Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
102
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
105
106 /* Checksumming functions */
107 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
108 {
109 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
110 return 1;
111
112 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
113 }
114
115 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
116 {
117 __u32 csum, old_csum;
118
119 old_csum = sb->s_checksum;
120 sb->s_checksum = 0;
121 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
122 sb->s_checksum = old_csum;
123
124 return cpu_to_be32(csum);
125 }
126
127 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
128 {
129 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
130 return 1;
131
132 return sb->s_checksum == jbd2_superblock_csum(j, sb);
133 }
134
135 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
136 {
137 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
138 return;
139
140 sb->s_checksum = jbd2_superblock_csum(j, sb);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
147 static void commit_timeout(unsigned long __data)
148 {
149 struct task_struct * p = (struct task_struct *) __data;
150
151 wake_up_process(p);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk.
163 *
164 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
165 * of the data in that part of the log has been rewritten elsewhere on
166 * the disk. Flushing these old buffers to reclaim space in the log is
167 * known as checkpointing, and this thread is responsible for that job.
168 */
169
170 static int kjournald2(void *arg)
171 {
172 journal_t *journal = arg;
173 transaction_t *transaction;
174
175 /*
176 * Set up an interval timer which can be used to trigger a commit wakeup
177 * after the commit interval expires
178 */
179 setup_timer(&journal->j_commit_timer, commit_timeout,
180 (unsigned long)current);
181
182 set_freezable();
183
184 /* Record that the journal thread is running */
185 journal->j_task = current;
186 wake_up(&journal->j_wait_done_commit);
187
188 /*
189 * And now, wait forever for commit wakeup events.
190 */
191 write_lock(&journal->j_state_lock);
192
193 loop:
194 if (journal->j_flags & JBD2_UNMOUNT)
195 goto end_loop;
196
197 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
198 journal->j_commit_sequence, journal->j_commit_request);
199
200 if (journal->j_commit_sequence != journal->j_commit_request) {
201 jbd_debug(1, "OK, requests differ\n");
202 write_unlock(&journal->j_state_lock);
203 del_timer_sync(&journal->j_commit_timer);
204 jbd2_journal_commit_transaction(journal);
205 write_lock(&journal->j_state_lock);
206 goto loop;
207 }
208
209 wake_up(&journal->j_wait_done_commit);
210 if (freezing(current)) {
211 /*
212 * The simpler the better. Flushing journal isn't a
213 * good idea, because that depends on threads that may
214 * be already stopped.
215 */
216 jbd_debug(1, "Now suspending kjournald2\n");
217 write_unlock(&journal->j_state_lock);
218 try_to_freeze();
219 write_lock(&journal->j_state_lock);
220 } else {
221 /*
222 * We assume on resume that commits are already there,
223 * so we don't sleep
224 */
225 DEFINE_WAIT(wait);
226 int should_sleep = 1;
227
228 prepare_to_wait(&journal->j_wait_commit, &wait,
229 TASK_INTERRUPTIBLE);
230 if (journal->j_commit_sequence != journal->j_commit_request)
231 should_sleep = 0;
232 transaction = journal->j_running_transaction;
233 if (transaction && time_after_eq(jiffies,
234 transaction->t_expires))
235 should_sleep = 0;
236 if (journal->j_flags & JBD2_UNMOUNT)
237 should_sleep = 0;
238 if (should_sleep) {
239 write_unlock(&journal->j_state_lock);
240 schedule();
241 write_lock(&journal->j_state_lock);
242 }
243 finish_wait(&journal->j_wait_commit, &wait);
244 }
245
246 jbd_debug(1, "kjournald2 wakes\n");
247
248 /*
249 * Were we woken up by a commit wakeup event?
250 */
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
253 journal->j_commit_request = transaction->t_tid;
254 jbd_debug(1, "woke because of timeout\n");
255 }
256 goto loop;
257
258 end_loop:
259 write_unlock(&journal->j_state_lock);
260 del_timer_sync(&journal->j_commit_timer);
261 journal->j_task = NULL;
262 wake_up(&journal->j_wait_done_commit);
263 jbd_debug(1, "Journal thread exiting.\n");
264 return 0;
265 }
266
267 static int jbd2_journal_start_thread(journal_t *journal)
268 {
269 struct task_struct *t;
270
271 t = kthread_run(kjournald2, journal, "jbd2/%s",
272 journal->j_devname);
273 if (IS_ERR(t))
274 return PTR_ERR(t);
275
276 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277 return 0;
278 }
279
280 static void journal_kill_thread(journal_t *journal)
281 {
282 write_lock(&journal->j_state_lock);
283 journal->j_flags |= JBD2_UNMOUNT;
284
285 while (journal->j_task) {
286 wake_up(&journal->j_wait_commit);
287 write_unlock(&journal->j_state_lock);
288 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289 write_lock(&journal->j_state_lock);
290 }
291 write_unlock(&journal->j_state_lock);
292 }
293
294 /*
295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296 *
297 * Writes a metadata buffer to a given disk block. The actual IO is not
298 * performed but a new buffer_head is constructed which labels the data
299 * to be written with the correct destination disk block.
300 *
301 * Any magic-number escaping which needs to be done will cause a
302 * copy-out here. If the buffer happens to start with the
303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304 * magic number is only written to the log for descripter blocks. In
305 * this case, we copy the data and replace the first word with 0, and we
306 * return a result code which indicates that this buffer needs to be
307 * marked as an escaped buffer in the corresponding log descriptor
308 * block. The missing word can then be restored when the block is read
309 * during recovery.
310 *
311 * If the source buffer has already been modified by a new transaction
312 * since we took the last commit snapshot, we use the frozen copy of
313 * that data for IO. If we end up using the existing buffer_head's data
314 * for the write, then we *have* to lock the buffer to prevent anyone
315 * else from using and possibly modifying it while the IO is in
316 * progress.
317 *
318 * The function returns a pointer to the buffer_heads to be used for IO.
319 *
320 * We assume that the journal has already been locked in this function.
321 *
322 * Return value:
323 * <0: Error
324 * >=0: Finished OK
325 *
326 * On success:
327 * Bit 0 set == escape performed on the data
328 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
329 */
330
331 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
332 struct journal_head *jh_in,
333 struct journal_head **jh_out,
334 unsigned long long blocknr)
335 {
336 int need_copy_out = 0;
337 int done_copy_out = 0;
338 int do_escape = 0;
339 char *mapped_data;
340 struct buffer_head *new_bh;
341 struct journal_head *new_jh;
342 struct page *new_page;
343 unsigned int new_offset;
344 struct buffer_head *bh_in = jh2bh(jh_in);
345 journal_t *journal = transaction->t_journal;
346
347 /*
348 * The buffer really shouldn't be locked: only the current committing
349 * transaction is allowed to write it, so nobody else is allowed
350 * to do any IO.
351 *
352 * akpm: except if we're journalling data, and write() output is
353 * also part of a shared mapping, and another thread has
354 * decided to launch a writepage() against this buffer.
355 */
356 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
357
358 retry_alloc:
359 new_bh = alloc_buffer_head(GFP_NOFS);
360 if (!new_bh) {
361 /*
362 * Failure is not an option, but __GFP_NOFAIL is going
363 * away; so we retry ourselves here.
364 */
365 congestion_wait(BLK_RW_ASYNC, HZ/50);
366 goto retry_alloc;
367 }
368
369 /* keep subsequent assertions sane */
370 atomic_set(&new_bh->b_count, 1);
371 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
372
373 /*
374 * If a new transaction has already done a buffer copy-out, then
375 * we use that version of the data for the commit.
376 */
377 jbd_lock_bh_state(bh_in);
378 repeat:
379 if (jh_in->b_frozen_data) {
380 done_copy_out = 1;
381 new_page = virt_to_page(jh_in->b_frozen_data);
382 new_offset = offset_in_page(jh_in->b_frozen_data);
383 } else {
384 new_page = jh2bh(jh_in)->b_page;
385 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
386 }
387
388 mapped_data = kmap_atomic(new_page);
389 /*
390 * Fire data frozen trigger if data already wasn't frozen. Do this
391 * before checking for escaping, as the trigger may modify the magic
392 * offset. If a copy-out happens afterwards, it will have the correct
393 * data in the buffer.
394 */
395 if (!done_copy_out)
396 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
397 jh_in->b_triggers);
398
399 /*
400 * Check for escaping
401 */
402 if (*((__be32 *)(mapped_data + new_offset)) ==
403 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
404 need_copy_out = 1;
405 do_escape = 1;
406 }
407 kunmap_atomic(mapped_data);
408
409 /*
410 * Do we need to do a data copy?
411 */
412 if (need_copy_out && !done_copy_out) {
413 char *tmp;
414
415 jbd_unlock_bh_state(bh_in);
416 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
417 if (!tmp) {
418 jbd2_journal_put_journal_head(new_jh);
419 return -ENOMEM;
420 }
421 jbd_lock_bh_state(bh_in);
422 if (jh_in->b_frozen_data) {
423 jbd2_free(tmp, bh_in->b_size);
424 goto repeat;
425 }
426
427 jh_in->b_frozen_data = tmp;
428 mapped_data = kmap_atomic(new_page);
429 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
430 kunmap_atomic(mapped_data);
431
432 new_page = virt_to_page(tmp);
433 new_offset = offset_in_page(tmp);
434 done_copy_out = 1;
435
436 /*
437 * This isn't strictly necessary, as we're using frozen
438 * data for the escaping, but it keeps consistency with
439 * b_frozen_data usage.
440 */
441 jh_in->b_frozen_triggers = jh_in->b_triggers;
442 }
443
444 /*
445 * Did we need to do an escaping? Now we've done all the
446 * copying, we can finally do so.
