drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21
22 /*
23 * Inode locking rules:
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
35 *
36 * Lock ordering:
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
41 *
42 * bdi->wb.list_lock
43 * inode->i_lock
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
51 */
52
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static int get_nr_inodes(void)
79 {
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline int get_nr_inodes_unused(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 int get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 /**
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
153
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
162 atomic_set(&inode->i_dio_count, 0);
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167
168 mapping_set_gfp_mask(mapping, (GFP_HIGHUSER_MOVABLE & ~__GFP_HIGHMEM) | __GFP_SLOWHIGHMEM);
169 //mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
170
171 mapping->private_data = NULL;
172 mapping->backing_dev_info = &default_backing_dev_info;
173 mapping->writeback_index = 0;
174
175 /*
176 * If the block_device provides a backing_dev_info for client
177 * inodes then use that. Otherwise the inode share the bdev's
178 * backing_dev_info.
179 */
180 if (sb->s_bdev) {
181 struct backing_dev_info *bdi;
182
183 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 mapping->backing_dev_info = bdi;
185 }
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192
193 #ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195 #endif
196
197 this_cpu_inc(nr_inodes);
198
199 return 0;
200 out:
201 return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (!inode)
215 return NULL;
216
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
223 }
224
225 return inode;
226 }
227
228 void free_inode_nonrcu(struct inode *inode)
229 {
230 kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233
234 void __destroy_inode(struct inode *inode)
235 {
236 BUG_ON(inode_has_buffers(inode));
237 security_inode_free(inode);
238 fsnotify_inode_delete(inode);
239 if (!inode->i_nlink) {
240 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
241 atomic_long_dec(&inode->i_sb->s_remove_count);
242 }
243
244 #ifdef CONFIG_FS_POSIX_ACL
245 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_acl);
247 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
248 posix_acl_release(inode->i_default_acl);
249 #endif
250 this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253
254 static void i_callback(struct rcu_head *head)
255 {
256 struct inode *inode = container_of(head, struct inode, i_rcu);
257 kmem_cache_free(inode_cachep, inode);
258 }
259
260 static void destroy_inode(struct inode *inode)
261 {
262 BUG_ON(!list_empty(&inode->i_lru));
263 __destroy_inode(inode);
264 if (inode->i_sb->s_op->destroy_inode)
265 inode->i_sb->s_op->destroy_inode(inode);
266 else
267 call_rcu(&inode->i_rcu, i_callback);
268 }
269
270 /**
271 * drop_nlink - directly drop an inode's link count
272 * @inode: inode
273 *
274 * This is a low-level filesystem helper to replace any
275 * direct filesystem manipulation of i_nlink. In cases
276 * where we are attempting to track writes to the
277 * filesystem, a decrement to zero means an imminent
278 * write when the file is truncated and actually unlinked
279 * on the filesystem.
280 */
281 void drop_nlink(struct inode *inode)
282 {
283 WARN_ON(inode->i_nlink == 0);
284 inode->__i_nlink--;
285 if (!inode->i_nlink)
286 atomic_long_inc(&inode->i_sb->s_remove_count);
287 }
288 EXPORT_SYMBOL(drop_nlink);
289
290 /**
291 * clear_nlink - directly zero an inode's link count
292 * @inode: inode
293 *
294 * This is a low-level filesystem helper to replace any
295 * direct filesystem manipulation of i_nlink. See
296 * drop_nlink() for why we care about i_nlink hitting zero.
297 */
298 void clear_nlink(struct inode *inode)
299 {
300 if (inode->i_nlink) {
301 inode->__i_nlink = 0;
302 atomic_long_inc(&inode->i_sb->s_remove_count);
303 }
304 }
305 EXPORT_SYMBOL(clear_nlink);
306
307 /**
308 * set_nlink - directly set an inode's link count
309 * @inode: inode
310 * @nlink: new nlink (should be non-zero)
311 *
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink.
314 */
315 void set_nlink(struct inode *inode, unsigned int nlink)
316 {
317 if (!nlink) {
318 clear_nlink(inode);
319 } else {
320 /* Yes, some filesystems do change nlink from zero to one */
321 if (inode->i_nlink == 0)
322 atomic_long_dec(&inode->i_sb->s_remove_count);
323
324 inode->__i_nlink = nlink;
325 }
326 }
327 EXPORT_SYMBOL(set_nlink);
328
329 /**
330 * inc_nlink - directly increment an inode's link count
331 * @inode: inode
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink. Currently,
335 * it is only here for parity with dec_nlink().
336 */
337 void inc_nlink(struct inode *inode)
338 {
339 if (WARN_ON(inode->i_nlink == 0))
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341
342 inode->__i_nlink++;
343 }
344 EXPORT_SYMBOL(inc_nlink);
345
346 void address_space_init_once(struct address_space *mapping)
347 {
348 memset(mapping, 0, sizeof(*mapping));
349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 spin_lock_init(&mapping->tree_lock);
351 mutex_init(&mapping->i_mmap_mutex);
352 INIT_LIST_HEAD(&mapping->private_list);
353 spin_lock_init(&mapping->private_lock);
354 mapping->i_mmap = RB_ROOT;
355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358
359 /*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364 void inode_init_once(struct inode *inode)
365 {
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_wb_list);
370 INIT_LIST_HEAD(&inode->i_lru);
371 address_space_init_once(&inode->i_data);
372 i_size_ordered_init(inode);
373 #ifdef CONFIG_FSNOTIFY
374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
375 #endif
376 }
377 EXPORT_SYMBOL(inode_init_once);
378
379 static void init_once(void *foo)
380 {
381 struct inode *inode = (struct inode *) foo;
382
383 inode_init_once(inode);
384 }
385
386 /*
387 * inode->i_lock must be held
388 */
389 void __iget(struct inode *inode)
390 {
391 atomic_inc(&inode->i_count);
392 }
393
394 /*
395 * get additional reference to inode; caller must already hold one.
396 */
397 void ihold(struct inode *inode)
398 {
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 spin_lock(&inode->i_sb->s_inode_lru_lock);
406 if (list_empty(&inode->i_lru)) {
407 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
408 inode->i_sb->s_nr_inodes_unused++;
409 this_cpu_inc(nr_unused);
410 }
411 spin_unlock(&inode->i_sb->s_inode_lru_lock);
412 }
413
414 /*
415 * Add inode to LRU if needed (inode is unused and clean).
416 *
417 * Needs inode->i_lock held.
