userns: rename is_owner_or_cap to inode_owner_or_capable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 #include <linux/cred.h>
29
30 /*
31 * This is needed for the following functions:
32 * - inode_has_buffers
33 * - invalidate_bdev
34 *
35 * FIXME: remove all knowledge of the buffer layer from this file
36 */
37 #include <linux/buffer_head.h>
38
39 /*
40 * New inode.c implementation.
41 *
42 * This implementation has the basic premise of trying
43 * to be extremely low-overhead and SMP-safe, yet be
44 * simple enough to be "obviously correct".
45 *
46 * Famous last words.
47 */
48
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
53
54 /*
55 * Inode lookup is no longer as critical as it used to be:
56 * most of the lookups are going to be through the dcache.
57 */
58 #define I_HASHBITS i_hash_shift
59 #define I_HASHMASK i_hash_mask
60
61 static unsigned int i_hash_mask __read_mostly;
62 static unsigned int i_hash_shift __read_mostly;
63
64 /*
65 * Each inode can be on two separate lists. One is
66 * the hash list of the inode, used for lookups. The
67 * other linked list is the "type" list:
68 * "in_use" - valid inode, i_count > 0, i_nlink > 0
69 * "dirty" - as "in_use" but also dirty
70 * "unused" - valid inode, i_count = 0
71 *
72 * A "dirty" list is maintained for each super block,
73 * allowing for low-overhead inode sync() operations.
74 */
75
76 static LIST_HEAD(inode_lru);
77 static struct hlist_head *inode_hashtable __read_mostly;
78
79 /*
80 * A simple spinlock to protect the list manipulations.
81 *
82 * NOTE! You also have to own the lock if you change
83 * the i_state of an inode while it is in use..
84 */
85 DEFINE_SPINLOCK(inode_lock);
86
87 /*
88 * iprune_sem provides exclusion between the icache shrinking and the
89 * umount path.
90 *
91 * We don't actually need it to protect anything in the umount path,
92 * but only need to cycle through it to make sure any inode that
93 * prune_icache took off the LRU list has been fully torn down by the
94 * time we are past evict_inodes.
95 */
96 static DECLARE_RWSEM(iprune_sem);
97
98 /*
99 * Statistics gathering..
100 */
101 struct inodes_stat_t inodes_stat;
102
103 static DEFINE_PER_CPU(unsigned int, nr_inodes);
104
105 static struct kmem_cache *inode_cachep __read_mostly;
106
107 static int get_nr_inodes(void)
108 {
109 int i;
110 int sum = 0;
111 for_each_possible_cpu(i)
112 sum += per_cpu(nr_inodes, i);
113 return sum < 0 ? 0 : sum;
114 }
115
116 static inline int get_nr_inodes_unused(void)
117 {
118 return inodes_stat.nr_unused;
119 }
120
121 int get_nr_dirty_inodes(void)
122 {
123 /* not actually dirty inodes, but a wild approximation */
124 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
125 return nr_dirty > 0 ? nr_dirty : 0;
126 }
127
128 /*
129 * Handle nr_inode sysctl
130 */
131 #ifdef CONFIG_SYSCTL
132 int proc_nr_inodes(ctl_table *table, int write,
133 void __user *buffer, size_t *lenp, loff_t *ppos)
134 {
135 inodes_stat.nr_inodes = get_nr_inodes();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 static void wake_up_inode(struct inode *inode)
141 {
142 /*
143 * Prevent speculative execution through spin_unlock(&inode_lock);
144 */
145 smp_mb();
146 wake_up_bit(&inode->i_state, __I_NEW);
147 }
148
149 /**
150 * inode_init_always - perform inode structure intialisation
151 * @sb: superblock inode belongs to
152 * @inode: inode to initialise
153 *
154 * These are initializations that need to be done on every inode
155 * allocation as the fields are not initialised by slab allocation.
156 */
157 int inode_init_always(struct super_block *sb, struct inode *inode)
158 {
159 static const struct address_space_operations empty_aops;
160 static const struct inode_operations empty_iops;
161 static const struct file_operations empty_fops;
162 struct address_space *const mapping = &inode->i_data;
163
164 inode->i_sb = sb;
165 inode->i_blkbits = sb->s_blocksize_bits;
166 inode->i_flags = 0;
167 atomic_set(&inode->i_count, 1);
168 inode->i_op = &empty_iops;
169 inode->i_fop = &empty_fops;
170 inode->i_nlink = 1;
171 inode->i_uid = 0;
172 inode->i_gid = 0;
173 atomic_set(&inode->i_writecount, 0);
174 inode->i_size = 0;
175 inode->i_blocks = 0;
176 inode->i_bytes = 0;
177 inode->i_generation = 0;
178 #ifdef CONFIG_QUOTA
179 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
180 #endif
181 inode->i_pipe = NULL;
182 inode->i_bdev = NULL;
183 inode->i_cdev = NULL;
184 inode->i_rdev = 0;
185 inode->dirtied_when = 0;
186
187 if (security_inode_alloc(inode))
188 goto out;
189 spin_lock_init(&inode->i_lock);
190 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
191
192 mutex_init(&inode->i_mutex);
193 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
194
195 init_rwsem(&inode->i_alloc_sem);
196 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
197
198 mapping->a_ops = &empty_aops;
199 mapping->host = inode;
200 mapping->flags = 0;
201 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
202 mapping->assoc_mapping = NULL;
203 mapping->backing_dev_info = &default_backing_dev_info;
204 mapping->writeback_index = 0;
205
206 /*
207 * If the block_device provides a backing_dev_info for client
208 * inodes then use that. Otherwise the inode share the bdev's
209 * backing_dev_info.