447 */
448 if (do_escape) {
449 mapped_data = kmap_atomic(new_page);
450 *((unsigned int *)(mapped_data + new_offset)) = 0;
451 kunmap_atomic(mapped_data);
452 }
453
454 set_bh_page(new_bh, new_page, new_offset);
455 new_jh->b_transaction = NULL;
456 new_bh->b_size = jh2bh(jh_in)->b_size;
457 new_bh->b_bdev = transaction->t_journal->j_dev;
458 new_bh->b_blocknr = blocknr;
459 set_buffer_mapped(new_bh);
460 set_buffer_dirty(new_bh);
461
462 *jh_out = new_jh;
463
464 /*
465 * The to-be-written buffer needs to get moved to the io queue,
466 * and the original buffer whose contents we are shadowing or
467 * copying is moved to the transaction's shadow queue.
468 */
469 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
470 spin_lock(&journal->j_list_lock);
471 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
472 spin_unlock(&journal->j_list_lock);
473 jbd_unlock_bh_state(bh_in);
474
475 JBUFFER_TRACE(new_jh, "file as BJ_IO");
476 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
477
478 return do_escape | (done_copy_out << 1);
479 }
480
481 /*
482 * Allocation code for the journal file. Manage the space left in the
483 * journal, so that we can begin checkpointing when appropriate.
484 */
485
486 /*
487 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
488 *
489 * Called with the journal already locked.
490 *
491 * Called under j_state_lock
492 */
493
494 int __jbd2_log_space_left(journal_t *journal)
495 {
496 int left = journal->j_free;
497
498 /* assert_spin_locked(&journal->j_state_lock); */
499
500 /*
501 * Be pessimistic here about the number of those free blocks which
502 * might be required for log descriptor control blocks.
503 */
504
505 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
506
507 left -= MIN_LOG_RESERVED_BLOCKS;
508
509 if (left <= 0)
510 return 0;
511 left -= (left >> 3);
512 return left;
513 }
514
515 /*
516 * Called with j_state_lock locked for writing.
517 * Returns true if a transaction commit was started.
518 */
519 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
520 {
521 /* Return if the txn has already requested to be committed */
522 if (journal->j_commit_request == target)
523 return 0;
524
525 /*
526 * The only transaction we can possibly wait upon is the
527 * currently running transaction (if it exists). Otherwise,
528 * the target tid must be an old one.
529 */
530 if (journal->j_running_transaction &&
531 journal->j_running_transaction->t_tid == target) {
532 /*
533 * We want a new commit: OK, mark the request and wakeup the
534 * commit thread. We do _not_ do the commit ourselves.
535 */
536
537 journal->j_commit_request = target;
538 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
539 journal->j_commit_request,
540 journal->j_commit_sequence);
541 journal->j_running_transaction->t_requested = jiffies;
542 wake_up(&journal->j_wait_commit);
543 return 1;
544 } else if (!tid_geq(journal->j_commit_request, target))
545 /* This should never happen, but if it does, preserve
546 the evidence before kjournald goes into a loop and
547 increments j_commit_sequence beyond all recognition. */
548 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
549 journal->j_commit_request,
550 journal->j_commit_sequence,
551 target, journal->j_running_transaction ?
552 journal->j_running_transaction->t_tid : 0);
553 return 0;
554 }
555
556 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
557 {
558 int ret;
559
560 write_lock(&journal->j_state_lock);
561 ret = __jbd2_log_start_commit(journal, tid);
562 write_unlock(&journal->j_state_lock);
563 return ret;
564 }
565
566 /*
567 * Force and wait upon a commit if the calling process is not within
568 * transaction. This is used for forcing out undo-protected data which contains
569 * bitmaps, when the fs is running out of space.
570 *
571 * We can only force the running transaction if we don't have an active handle;
572 * otherwise, we will deadlock.
573 *
574 * Returns true if a transaction was started.
575 */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578 transaction_t *transaction = NULL;
579 tid_t tid;
580 int need_to_start = 0;
581
582 read_lock(&journal->j_state_lock);
583 if (journal->j_running_transaction && !current->journal_info) {
584 transaction = journal->j_running_transaction;
585 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
586 need_to_start = 1;
587 } else if (journal->j_committing_transaction)
588 transaction = journal->j_committing_transaction;
589
590 if (!transaction) {
591 read_unlock(&journal->j_state_lock);
592 return 0; /* Nothing to retry */
593 }
594
595 tid = transaction->t_tid;
596 read_unlock(&journal->j_state_lock);
597 if (need_to_start)
598 jbd2_log_start_commit(journal, tid);
599 jbd2_log_wait_commit(journal, tid);
600 return 1;
601 }
602
603 /*
604 * Start a commit of the current running transaction (if any). Returns true
605 * if a transaction is going to be committed (or is currently already
606 * committing), and fills its tid in at *ptid
607 */
608 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
609 {
610 int ret = 0;
611
612 write_lock(&journal->j_state_lock);
613 if (journal->j_running_transaction) {
614 tid_t tid = journal->j_running_transaction->t_tid;
615
616 __jbd2_log_start_commit(journal, tid);
617 /* There's a running transaction and we've just made sure
618 * it's commit has been scheduled. */
619 if (ptid)
620 *ptid = tid;
621 ret = 1;
622 } else if (journal->j_committing_transaction) {
623 /*
624 * If commit has been started, then we have to wait for
625 * completion of that transaction.
626 */
627 if (ptid)
628 *ptid = journal->j_committing_transaction->t_tid;
629 ret = 1;
630 }
631 write_unlock(&journal->j_state_lock);
632 return ret;
633 }
634
635 /*
636 * Return 1 if a given transaction has not yet sent barrier request
637 * connected with a transaction commit. If 0 is returned, transaction
638 * may or may not have sent the barrier. Used to avoid sending barrier
639 * twice in common cases.
640 */
641 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
642 {
643 int ret = 0;
644 transaction_t *commit_trans;
645
646 if (!(journal->j_flags & JBD2_BARRIER))
647 return 0;
648 read_lock(&journal->j_state_lock);
649 /* Transaction already committed? */
650 if (tid_geq(journal->j_commit_sequence, tid))
651 goto out;
652 commit_trans = journal->j_committing_transaction;
653 if (!commit_trans || commit_trans->t_tid != tid) {
654 ret = 1;
655 goto out;
656 }
657 /*
658 * Transaction is being committed and we already proceeded to
659 * submitting a flush to fs partition?
660 */
661 if (journal->j_fs_dev != journal->j_dev) {
662 if (!commit_trans->t_need_data_flush ||
663 commit_trans->t_state >= T_COMMIT_DFLUSH)
664 goto out;
665 } else {
666 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
667 goto out;
668 }
669 ret = 1;
670 out:
671 read_unlock(&journal->j_state_lock);
672 return ret;
673 }
674 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
675
676 /*
677 * Wait for a specified commit to complete.
678 * The caller may not hold the journal lock.
679 */
680 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
681 {
682 int err = 0;
683
684 read_lock(&journal->j_state_lock);
685 #ifdef CONFIG_JBD2_DEBUG
686 if (!tid_geq(journal->j_commit_request, tid)) {
687 printk(KERN_EMERG
688 "%s: error: j_commit_request=%d, tid=%d\n",
689 __func__, journal->j_commit_request, tid);
690 }
691 #endif
692 while (tid_gt(tid, journal->j_commit_sequence)) {
693 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
694 tid, journal->j_commit_sequence);
695 wake_up(&journal->j_wait_commit);
696 read_unlock(&journal->j_state_lock);
697 wait_event(journal->j_wait_done_commit,
698 !tid_gt(tid, journal->j_commit_sequence));
699 read_lock(&journal->j_state_lock);
700 }
701 read_unlock(&journal->j_state_lock);
702
703 if (unlikely(is_journal_aborted(journal))) {
704 printk(KERN_EMERG "journal commit I/O error\n");
705 err = -EIO;
706 }
707 return err;
708 }
709
710 /*
711 * When this function returns the transaction corresponding to tid
712 * will be completed. If the transaction has currently running, start
713 * committing that transaction before waiting for it to complete. If
714 * the transaction id is stale, it is by definition already completed,
715 * so just return SUCCESS.
716 */
717 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
718 {
719 int need_to_wait = 1;
720
721 read_lock(&journal->j_state_lock);
722 if (journal->j_running_transaction &&
723 journal->j_running_transaction->t_tid == tid) {
724 if (journal->j_commit_request != tid) {
725 /* transaction not yet started, so request it */
726 read_unlock(&journal->j_state_lock);
727 jbd2_log_start_commit(journal, tid);
728 goto wait_commit;
729 }
730 } else if (!(journal->j_committing_transaction &&
731 journal->j_committing_transaction->t_tid == tid))
732 need_to_wait = 0;
733 read_unlock(&journal->j_state_lock);
734 if (!need_to_wait)
735 return 0;
736 wait_commit:
737 return jbd2_log_wait_commit(journal, tid);
738 }
739 EXPORT_SYMBOL(jbd2_complete_transaction);
740
741 /*
742 * Log buffer allocation routines:
743 */
744
745 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
746 {
747 unsigned long blocknr;
748
749 write_lock(&journal->j_state_lock);
750 J_ASSERT(journal->j_free > 1);
751
752 blocknr = journal->j_head;
753 journal->j_head++;
754 journal->j_free--;
755 if (journal->j_head == journal->j_last)
756 journal->j_head = journal->j_first;
757 write_unlock(&journal->j_state_lock);
758 return jbd2_journal_bmap(journal, blocknr, retp);
759 }
760
761 /*
762 * Conversion of logical to physical block numbers for the journal
763 *
764 * On external journals the journal blocks are identity-mapped, so
765 * this is a no-op. If needed, we can use j_blk_offset - everything is
766 * ready.