418 */
419 void inode_add_lru(struct inode *inode)
420 {
421 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
422 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
423 inode_lru_list_add(inode);
424 }
425
426
427 static void inode_lru_list_del(struct inode *inode)
428 {
429 spin_lock(&inode->i_sb->s_inode_lru_lock);
430 if (!list_empty(&inode->i_lru)) {
431 list_del_init(&inode->i_lru);
432 inode->i_sb->s_nr_inodes_unused--;
433 this_cpu_dec(nr_unused);
434 }
435 spin_unlock(&inode->i_sb->s_inode_lru_lock);
436 }
437
438 /**
439 * inode_sb_list_add - add inode to the superblock list of inodes
440 * @inode: inode to add
441 */
442 void inode_sb_list_add(struct inode *inode)
443 {
444 spin_lock(&inode_sb_list_lock);
445 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
446 spin_unlock(&inode_sb_list_lock);
447 }
448 EXPORT_SYMBOL_GPL(inode_sb_list_add);
449
450 static inline void inode_sb_list_del(struct inode *inode)
451 {
452 if (!list_empty(&inode->i_sb_list)) {
453 spin_lock(&inode_sb_list_lock);
454 list_del_init(&inode->i_sb_list);
455 spin_unlock(&inode_sb_list_lock);
456 }
457 }
458
459 static unsigned long hash(struct super_block *sb, unsigned long hashval)
460 {
461 unsigned long tmp;
462
463 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
464 L1_CACHE_BYTES;
465 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
466 return tmp & i_hash_mask;
467 }
468
469 /**
470 * __insert_inode_hash - hash an inode
471 * @inode: unhashed inode
472 * @hashval: unsigned long value used to locate this object in the
473 * inode_hashtable.
474 *
475 * Add an inode to the inode hash for this superblock.
476 */
477 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
478 {
479 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
480
481 spin_lock(&inode_hash_lock);
482 spin_lock(&inode->i_lock);
483 hlist_add_head(&inode->i_hash, b);
484 spin_unlock(&inode->i_lock);
485 spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__insert_inode_hash);
488
489 /**
490 * __remove_inode_hash - remove an inode from the hash
491 * @inode: inode to unhash
492 *
493 * Remove an inode from the superblock.
494 */
495 void __remove_inode_hash(struct inode *inode)
496 {
497 spin_lock(&inode_hash_lock);
498 spin_lock(&inode->i_lock);
499 hlist_del_init(&inode->i_hash);
500 spin_unlock(&inode->i_lock);
501 spin_unlock(&inode_hash_lock);
502 }
503 EXPORT_SYMBOL(__remove_inode_hash);
504
505 void clear_inode(struct inode *inode)
506 {
507 might_sleep();
508 /*
509 * We have to cycle tree_lock here because reclaim can be still in the
510 * process of removing the last page (in __delete_from_page_cache())
511 * and we must not free mapping under it.
512 */
513 spin_lock_irq(&inode->i_data.tree_lock);
514 BUG_ON(inode->i_data.nrpages);
515 spin_unlock_irq(&inode->i_data.tree_lock);
516 BUG_ON(!list_empty(&inode->i_data.private_list));
517 BUG_ON(!(inode->i_state & I_FREEING));
518 BUG_ON(inode->i_state & I_CLEAR);
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode->i_state = I_FREEING | I_CLEAR;
521 }
522 EXPORT_SYMBOL(clear_inode);
523
524 /*
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
528 *
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
532 *
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
536 */
537 static void evict(struct inode *inode)
538 {
539 const struct super_operations *op = inode->i_sb->s_op;
540
541 BUG_ON(!(inode->i_state & I_FREEING));
542 BUG_ON(!list_empty(&inode->i_lru));
543
544 if (!list_empty(&inode->i_wb_list))
545 inode_wb_list_del(inode);
546
547 inode_sb_list_del(inode);
548
549 /*
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
554 */
555 inode_wait_for_writeback(inode);
556
557 if (op->evict_inode) {
558 op->evict_inode(inode);
559 } else {
560 if (inode->i_data.nrpages)
561 truncate_inode_pages(&inode->i_data, 0);
562 clear_inode(inode);
563 }
564 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
565 bd_forget(inode);
566 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
567 cd_forget(inode);
568
569 remove_inode_hash(inode);
570
571 spin_lock(&inode->i_lock);
572 wake_up_bit(&inode->i_state, __I_NEW);
573 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
574 spin_unlock(&inode->i_lock);
575
576 destroy_inode(inode);
577 }
578
579 /*
580 * dispose_list - dispose of the contents of a local list
581 * @head: the head of the list to free
582 *
583 * Dispose-list gets a local list with local inodes in it, so it doesn't
584 * need to worry about list corruption and SMP locks.
585 */
586 static void dispose_list(struct list_head *head)
587 {
588 while (!list_empty(head)) {
589 struct inode *inode;
590
591 inode = list_first_entry(head, struct inode, i_lru);
592 list_del_init(&inode->i_lru);
593
594 evict(inode);
595 }
596 }
597
598 /**
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
601 *
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having MS_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
606 */
607 void evict_inodes(struct super_block *sb)
608 {
609 struct inode *inode, *next;
610 LIST_HEAD(dispose);
611
612 spin_lock(&inode_sb_list_lock);
613 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
614 if (atomic_read(&inode->i_count))
615 continue;
616
617 spin_lock(&inode->i_lock);
618 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
619 spin_unlock(&inode->i_lock);
620 continue;
621 }
622
623 inode->i_state |= I_FREEING;
624 inode_lru_list_del(inode);
625 spin_unlock(&inode->i_lock);
626 list_add(&inode->i_lru, &dispose);
627 }
628 spin_unlock(&inode_sb_list_lock);
629
630 dispose_list(&dispose);
631 }
632
633 /**
634 * invalidate_inodes - attempt to free all inodes on a superblock
635 * @sb: superblock to operate on
636 * @kill_dirty: flag to guide handling of dirty inodes
637 *
638 * Attempts to free all inodes for a given superblock. If there were any
639 * busy inodes return a non-zero value, else zero.
640 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
641 * them as busy.