210 */
211 if (sb->s_bdev) {
212 struct backing_dev_info *bdi;
213
214 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
215 mapping->backing_dev_info = bdi;
216 }
217 inode->i_private = NULL;
218 inode->i_mapping = mapping;
219 #ifdef CONFIG_FS_POSIX_ACL
220 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
221 #endif
222
223 #ifdef CONFIG_FSNOTIFY
224 inode->i_fsnotify_mask = 0;
225 #endif
226
227 this_cpu_inc(nr_inodes);
228
229 return 0;
230 out:
231 return -ENOMEM;
232 }
233 EXPORT_SYMBOL(inode_init_always);
234
235 static struct inode *alloc_inode(struct super_block *sb)
236 {
237 struct inode *inode;
238
239 if (sb->s_op->alloc_inode)
240 inode = sb->s_op->alloc_inode(sb);
241 else
242 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
243
244 if (!inode)
245 return NULL;
246
247 if (unlikely(inode_init_always(sb, inode))) {
248 if (inode->i_sb->s_op->destroy_inode)
249 inode->i_sb->s_op->destroy_inode(inode);
250 else
251 kmem_cache_free(inode_cachep, inode);
252 return NULL;
253 }
254
255 return inode;
256 }
257
258 void free_inode_nonrcu(struct inode *inode)
259 {
260 kmem_cache_free(inode_cachep, inode);
261 }
262 EXPORT_SYMBOL(free_inode_nonrcu);
263
264 void __destroy_inode(struct inode *inode)
265 {
266 BUG_ON(inode_has_buffers(inode));
267 security_inode_free(inode);
268 fsnotify_inode_delete(inode);
269 #ifdef CONFIG_FS_POSIX_ACL
270 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
271 posix_acl_release(inode->i_acl);
272 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
273 posix_acl_release(inode->i_default_acl);
274 #endif
275 this_cpu_dec(nr_inodes);
276 }
277 EXPORT_SYMBOL(__destroy_inode);
278
279 static void i_callback(struct rcu_head *head)
280 {
281 struct inode *inode = container_of(head, struct inode, i_rcu);
282 INIT_LIST_HEAD(&inode->i_dentry);
283 kmem_cache_free(inode_cachep, inode);
284 }
285
286 static void destroy_inode(struct inode *inode)
287 {
288 BUG_ON(!list_empty(&inode->i_lru));
289 __destroy_inode(inode);
290 if (inode->i_sb->s_op->destroy_inode)
291 inode->i_sb->s_op->destroy_inode(inode);
292 else
293 call_rcu(&inode->i_rcu, i_callback);
294 }
295
296 void address_space_init_once(struct address_space *mapping)
297 {
298 memset(mapping, 0, sizeof(*mapping));
299 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
300 spin_lock_init(&mapping->tree_lock);
301 spin_lock_init(&mapping->i_mmap_lock);
302 INIT_LIST_HEAD(&mapping->private_list);
303 spin_lock_init(&mapping->private_lock);
304 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
305 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
306 mutex_init(&mapping->unmap_mutex);
307 }
308 EXPORT_SYMBOL(address_space_init_once);
309
310 /*
311 * These are initializations that only need to be done
312 * once, because the fields are idempotent across use
313 * of the inode, so let the slab aware of that.
314 */
315 void inode_init_once(struct inode *inode)
316 {
317 memset(inode, 0, sizeof(*inode));
318 INIT_HLIST_NODE(&inode->i_hash);
319 INIT_LIST_HEAD(&inode->i_dentry);
320 INIT_LIST_HEAD(&inode->i_devices);
321 INIT_LIST_HEAD(&inode->i_wb_list);
322 INIT_LIST_HEAD(&inode->i_lru);
323 address_space_init_once(&inode->i_data);
324 i_size_ordered_init(inode);
325 #ifdef CONFIG_FSNOTIFY
326 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
327 #endif
328 }
329 EXPORT_SYMBOL(inode_init_once);
330
331 static void init_once(void *foo)
332 {
333 struct inode *inode = (struct inode *) foo;
334
335 inode_init_once(inode);
336 }
337
338 /*
339 * inode_lock must be held
340 */
341 void __iget(struct inode *inode)
342 {
343 atomic_inc(&inode->i_count);
344 }
345
346 /*
347 * get additional reference to inode; caller must already hold one.
348 */
349 void ihold(struct inode *inode)
350 {
351 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
352 }
353 EXPORT_SYMBOL(ihold);
354
355 static void inode_lru_list_add(struct inode *inode)
356 {
357 if (list_empty(&inode->i_lru)) {
358 list_add(&inode->i_lru, &inode_lru);
359 inodes_stat.nr_unused++;
360 }
361 }
362
363 static void inode_lru_list_del(struct inode *inode)
364 {
365 if (!list_empty(&inode->i_lru)) {
366 list_del_init(&inode->i_lru);
367 inodes_stat.nr_unused--;
368 }
369 }
370
371 static inline void __inode_sb_list_add(struct inode *inode)
372 {
373 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
374 }
375
376 /**
377 * inode_sb_list_add - add inode to the superblock list of inodes
378 * @inode: inode to add
379 */
380 void inode_sb_list_add(struct inode *inode)
381 {
382 spin_lock(&inode_lock);
383 __inode_sb_list_add(inode);
384 spin_unlock(&inode_lock);
385 }
386 EXPORT_SYMBOL_GPL(inode_sb_list_add);
387
388 static inline void __inode_sb_list_del(struct inode *inode)
389 {
390 list_del_init(&inode->i_sb_list);
391 }
392
393 static unsigned long hash(struct super_block *sb, unsigned long hashval)
394 {
395 unsigned long tmp;
396
397 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
398 L1_CACHE_BYTES;
399 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
400 return tmp & I_HASHMASK;
401 }
402
403 /**
404 * __insert_inode_hash - hash an inode
405 * @inode: unhashed inode
406 * @hashval: unsigned long value used to locate this object in the
407 * inode_hashtable.
408 *
409 * Add an inode to the inode hash for this superblock.
410 */
411 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
412 {
413 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
414
415 spin_lock(&inode_lock);
416 hlist_add_head(&inode->i_hash, b);
417 spin_unlock(&inode_lock);
418 }
419 EXPORT_SYMBOL(__insert_inode_hash);
420
421 /**
422 * __remove_inode_hash - remove an inode from the hash
423 * @inode: inode to unhash
424 *
425 * Remove an inode from the superblock.
426 */
427 static void __remove_inode_hash(struct inode *inode)
428 {
429 hlist_del_init(&inode->i_hash);
430 }
431
432 /**
433 * remove_inode_hash - remove an inode from the hash
434 * @inode: inode to unhash
435 *
436 * Remove an inode from the superblock.