767 */
768 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
769 unsigned long long *retp)
770 {
771 int err = 0;
772 unsigned long long ret;
773
774 if (journal->j_inode) {
775 ret = bmap(journal->j_inode, blocknr);
776 if (ret)
777 *retp = ret;
778 else {
779 printk(KERN_ALERT "%s: journal block not found "
780 "at offset %lu on %s\n",
781 __func__, blocknr, journal->j_devname);
782 err = -EIO;
783 __journal_abort_soft(journal, err);
784 }
785 } else {
786 *retp = blocknr; /* +journal->j_blk_offset */
787 }
788 return err;
789 }
790
791 /*
792 * We play buffer_head aliasing tricks to write data/metadata blocks to
793 * the journal without copying their contents, but for journal
794 * descriptor blocks we do need to generate bona fide buffers.
795 *
796 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
797 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
798 * But we don't bother doing that, so there will be coherency problems with
799 * mmaps of blockdevs which hold live JBD-controlled filesystems.
800 */
801 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
802 {
803 struct buffer_head *bh;
804 unsigned long long blocknr;
805 int err;
806
807 err = jbd2_journal_next_log_block(journal, &blocknr);
808
809 if (err)
810 return NULL;
811
812 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
813 if (!bh)
814 return NULL;
815 lock_buffer(bh);
816 memset(bh->b_data, 0, journal->j_blocksize);
817 set_buffer_uptodate(bh);
818 unlock_buffer(bh);
819 BUFFER_TRACE(bh, "return this buffer");
820 return jbd2_journal_add_journal_head(bh);
821 }
822
823 /*
824 * Return tid of the oldest transaction in the journal and block in the journal
825 * where the transaction starts.
826 *
827 * If the journal is now empty, return which will be the next transaction ID
828 * we will write and where will that transaction start.
829 *
830 * The return value is 0 if journal tail cannot be pushed any further, 1 if
831 * it can.
832 */
833 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
834 unsigned long *block)
835 {
836 transaction_t *transaction;
837 int ret;
838
839 read_lock(&journal->j_state_lock);
840 spin_lock(&journal->j_list_lock);
841 transaction = journal->j_checkpoint_transactions;
842 if (transaction) {
843 *tid = transaction->t_tid;
844 *block = transaction->t_log_start;
845 } else if ((transaction = journal->j_committing_transaction) != NULL) {
846 *tid = transaction->t_tid;
847 *block = transaction->t_log_start;
848 } else if ((transaction = journal->j_running_transaction) != NULL) {
849 *tid = transaction->t_tid;
850 *block = journal->j_head;
851 } else {
852 *tid = journal->j_transaction_sequence;
853 *block = journal->j_head;
854 }
855 ret = tid_gt(*tid, journal->j_tail_sequence);
856 spin_unlock(&journal->j_list_lock);
857 read_unlock(&journal->j_state_lock);
858
859 return ret;
860 }
861
862 /*
863 * Update information in journal structure and in on disk journal superblock
864 * about log tail. This function does not check whether information passed in
865 * really pushes log tail further. It's responsibility of the caller to make
866 * sure provided log tail information is valid (e.g. by holding
867 * j_checkpoint_mutex all the time between computing log tail and calling this
868 * function as is the case with jbd2_cleanup_journal_tail()).
869 *
870 * Requires j_checkpoint_mutex
871 */
872 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
873 {
874 unsigned long freed;
875
876 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
877
878 /*
879 * We cannot afford for write to remain in drive's caches since as
880 * soon as we update j_tail, next transaction can start reusing journal
881 * space and if we lose sb update during power failure we'd replay
882 * old transaction with possibly newly overwritten data.
883 */
884 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
885 write_lock(&journal->j_state_lock);
886 freed = block - journal->j_tail;
887 if (block < journal->j_tail)
888 freed += journal->j_last - journal->j_first;
889
890 trace_jbd2_update_log_tail(journal, tid, block, freed);
891 jbd_debug(1,
892 "Cleaning journal tail from %d to %d (offset %lu), "
893 "freeing %lu\n",
894 journal->j_tail_sequence, tid, block, freed);
895
896 journal->j_free += freed;
897 journal->j_tail_sequence = tid;
898 journal->j_tail = block;
899 write_unlock(&journal->j_state_lock);
900 }
901
902 /*
903 * This is a variaon of __jbd2_update_log_tail which checks for validity of
904 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
905 * with other threads updating log tail.
906 */
907 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
908 {
909 mutex_lock(&journal->j_checkpoint_mutex);
910 if (tid_gt(tid, journal->j_tail_sequence))
911 __jbd2_update_log_tail(journal, tid, block);
912 mutex_unlock(&journal->j_checkpoint_mutex);
913 }
914
915 struct jbd2_stats_proc_session {
916 journal_t *journal;
917 struct transaction_stats_s *stats;
918 int start;
919 int max;
920 };
921
922 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
923 {
924 return *pos ? NULL : SEQ_START_TOKEN;
925 }
926
927 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
928 {
929 return NULL;
930 }
931
932 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
933 {
934 struct jbd2_stats_proc_session *s = seq->private;
935
936 if (v != SEQ_START_TOKEN)
937 return 0;
938 seq_printf(seq, "%lu transactions (%lu requested), "
939 "each up to %u blocks\n",
940 s->stats->ts_tid, s->stats->ts_requested,
941 s->journal->j_max_transaction_buffers);
942 if (s->stats->ts_tid == 0)
943 return 0;
944 seq_printf(seq, "average: \n %ums waiting for transaction\n",
945 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
946 seq_printf(seq, " %ums request delay\n",
947 (s->stats->ts_requested == 0) ? 0 :
948 jiffies_to_msecs(s->stats->run.rs_request_delay /
949 s->stats->ts_requested));
950 seq_printf(seq, " %ums running transaction\n",
951 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
952 seq_printf(seq, " %ums transaction was being locked\n",
953 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
954 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
955 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
956 seq_printf(seq, " %ums logging transaction\n",
957 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
958 seq_printf(seq, " %lluus average transaction commit time\n",
959 div_u64(s->journal->j_average_commit_time, 1000));
960 seq_printf(seq, " %lu handles per transaction\n",
961 s->stats->run.rs_handle_count / s->stats->ts_tid);
962 seq_printf(seq, " %lu blocks per transaction\n",
963 s->stats->run.rs_blocks / s->stats->ts_tid);
964 seq_printf(seq, " %lu logged blocks per transaction\n",
965 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
966 return 0;
967 }
968
969 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
970 {
971 }
972
973 static const struct seq_operations jbd2_seq_info_ops = {
974 .start = jbd2_seq_info_start,
975 .next = jbd2_seq_info_next,
976 .stop = jbd2_seq_info_stop,
977 .show = jbd2_seq_info_show,
978 };
979
980 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
981 {
982 journal_t *journal = PDE(inode)->data;
983 struct jbd2_stats_proc_session *s;
984 int rc, size;
985
986 s = kmalloc(sizeof(*s), GFP_KERNEL);
987 if (s == NULL)
988 return -ENOMEM;
989 size = sizeof(struct transaction_stats_s);
990 s->stats = kmalloc(size, GFP_KERNEL);
991 if (s->stats == NULL) {
992 kfree(s);
993 return -ENOMEM;
994 }
995 spin_lock(&journal->j_history_lock);
996 memcpy(s->stats, &journal->j_stats, size);
997 s->journal = journal;
998 spin_unlock(&journal->j_history_lock);
999
1000 rc = seq_open(file, &jbd2_seq_info_ops);
1001 if (rc == 0) {
1002 struct seq_file *m = file->private_data;
1003 m->private = s;
1004 } else {
1005 kfree(s->stats);
1006 kfree(s);
1007 }
1008 return rc;
1009
1010 }
1011
1012 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1013 {
1014 struct seq_file *seq = file->private_data;
1015 struct jbd2_stats_proc_session *s = seq->private;
1016 kfree(s->stats);
1017 kfree(s);
1018 return seq_release(inode, file);
1019 }
1020
1021 static const struct file_operations jbd2_seq_info_fops = {
1022 .owner = THIS_MODULE,
1023 .open = jbd2_seq_info_open,
1024 .read = seq_read,
1025 .llseek = seq_lseek,
1026 .release = jbd2_seq_info_release,
1027 };
1028
1029 static struct proc_dir_entry *proc_jbd2_stats;
1030
1031 static void jbd2_stats_proc_init(journal_t *journal)
1032 {
1033 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1034 if (journal->j_proc_entry) {
1035 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1036 &jbd2_seq_info_fops, journal);
1037 }
1038 }
1039
1040 static void jbd2_stats_proc_exit(journal_t *journal)
1041 {
1042 remove_proc_entry("info", journal->j_proc_entry);
1043 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1044 }
1045
1046 /*
1047 * Management for journal control blocks: functions to create and
1048 * destroy journal_t structures, and to initialise and read existing
1049 * journal blocks from disk. */
1050
1051 /* First: create and setup a journal_t object in memory. We initialise
1052 * very few fields yet: that has to wait until we have created the
1053 * journal structures from from scratch, or loaded them from disk. */
1054
1055 static journal_t * journal_init_common (void)
1056 {
1057 journal_t *journal;
1058 int err;
1059
1060 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1061 if (!journal)
1062 return NULL;
1063
1064 init_waitqueue_head(&journal->j_wait_transaction_locked);
1065 init_waitqueue_head(&journal->j_wait_logspace);
1066 init_waitqueue_head(&journal->j_wait_done_commit);
1067 init_waitqueue_head(&journal->j_wait_checkpoint);
1068 init_waitqueue_head(&journal->j_wait_commit);
1069 init_waitqueue_head(&journal->j_wait_updates);
1070 mutex_init(&journal->j_barrier);
1071 mutex_init(&journal->j_checkpoint_mutex);
1072 spin_lock_init(&journal->j_revoke_lock);
1073 spin_lock_init(&journal->j_list_lock);
1074 rwlock_init(&journal->j_state_lock);
1075
1076 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1077 journal->j_min_batch_time = 0;
1078 journal->j_max_batch_time = 15000; /* 15ms */
1079
1080 /* The journal is marked for error until we succeed with recovery! */
1081 journal->j_flags = JBD2_ABORT;
1082
1083 /* Set up a default-sized revoke table for the new mount. */
1084 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1085 if (err) {
1086 kfree(journal);
1087 return NULL;
1088 }
1089
1090 spin_lock_init(&journal->j_history_lock);
1091
1092 return journal;
1093 }
1094
1095 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1096 *
1097 * Create a journal structure assigned some fixed set of disk blocks to
1098 * the journal. We don't actually touch those disk blocks yet, but we
1099 * need to set up all of the mapping information to tell the journaling
1100 * system where the journal blocks are.