642 */
643 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
644 {
645 int busy = 0;
646 struct inode *inode, *next;
647 LIST_HEAD(dispose);
648
649 spin_lock(&inode_sb_list_lock);
650 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
651 spin_lock(&inode->i_lock);
652 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
653 spin_unlock(&inode->i_lock);
654 continue;
655 }
656 if (inode->i_state & I_DIRTY && !kill_dirty) {
657 spin_unlock(&inode->i_lock);
658 busy = 1;
659 continue;
660 }
661 if (atomic_read(&inode->i_count)) {
662 spin_unlock(&inode->i_lock);
663 busy = 1;
664 continue;
665 }
666
667 inode->i_state |= I_FREEING;
668 inode_lru_list_del(inode);
669 spin_unlock(&inode->i_lock);
670 list_add(&inode->i_lru, &dispose);
671 }
672 spin_unlock(&inode_sb_list_lock);
673
674 dispose_list(&dispose);
675
676 return busy;
677 }
678
679 static int can_unuse(struct inode *inode)
680 {
681 if (inode->i_state & ~I_REFERENCED)
682 return 0;
683 if (inode_has_buffers(inode))
684 return 0;
685 if (atomic_read(&inode->i_count))
686 return 0;
687 if (inode->i_data.nrpages)
688 return 0;
689 return 1;
690 }
691
692 /*
693 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
694 * This is called from the superblock shrinker function with a number of inodes
695 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
696 * then are freed outside inode_lock by dispose_list().
697 *
698 * Any inodes which are pinned purely because of attached pagecache have their
699 * pagecache removed. If the inode has metadata buffers attached to
700 * mapping->private_list then try to remove them.
701 *
702 * If the inode has the I_REFERENCED flag set, then it means that it has been
703 * used recently - the flag is set in iput_final(). When we encounter such an
704 * inode, clear the flag and move it to the back of the LRU so it gets another
705 * pass through the LRU before it gets reclaimed. This is necessary because of
706 * the fact we are doing lazy LRU updates to minimise lock contention so the
707 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
708 * with this flag set because they are the inodes that are out of order.
709 */
710 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
711 {
712 LIST_HEAD(freeable);
713 int nr_scanned;
714 unsigned long reap = 0;
715
716 spin_lock(&sb->s_inode_lru_lock);
717 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
718 struct inode *inode;
719
720 if (list_empty(&sb->s_inode_lru))
721 break;
722
723 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
724
725 /*
726 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
727 * so use a trylock. If we fail to get the lock, just move the
728 * inode to the back of the list so we don't spin on it.
729 */
730 if (!spin_trylock(&inode->i_lock)) {
731 list_move(&inode->i_lru, &sb->s_inode_lru);
732 continue;
733 }
734
735 /*
736 * Referenced or dirty inodes are still in use. Give them
737 * another pass through the LRU as we canot reclaim them now.
738 */
739 if (atomic_read(&inode->i_count) ||
740 (inode->i_state & ~I_REFERENCED)) {
741 list_del_init(&inode->i_lru);
742 spin_unlock(&inode->i_lock);
743 sb->s_nr_inodes_unused--;
744 this_cpu_dec(nr_unused);
745 continue;
746 }
747
748 /* recently referenced inodes get one more pass */
749 if (inode->i_state & I_REFERENCED) {
750 inode->i_state &= ~I_REFERENCED;
751 list_move(&inode->i_lru, &sb->s_inode_lru);
752 spin_unlock(&inode->i_lock);
753 continue;
754 }
755 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
756 __iget(inode);
757 spin_unlock(&inode->i_lock);
758 spin_unlock(&sb->s_inode_lru_lock);
759 if (remove_inode_buffers(inode))
760 reap += invalidate_mapping_pages(&inode->i_data,
761 0, -1);
762 iput(inode);
763 spin_lock(&sb->s_inode_lru_lock);
764
765 if (inode != list_entry(sb->s_inode_lru.next,
766 struct inode, i_lru))
767 continue; /* wrong inode or list_empty */
768 /* avoid lock inversions with trylock */
769 if (!spin_trylock(&inode->i_lock))
770 continue;
771 if (!can_unuse(inode)) {
772 spin_unlock(&inode->i_lock);
773 continue;
774 }
775 }
776 WARN_ON(inode->i_state & I_NEW);
777 inode->i_state |= I_FREEING;
778 spin_unlock(&inode->i_lock);
779
780 list_move(&inode->i_lru, &freeable);
781 sb->s_nr_inodes_unused--;
782 this_cpu_dec(nr_unused);
783 }
784 if (current_is_kswapd())
785 __count_vm_events(KSWAPD_INODESTEAL, reap);
786 else
787 __count_vm_events(PGINODESTEAL, reap);
788 spin_unlock(&sb->s_inode_lru_lock);
789 if (current->reclaim_state)
790 current->reclaim_state->reclaimed_slab += reap;
791
792 dispose_list(&freeable);
793 }
794
795 static void __wait_on_freeing_inode(struct inode *inode);
796 /*
797 * Called with the inode lock held.
798 */
799 static struct inode *find_inode(struct super_block *sb,
800 struct hlist_head *head,
801 int (*test)(struct inode *, void *),
802 void *data)
803 {
804 struct inode *inode = NULL;
805
806 repeat:
807 hlist_for_each_entry(inode, head, i_hash) {
808 spin_lock(&inode->i_lock);
809 if (inode->i_sb != sb) {
810 spin_unlock(&inode->i_lock);
811 continue;
812 }
813 if (!test(inode, data)) {
814 spin_unlock(&inode->i_lock);
815 continue;
816 }
817 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
818 __wait_on_freeing_inode(inode);
819 goto repeat;
820 }
821 __iget(inode);
822 spin_unlock(&inode->i_lock);
823 return inode;
824 }
825 return NULL;
826 }
827
828 /*
829 * find_inode_fast is the fast path version of find_inode, see the comment at
830 * iget_locked for details.
831 */
832 static struct inode *find_inode_fast(struct super_block *sb,
833 struct hlist_head *head, unsigned long ino)
834 {
835 struct inode *inode = NULL;
836
837 repeat:
838 hlist_for_each_entry(inode, head, i_hash) {
839 spin_lock(&inode->i_lock);
840 if (inode->i_ino != ino) {
841 spin_unlock(&inode->i_lock);
842 continue;
843 }
844 if (inode->i_sb != sb) {
845 spin_unlock(&inode->i_lock);
846 continue;
847 }
848 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
849 __wait_on_freeing_inode(inode);
850 goto repeat;
851 }
852 __iget(inode);
853 spin_unlock(&inode->i_lock);
854 return inode;
855 }
856 return NULL;
857 }
858
859 /*
860 * Each cpu owns a range of LAST_INO_BATCH numbers.
861 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
862 * to renew the exhausted range.
863 *
864 * This does not significantly increase overflow rate because every CPU can
865 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
866 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
867 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
868 * overflow rate by 2x, which does not seem too significant.