437 */
438 void remove_inode_hash(struct inode *inode)
439 {
440 spin_lock(&inode_lock);
441 hlist_del_init(&inode->i_hash);
442 spin_unlock(&inode_lock);
443 }
444 EXPORT_SYMBOL(remove_inode_hash);
445
446 void end_writeback(struct inode *inode)
447 {
448 might_sleep();
449 BUG_ON(inode->i_data.nrpages);
450 BUG_ON(!list_empty(&inode->i_data.private_list));
451 BUG_ON(!(inode->i_state & I_FREEING));
452 BUG_ON(inode->i_state & I_CLEAR);
453 inode_sync_wait(inode);
454 /* don't need i_lock here, no concurrent mods to i_state */
455 inode->i_state = I_FREEING | I_CLEAR;
456 }
457 EXPORT_SYMBOL(end_writeback);
458
459 static void evict(struct inode *inode)
460 {
461 const struct super_operations *op = inode->i_sb->s_op;
462
463 if (op->evict_inode) {
464 op->evict_inode(inode);
465 } else {
466 if (inode->i_data.nrpages)
467 truncate_inode_pages(&inode->i_data, 0);
468 end_writeback(inode);
469 }
470 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
471 bd_forget(inode);
472 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
473 cd_forget(inode);
474 }
475
476 /*
477 * dispose_list - dispose of the contents of a local list
478 * @head: the head of the list to free
479 *
480 * Dispose-list gets a local list with local inodes in it, so it doesn't
481 * need to worry about list corruption and SMP locks.
482 */
483 static void dispose_list(struct list_head *head)
484 {
485 while (!list_empty(head)) {
486 struct inode *inode;
487
488 inode = list_first_entry(head, struct inode, i_lru);
489 list_del_init(&inode->i_lru);
490
491 evict(inode);
492
493 spin_lock(&inode_lock);
494 __remove_inode_hash(inode);
495 __inode_sb_list_del(inode);
496 spin_unlock(&inode_lock);
497
498 wake_up_inode(inode);
499 destroy_inode(inode);
500 }
501 }
502
503 /**
504 * evict_inodes - evict all evictable inodes for a superblock
505 * @sb: superblock to operate on
506 *
507 * Make sure that no inodes with zero refcount are retained. This is
508 * called by superblock shutdown after having MS_ACTIVE flag removed,
509 * so any inode reaching zero refcount during or after that call will
510 * be immediately evicted.
511 */
512 void evict_inodes(struct super_block *sb)
513 {
514 struct inode *inode, *next;
515 LIST_HEAD(dispose);
516
517 spin_lock(&inode_lock);
518 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
519 if (atomic_read(&inode->i_count))
520 continue;
521 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
522 continue;
523
524 inode->i_state |= I_FREEING;
525
526 /*
527 * Move the inode off the IO lists and LRU once I_FREEING is
528 * set so that it won't get moved back on there if it is dirty.
529 */
530 list_move(&inode->i_lru, &dispose);
531 list_del_init(&inode->i_wb_list);
532 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
533 inodes_stat.nr_unused--;
534 }
535 spin_unlock(&inode_lock);
536
537 dispose_list(&dispose);
538
539 /*
540 * Cycle through iprune_sem to make sure any inode that prune_icache
541 * moved off the list before we took the lock has been fully torn
542 * down.
543 */
544 down_write(&iprune_sem);
545 up_write(&iprune_sem);
546 }
547
548 /**
549 * invalidate_inodes - attempt to free all inodes on a superblock
550 * @sb: superblock to operate on
551 * @kill_dirty: flag to guide handling of dirty inodes
552 *
553 * Attempts to free all inodes for a given superblock. If there were any
554 * busy inodes return a non-zero value, else zero.
555 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
556 * them as busy.
557 */
558 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
559 {
560 int busy = 0;
561 struct inode *inode, *next;
562 LIST_HEAD(dispose);
563
564 spin_lock(&inode_lock);
565 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
566 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
567 continue;
568 if (inode->i_state & I_DIRTY && !kill_dirty) {
569 busy = 1;
570 continue;
571 }
572 if (atomic_read(&inode->i_count)) {
573 busy = 1;
574 continue;
575 }
576
577 inode->i_state |= I_FREEING;
578
579 /*
580 * Move the inode off the IO lists and LRU once I_FREEING is
581 * set so that it won't get moved back on there if it is dirty.
582 */
583 list_move(&inode->i_lru, &dispose);
584 list_del_init(&inode->i_wb_list);
585 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
586 inodes_stat.nr_unused--;
587 }
588 spin_unlock(&inode_lock);
589
590 dispose_list(&dispose);
591
592 return busy;
593 }
594
595 static int can_unuse(struct inode *inode)
596 {
597 if (inode->i_state & ~I_REFERENCED)
598 return 0;
599 if (inode_has_buffers(inode))
600 return 0;
601 if (atomic_read(&inode->i_count))
602 return 0;
603 if (inode->i_data.nrpages)
604 return 0;
605 return 1;
606 }
607
608 /*
609 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
610 * temporary list and then are freed outside inode_lock by dispose_list().
611 *
612 * Any inodes which are pinned purely because of attached pagecache have their
613 * pagecache removed. If the inode has metadata buffers attached to
614 * mapping->private_list then try to remove them.
615 *
616 * If the inode has the I_REFERENCED flag set, then it means that it has been
617 * used recently - the flag is set in iput_final(). When we encounter such an
618 * inode, clear the flag and move it to the back of the LRU so it gets another
619 * pass through the LRU before it gets reclaimed. This is necessary because of
620 * the fact we are doing lazy LRU updates to minimise lock contention so the
621 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
622 * with this flag set because they are the inodes that are out of order.
623 */
624 static void prune_icache(int nr_to_scan)
625 {
626 LIST_HEAD(freeable);
627 int nr_scanned;
628 unsigned long reap = 0;
629
630 down_read(&iprune_sem);
631 spin_lock(&inode_lock);
632 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
633 struct inode *inode;
634
635 if (list_empty(&inode_lru))
636 break;
637
638 inode = list_entry(inode_lru.prev, struct inode, i_lru);
639
640 /*
641 * Referenced or dirty inodes are still in use. Give them
642 * another pass through the LRU as we canot reclaim them now.