1101 *
1102 */
1103
1104 /**
1105 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1106 * @bdev: Block device on which to create the journal
1107 * @fs_dev: Device which hold journalled filesystem for this journal.
1108 * @start: Block nr Start of journal.
1109 * @len: Length of the journal in blocks.
1110 * @blocksize: blocksize of journalling device
1111 *
1112 * Returns: a newly created journal_t *
1113 *
1114 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1115 * range of blocks on an arbitrary block device.
1116 *
1117 */
1118 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1119 struct block_device *fs_dev,
1120 unsigned long long start, int len, int blocksize)
1121 {
1122 journal_t *journal = journal_init_common();
1123 struct buffer_head *bh;
1124 char *p;
1125 int n;
1126
1127 if (!journal)
1128 return NULL;
1129
1130 /* journal descriptor can store up to n blocks -bzzz */
1131 journal->j_blocksize = blocksize;
1132 journal->j_dev = bdev;
1133 journal->j_fs_dev = fs_dev;
1134 journal->j_blk_offset = start;
1135 journal->j_maxlen = len;
1136 bdevname(journal->j_dev, journal->j_devname);
1137 p = journal->j_devname;
1138 while ((p = strchr(p, '/')))
1139 *p = '!';
1140 jbd2_stats_proc_init(journal);
1141 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1142 journal->j_wbufsize = n;
1143 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1144 if (!journal->j_wbuf) {
1145 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1146 __func__);
1147 goto out_err;
1148 }
1149
1150 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1151 if (!bh) {
1152 printk(KERN_ERR
1153 "%s: Cannot get buffer for journal superblock\n",
1154 __func__);
1155 goto out_err;
1156 }
1157 journal->j_sb_buffer = bh;
1158 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1159
1160 return journal;
1161 out_err:
1162 kfree(journal->j_wbuf);
1163 jbd2_stats_proc_exit(journal);
1164 kfree(journal);
1165 return NULL;
1166 }
1167
1168 /**
1169 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1170 * @inode: An inode to create the journal in
1171 *
1172 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1173 * the journal. The inode must exist already, must support bmap() and
1174 * must have all data blocks preallocated.
1175 */
1176 journal_t * jbd2_journal_init_inode (struct inode *inode)
1177 {
1178 struct buffer_head *bh;
1179 journal_t *journal = journal_init_common();
1180 char *p;
1181 int err;
1182 int n;
1183 unsigned long long blocknr;
1184
1185 if (!journal)
1186 return NULL;
1187
1188 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1189 journal->j_inode = inode;
1190 bdevname(journal->j_dev, journal->j_devname);
1191 p = journal->j_devname;
1192 while ((p = strchr(p, '/')))
1193 *p = '!';
1194 p = journal->j_devname + strlen(journal->j_devname);
1195 sprintf(p, "-%lu", journal->j_inode->i_ino);
1196 jbd_debug(1,
1197 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1198 journal, inode->i_sb->s_id, inode->i_ino,
1199 (long long) inode->i_size,
1200 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1201
1202 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1203 journal->j_blocksize = inode->i_sb->s_blocksize;
1204 jbd2_stats_proc_init(journal);
1205
1206 /* journal descriptor can store up to n blocks -bzzz */
1207 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1208 journal->j_wbufsize = n;
1209 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1210 if (!journal->j_wbuf) {
1211 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1212 __func__);
1213 goto out_err;
1214 }
1215
1216 err = jbd2_journal_bmap(journal, 0, &blocknr);
1217 /* If that failed, give up */
1218 if (err) {
1219 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1220 __func__);
1221 goto out_err;
1222 }
1223
1224 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1225 if (!bh) {
1226 printk(KERN_ERR
1227 "%s: Cannot get buffer for journal superblock\n",
1228 __func__);
1229 goto out_err;
1230 }
1231 journal->j_sb_buffer = bh;
1232 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1233
1234 return journal;
1235 out_err:
1236 kfree(journal->j_wbuf);
1237 jbd2_stats_proc_exit(journal);
1238 kfree(journal);
1239 return NULL;
1240 }
1241
1242 /*
1243 * If the journal init or create aborts, we need to mark the journal
1244 * superblock as being NULL to prevent the journal destroy from writing
1245 * back a bogus superblock.
1246 */
1247 static void journal_fail_superblock (journal_t *journal)
1248 {
1249 struct buffer_head *bh = journal->j_sb_buffer;
1250 brelse(bh);
1251 journal->j_sb_buffer = NULL;
1252 }
1253
1254 /*
1255 * Given a journal_t structure, initialise the various fields for
1256 * startup of a new journaling session. We use this both when creating
1257 * a journal, and after recovering an old journal to reset it for
1258 * subsequent use.
1259 */
1260
1261 static int journal_reset(journal_t *journal)
1262 {
1263 journal_superblock_t *sb = journal->j_superblock;
1264 unsigned long long first, last;
1265
1266 first = be32_to_cpu(sb->s_first);
1267 last = be32_to_cpu(sb->s_maxlen);
1268 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1269 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1270 first, last);
1271 journal_fail_superblock(journal);
1272 return -EINVAL;
1273 }
1274
1275 journal->j_first = first;
1276 journal->j_last = last;
1277
1278 journal->j_head = first;
1279 journal->j_tail = first;
1280 journal->j_free = last - first;
1281
1282 journal->j_tail_sequence = journal->j_transaction_sequence;
1283 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1284 journal->j_commit_request = journal->j_commit_sequence;
1285
1286 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1287
1288 /*
1289 * As a special case, if the on-disk copy is already marked as needing
1290 * no recovery (s_start == 0), then we can safely defer the superblock
1291 * update until the next commit by setting JBD2_FLUSHED. This avoids
1292 * attempting a write to a potential-readonly device.
1293 */
1294 if (sb->s_start == 0) {
1295 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1296 "(start %ld, seq %d, errno %d)\n",
1297 journal->j_tail, journal->j_tail_sequence,
1298 journal->j_errno);
1299 journal->j_flags |= JBD2_FLUSHED;
1300 } else {
1301 /* Lock here to make assertions happy... */
1302 mutex_lock(&journal->j_checkpoint_mutex);
1303 /*
1304 * Update log tail information. We use WRITE_FUA since new
1305 * transaction will start reusing journal space and so we
1306 * must make sure information about current log tail is on
1307 * disk before that.
1308 */
1309 jbd2_journal_update_sb_log_tail(journal,
1310 journal->j_tail_sequence,
1311 journal->j_tail,
1312 WRITE_FUA);
1313 mutex_unlock(&journal->j_checkpoint_mutex);
1314 }
1315 return jbd2_journal_start_thread(journal);
1316 }
1317
1318 static void jbd2_write_superblock(journal_t *journal, int write_op)
1319 {
1320 struct buffer_head *bh = journal->j_sb_buffer;
1321 int ret;
1322
1323 trace_jbd2_write_superblock(journal, write_op);
1324 if (!(journal->j_flags & JBD2_BARRIER))
1325 write_op &= ~(REQ_FUA | REQ_FLUSH);
1326 lock_buffer(bh);
1327 if (buffer_write_io_error(bh)) {
1328 /*
1329 * Oh, dear. A previous attempt to write the journal
1330 * superblock failed. This could happen because the
1331 * USB device was yanked out. Or it could happen to
1332 * be a transient write error and maybe the block will
1333 * be remapped. Nothing we can do but to retry the
1334 * write and hope for the best.
1335 */
1336 printk(KERN_ERR "JBD2: previous I/O error detected "
1337 "for journal superblock update for %s.\n",
1338 journal->j_devname);
1339 clear_buffer_write_io_error(bh);
1340 set_buffer_uptodate(bh);
1341 }
1342 get_bh(bh);
1343 bh->b_end_io = end_buffer_write_sync;
1344 ret = submit_bh(write_op, bh);
1345 wait_on_buffer(bh);
1346 if (buffer_write_io_error(bh)) {
1347 clear_buffer_write_io_error(bh);
1348 set_buffer_uptodate(bh);
1349 ret = -EIO;
1350 }
1351 if (ret) {
1352 printk(KERN_ERR "JBD2: Error %d detected when updating "
1353 "journal superblock for %s.\n", ret,
1354 journal->j_devname);
1355 }
1356 }
1357
1358 /**
1359 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1360 * @journal: The journal to update.
1361 * @tail_tid: TID of the new transaction at the tail of the log
1362 * @tail_block: The first block of the transaction at the tail of the log
1363 * @write_op: With which operation should we write the journal sb
1364 *
1365 * Update a journal's superblock information about log tail and write it to
1366 * disk, waiting for the IO to complete.