869 *
870 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
871 * error if st_ino won't fit in target struct field. Use 32bit counter
872 * here to attempt to avoid that.
873 */
874 #define LAST_INO_BATCH 1024
875 static DEFINE_PER_CPU(unsigned int, last_ino);
876
877 unsigned int get_next_ino(void)
878 {
879 unsigned int *p = &get_cpu_var(last_ino);
880 unsigned int res = *p;
881
882 #ifdef CONFIG_SMP
883 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
884 static atomic_t shared_last_ino;
885 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
886
887 res = next - LAST_INO_BATCH;
888 }
889 #endif
890
891 *p = ++res;
892 put_cpu_var(last_ino);
893 return res;
894 }
895 EXPORT_SYMBOL(get_next_ino);
896
897 /**
898 * new_inode_pseudo - obtain an inode
899 * @sb: superblock
900 *
901 * Allocates a new inode for given superblock.
902 * Inode wont be chained in superblock s_inodes list
903 * This means :
904 * - fs can't be unmount
905 * - quotas, fsnotify, writeback can't work
906 */
907 struct inode *new_inode_pseudo(struct super_block *sb)
908 {
909 struct inode *inode = alloc_inode(sb);
910
911 if (inode) {
912 spin_lock(&inode->i_lock);
913 inode->i_state = 0;
914 spin_unlock(&inode->i_lock);
915 INIT_LIST_HEAD(&inode->i_sb_list);
916 }
917 return inode;
918 }
919
920 /**
921 * new_inode - obtain an inode
922 * @sb: superblock
923 *
924 * Allocates a new inode for given superblock. The default gfp_mask
925 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
926 * If HIGHMEM pages are unsuitable or it is known that pages allocated
927 * for the page cache are not reclaimable or migratable,
928 * mapping_set_gfp_mask() must be called with suitable flags on the
929 * newly created inode's mapping
930 *
931 */
932 struct inode *new_inode(struct super_block *sb)
933 {
934 struct inode *inode;
935
936 spin_lock_prefetch(&inode_sb_list_lock);
937
938 inode = new_inode_pseudo(sb);
939 if (inode)
940 inode_sb_list_add(inode);
941 return inode;
942 }
943 EXPORT_SYMBOL(new_inode);
944
945 #ifdef CONFIG_DEBUG_LOCK_ALLOC
946 void lockdep_annotate_inode_mutex_key(struct inode *inode)
947 {
948 if (S_ISDIR(inode->i_mode)) {
949 struct file_system_type *type = inode->i_sb->s_type;
950
951 /* Set new key only if filesystem hasn't already changed it */
952 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
953 /*
954 * ensure nobody is actually holding i_mutex
955 */
956 mutex_destroy(&inode->i_mutex);
957 mutex_init(&inode->i_mutex);
958 lockdep_set_class(&inode->i_mutex,
959 &type->i_mutex_dir_key);
960 }
961 }
962 }
963 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
964 #endif
965
966 /**
967 * unlock_new_inode - clear the I_NEW state and wake up any waiters
968 * @inode: new inode to unlock
969 *
970 * Called when the inode is fully initialised to clear the new state of the
971 * inode and wake up anyone waiting for the inode to finish initialisation.
972 */
973 void unlock_new_inode(struct inode *inode)
974 {
975 lockdep_annotate_inode_mutex_key(inode);
976 spin_lock(&inode->i_lock);
977 WARN_ON(!(inode->i_state & I_NEW));
978 inode->i_state &= ~I_NEW;
979 smp_mb();
980 wake_up_bit(&inode->i_state, __I_NEW);
981 spin_unlock(&inode->i_lock);
982 }
983 EXPORT_SYMBOL(unlock_new_inode);
984
985 /**
986 * iget5_locked - obtain an inode from a mounted file system
987 * @sb: super block of file system
988 * @hashval: hash value (usually inode number) to get
989 * @test: callback used for comparisons between inodes
990 * @set: callback used to initialize a new struct inode
991 * @data: opaque data pointer to pass to @test and @set
992 *
993 * Search for the inode specified by @hashval and @data in the inode cache,
994 * and if present it is return it with an increased reference count. This is
995 * a generalized version of iget_locked() for file systems where the inode
996 * number is not sufficient for unique identification of an inode.
997 *
998 * If the inode is not in cache, allocate a new inode and return it locked,
999 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1000 * before unlocking it via unlock_new_inode().
1001 *
1002 * Note both @test and @set are called with the inode_hash_lock held, so can't
1003 * sleep.
1004 */
1005 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1006 int (*test)(struct inode *, void *),
1007 int (*set)(struct inode *, void *), void *data)
1008 {
1009 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1010 struct inode *inode;
1011
1012 spin_lock(&inode_hash_lock);
1013 inode = find_inode(sb, head, test, data);
1014 spin_unlock(&inode_hash_lock);
1015
1016 if (inode) {
1017 wait_on_inode(inode);
1018 return inode;
1019 }
1020
1021 inode = alloc_inode(sb);
1022 if (inode) {
1023 struct inode *old;
1024
1025 spin_lock(&inode_hash_lock);
1026 /* We released the lock, so.. */
1027 old = find_inode(sb, head, test, data);
1028 if (!old) {
1029 if (set(inode, data))
1030 goto set_failed;
1031
1032 spin_lock(&inode->i_lock);
1033 inode->i_state = I_NEW;
1034 hlist_add_head(&inode->i_hash, head);
1035 spin_unlock(&inode->i_lock);
1036 inode_sb_list_add(inode);
1037 spin_unlock(&inode_hash_lock);
1038
1039 /* Return the locked inode with I_NEW set, the
1040 * caller is responsible for filling in the contents
1041 */
1042 return inode;
1043 }
1044
1045 /*
1046 * Uhhuh, somebody else created the same inode under
1047 * us. Use the old inode instead of the one we just
1048 * allocated.
1049 */
1050 spin_unlock(&inode_hash_lock);
1051 destroy_inode(inode);
1052 inode = old;
1053 wait_on_inode(inode);
1054 }
1055 return inode;
1056
1057 set_failed:
1058 spin_unlock(&inode_hash_lock);
1059 destroy_inode(inode);
1060 return NULL;
1061 }
1062 EXPORT_SYMBOL(iget5_locked);
1063
1064 /**
1065 * iget_locked - obtain an inode from a mounted file system
1066 * @sb: super block of file system
1067 * @ino: inode number to get
1068 *
1069 * Search for the inode specified by @ino in the inode cache and if present
1070 * return it with an increased reference count. This is for file systems
1071 * where the inode number is sufficient for unique identification of an inode.