643 */
644 if (atomic_read(&inode->i_count) ||
645 (inode->i_state & ~I_REFERENCED)) {
646 list_del_init(&inode->i_lru);
647 inodes_stat.nr_unused--;
648 continue;
649 }
650
651 /* recently referenced inodes get one more pass */
652 if (inode->i_state & I_REFERENCED) {
653 list_move(&inode->i_lru, &inode_lru);
654 inode->i_state &= ~I_REFERENCED;
655 continue;
656 }
657 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
658 __iget(inode);
659 spin_unlock(&inode_lock);
660 if (remove_inode_buffers(inode))
661 reap += invalidate_mapping_pages(&inode->i_data,
662 0, -1);
663 iput(inode);
664 spin_lock(&inode_lock);
665
666 if (inode != list_entry(inode_lru.next,
667 struct inode, i_lru))
668 continue; /* wrong inode or list_empty */
669 if (!can_unuse(inode))
670 continue;
671 }
672 WARN_ON(inode->i_state & I_NEW);
673 inode->i_state |= I_FREEING;
674
675 /*
676 * Move the inode off the IO lists and LRU once I_FREEING is
677 * set so that it won't get moved back on there if it is dirty.
678 */
679 list_move(&inode->i_lru, &freeable);
680 list_del_init(&inode->i_wb_list);
681 inodes_stat.nr_unused--;
682 }
683 if (current_is_kswapd())
684 __count_vm_events(KSWAPD_INODESTEAL, reap);
685 else
686 __count_vm_events(PGINODESTEAL, reap);
687 spin_unlock(&inode_lock);
688
689 dispose_list(&freeable);
690 up_read(&iprune_sem);
691 }
692
693 /*
694 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
695 * "unused" means that no dentries are referring to the inodes: the files are
696 * not open and the dcache references to those inodes have already been
697 * reclaimed.
698 *
699 * This function is passed the number of inodes to scan, and it returns the
700 * total number of remaining possibly-reclaimable inodes.
701 */
702 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
703 {
704 if (nr) {
705 /*
706 * Nasty deadlock avoidance. We may hold various FS locks,
707 * and we don't want to recurse into the FS that called us
708 * in clear_inode() and friends..
709 */
710 if (!(gfp_mask & __GFP_FS))
711 return -1;
712 prune_icache(nr);
713 }
714 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
715 }
716
717 static struct shrinker icache_shrinker = {
718 .shrink = shrink_icache_memory,
719 .seeks = DEFAULT_SEEKS,
720 };
721
722 static void __wait_on_freeing_inode(struct inode *inode);
723 /*
724 * Called with the inode lock held.
725 */
726 static struct inode *find_inode(struct super_block *sb,
727 struct hlist_head *head,
728 int (*test)(struct inode *, void *),
729 void *data)
730 {
731 struct hlist_node *node;
732 struct inode *inode = NULL;
733
734 repeat:
735 hlist_for_each_entry(inode, node, head, i_hash) {
736 if (inode->i_sb != sb)
737 continue;
738 if (!test(inode, data))
739 continue;
740 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
741 __wait_on_freeing_inode(inode);
742 goto repeat;
743 }
744 __iget(inode);
745 return inode;
746 }
747 return NULL;
748 }
749
750 /*
751 * find_inode_fast is the fast path version of find_inode, see the comment at
752 * iget_locked for details.
753 */
754 static struct inode *find_inode_fast(struct super_block *sb,
755 struct hlist_head *head, unsigned long ino)
756 {
757 struct hlist_node *node;
758 struct inode *inode = NULL;
759
760 repeat:
761 hlist_for_each_entry(inode, node, head, i_hash) {
762 if (inode->i_ino != ino)
763 continue;
764 if (inode->i_sb != sb)
765 continue;
766 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
767 __wait_on_freeing_inode(inode);
768 goto repeat;
769 }
770 __iget(inode);
771 return inode;
772 }
773 return NULL;
774 }
775
776 /*
777 * Each cpu owns a range of LAST_INO_BATCH numbers.
778 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
779 * to renew the exhausted range.
780 *
781 * This does not significantly increase overflow rate because every CPU can
782 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
783 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
784 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
785 * overflow rate by 2x, which does not seem too significant.
786 *
787 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
788 * error if st_ino won't fit in target struct field. Use 32bit counter
789 * here to attempt to avoid that.
790 */
791 #define LAST_INO_BATCH 1024
792 static DEFINE_PER_CPU(unsigned int, last_ino);
793
794 unsigned int get_next_ino(void)
795 {
796 unsigned int *p = &get_cpu_var(last_ino);
797 unsigned int res = *p;
798
799 #ifdef CONFIG_SMP
800 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
801 static atomic_t shared_last_ino;
802 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
803
804 res = next - LAST_INO_BATCH;
805 }
806 #endif
807
808 *p = ++res;
809 put_cpu_var(last_ino);
810 return res;
811 }
812 EXPORT_SYMBOL(get_next_ino);
813
814 /**
815 * new_inode - obtain an inode
816 * @sb: superblock
817 *
818 * Allocates a new inode for given superblock. The default gfp_mask
819 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
820 * If HIGHMEM pages are unsuitable or it is known that pages allocated
821 * for the page cache are not reclaimable or migratable,
822 * mapping_set_gfp_mask() must be called with suitable flags on the
823 * newly created inode's mapping
824 *
825 */
826 struct inode *new_inode(struct super_block *sb)
827 {
828 struct inode *inode;
829
830 spin_lock_prefetch(&inode_lock);
831
832 inode = alloc_inode(sb);
833 if (inode) {
834 spin_lock(&inode_lock);
835 __inode_sb_list_add(inode);
836 inode->i_state = 0;
837 spin_unlock(&inode_lock);
838 }
839 return inode;
840 }
841 EXPORT_SYMBOL(new_inode);
842
843 void unlock_new_inode(struct inode *inode)
844 {
845 #ifdef CONFIG_DEBUG_LOCK_ALLOC
846 if (S_ISDIR(inode->i_mode)) {
847 struct file_system_type *type = inode->i_sb->s_type;
848
849 /* Set new key only if filesystem hasn't already changed it */
850 if (!lockdep_match_class(&inode->i_mutex,
851 &type->i_mutex_key)) {
852 /*
853 * ensure nobody is actually holding i_mutex
854 */
855 mutex_destroy(&inode->i_mutex);
856 mutex_init(&inode->i_mutex);
857 lockdep_set_class(&inode->i_mutex,
858 &type->i_mutex_dir_key);
859 }
860 }
861 #endif
862 /*
863 * This is special! We do not need the spinlock when clearing I_NEW,
864 * because we're guaranteed that nobody else tries to do anything about
865 * the state of the inode when it is locked, as we just created it (so
866 * there can be no old holders that haven't tested I_NEW).