1367 */
1368 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1369 unsigned long tail_block, int write_op)
1370 {
1371 journal_superblock_t *sb = journal->j_superblock;
1372
1373 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1374 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1375 tail_block, tail_tid);
1376
1377 sb->s_sequence = cpu_to_be32(tail_tid);
1378 sb->s_start = cpu_to_be32(tail_block);
1379
1380 jbd2_write_superblock(journal, write_op);
1381
1382 /* Log is no longer empty */
1383 write_lock(&journal->j_state_lock);
1384 WARN_ON(!sb->s_sequence);
1385 journal->j_flags &= ~JBD2_FLUSHED;
1386 write_unlock(&journal->j_state_lock);
1387 }
1388
1389 /**
1390 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1391 * @journal: The journal to update.
1392 *
1393 * Update a journal's dynamic superblock fields to show that journal is empty.
1394 * Write updated superblock to disk waiting for IO to complete.
1395 */
1396 static void jbd2_mark_journal_empty(journal_t *journal)
1397 {
1398 journal_superblock_t *sb = journal->j_superblock;
1399
1400 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1401 read_lock(&journal->j_state_lock);
1402 /* Is it already empty? */
1403 if (sb->s_start == 0) {
1404 read_unlock(&journal->j_state_lock);
1405 return;
1406 }
1407 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1408 journal->j_tail_sequence);
1409
1410 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1411 sb->s_start = cpu_to_be32(0);
1412 read_unlock(&journal->j_state_lock);
1413
1414 jbd2_write_superblock(journal, WRITE_FUA);
1415
1416 /* Log is no longer empty */
1417 write_lock(&journal->j_state_lock);
1418 journal->j_flags |= JBD2_FLUSHED;
1419 write_unlock(&journal->j_state_lock);
1420 }
1421
1422
1423 /**
1424 * jbd2_journal_update_sb_errno() - Update error in the journal.
1425 * @journal: The journal to update.
1426 *
1427 * Update a journal's errno. Write updated superblock to disk waiting for IO
1428 * to complete.
1429 */
1430 void jbd2_journal_update_sb_errno(journal_t *journal)
1431 {
1432 journal_superblock_t *sb = journal->j_superblock;
1433
1434 read_lock(&journal->j_state_lock);
1435 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1436 journal->j_errno);
1437 sb->s_errno = cpu_to_be32(journal->j_errno);
1438 jbd2_superblock_csum_set(journal, sb);
1439 read_unlock(&journal->j_state_lock);
1440
1441 jbd2_write_superblock(journal, WRITE_SYNC);
1442 }
1443 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1444
1445 /*
1446 * Read the superblock for a given journal, performing initial
1447 * validation of the format.
1448 */
1449 static int journal_get_superblock(journal_t *journal)
1450 {
1451 struct buffer_head *bh;
1452 journal_superblock_t *sb;
1453 int err = -EIO;
1454
1455 bh = journal->j_sb_buffer;
1456
1457 J_ASSERT(bh != NULL);
1458 if (!buffer_uptodate(bh)) {
1459 ll_rw_block(READ, 1, &bh);
1460 wait_on_buffer(bh);
1461 if (!buffer_uptodate(bh)) {
1462 printk(KERN_ERR
1463 "JBD2: IO error reading journal superblock\n");
1464 goto out;
1465 }
1466 }
1467
1468 if (buffer_verified(bh))
1469 return 0;
1470
1471 sb = journal->j_superblock;
1472
1473 err = -EINVAL;
1474
1475 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1476 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1477 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1478 goto out;
1479 }
1480
1481 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1482 case JBD2_SUPERBLOCK_V1:
1483 journal->j_format_version = 1;
1484 break;
1485 case JBD2_SUPERBLOCK_V2:
1486 journal->j_format_version = 2;
1487 break;
1488 default:
1489 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1490 goto out;
1491 }
1492
1493 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1494 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1495 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1496 printk(KERN_WARNING "JBD2: journal file too short\n");
1497 goto out;
1498 }
1499
1500 if (be32_to_cpu(sb->s_first) == 0 ||
1501 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1502 printk(KERN_WARNING
1503 "JBD2: Invalid start block of journal: %u\n",
1504 be32_to_cpu(sb->s_first));
1505 goto out;
1506 }
1507
1508 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1509 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1510 /* Can't have checksum v1 and v2 on at the same time! */
1511 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1512 "at the same time!\n");
1513 goto out;
1514 }
1515
1516 if (!jbd2_verify_csum_type(journal, sb)) {
1517 printk(KERN_ERR "JBD: Unknown checksum type\n");
1518 goto out;
1519 }
1520
1521 /* Load the checksum driver */
1522 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1523 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1524 if (IS_ERR(journal->j_chksum_driver)) {
1525 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1526 err = PTR_ERR(journal->j_chksum_driver);
1527 journal->j_chksum_driver = NULL;
1528 goto out;
1529 }
1530 }
1531
1532 /* Check superblock checksum */
1533 if (!jbd2_superblock_csum_verify(journal, sb)) {
1534 printk(KERN_ERR "JBD: journal checksum error\n");
1535 goto out;
1536 }
1537
1538 /* Precompute checksum seed for all metadata */
1539 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1540 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1541 sizeof(sb->s_uuid));
1542
1543 set_buffer_verified(bh);
1544
1545 return 0;
1546
1547 out:
1548 journal_fail_superblock(journal);
1549 return err;
1550 }
1551
1552 /*
1553 * Load the on-disk journal superblock and read the key fields into the
1554 * journal_t.
1555 */
1556
1557 static int load_superblock(journal_t *journal)
1558 {
1559 int err;
1560 journal_superblock_t *sb;
1561
1562 err = journal_get_superblock(journal);
1563 if (err)
1564 return err;
1565
1566 sb = journal->j_superblock;
1567
1568 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1569 journal->j_tail = be32_to_cpu(sb->s_start);
1570 journal->j_first = be32_to_cpu(sb->s_first);
1571 journal->j_last = be32_to_cpu(sb->s_maxlen);
1572 journal->j_errno = be32_to_cpu(sb->s_errno);
1573
1574 return 0;
1575 }
1576
1577
1578 /**
1579 * int jbd2_journal_load() - Read journal from disk.
1580 * @journal: Journal to act on.
1581 *
1582 * Given a journal_t structure which tells us which disk blocks contain
1583 * a journal, read the journal from disk to initialise the in-memory
1584 * structures.
1585 */
1586 int jbd2_journal_load(journal_t *journal)
1587 {
1588 int err;
1589 journal_superblock_t *sb;
1590
1591 err = load_superblock(journal);
1592 if (err)
1593 return err;
1594
1595 sb = journal->j_superblock;
1596 /* If this is a V2 superblock, then we have to check the
1597 * features flags on it. */
1598
1599 if (journal->j_format_version >= 2) {
1600 if ((sb->s_feature_ro_compat &
1601 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1602 (sb->s_feature_incompat &
1603 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1604 printk(KERN_WARNING
1605 "JBD2: Unrecognised features on journal\n");
1606 return -EINVAL;
1607 }
1608 }
1609
1610 /*
1611 * Create a slab for this blocksize
1612 */
1613 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1614 if (err)
1615 return err;
1616
1617 /* Let the recovery code check whether it needs to recover any
1618 * data from the journal. */
1619 if (jbd2_journal_recover(journal))
1620 goto recovery_error;
1621
1622 if (journal->j_failed_commit) {
1623 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1624 "is corrupt.\n", journal->j_failed_commit,
1625 journal->j_devname);
1626 return -EIO;
1627 }
1628
1629 /* OK, we've finished with the dynamic journal bits:
1630 * reinitialise the dynamic contents of the superblock in memory
1631 * and reset them on disk. */
1632 if (journal_reset(journal))
1633 goto recovery_error;
1634
1635 journal->j_flags &= ~JBD2_ABORT;
1636 journal->j_flags |= JBD2_LOADED;
1637 return 0;
1638
1639 recovery_error:
1640 printk(KERN_WARNING "JBD2: recovery failed\n");
1641 return -EIO;
1642 }
1643
1644 /**
1645 * void jbd2_journal_destroy() - Release a journal_t structure.
1646 * @journal: Journal to act on.
1647 *
1648 * Release a journal_t structure once it is no longer in use by the
1649 * journaled object.
1650 * Return <0 if we couldn't clean up the journal.
1651 */
1652 int jbd2_journal_destroy(journal_t *journal)
1653 {
1654 int err = 0;
1655
1656 /* Wait for the commit thread to wake up and die. */
1657 journal_kill_thread(journal);
1658
1659 /* Force a final log commit */
1660 if (journal->j_running_transaction)
1661 jbd2_journal_commit_transaction(journal);
1662
1663 /* Force any old transactions to disk */
1664
1665 /* Totally anal locking here... */
1666 spin_lock(&journal->j_list_lock);
1667 while (journal->j_checkpoint_transactions != NULL) {
1668 spin_unlock(&journal->j_list_lock);
1669 mutex_lock(&journal->j_checkpoint_mutex);
1670 jbd2_log_do_checkpoint(journal);
1671 mutex_unlock(&journal->j_checkpoint_mutex);
1672 spin_lock(&journal->j_list_lock);
1673 }
1674
1675 J_ASSERT(journal->j_running_transaction == NULL);
1676 J_ASSERT(journal->j_committing_transaction == NULL);
1677 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1678 spin_unlock(&journal->j_list_lock);
1679
1680 if (journal->j_sb_buffer) {
1681 if (!is_journal_aborted(journal)) {
1682 mutex_lock(&journal->j_checkpoint_mutex);
1683 jbd2_mark_journal_empty(journal);
1684 mutex_unlock(&journal->j_checkpoint_mutex);
1685 } else
1686 err = -EIO;
1687 brelse(journal->j_sb_buffer);
1688 }
1689
1690 if (journal->j_proc_entry)
1691 jbd2_stats_proc_exit(journal);
1692 if (journal->j_inode)
1693 iput(journal->j_inode);
1694 if (journal->j_revoke)
1695 jbd2_journal_destroy_revoke(journal);
1696 if (journal->j_chksum_driver)
1697 crypto_free_shash(journal->j_chksum_driver);
1698 kfree(journal->j_wbuf);
1699 kfree(journal);
1700
1701 return err;
1702 }
1703
1704
1705 /**
1706 *int jbd2_journal_check_used_features () - Check if features specified are used.
