if (jbd2_inode_cache)
2549 kmem_cache_destroy(jbd2_inode_cache);
2550
2551 }
2552
2553 /*
2554 * Module startup and shutdown
2555 */
2556
2557 static int __init journal_init_caches(void)
2558 {
2559 int ret;
2560
2561 ret = jbd2_journal_init_revoke_caches();
2562 if (ret == 0)
2563 ret = jbd2_journal_init_journal_head_cache();
2564 if (ret == 0)
2565 ret = jbd2_journal_init_handle_cache();
2566 if (ret == 0)
2567 ret = jbd2_journal_init_transaction_cache();
2568 return ret;
2569 }
2570
2571 static void jbd2_journal_destroy_caches(void)
2572 {
2573 jbd2_journal_destroy_revoke_caches();
2574 jbd2_journal_destroy_journal_head_cache();
2575 jbd2_journal_destroy_handle_cache();
2576 jbd2_journal_destroy_transaction_cache();
2577 jbd2_journal_destroy_slabs();
2578 }
2579
2580 static int __init journal_init(void)
2581 {
2582 int ret;
2583
2584 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2585
2586 ret = journal_init_caches();
2587 if (ret == 0) {
2588 jbd2_create_jbd_stats_proc_entry();
2589 } else {
2590 jbd2_journal_destroy_caches();
2591 }
2592 return ret;
2593 }
2594
2595 static void __exit journal_exit(void)
2596 {
2597 #ifdef CONFIG_JBD2_DEBUG
2598 int n = atomic_read(&nr_journal_heads);
2599 if (n)
2600 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2601 #endif
2602 jbd2_remove_jbd_stats_proc_entry();
2603 jbd2_journal_destroy_caches();
2604 }
2605
2606 MODULE_LICENSE("GPL");
2607 module_init(journal_init);
2608 module_exit(journal_exit);
2609