867 * However we must emit the memory barrier so that other CPUs reliably
868 * see the clearing of I_NEW after the other inode initialisation has
869 * completed.
870 */
871 smp_mb();
872 WARN_ON(!(inode->i_state & I_NEW));
873 inode->i_state &= ~I_NEW;
874 wake_up_inode(inode);
875 }
876 EXPORT_SYMBOL(unlock_new_inode);
877
878 /*
879 * This is called without the inode lock held.. Be careful.
880 *
881 * We no longer cache the sb_flags in i_flags - see fs.h
882 * -- rmk@arm.uk.linux.org
883 */
884 static struct inode *get_new_inode(struct super_block *sb,
885 struct hlist_head *head,
886 int (*test)(struct inode *, void *),
887 int (*set)(struct inode *, void *),
888 void *data)
889 {
890 struct inode *inode;
891
892 inode = alloc_inode(sb);
893 if (inode) {
894 struct inode *old;
895
896 spin_lock(&inode_lock);
897 /* We released the lock, so.. */
898 old = find_inode(sb, head, test, data);
899 if (!old) {
900 if (set(inode, data))
901 goto set_failed;
902
903 hlist_add_head(&inode->i_hash, head);
904 __inode_sb_list_add(inode);
905 inode->i_state = I_NEW;
906 spin_unlock(&inode_lock);
907
908 /* Return the locked inode with I_NEW set, the
909 * caller is responsible for filling in the contents
910 */
911 return inode;
912 }
913
914 /*
915 * Uhhuh, somebody else created the same inode under
916 * us. Use the old inode instead of the one we just
917 * allocated.
918 */
919 spin_unlock(&inode_lock);
920 destroy_inode(inode);
921 inode = old;
922 wait_on_inode(inode);
923 }
924 return inode;
925
926 set_failed:
927 spin_unlock(&inode_lock);
928 destroy_inode(inode);
929 return NULL;
930 }
931
932 /*
933 * get_new_inode_fast is the fast path version of get_new_inode, see the
934 * comment at iget_locked for details.
935 */
936 static struct inode *get_new_inode_fast(struct super_block *sb,
937 struct hlist_head *head, unsigned long ino)
938 {
939 struct inode *inode;
940
941 inode = alloc_inode(sb);
942 if (inode) {
943 struct inode *old;
944
945 spin_lock(&inode_lock);
946 /* We released the lock, so.. */
947 old = find_inode_fast(sb, head, ino);
948 if (!old) {
949 inode->i_ino = ino;
950 hlist_add_head(&inode->i_hash, head);
951 __inode_sb_list_add(inode);
952 inode->i_state = I_NEW;
953 spin_unlock(&inode_lock);
954
955 /* Return the locked inode with I_NEW set, the
956 * caller is responsible for filling in the contents
957 */
958 return inode;
959 }
960
961 /*
962 * Uhhuh, somebody else created the same inode under
963 * us. Use the old inode instead of the one we just
964 * allocated.
965 */
966 spin_unlock(&inode_lock);
967 destroy_inode(inode);
968 inode = old;
969 wait_on_inode(inode);
970 }
971 return inode;
972 }
973
974 /*
975 * search the inode cache for a matching inode number.
976 * If we find one, then the inode number we are trying to
977 * allocate is not unique and so we should not use it.
978 *
979 * Returns 1 if the inode number is unique, 0 if it is not.
980 */
981 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
982 {
983 struct hlist_head *b = inode_hashtable + hash(sb, ino);
984 struct hlist_node *node;
985 struct inode *inode;
986
987 hlist_for_each_entry(inode, node, b, i_hash) {
988 if (inode->i_ino == ino && inode->i_sb == sb)
989 return 0;
990 }
991
992 return 1;
993 }
994
995 /**
996 * iunique - get a unique inode number
997 * @sb: superblock
998 * @max_reserved: highest reserved inode number
999 *
1000 * Obtain an inode number that is unique on the system for a given
1001 * superblock. This is used by file systems that have no natural
1002 * permanent inode numbering system. An inode number is returned that
1003 * is higher than the reserved limit but unique.
1004 *
1005 * BUGS:
1006 * With a large number of inodes live on the file system this function
1007 * currently becomes quite slow.
1008 */
1009 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1010 {
1011 /*
1012 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1013 * error if st_ino won't fit in target struct field. Use 32bit counter
1014 * here to attempt to avoid that.
1015 */
1016 static DEFINE_SPINLOCK(iunique_lock);
1017 static unsigned int counter;
1018 ino_t res;
1019
1020 spin_lock(&inode_lock);
1021 spin_lock(&iunique_lock);
1022 do {
1023 if (counter <= max_reserved)
1024 counter = max_reserved + 1;
1025 res = counter++;
1026 } while (!test_inode_iunique(sb, res));
1027 spin_unlock(&iunique_lock);
1028 spin_unlock(&inode_lock);
1029
1030 return res;
1031 }
1032 EXPORT_SYMBOL(iunique);
1033
1034 struct inode *igrab(struct inode *inode)
1035 {
1036 spin_lock(&inode_lock);
1037 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1038 __iget(inode);
1039 else
1040 /*
1041 * Handle the case where s_op->clear_inode is not been
1042 * called yet, and somebody is calling igrab
1043 * while the inode is getting freed.
1044 */
1045 inode = NULL;
1046 spin_unlock(&inode_lock);
1047 return inode;
1048 }
1049 EXPORT_SYMBOL(igrab);
1050
1051 /**
1052 * ifind - internal function, you want ilookup5() or iget5().
1053 * @sb: super block of file system to search
1054 * @head: the head of the list to search
1055 * @test: callback used for comparisons between inodes
1056 * @data: opaque data pointer to pass to @test
1057 * @wait: if true wait for the inode to be unlocked, if false do not
1058 *
1059 * ifind() searches for the inode specified by @data in the inode
1060 * cache. This is a generalized version of ifind_fast() for file systems where
1061 * the inode number is not sufficient for unique identification of an inode.