1072 *
1073 * If the inode is not in cache, allocate a new inode and return it locked,
1074 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1075 * before unlocking it via unlock_new_inode().
1076 */
1077 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1078 {
1079 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1080 struct inode *inode;
1081
1082 spin_lock(&inode_hash_lock);
1083 inode = find_inode_fast(sb, head, ino);
1084 spin_unlock(&inode_hash_lock);
1085 if (inode) {
1086 wait_on_inode(inode);
1087 return inode;
1088 }
1089
1090 inode = alloc_inode(sb);
1091 if (inode) {
1092 struct inode *old;
1093
1094 spin_lock(&inode_hash_lock);
1095 /* We released the lock, so.. */
1096 old = find_inode_fast(sb, head, ino);
1097 if (!old) {
1098 inode->i_ino = ino;
1099 spin_lock(&inode->i_lock);
1100 inode->i_state = I_NEW;
1101 hlist_add_head(&inode->i_hash, head);
1102 spin_unlock(&inode->i_lock);
1103 inode_sb_list_add(inode);
1104 spin_unlock(&inode_hash_lock);
1105
1106 /* Return the locked inode with I_NEW set, the
1107 * caller is responsible for filling in the contents
1108 */
1109 return inode;
1110 }
1111
1112 /*
1113 * Uhhuh, somebody else created the same inode under
1114 * us. Use the old inode instead of the one we just
1115 * allocated.
1116 */
1117 spin_unlock(&inode_hash_lock);
1118 destroy_inode(inode);
1119 inode = old;
1120 wait_on_inode(inode);
1121 }
1122 return inode;
1123 }
1124 EXPORT_SYMBOL(iget_locked);
1125
1126 /*
1127 * search the inode cache for a matching inode number.
1128 * If we find one, then the inode number we are trying to
1129 * allocate is not unique and so we should not use it.
1130 *
1131 * Returns 1 if the inode number is unique, 0 if it is not.
1132 */
1133 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1134 {
1135 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1136 struct inode *inode;
1137
1138 spin_lock(&inode_hash_lock);
1139 hlist_for_each_entry(inode, b, i_hash) {
1140 if (inode->i_ino == ino && inode->i_sb == sb) {
1141 spin_unlock(&inode_hash_lock);
1142 return 0;
1143 }
1144 }
1145 spin_unlock(&inode_hash_lock);
1146
1147 return 1;
1148 }
1149
1150 /**
1151 * iunique - get a unique inode number
1152 * @sb: superblock
1153 * @max_reserved: highest reserved inode number
1154 *
1155 * Obtain an inode number that is unique on the system for a given
1156 * superblock. This is used by file systems that have no natural
1157 * permanent inode numbering system. An inode number is returned that
1158 * is higher than the reserved limit but unique.
1159 *
1160 * BUGS:
1161 * With a large number of inodes live on the file system this function
1162 * currently becomes quite slow.
1163 */
1164 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1165 {
1166 /*
1167 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1168 * error if st_ino won't fit in target struct field. Use 32bit counter
1169 * here to attempt to avoid that.
1170 */
1171 static DEFINE_SPINLOCK(iunique_lock);
1172 static unsigned int counter;
1173 ino_t res;
1174
1175 spin_lock(&iunique_lock);
1176 do {
1177 if (counter <= max_reserved)
1178 counter = max_reserved + 1;
1179 res = counter++;
1180 } while (!test_inode_iunique(sb, res));
1181 spin_unlock(&iunique_lock);
1182
1183 return res;
1184 }
1185 EXPORT_SYMBOL(iunique);
1186
1187 struct inode *igrab(struct inode *inode)
1188 {
1189 spin_lock(&inode->i_lock);
1190 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1191 __iget(inode);
1192 spin_unlock(&inode->i_lock);
1193 } else {
1194 spin_unlock(&inode->i_lock);
1195 /*
1196 * Handle the case where s_op->clear_inode is not been
1197 * called yet, and somebody is calling igrab
1198 * while the inode is getting freed.
1199 */
1200 inode = NULL;
1201 }
1202 return inode;
1203 }
1204 EXPORT_SYMBOL(igrab);
1205
1206 /**
1207 * ilookup5_nowait - search for an inode in the inode cache
1208 * @sb: super block of file system to search
1209 * @hashval: hash value (usually inode number) to search for
1210 * @test: callback used for comparisons between inodes
1211 * @data: opaque data pointer to pass to @test
1212 *
1213 * Search for the inode specified by @hashval and @data in the inode cache.
1214 * If the inode is in the cache, the inode is returned with an incremented
1215 * reference count.
1216 *
1217 * Note: I_NEW is not waited upon so you have to be very careful what you do
1218 * with the returned inode. You probably should be using ilookup5() instead.
1219 *
1220 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1221 */
1222 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1223 int (*test)(struct inode *, void *), void *data)
1224 {
1225 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1226 struct inode *inode;
1227
1228 spin_lock(&inode_hash_lock);
1229 inode = find_inode(sb, head, test, data);
1230 spin_unlock(&inode_hash_lock);
1231
1232 return inode;
1233 }
1234 EXPORT_SYMBOL(ilookup5_nowait);
1235
1236 /**
1237 * ilookup5 - search for an inode in the inode cache
1238 * @sb: super block of file system to search
1239 * @hashval: hash value (usually inode number) to search for
1240 * @test: callback used for comparisons between inodes
1241 * @data: opaque data pointer to pass to @test
1242 *
1243 * Search for the inode specified by @hashval and @data in the inode cache,
1244 * and if the inode is in the cache, return the inode with an incremented
1245 * reference count. Waits on I_NEW before returning the inode.
1246 * returned with an incremented reference count.
1247 *
1248 * This is a generalized version of ilookup() for file systems where the
1249 * inode number is not sufficient for unique identification of an inode.
1250 *
1251 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1254 int (*test)(struct inode *, void *), void *data)
1255 {
1256 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1257
1258 if (inode)
1259 wait_on_inode(inode);
1260 return inode;
1261 }
1262 EXPORT_SYMBOL(ilookup5);
1263
1264 /**
1265 * ilookup - search for an inode in the inode cache
1266 * @sb: super block of file system to search
1267 * @ino: inode number to search for
1268 *
1269 * Search for the inode @ino in the inode cache, and if the inode is in the
1270 * cache, the inode is returned with an incremented reference count.