1707 * @journal: Journal to check.
1708 * @compat: bitmask of compatible features
1709 * @ro: bitmask of features that force read-only mount
1710 * @incompat: bitmask of incompatible features
1711 *
1712 * Check whether the journal uses all of a given set of
1713 * features. Return true (non-zero) if it does.
1714 **/
1715
1716 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1717 unsigned long ro, unsigned long incompat)
1718 {
1719 journal_superblock_t *sb;
1720
1721 if (!compat && !ro && !incompat)
1722 return 1;
1723 /* Load journal superblock if it is not loaded yet. */
1724 if (journal->j_format_version == 0 &&
1725 journal_get_superblock(journal) != 0)
1726 return 0;
1727 if (journal->j_format_version == 1)
1728 return 0;
1729
1730 sb = journal->j_superblock;
1731
1732 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1733 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1734 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1735 return 1;
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1742 * @journal: Journal to check.
1743 * @compat: bitmask of compatible features
1744 * @ro: bitmask of features that force read-only mount
1745 * @incompat: bitmask of incompatible features
1746 *
1747 * Check whether the journaling code supports the use of
1748 * all of a given set of features on this journal. Return true
1749 * (non-zero) if it can. */
1750
1751 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1752 unsigned long ro, unsigned long incompat)
1753 {
1754 if (!compat && !ro && !incompat)
1755 return 1;
1756
1757 /* We can support any known requested features iff the
1758 * superblock is in version 2. Otherwise we fail to support any
1759 * extended sb features. */
1760
1761 if (journal->j_format_version != 2)
1762 return 0;
1763
1764 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1765 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1766 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1767 return 1;
1768
1769 return 0;
1770 }
1771
1772 /**
1773 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1774 * @journal: Journal to act on.
1775 * @compat: bitmask of compatible features
1776 * @ro: bitmask of features that force read-only mount
1777 * @incompat: bitmask of incompatible features
1778 *
1779 * Mark a given journal feature as present on the
1780 * superblock. Returns true if the requested features could be set.
1781 *
1782 */
1783
1784 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1785 unsigned long ro, unsigned long incompat)
1786 {
1787 #define INCOMPAT_FEATURE_ON(f) \
1788 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1789 #define COMPAT_FEATURE_ON(f) \
1790 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1791 journal_superblock_t *sb;
1792
1793 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1794 return 1;
1795
1796 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1797 return 0;
1798
1799 /* Asking for checksumming v2 and v1? Only give them v2. */
1800 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1801 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1802 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1803
1804 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1805 compat, ro, incompat);
1806
1807 sb = journal->j_superblock;
1808
1809 /* If enabling v2 checksums, update superblock */
1810 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1811 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1812 sb->s_feature_compat &=
1813 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1814
1815 /* Load the checksum driver */
1816 if (journal->j_chksum_driver == NULL) {
1817 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1818 0, 0);
1819 if (IS_ERR(journal->j_chksum_driver)) {
1820 printk(KERN_ERR "JBD: Cannot load crc32c "
1821 "driver.\n");
1822 journal->j_chksum_driver = NULL;
1823 return 0;
1824 }
1825 }
1826
1827 /* Precompute checksum seed for all metadata */
1828 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1829 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1830 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1831 sb->s_uuid,
1832 sizeof(sb->s_uuid));
1833 }
1834
1835 /* If enabling v1 checksums, downgrade superblock */
1836 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1837 sb->s_feature_incompat &=
1838 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1839
1840 sb->s_feature_compat |= cpu_to_be32(compat);
1841 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1842 sb->s_feature_incompat |= cpu_to_be32(incompat);
1843
1844 return 1;
1845 #undef COMPAT_FEATURE_ON
1846 #undef INCOMPAT_FEATURE_ON
1847 }
1848
1849 /*
1850 * jbd2_journal_clear_features () - Clear a given journal feature in the
1851 * superblock
1852 * @journal: Journal to act on.
1853 * @compat: bitmask of compatible features
1854 * @ro: bitmask of features that force read-only mount
1855 * @incompat: bitmask of incompatible features
1856 *
1857 * Clear a given journal feature as present on the
1858 * superblock.
1859 */
1860 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1861 unsigned long ro, unsigned long incompat)
1862 {
1863 journal_superblock_t *sb;
1864
1865 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1866 compat, ro, incompat);
1867
1868 sb = journal->j_superblock;
1869
1870 sb->s_feature_compat &= ~cpu_to_be32(compat);
1871 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1872 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1873 }
1874 EXPORT_SYMBOL(jbd2_journal_clear_features);
1875
1876 /**
1877 * int jbd2_journal_flush () - Flush journal
1878 * @journal: Journal to act on.
1879 *
1880 * Flush all data for a given journal to disk and empty the journal.
1881 * Filesystems can use this when remounting readonly to ensure that
1882 * recovery does not need to happen on remount.
1883 */
1884
1885 int jbd2_journal_flush(journal_t *journal)
1886 {
1887 int err = 0;
1888 transaction_t *transaction = NULL;
1889
1890 write_lock(&journal->j_state_lock);
1891
1892 /* Force everything buffered to the log... */
1893 if (journal->j_running_transaction) {
1894 transaction = journal->j_running_transaction;
1895 __jbd2_log_start_commit(journal, transaction->t_tid);
1896 } else if (journal->j_committing_transaction)
1897 transaction = journal->j_committing_transaction;
1898
1899 /* Wait for the log commit to complete... */
1900 if (transaction) {
1901 tid_t tid = transaction->t_tid;
1902
1903 write_unlock(&journal->j_state_lock);
1904 jbd2_log_wait_commit(journal, tid);
1905 } else {
1906 write_unlock(&journal->j_state_lock);
1907 }
1908
1909 /* ...and flush everything in the log out to disk. */
1910 spin_lock(&journal->j_list_lock);
1911 while (!err && journal->j_checkpoint_transactions != NULL) {
1912 spin_unlock(&journal->j_list_lock);
1913 mutex_lock(&journal->j_checkpoint_mutex);
1914 err = jbd2_log_do_checkpoint(journal);
1915 mutex_unlock(&journal->j_checkpoint_mutex);
1916 spin_lock(&journal->j_list_lock);
1917 }
1918 spin_unlock(&journal->j_list_lock);
1919
1920 if (is_journal_aborted(journal))
1921 return -EIO;
1922
1923 mutex_lock(&journal->j_checkpoint_mutex);
1924 jbd2_cleanup_journal_tail(journal);
1925
1926 /* Finally, mark the journal as really needing no recovery.
1927 * This sets s_start==0 in the underlying superblock, which is
1928 * the magic code for a fully-recovered superblock. Any future
1929 * commits of data to the journal will restore the current
1930 * s_start value. */
1931 jbd2_mark_journal_empty(journal);
1932 mutex_unlock(&journal->j_checkpoint_mutex);
1933 write_lock(&journal->j_state_lock);
1934 J_ASSERT(!journal->j_running_transaction);
1935 J_ASSERT(!journal->j_committing_transaction);
1936 J_ASSERT(!journal->j_checkpoint_transactions);
1937 J_ASSERT(journal->j_head == journal->j_tail);
1938 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1939 write_unlock(&journal->j_state_lock);
1940 return 0;
1941 }
1942
1943 /**
1944 * int jbd2_journal_wipe() - Wipe journal contents
1945 * @journal: Journal to act on.
1946 * @write: flag (see below)
1947 *
1948 * Wipe out all of the contents of a journal, safely. This will produce
1949 * a warning if the journal contains any valid recovery information.
1950 * Must be called between journal_init_*() and jbd2_journal_load().
1951 *
1952 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1953 * we merely suppress recovery.
1954 */
1955
1956 int jbd2_journal_wipe(journal_t *journal, int write)
1957 {
1958 int err = 0;
1959
1960 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1961
1962 err = load_superblock(journal);
1963 if (err)
1964 return err;
1965
1966 if (!journal->j_tail)
1967 goto no_recovery;
1968
1969 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1970 write ? "Clearing" : "Ignoring");
1971
1972 err = jbd2_journal_skip_recovery(journal);
1973 if (write) {
1974 /* Lock to make assertions happy... */
1975 mutex_lock(&journal->j_checkpoint_mutex);
1976 jbd2_mark_journal_empty(journal);
1977 mutex_unlock(&journal->j_checkpoint_mutex);
1978 }
1979
1980 no_recovery:
1981 return err;
1982 }
1983
1984 /*
1985 * Journal abort has very specific semantics, which we describe
1986 * for journal abort.
1987 *
1988 * Two internal functions, which provide abort to the jbd layer
1989 * itself are here.
1990 */
1991
1992 /*
1993 * Quick version for internal journal use (doesn't lock the journal).
1994 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1995 * and don't attempt to make any other journal updates.