1062 *
1063 * If the inode is in the cache, the inode is returned with an incremented
1064 * reference count.
1065 *
1066 * Otherwise NULL is returned.
1067 *
1068 * Note, @test is called with the inode_lock held, so can't sleep.
1069 */
1070 static struct inode *ifind(struct super_block *sb,
1071 struct hlist_head *head, int (*test)(struct inode *, void *),
1072 void *data, const int wait)
1073 {
1074 struct inode *inode;
1075
1076 spin_lock(&inode_lock);
1077 inode = find_inode(sb, head, test, data);
1078 if (inode) {
1079 spin_unlock(&inode_lock);
1080 if (likely(wait))
1081 wait_on_inode(inode);
1082 return inode;
1083 }
1084 spin_unlock(&inode_lock);
1085 return NULL;
1086 }
1087
1088 /**
1089 * ifind_fast - internal function, you want ilookup() or iget().
1090 * @sb: super block of file system to search
1091 * @head: head of the list to search
1092 * @ino: inode number to search for
1093 *
1094 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1095 * file systems where the inode number is sufficient for unique identification
1096 * of an inode.
1097 *
1098 * If the inode is in the cache, the inode is returned with an incremented
1099 * reference count.
1100 *
1101 * Otherwise NULL is returned.
1102 */
1103 static struct inode *ifind_fast(struct super_block *sb,
1104 struct hlist_head *head, unsigned long ino)
1105 {
1106 struct inode *inode;
1107
1108 spin_lock(&inode_lock);
1109 inode = find_inode_fast(sb, head, ino);
1110 if (inode) {
1111 spin_unlock(&inode_lock);
1112 wait_on_inode(inode);
1113 return inode;
1114 }
1115 spin_unlock(&inode_lock);
1116 return NULL;
1117 }
1118
1119 /**
1120 * ilookup5_nowait - search for an inode in the inode cache
1121 * @sb: super block of file system to search
1122 * @hashval: hash value (usually inode number) to search for
1123 * @test: callback used for comparisons between inodes
1124 * @data: opaque data pointer to pass to @test
1125 *
1126 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1127 * @data in the inode cache. This is a generalized version of ilookup() for
1128 * file systems where the inode number is not sufficient for unique
1129 * identification of an inode.
1130 *
1131 * If the inode is in the cache, the inode is returned with an incremented
1132 * reference count. Note, the inode lock is not waited upon so you have to be
1133 * very careful what you do with the returned inode. You probably should be
1134 * using ilookup5() instead.
1135 *
1136 * Otherwise NULL is returned.
1137 *
1138 * Note, @test is called with the inode_lock held, so can't sleep.
1139 */
1140 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1141 int (*test)(struct inode *, void *), void *data)
1142 {
1143 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1144
1145 return ifind(sb, head, test, data, 0);
1146 }
1147 EXPORT_SYMBOL(ilookup5_nowait);
1148
1149 /**
1150 * ilookup5 - search for an inode in the inode cache
1151 * @sb: super block of file system to search
1152 * @hashval: hash value (usually inode number) to search for
1153 * @test: callback used for comparisons between inodes
1154 * @data: opaque data pointer to pass to @test
1155 *
1156 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1157 * @data in the inode cache. This is a generalized version of ilookup() for
1158 * file systems where the inode number is not sufficient for unique
1159 * identification of an inode.
1160 *
1161 * If the inode is in the cache, the inode lock is waited upon and the inode is
1162 * returned with an incremented reference count.
1163 *
1164 * Otherwise NULL is returned.
1165 *
1166 * Note, @test is called with the inode_lock held, so can't sleep.
1167 */
1168 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1169 int (*test)(struct inode *, void *), void *data)
1170 {
1171 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1172
1173 return ifind(sb, head, test, data, 1);
1174 }
1175 EXPORT_SYMBOL(ilookup5);
1176
1177 /**
1178 * ilookup - search for an inode in the inode cache
1179 * @sb: super block of file system to search
1180 * @ino: inode number to search for
1181 *
1182 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1183 * This is for file systems where the inode number is sufficient for unique
1184 * identification of an inode.
1185 *
1186 * If the inode is in the cache, the inode is returned with an incremented
1187 * reference count.
1188 *
1189 * Otherwise NULL is returned.
1190 */
1191 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1192 {
1193 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1194
1195 return ifind_fast(sb, head, ino);
1196 }
1197 EXPORT_SYMBOL(ilookup);
1198
1199 /**
1200 * iget5_locked - obtain an inode from a mounted file system
1201 * @sb: super block of file system
1202 * @hashval: hash value (usually inode number) to get
1203 * @test: callback used for comparisons between inodes
1204 * @set: callback used to initialize a new struct inode
1205 * @data: opaque data pointer to pass to @test and @set
1206 *
1207 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1208 * and @data in the inode cache and if present it is returned with an increased
1209 * reference count. This is a generalized version of iget_locked() for file
1210 * systems where the inode number is not sufficient for unique identification
1211 * of an inode.
1212 *
1213 * If the inode is not in cache, get_new_inode() is called to allocate a new
1214 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1215 * file system gets to fill it in before unlocking it via unlock_new_inode().
1216 *
1217 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1218 */
1219 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1220 int (*test)(struct inode *, void *),
1221 int (*set)(struct inode *, void *), void *data)
1222 {
1223 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1224 struct inode *inode;
1225
1226 inode = ifind(sb, head, test, data, 1);
1227 if (inode)
1228 return inode;
1229 /*
1230 * get_new_inode() will do the right thing, re-trying the search
1231 * in case it had to block at any point.
1232 */
1233 return get_new_inode(sb, head, test, set, data);
1234 }
1235 EXPORT_SYMBOL(iget5_locked);
1236
1237 /**
1238 * iget_locked - obtain an inode from a mounted file system
1239 * @sb: super block of file system
1240 * @ino: inode number to get
1241 *
1242 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1243 * the inode cache and if present it is returned with an increased reference
1244 * count. This is for file systems where the inode number is sufficient for
1245 * unique identification of an inode.
1246 *
1247 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1248 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1249 * The file system gets to fill it in before unlocking it via
1250 * unlock_new_inode().