1271 */
1272 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1273 {
1274 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1275 struct inode *inode;
1276
1277 spin_lock(&inode_hash_lock);
1278 inode = find_inode_fast(sb, head, ino);
1279 spin_unlock(&inode_hash_lock);
1280
1281 if (inode)
1282 wait_on_inode(inode);
1283 return inode;
1284 }
1285 EXPORT_SYMBOL(ilookup);
1286
1287 int insert_inode_locked(struct inode *inode)
1288 {
1289 struct super_block *sb = inode->i_sb;
1290 ino_t ino = inode->i_ino;
1291 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1292
1293 while (1) {
1294 struct inode *old = NULL;
1295 spin_lock(&inode_hash_lock);
1296 hlist_for_each_entry(old, head, i_hash) {
1297 if (old->i_ino != ino)
1298 continue;
1299 if (old->i_sb != sb)
1300 continue;
1301 spin_lock(&old->i_lock);
1302 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1303 spin_unlock(&old->i_lock);
1304 continue;
1305 }
1306 break;
1307 }
1308 if (likely(!old)) {
1309 spin_lock(&inode->i_lock);
1310 inode->i_state |= I_NEW;
1311 hlist_add_head(&inode->i_hash, head);
1312 spin_unlock(&inode->i_lock);
1313 spin_unlock(&inode_hash_lock);
1314 return 0;
1315 }
1316 __iget(old);
1317 spin_unlock(&old->i_lock);
1318 spin_unlock(&inode_hash_lock);
1319 wait_on_inode(old);
1320 if (unlikely(!inode_unhashed(old))) {
1321 iput(old);
1322 return -EBUSY;
1323 }
1324 iput(old);
1325 }
1326 }
1327 EXPORT_SYMBOL(insert_inode_locked);
1328
1329 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1330 int (*test)(struct inode *, void *), void *data)
1331 {
1332 struct super_block *sb = inode->i_sb;
1333 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1334
1335 while (1) {
1336 struct inode *old = NULL;
1337
1338 spin_lock(&inode_hash_lock);
1339 hlist_for_each_entry(old, head, i_hash) {
1340 if (old->i_sb != sb)
1341 continue;
1342 if (!test(old, data))
1343 continue;
1344 spin_lock(&old->i_lock);
1345 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1346 spin_unlock(&old->i_lock);
1347 continue;
1348 }
1349 break;
1350 }
1351 if (likely(!old)) {
1352 spin_lock(&inode->i_lock);
1353 inode->i_state |= I_NEW;
1354 hlist_add_head(&inode->i_hash, head);
1355 spin_unlock(&inode->i_lock);
1356 spin_unlock(&inode_hash_lock);
1357 return 0;
1358 }
1359 __iget(old);
1360 spin_unlock(&old->i_lock);
1361 spin_unlock(&inode_hash_lock);
1362 wait_on_inode(old);
1363 if (unlikely(!inode_unhashed(old))) {
1364 iput(old);
1365 return -EBUSY;
1366 }
1367 iput(old);
1368 }
1369 }
1370 EXPORT_SYMBOL(insert_inode_locked4);
1371
1372
1373 int generic_delete_inode(struct inode *inode)
1374 {
1375 return 1;
1376 }
1377 EXPORT_SYMBOL(generic_delete_inode);
1378
1379 /*
1380 * Called when we're dropping the last reference
1381 * to an inode.
1382 *
1383 * Call the FS "drop_inode()" function, defaulting to
1384 * the legacy UNIX filesystem behaviour. If it tells
1385 * us to evict inode, do so. Otherwise, retain inode
1386 * in cache if fs is alive, sync and evict if fs is
1387 * shutting down.
1388 */
1389 static void iput_final(struct inode *inode)
1390 {
1391 struct super_block *sb = inode->i_sb;
1392 const struct super_operations *op = inode->i_sb->s_op;
1393 int drop;
1394
1395 WARN_ON(inode->i_state & I_NEW);
1396
1397 if (op->drop_inode)
1398 drop = op->drop_inode(inode);
1399 else
1400 drop = generic_drop_inode(inode);
1401
1402 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1403 inode->i_state |= I_REFERENCED;
1404 inode_add_lru(inode);
1405 spin_unlock(&inode->i_lock);
1406 return;
1407 }
1408
1409 if (!drop) {
1410 inode->i_state |= I_WILL_FREE;
1411 spin_unlock(&inode->i_lock);
1412 write_inode_now(inode, 1);
1413 spin_lock(&inode->i_lock);
1414 WARN_ON(inode->i_state & I_NEW);
1415 inode->i_state &= ~I_WILL_FREE;
1416 }
1417
1418 inode->i_state |= I_FREEING;
1419 if (!list_empty(&inode->i_lru))
1420 inode_lru_list_del(inode);
1421 spin_unlock(&inode->i_lock);
1422
1423 evict(inode);
1424 }
1425
1426 /**
1427 * iput - put an inode
1428 * @inode: inode to put
1429 *
1430 * Puts an inode, dropping its usage count. If the inode use count hits
1431 * zero, the inode is then freed and may also be destroyed.
1432 *
1433 * Consequently, iput() can sleep.
1434 */
1435 void iput(struct inode *inode)
1436 {
1437 if (inode) {
1438 BUG_ON(inode->i_state & I_CLEAR);
1439
1440 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1441 iput_final(inode);
1442 }
1443 }
1444 EXPORT_SYMBOL(iput);
1445
1446 /**
1447 * bmap - find a block number in a file
1448 * @inode: inode of file
1449 * @block: block to find
1450 *
1451 * Returns the block number on the device holding the inode that
1452 * is the disk block number for the block of the file requested.
1453 * That is, asked for block 4 of inode 1 the function will return the
1454 * disk block relative to the disk start that holds that block of the
1455 * file.
1456 */
1457 sector_t bmap(struct inode *inode, sector_t block)
1458 {
1459 sector_t res = 0;
1460 if (inode->i_mapping->a_ops->bmap)
1461 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1462 return res;
1463 }
1464 EXPORT_SYMBOL(bmap);
1465
1466 /*
1467 * With relative atime, only update atime if the previous atime is
1468 * earlier than either the ctime or mtime or if at least a day has
1469 * passed since the last atime update.