1996 */
1997 void __jbd2_journal_abort_hard(journal_t *journal)
1998 {
1999 transaction_t *transaction;
2000
2001 if (journal->j_flags & JBD2_ABORT)
2002 return;
2003
2004 printk(KERN_ERR "Aborting journal on device %s.\n",
2005 journal->j_devname);
2006
2007 write_lock(&journal->j_state_lock);
2008 journal->j_flags |= JBD2_ABORT;
2009 transaction = journal->j_running_transaction;
2010 if (transaction)
2011 __jbd2_log_start_commit(journal, transaction->t_tid);
2012 write_unlock(&journal->j_state_lock);
2013 }
2014
2015 /* Soft abort: record the abort error status in the journal superblock,
2016 * but don't do any other IO. */
2017 static void __journal_abort_soft (journal_t *journal, int errno)
2018 {
2019 if (journal->j_flags & JBD2_ABORT)
2020 return;
2021
2022 if (!journal->j_errno)
2023 journal->j_errno = errno;
2024
2025 __jbd2_journal_abort_hard(journal);
2026
2027 if (errno)
2028 jbd2_journal_update_sb_errno(journal);
2029 }
2030
2031 /**
2032 * void jbd2_journal_abort () - Shutdown the journal immediately.
2033 * @journal: the journal to shutdown.
2034 * @errno: an error number to record in the journal indicating
2035 * the reason for the shutdown.
2036 *
2037 * Perform a complete, immediate shutdown of the ENTIRE
2038 * journal (not of a single transaction). This operation cannot be
2039 * undone without closing and reopening the journal.
2040 *
2041 * The jbd2_journal_abort function is intended to support higher level error
2042 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2043 * mode.
2044 *
2045 * Journal abort has very specific semantics. Any existing dirty,
2046 * unjournaled buffers in the main filesystem will still be written to
2047 * disk by bdflush, but the journaling mechanism will be suspended
2048 * immediately and no further transaction commits will be honoured.
2049 *
2050 * Any dirty, journaled buffers will be written back to disk without
2051 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2052 * filesystem, but we _do_ attempt to leave as much data as possible
2053 * behind for fsck to use for cleanup.
2054 *
2055 * Any attempt to get a new transaction handle on a journal which is in
2056 * ABORT state will just result in an -EROFS error return. A
2057 * jbd2_journal_stop on an existing handle will return -EIO if we have
2058 * entered abort state during the update.
2059 *
2060 * Recursive transactions are not disturbed by journal abort until the
2061 * final jbd2_journal_stop, which will receive the -EIO error.
2062 *
2063 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2064 * which will be recorded (if possible) in the journal superblock. This
2065 * allows a client to record failure conditions in the middle of a
2066 * transaction without having to complete the transaction to record the
2067 * failure to disk. ext3_error, for example, now uses this
2068 * functionality.
2069 *
2070 * Errors which originate from within the journaling layer will NOT
2071 * supply an errno; a null errno implies that absolutely no further
2072 * writes are done to the journal (unless there are any already in
2073 * progress).
2074 *
2075 */
2076
2077 void jbd2_journal_abort(journal_t *journal, int errno)
2078 {
2079 __journal_abort_soft(journal, errno);
2080 }
2081
2082 /**
2083 * int jbd2_journal_errno () - returns the journal's error state.
2084 * @journal: journal to examine.
2085 *
2086 * This is the errno number set with jbd2_journal_abort(), the last
2087 * time the journal was mounted - if the journal was stopped
2088 * without calling abort this will be 0.
2089 *
2090 * If the journal has been aborted on this mount time -EROFS will
2091 * be returned.
2092 */
2093 int jbd2_journal_errno(journal_t *journal)
2094 {
2095 int err;
2096
2097 read_lock(&journal->j_state_lock);
2098 if (journal->j_flags & JBD2_ABORT)
2099 err = -EROFS;
2100 else
2101 err = journal->j_errno;
2102 read_unlock(&journal->j_state_lock);
2103 return err;
2104 }
2105
2106 /**
2107 * int jbd2_journal_clear_err () - clears the journal's error state
2108 * @journal: journal to act on.
2109 *
2110 * An error must be cleared or acked to take a FS out of readonly
2111 * mode.
2112 */
2113 int jbd2_journal_clear_err(journal_t *journal)
2114 {
2115 int err = 0;
2116
2117 write_lock(&journal->j_state_lock);
2118 if (journal->j_flags & JBD2_ABORT)
2119 err = -EROFS;
2120 else
2121 journal->j_errno = 0;
2122 write_unlock(&journal->j_state_lock);
2123 return err;
2124 }
2125
2126 /**
2127 * void jbd2_journal_ack_err() - Ack journal err.
2128 * @journal: journal to act on.
2129 *
2130 * An error must be cleared or acked to take a FS out of readonly
2131 * mode.
2132 */
2133 void jbd2_journal_ack_err(journal_t *journal)
2134 {
2135 write_lock(&journal->j_state_lock);
2136 if (journal->j_errno)
2137 journal->j_flags |= JBD2_ACK_ERR;
2138 write_unlock(&journal->j_state_lock);
2139 }
2140
2141 int jbd2_journal_blocks_per_page(struct inode *inode)
2142 {
2143 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2144 }
2145
2146 /*
2147 * helper functions to deal with 32 or 64bit block numbers.
2148 */
2149 size_t journal_tag_bytes(journal_t *journal)
2150 {
2151 journal_block_tag_t tag;
2152 size_t x = 0;
2153
2154 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2155 x += sizeof(tag.t_checksum);
2156
2157 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2158 return x + JBD2_TAG_SIZE64;
2159 else
2160 return x + JBD2_TAG_SIZE32;
2161 }
2162
2163 /*
2164 * JBD memory management
2165 *
2166 * These functions are used to allocate block-sized chunks of memory
2167 * used for making copies of buffer_head data. Very often it will be
2168 * page-sized chunks of data, but sometimes it will be in
2169 * sub-page-size chunks. (For example, 16k pages on Power systems
2170 * with a 4k block file system.) For blocks smaller than a page, we
2171 * use a SLAB allocator. There are slab caches for each block size,
2172 * which are allocated at mount time, if necessary, and we only free
2173 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2174 * this reason we don't need to a mutex to protect access to
2175 * jbd2_slab[] allocating or releasing memory; only in
2176 * jbd2_journal_create_slab().
2177 */
2178 #define JBD2_MAX_SLABS 8
2179 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2180
2181 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2182 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2183 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2184 };
2185
2186
2187 static void jbd2_journal_destroy_slabs(void)
2188 {
2189 int i;
2190
2191 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2192 if (jbd2_slab[i])
2193 kmem_cache_destroy(jbd2_slab[i]);
2194 jbd2_slab[i] = NULL;
2195 }
2196 }
2197
2198 static int jbd2_journal_create_slab(size_t size)
2199 {
2200 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2201 int i = order_base_2(size) - 10;
2202 size_t slab_size;
2203
2204 if (size == PAGE_SIZE)
2205 return 0;
2206
2207 if (i >= JBD2_MAX_SLABS)
2208 return -EINVAL;
2209
2210 if (unlikely(i < 0))
2211 i = 0;
2212 mutex_lock(&jbd2_slab_create_mutex);
2213 if (jbd2_slab[i]) {
2214 mutex_unlock(&jbd2_slab_create_mutex);
2215 return 0; /* Already created */
2216 }
2217
2218 slab_size = 1 << (i+10);
2219 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2220 slab_size, 0, NULL);
2221 mutex_unlock(&jbd2_slab_create_mutex);
2222 if (!jbd2_slab[i]) {
2223 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2224 return -ENOMEM;
2225 }
2226 return 0;
2227 }
2228
2229 static struct kmem_cache *get_slab(size_t size)
2230 {
2231 int i = order_base_2(size) - 10;
2232
2233 BUG_ON(i >= JBD2_MAX_SLABS);
2234 if (unlikely(i < 0))
2235 i = 0;
2236 BUG_ON(jbd2_slab[i] == NULL);
2237 return jbd2_slab[i];
2238 }
2239
2240 void *jbd2_alloc(size_t size, gfp_t flags)
2241 {
2242 void *ptr;
2243
2244 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2245
2246 flags |= __GFP_REPEAT;
2247 if (size == PAGE_SIZE)
2248 ptr = (void *)__get_free_pages(flags, 0);
2249 else if (size > PAGE_SIZE) {
2250 int order = get_order(size);
2251
2252 if (order < 3)
2253 ptr = (void *)__get_free_pages(flags, order);
2254 else
2255 ptr = vmalloc(size);
2256 } else
2257 ptr = kmem_cache_alloc(get_slab(size), flags);
2258
2259 /* Check alignment; SLUB has gotten this wrong in the past,
2260 * and this can lead to user data corruption! */
2261 BUG_ON(((unsigned long) ptr) & (size-1));
2262
2263 return ptr;
2264 }
2265
2266 void jbd2_free(void *ptr, size_t size)
2267 {
2268 if (size == PAGE_SIZE) {
2269 free_pages((unsigned long)ptr, 0);
2270 return;
2271 }
2272 if (size > PAGE_SIZE) {
2273 int order = get_order(size);
2274
2275 if (order < 3)
2276 free_pages((unsigned long)ptr, order);
2277 else
2278 vfree(ptr);
2279 return;
2280 }
2281 kmem_cache_free(get_slab(size), ptr);
2282 };
2283
2284 /*
2285 * Journal_head storage management
2286 */
2287 static struct kmem_cache *jbd2_journal_head_cache;
2288 #ifdef CONFIG_JBD2_DEBUG
2289 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2290 #endif
2291
2292 static int jbd2_journal_init_journal_head_cache(void)
2293 {
2294 int retval;
2295
2296 J_ASSERT(jbd2_journal_head_cache == NULL);
2297 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2298 sizeof(struct journal_head),
2299 0, /* offset */
2300 SLAB_TEMPORARY, /* flags */
2301 NULL); /* ctor */
2302 retval = 0;
2303 if (!jbd2_journal_head_cache) {
2304 retval = -ENOMEM;
2305 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2306 }
2307 return retval;
2308 }
2309
2310 static void jbd2_journal_destroy_journal_head_cache(void)
2311 {
2312 if (jbd2_journal_head_cache) {
2313 kmem_cache_destroy(jbd2_journal_head_cache);
2314 jbd2_journal_head_cache = NULL;
2315 }
2316 }
2317
2318 /*
2319 * journal_head splicing and dicing
2320 */
2321 static struct journal_head *journal_alloc_journal_head(void)
2322 {
2323 struct journal_head *ret;
2324
2325 #ifdef CONFIG_JBD2_DEBUG
2326 atomic_inc(&nr_journal_heads);
2327 #endif
2328 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2329 if (!ret) {
2330 jbd_debug(1, "out of memory for journal_head\n");
2331 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2332 while (!ret) {
2333 yield();
2334 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2335 }
2336 }
2337 return ret;
2338 }
2339
2340 static void journal_free_journal_head(struct journal_head *jh)
2341 {
2342 #ifdef CONFIG_JBD2_DEBUG
2343 atomic_dec(&nr_journal_heads);
2344 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2345 #endif
2346 kmem_cache_free(jbd2_journal_head_cache, jh);
2347 }
2348
2349 /*
2350 * A journal_head is attached to a buffer_head whenever JBD has an
2351 * interest in the buffer.