1251 */
1252 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1253 {
1254 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1255 struct inode *inode;
1256
1257 inode = ifind_fast(sb, head, ino);
1258 if (inode)
1259 return inode;
1260 /*
1261 * get_new_inode_fast() will do the right thing, re-trying the search
1262 * in case it had to block at any point.
1263 */
1264 return get_new_inode_fast(sb, head, ino);
1265 }
1266 EXPORT_SYMBOL(iget_locked);
1267
1268 int insert_inode_locked(struct inode *inode)
1269 {
1270 struct super_block *sb = inode->i_sb;
1271 ino_t ino = inode->i_ino;
1272 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1273
1274 inode->i_state |= I_NEW;
1275 while (1) {
1276 struct hlist_node *node;
1277 struct inode *old = NULL;
1278 spin_lock(&inode_lock);
1279 hlist_for_each_entry(old, node, head, i_hash) {
1280 if (old->i_ino != ino)
1281 continue;
1282 if (old->i_sb != sb)
1283 continue;
1284 if (old->i_state & (I_FREEING|I_WILL_FREE))
1285 continue;
1286 break;
1287 }
1288 if (likely(!node)) {
1289 hlist_add_head(&inode->i_hash, head);
1290 spin_unlock(&inode_lock);
1291 return 0;
1292 }
1293 __iget(old);
1294 spin_unlock(&inode_lock);
1295 wait_on_inode(old);
1296 if (unlikely(!inode_unhashed(old))) {
1297 iput(old);
1298 return -EBUSY;
1299 }
1300 iput(old);
1301 }
1302 }
1303 EXPORT_SYMBOL(insert_inode_locked);
1304
1305 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1306 int (*test)(struct inode *, void *), void *data)
1307 {
1308 struct super_block *sb = inode->i_sb;
1309 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1310
1311 inode->i_state |= I_NEW;
1312
1313 while (1) {
1314 struct hlist_node *node;
1315 struct inode *old = NULL;
1316
1317 spin_lock(&inode_lock);
1318 hlist_for_each_entry(old, node, head, i_hash) {
1319 if (old->i_sb != sb)
1320 continue;
1321 if (!test(old, data))
1322 continue;
1323 if (old->i_state & (I_FREEING|I_WILL_FREE))
1324 continue;
1325 break;
1326 }
1327 if (likely(!node)) {
1328 hlist_add_head(&inode->i_hash, head);
1329 spin_unlock(&inode_lock);
1330 return 0;
1331 }
1332 __iget(old);
1333 spin_unlock(&inode_lock);
1334 wait_on_inode(old);
1335 if (unlikely(!inode_unhashed(old))) {
1336 iput(old);
1337 return -EBUSY;
1338 }
1339 iput(old);
1340 }
1341 }
1342 EXPORT_SYMBOL(insert_inode_locked4);
1343
1344
1345 int generic_delete_inode(struct inode *inode)
1346 {
1347 return 1;
1348 }
1349 EXPORT_SYMBOL(generic_delete_inode);
1350
1351 /*
1352 * Normal UNIX filesystem behaviour: delete the
1353 * inode when the usage count drops to zero, and
1354 * i_nlink is zero.
1355 */
1356 int generic_drop_inode(struct inode *inode)
1357 {
1358 return !inode->i_nlink || inode_unhashed(inode);
1359 }
1360 EXPORT_SYMBOL_GPL(generic_drop_inode);
1361
1362 /*
1363 * Called when we're dropping the last reference
1364 * to an inode.
1365 *
1366 * Call the FS "drop_inode()" function, defaulting to
1367 * the legacy UNIX filesystem behaviour. If it tells
1368 * us to evict inode, do so. Otherwise, retain inode
1369 * in cache if fs is alive, sync and evict if fs is
1370 * shutting down.
1371 */
1372 static void iput_final(struct inode *inode)
1373 {
1374 struct super_block *sb = inode->i_sb;
1375 const struct super_operations *op = inode->i_sb->s_op;
1376 int drop;
1377
1378 if (op && op->drop_inode)
1379 drop = op->drop_inode(inode);
1380 else
1381 drop = generic_drop_inode(inode);
1382
1383 if (!drop) {
1384 if (sb->s_flags & MS_ACTIVE) {
1385 inode->i_state |= I_REFERENCED;
1386 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1387 inode_lru_list_add(inode);
1388 }
1389 spin_unlock(&inode_lock);
1390 return;
1391 }
1392 WARN_ON(inode->i_state & I_NEW);
1393 inode->i_state |= I_WILL_FREE;
1394 spin_unlock(&inode_lock);
1395 write_inode_now(inode, 1);
1396 spin_lock(&inode_lock);
1397 WARN_ON(inode->i_state & I_NEW);
1398 inode->i_state &= ~I_WILL_FREE;
1399 __remove_inode_hash(inode);
1400 }
1401
1402 WARN_ON(inode->i_state & I_NEW);
1403 inode->i_state |= I_FREEING;
1404
1405 /*
1406 * Move the inode off the IO lists and LRU once I_FREEING is
1407 * set so that it won't get moved back on there if it is dirty.
1408 */
1409 inode_lru_list_del(inode);
1410 list_del_init(&inode->i_wb_list);
1411
1412 __inode_sb_list_del(inode);
1413 spin_unlock(&inode_lock);
1414 evict(inode);
1415 remove_inode_hash(inode);
1416 wake_up_inode(inode);
1417 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1418 destroy_inode(inode);
1419 }
1420
1421 /**
1422 * iput - put an inode
1423 * @inode: inode to put
1424 *
1425 * Puts an inode, dropping its usage count. If the inode use count hits
1426 * zero, the inode is then freed and may also be destroyed.
1427 *
1428 * Consequently, iput() can sleep.
1429 */
1430 void iput(struct inode *inode)
1431 {
1432 if (inode) {
1433 BUG_ON(inode->i_state & I_CLEAR);
1434
1435 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1436 iput_final(inode);
1437 }
1438 }
1439 EXPORT_SYMBOL(iput);
1440
1441 /**
1442 * bmap - find a block number in a file
1443 * @inode: inode of file
1444 * @block: block to find
1445 *
1446 * Returns the block number on the device holding the inode that
1447 * is the disk block number for the block of the file requested.