1470 */
1471 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1472 struct timespec now)
1473 {
1474
1475 if (!(mnt->mnt_flags & MNT_RELATIME))
1476 return 1;
1477 /*
1478 * Is mtime younger than atime? If yes, update atime:
1479 */
1480 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1481 return 1;
1482 /*
1483 * Is ctime younger than atime? If yes, update atime:
1484 */
1485 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1486 return 1;
1487
1488 /*
1489 * Is the previous atime value older than a day? If yes,
1490 * update atime:
1491 */
1492 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1493 return 1;
1494 /*
1495 * Good, we can skip the atime update:
1496 */
1497 return 0;
1498 }
1499
1500 /*
1501 * This does the actual work of updating an inodes time or version. Must have
1502 * had called mnt_want_write() before calling this.
1503 */
1504 static int update_time(struct inode *inode, struct timespec *time, int flags)
1505 {
1506 if (inode->i_op->update_time)
1507 return inode->i_op->update_time(inode, time, flags);
1508
1509 if (flags & S_ATIME)
1510 inode->i_atime = *time;
1511 if (flags & S_VERSION)
1512 inode_inc_iversion(inode);
1513 if (flags & S_CTIME)
1514 inode->i_ctime = *time;
1515 if (flags & S_MTIME)
1516 inode->i_mtime = *time;
1517 mark_inode_dirty_sync(inode);
1518 return 0;
1519 }
1520
1521 /**
1522 * touch_atime - update the access time
1523 * @path: the &struct path to update
1524 *
1525 * Update the accessed time on an inode and mark it for writeback.
1526 * This function automatically handles read only file systems and media,
1527 * as well as the "noatime" flag and inode specific "noatime" markers.
1528 */
1529 void touch_atime(struct path *path)
1530 {
1531 struct vfsmount *mnt = path->mnt;
1532 struct inode *inode = path->dentry->d_inode;
1533 struct timespec now;
1534
1535 if (inode->i_flags & S_NOATIME)
1536 return;
1537 if (IS_NOATIME(inode))
1538 return;
1539 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1540 return;
1541
1542 if (mnt->mnt_flags & MNT_NOATIME)
1543 return;
1544 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1545 return;
1546
1547 now = current_fs_time(inode->i_sb);
1548
1549 if (!relatime_need_update(mnt, inode, now))
1550 return;
1551
1552 if (timespec_equal(&inode->i_atime, &now))
1553 return;
1554
1555 if (!sb_start_write_trylock(inode->i_sb))
1556 return;
1557
1558 if (__mnt_want_write(mnt))
1559 goto skip_update;
1560 /*
1561 * File systems can error out when updating inodes if they need to
1562 * allocate new space to modify an inode (such is the case for
1563 * Btrfs), but since we touch atime while walking down the path we
1564 * really don't care if we failed to update the atime of the file,
1565 * so just ignore the return value.
1566 * We may also fail on filesystems that have the ability to make parts
1567 * of the fs read only, e.g. subvolumes in Btrfs.
1568 */
1569 update_time(inode, &now, S_ATIME);
1570 __mnt_drop_write(mnt);
1571 skip_update:
1572 sb_end_write(inode->i_sb);
1573 }
1574 EXPORT_SYMBOL(touch_atime);
1575
1576 /*
1577 * The logic we want is
1578 *
1579 * if suid or (sgid and xgrp)
1580 * remove privs
1581 */
1582 int should_remove_suid(struct dentry *dentry)
1583 {
1584 umode_t mode = dentry->d_inode->i_mode;
1585 int kill = 0;
1586
1587 /* suid always must be killed */
1588 if (unlikely(mode & S_ISUID))
1589 kill = ATTR_KILL_SUID;
1590
1591 /*
1592 * sgid without any exec bits is just a mandatory locking mark; leave
1593 * it alone. If some exec bits are set, it's a real sgid; kill it.
1594 */
1595 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1596 kill |= ATTR_KILL_SGID;
1597
1598 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1599 return kill;
1600
1601 return 0;
1602 }
1603 EXPORT_SYMBOL(should_remove_suid);
1604
1605 static int __remove_suid(struct dentry *dentry, int kill)
1606 {
1607 struct iattr newattrs;
1608
1609 newattrs.ia_valid = ATTR_FORCE | kill;
1610 return notify_change(dentry, &newattrs);
1611 }
1612
1613 int file_remove_suid(struct file *file)
1614 {
1615 struct dentry *dentry = file->f_path.dentry;
1616 struct inode *inode = dentry->d_inode;
1617 int killsuid;
1618 int killpriv;
1619 int error = 0;
1620
1621 /* Fast path for nothing security related */
1622 if (IS_NOSEC(inode))
1623 return 0;
1624
1625 killsuid = should_remove_suid(dentry);
1626 killpriv = security_inode_need_killpriv(dentry);
1627
1628 if (killpriv < 0)
1629 return killpriv;
1630 if (killpriv)
1631 error = security_inode_killpriv(dentry);
1632 if (!error && killsuid)
1633 error = __remove_suid(dentry, killsuid);
1634 if (!error)
1635 inode_has_no_xattr(inode);
1636
1637 return error;
1638 }
1639 EXPORT_SYMBOL(file_remove_suid);
1640
1641 /**
1642 * file_update_time - update mtime and ctime time
1643 * @file: file accessed
1644 *
1645 * Update the mtime and ctime members of an inode and mark the inode
1646 * for writeback. Note that this function is meant exclusively for
1647 * usage in the file write path of filesystems, and filesystems may
1648 * choose to explicitly ignore update via this function with the
1649 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1650 * timestamps are handled by the server. This can return an error for
1651 * file systems who need to allocate space in order to update an inode.
1652 */
1653
1654 int file_update_time(struct file *file)
1655 {
1656 struct inode *inode = file_inode(file);
1657 struct timespec now;
1658 int sync_it = 0;
1659 int ret;
1660
1661 /* First try to exhaust all avenues to not sync */
1662 if (IS_NOCMTIME(inode))
1663 return 0;
1664
1665 now = current_fs_time(inode->i_sb);
1666 if (!timespec_equal(&inode->i_mtime, &now))
1667 sync_it = S_MTIME;
1668
1669 if (!timespec_equal(&inode->i_ctime, &now))
1670 sync_it |= S_CTIME;
1671
1672 if (IS_I_VERSION(inode))
1673 sync_it |= S_VERSION;
1674
1675 if (!sync_it)
1676 return 0;
1677
1678 /* Finally allowed to write? Takes lock. */
1679 if (__mnt_want_write_file(file))
1680 return 0;
1681
1682 ret = update_time(inode, &now, sync_it);
1683 __mnt_drop_write_file(file);
1684
1685 return ret;
1686 }
1687 EXPORT_SYMBOL(file_update_time);
1688
1689 int inode_needs_sync(struct inode *inode)
1690 {
1691 if (IS_SYNC(inode))
1692 return 1;
1693 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1694 return 1;
1695 return 0;
1696 }
1697 EXPORT_SYMBOL(inode_needs_sync);
1698
1699 int inode_wait(void *word)
1700 {
1701 schedule();
1702 return 0;
1703 }
1704 EXPORT_SYMBOL(inode_wait);
1705
1706 /*
1707 * If we try to find an inode in the inode hash while it is being
1708 * deleted, we have to wait until the filesystem completes its
1709 * deletion before reporting that it isn't found. This function waits
1710 * until the deletion _might_ have completed. Callers are responsible
1711 * to recheck inode state.