2352 *
2353 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2354 * is set. This bit is tested in core kernel code where we need to take
2355 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2356 * there.
2357 *
2358 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2359 *
2360 * When a buffer has its BH_JBD bit set it is immune from being released by
2361 * core kernel code, mainly via ->b_count.
2362 *
2363 * A journal_head is detached from its buffer_head when the journal_head's
2364 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2365 * transaction (b_cp_transaction) hold their references to b_jcount.
2366 *
2367 * Various places in the kernel want to attach a journal_head to a buffer_head
2368 * _before_ attaching the journal_head to a transaction. To protect the
2369 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2370 * journal_head's b_jcount refcount by one. The caller must call
2371 * jbd2_journal_put_journal_head() to undo this.
2372 *
2373 * So the typical usage would be:
2374 *
2375 * (Attach a journal_head if needed. Increments b_jcount)
2376 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2377 * ...
2378 * (Get another reference for transaction)
2379 * jbd2_journal_grab_journal_head(bh);
2380 * jh->b_transaction = xxx;
2381 * (Put original reference)
2382 * jbd2_journal_put_journal_head(jh);
2383 */
2384
2385 /*
2386 * Give a buffer_head a journal_head.
2387 *
2388 * May sleep.
2389 */
2390 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2391 {
2392 struct journal_head *jh;
2393 struct journal_head *new_jh = NULL;
2394
2395 repeat:
2396 if (!buffer_jbd(bh)) {
2397 new_jh = journal_alloc_journal_head();
2398 memset(new_jh, 0, sizeof(*new_jh));
2399 }
2400
2401 jbd_lock_bh_journal_head(bh);
2402 if (buffer_jbd(bh)) {
2403 jh = bh2jh(bh);
2404 } else {
2405 J_ASSERT_BH(bh,
2406 (atomic_read(&bh->b_count) > 0) ||
2407 (bh->b_page && bh->b_page->mapping));
2408
2409 if (!new_jh) {
2410 jbd_unlock_bh_journal_head(bh);
2411 goto repeat;
2412 }
2413
2414 jh = new_jh;
2415 new_jh = NULL; /* We consumed it */
2416 set_buffer_jbd(bh);
2417 bh->b_private = jh;
2418 jh->b_bh = bh;
2419 get_bh(bh);
2420 BUFFER_TRACE(bh, "added journal_head");
2421 }
2422 jh->b_jcount++;
2423 jbd_unlock_bh_journal_head(bh);
2424 if (new_jh)
2425 journal_free_journal_head(new_jh);
2426 return bh->b_private;
2427 }
2428
2429 /*
2430 * Grab a ref against this buffer_head's journal_head. If it ended up not
2431 * having a journal_head, return NULL
2432 */
2433 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2434 {
2435 struct journal_head *jh = NULL;
2436
2437 jbd_lock_bh_journal_head(bh);
2438 if (buffer_jbd(bh)) {
2439 jh = bh2jh(bh);
2440 jh->b_jcount++;
2441 }
2442 jbd_unlock_bh_journal_head(bh);
2443 return jh;
2444 }
2445
2446 static void __journal_remove_journal_head(struct buffer_head *bh)
2447 {
2448 struct journal_head *jh = bh2jh(bh);
2449
2450 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2451 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2452 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2453 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2454 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2455 J_ASSERT_BH(bh, buffer_jbd(bh));
2456 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2457 BUFFER_TRACE(bh, "remove journal_head");
2458 if (jh->b_frozen_data) {
2459 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2460 jbd2_free(jh->b_frozen_data, bh->b_size);
2461 }
2462 if (jh->b_committed_data) {
2463 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2464 jbd2_free(jh->b_committed_data, bh->b_size);
2465 }
2466 bh->b_private = NULL;
2467 jh->b_bh = NULL; /* debug, really */
2468 clear_buffer_jbd(bh);
2469 journal_free_journal_head(jh);
2470 }
2471
2472 /*
2473 * Drop a reference on the passed journal_head. If it fell to zero then
2474 * release the journal_head from the buffer_head.
2475 */
2476 void jbd2_journal_put_journal_head(struct journal_head *jh)
2477 {
2478 struct buffer_head *bh = jh2bh(jh);
2479
2480 jbd_lock_bh_journal_head(bh);
2481 J_ASSERT_JH(jh, jh->b_jcount > 0);
2482 --jh->b_jcount;
2483 if (!jh->b_jcount) {
2484 __journal_remove_journal_head(bh);
2485 jbd_unlock_bh_journal_head(bh);
2486 __brelse(bh);
2487 } else
2488 jbd_unlock_bh_journal_head(bh);
2489 }
2490
2491 /*
2492 * Initialize jbd inode head
2493 */
2494 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2495 {
2496 jinode->i_transaction = NULL;
2497 jinode->i_next_transaction = NULL;
2498 jinode->i_vfs_inode = inode;
2499 jinode->i_flags = 0;
2500 INIT_LIST_HEAD(&jinode->i_list);
2501 }
2502
2503 /*
2504 * Function to be called before we start removing inode from memory (i.e.,
2505 * clear_inode() is a fine place to be called from). It removes inode from
2506 * transaction's lists.
2507 */
2508 void jbd2_journal_release_jbd_inode(journal_t *journal,
2509 struct jbd2_inode *jinode)
2510 {
2511 if (!journal)
2512 return;
2513 restart:
2514 spin_lock(&journal->j_list_lock);
2515 /* Is commit writing out inode - we have to wait */
2516 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2517 wait_queue_head_t *wq;
2518 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2519 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2520 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2521 spin_unlock(&journal->j_list_lock);
2522 schedule();
2523 finish_wait(wq, &wait.wait);
2524 goto restart;
2525 }
2526
2527 if (jinode->i_transaction) {
2528 list_del(&jinode->i_list);
2529 jinode->i_transaction = NULL;
2530 }
2531 spin_unlock(&journal->j_list_lock);
2532 }
2533
2534
2535 #ifdef CONFIG_PROC_FS
2536
2537 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2538
2539 static void __init jbd2_create_jbd_stats_proc_entry(void)
2540 {
2541 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2542 }
2543
2544 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2545 {
2546 if (proc_jbd2_stats)
2547 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2548 }
2549
2550 #else
2551
2552 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2553 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2554
2555 #endif
2556
2557 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2558
2559 static int __init jbd2_journal_init_handle_cache(void)
2560 {
2561 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2562 if (jbd2_handle_cache == NULL) {
2563 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2564 return -ENOMEM;
2565 }
2566 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2567 if (jbd2_inode_cache == NULL) {
2568 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2569 kmem_cache_destroy(jbd2_handle_cache);
2570 return -ENOMEM;
2571 }
2572 return 0;
2573 }
2574
2575 static void jbd2_journal_destroy_handle_cache(void)
2576 {
2577 if (jbd2_handle_cache)
2578 kmem_cache_destroy(jbd2_handle_cache);
2579 if (jbd2_inode_cache)
2580 kmem_cache_destroy(jbd2_inode_cache);
2581
2582 }
2583
2584 /*
2585 * Module startup and shutdown
2586 */
2587
2588 static int __init journal_init_caches(void)
2589 {
2590 int ret;
2591
2592 ret = jbd2_journal_init_revoke_caches();
2593 if (ret == 0)
2594 ret = jbd2_journal_init_journal_head_cache();
2595 if (ret == 0)
2596 ret = jbd2_journal_init_handle_cache();
2597 if (ret == 0)
2598 ret = jbd2_journal_init_transaction_cache();
2599 return ret;
2600 }
2601
2602 static void jbd2_journal_destroy_caches(void)
2603 {
2604 jbd2_journal_destroy_revoke_caches();
2605 jbd2_journal_destroy_journal_head_cache();
2606 jbd2_journal_destroy_handle_cache();
2607 jbd2_journal_destroy_transaction_cache();
2608 jbd2_journal_destroy_slabs();
2609 }
2610
2611 static int __init journal_init(void)
2612 {
2613 int ret;
2614
2615 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2616
2617 ret = journal_init_caches();
2618 if (ret == 0) {
2619 jbd2_create_jbd_stats_proc_entry();
2620 } else {
2621 jbd2_journal_destroy_caches();
2622 }
2623 return ret;
2624 }
2625
2626 static void __exit journal_exit(void)
2627 {
2628 #ifdef CONFIG_JBD2_DEBUG
2629 int n = atomic_read(&nr_journal_heads);
2630 if (n)
2631 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2632 #endif
2633 jbd2_remove_jbd_stats_proc_entry();
2634 jbd2_journal_destroy_caches();
2635 }
2636
2637 MODULE_LICENSE("GPL");
2638 module_init(journal_init);
2639 module_exit(journal_exit);
2640