1712 *
1713 * It doesn't matter if I_NEW is not set initially, a call to
1714 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1715 * will DTRT.
1716 */
1717 static void __wait_on_freeing_inode(struct inode *inode)
1718 {
1719 wait_queue_head_t *wq;
1720 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1721 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1722 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1723 spin_unlock(&inode->i_lock);
1724 spin_unlock(&inode_hash_lock);
1725 schedule();
1726 finish_wait(wq, &wait.wait);
1727 spin_lock(&inode_hash_lock);
1728 }
1729
1730 static __initdata unsigned long ihash_entries;
1731 static int __init set_ihash_entries(char *str)
1732 {
1733 if (!str)
1734 return 0;
1735 ihash_entries = simple_strtoul(str, &str, 0);
1736 return 1;
1737 }
1738 __setup("ihash_entries=", set_ihash_entries);
1739
1740 /*
1741 * Initialize the waitqueues and inode hash table.
1742 */
1743 void __init inode_init_early(void)
1744 {
1745 unsigned int loop;
1746
1747 /* If hashes are distributed across NUMA nodes, defer
1748 * hash allocation until vmalloc space is available.
1749 */
1750 if (hashdist)
1751 return;
1752
1753 inode_hashtable =
1754 alloc_large_system_hash("Inode-cache",
1755 sizeof(struct hlist_head),
1756 ihash_entries,
1757 14,
1758 HASH_EARLY,
1759 &i_hash_shift,
1760 &i_hash_mask,
1761 0,
1762 0);
1763
1764 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1765 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1766 }
1767
1768 void __init inode_init(void)
1769 {
1770 unsigned int loop;
1771
1772 /* inode slab cache */
1773 inode_cachep = kmem_cache_create("inode_cache",
1774 sizeof(struct inode),
1775 0,
1776 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1777 SLAB_MEM_SPREAD),
1778 init_once);
1779
1780 /* Hash may have been set up in inode_init_early */
1781 if (!hashdist)
1782 return;
1783
1784 inode_hashtable =
1785 alloc_large_system_hash("Inode-cache",
1786 sizeof(struct hlist_head),
1787 ihash_entries,
1788 14,
1789 0,
1790 &i_hash_shift,
1791 &i_hash_mask,
1792 0,
1793 0);
1794
1795 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1796 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1797 }
1798
1799 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1800 {
1801 inode->i_mode = mode;
1802 if (S_ISCHR(mode)) {
1803 inode->i_fop = &def_chr_fops;
1804 inode->i_rdev = rdev;
1805 } else if (S_ISBLK(mode)) {
1806 inode->i_fop = &def_blk_fops;
1807 inode->i_rdev = rdev;
1808 } else if (S_ISFIFO(mode))
1809 inode->i_fop = &pipefifo_fops;
1810 else if (S_ISSOCK(mode))
1811 inode->i_fop = &bad_sock_fops;
1812 else
1813 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1814 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1815 inode->i_ino);
1816 }
1817 EXPORT_SYMBOL(init_special_inode);
1818
1819 /**
1820 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1821 * @inode: New inode
1822 * @dir: Directory inode
1823 * @mode: mode of the new inode
1824 */
1825 void inode_init_owner(struct inode *inode, const struct inode *dir,
1826 umode_t mode)
1827 {
1828 inode->i_uid = current_fsuid();
1829 if (dir && dir->i_mode & S_ISGID) {
1830 inode->i_gid = dir->i_gid;
1831 if (S_ISDIR(mode))
1832 mode |= S_ISGID;
1833 } else
1834 inode->i_gid = current_fsgid();
1835 inode->i_mode = mode;
1836 }
1837 EXPORT_SYMBOL(inode_init_owner);
1838
1839 /**
1840 * inode_owner_or_capable - check current task permissions to inode
1841 * @inode: inode being checked
1842 *
1843 * Return true if current either has CAP_FOWNER in a namespace with the
1844 * inode owner uid mapped, or owns the file.
1845 */
1846 bool inode_owner_or_capable(const struct inode *inode)
1847 {
1848 struct user_namespace *ns;
1849
1850 if (uid_eq(current_fsuid(), inode->i_uid))
1851 return true;
1852
1853 ns = current_user_ns();
1854 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1855 return true;
1856 return false;
1857 }
1858 EXPORT_SYMBOL(inode_owner_or_capable);
1859
1860 /*
1861 * Direct i/o helper functions
1862 */
1863 static void __inode_dio_wait(struct inode *inode)
1864 {
1865 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1866 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1867
1868 do {
1869 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1870 if (atomic_read(&inode->i_dio_count))
1871 schedule();
1872 } while (atomic_read(&inode->i_dio_count));
1873 finish_wait(wq, &q.wait);
1874 }
1875
1876 /**
1877 * inode_dio_wait - wait for outstanding DIO requests to finish
1878 * @inode: inode to wait for
1879 *
1880 * Waits for all pending direct I/O requests to finish so that we can
1881 * proceed with a truncate or equivalent operation.
1882 *
1883 * Must be called under a lock that serializes taking new references
1884 * to i_dio_count, usually by inode->i_mutex.
1885 */
1886 void inode_dio_wait(struct inode *inode)
1887 {
1888 if (atomic_read(&inode->i_dio_count))
1889 __inode_dio_wait(inode);
1890 }
1891 EXPORT_SYMBOL(inode_dio_wait);
1892
1893 /*
1894 * inode_dio_done - signal finish of a direct I/O requests
1895 * @inode: inode the direct I/O happens on
1896 *
1897 * This is called once we've finished processing a direct I/O request,
1898 * and is used to wake up callers waiting for direct I/O to be quiesced.
1899 */
1900 void inode_dio_done(struct inode *inode)
1901 {
1902 if (atomic_dec_and_test(&inode->i_dio_count))
1903 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1904 }
1905 EXPORT_SYMBOL(inode_dio_done);