1448 * That is, asked for block 4 of inode 1 the function will return the
1449 * disk block relative to the disk start that holds that block of the
1450 * file.
1451 */
1452 sector_t bmap(struct inode *inode, sector_t block)
1453 {
1454 sector_t res = 0;
1455 if (inode->i_mapping->a_ops->bmap)
1456 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1457 return res;
1458 }
1459 EXPORT_SYMBOL(bmap);
1460
1461 /*
1462 * With relative atime, only update atime if the previous atime is
1463 * earlier than either the ctime or mtime or if at least a day has
1464 * passed since the last atime update.
1465 */
1466 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1467 struct timespec now)
1468 {
1469
1470 if (!(mnt->mnt_flags & MNT_RELATIME))
1471 return 1;
1472 /*
1473 * Is mtime younger than atime? If yes, update atime:
1474 */
1475 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1476 return 1;
1477 /*
1478 * Is ctime younger than atime? If yes, update atime:
1479 */
1480 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1481 return 1;
1482
1483 /*
1484 * Is the previous atime value older than a day? If yes,
1485 * update atime:
1486 */
1487 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1488 return 1;
1489 /*
1490 * Good, we can skip the atime update:
1491 */
1492 return 0;
1493 }
1494
1495 /**
1496 * touch_atime - update the access time
1497 * @mnt: mount the inode is accessed on
1498 * @dentry: dentry accessed
1499 *
1500 * Update the accessed time on an inode and mark it for writeback.
1501 * This function automatically handles read only file systems and media,
1502 * as well as the "noatime" flag and inode specific "noatime" markers.
1503 */
1504 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1505 {
1506 struct inode *inode = dentry->d_inode;
1507 struct timespec now;
1508
1509 if (inode->i_flags & S_NOATIME)
1510 return;
1511 if (IS_NOATIME(inode))
1512 return;
1513 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1514 return;
1515
1516 if (mnt->mnt_flags & MNT_NOATIME)
1517 return;
1518 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1519 return;
1520
1521 now = current_fs_time(inode->i_sb);
1522
1523 if (!relatime_need_update(mnt, inode, now))
1524 return;
1525
1526 if (timespec_equal(&inode->i_atime, &now))
1527 return;
1528
1529 if (mnt_want_write(mnt))
1530 return;
1531
1532 inode->i_atime = now;
1533 mark_inode_dirty_sync(inode);
1534 mnt_drop_write(mnt);
1535 }
1536 EXPORT_SYMBOL(touch_atime);
1537
1538 /**
1539 * file_update_time - update mtime and ctime time
1540 * @file: file accessed
1541 *
1542 * Update the mtime and ctime members of an inode and mark the inode
1543 * for writeback. Note that this function is meant exclusively for
1544 * usage in the file write path of filesystems, and filesystems may
1545 * choose to explicitly ignore update via this function with the
1546 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1547 * timestamps are handled by the server.
1548 */
1549
1550 void file_update_time(struct file *file)
1551 {
1552 struct inode *inode = file->f_path.dentry->d_inode;
1553 struct timespec now;
1554 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1555
1556 /* First try to exhaust all avenues to not sync */
1557 if (IS_NOCMTIME(inode))
1558 return;
1559
1560 now = current_fs_time(inode->i_sb);
1561 if (!timespec_equal(&inode->i_mtime, &now))
1562 sync_it = S_MTIME;
1563
1564 if (!timespec_equal(&inode->i_ctime, &now))
1565 sync_it |= S_CTIME;
1566
1567 if (IS_I_VERSION(inode))
1568 sync_it |= S_VERSION;
1569
1570 if (!sync_it)
1571 return;
1572
1573 /* Finally allowed to write? Takes lock. */
1574 if (mnt_want_write_file(file))
1575 return;
1576
1577 /* Only change inode inside the lock region */
1578 if (sync_it & S_VERSION)
1579 inode_inc_iversion(inode);
1580 if (sync_it & S_CTIME)
1581 inode->i_ctime = now;
1582 if (sync_it & S_MTIME)
1583 inode->i_mtime = now;
1584 mark_inode_dirty_sync(inode);
1585 mnt_drop_write(file->f_path.mnt);
1586 }
1587 EXPORT_SYMBOL(file_update_time);
1588
1589 int inode_needs_sync(struct inode *inode)
1590 {
1591 if (IS_SYNC(inode))
1592 return 1;
1593 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1594 return 1;
1595 return 0;
1596 }
1597 EXPORT_SYMBOL(inode_needs_sync);
1598
1599 int inode_wait(void *word)
1600 {
1601 schedule();
1602 return 0;
1603 }
1604 EXPORT_SYMBOL(inode_wait);
1605
1606 /*
1607 * If we try to find an inode in the inode hash while it is being
1608 * deleted, we have to wait until the filesystem completes its
1609 * deletion before reporting that it isn't found. This function waits
1610 * until the deletion _might_ have completed. Callers are responsible
1611 * to recheck inode state.
1612 *
1613 * It doesn't matter if I_NEW is not set initially, a call to
1614 * wake_up_inode() after removing from the hash list will DTRT.
1615 *
1616 * This is called with inode_lock held.
1617 */
1618 static void __wait_on_freeing_inode(struct inode *inode)
1619 {
1620 wait_queue_head_t *wq;
1621 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1622 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1623 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1624 spin_unlock(&inode_lock);
1625 schedule();
1626 finish_wait(wq, &wait.wait);
1627 spin_lock(&inode_lock);
1628 }
1629
1630 static __initdata unsigned long ihash_entries;
1631 static int __init set_ihash_entries(char *str)
1632 {
1633 if (!str)
1634 return 0;
1635 ihash_entries = simple_strtoul(str, &str, 0);
1636 return 1;
1637 }
1638 __setup("ihash_entries=", set_ihash_entries);
1639
1640 /*
1641 * Initialize the waitqueues and inode hash table.
1642 */
1643 void __init inode_init_early(void)
1644 {
1645 int loop;
1646
1647 /* If hashes are distributed across NUMA nodes, defer
1648 * hash allocation until vmalloc space is available.
1649 */
1650 if (hashdist)
1651 return;
1652
1653 inode_hashtable =
1654 alloc_large_system_hash("Inode-cache",
1655 sizeof(struct hlist_head),
1656 ihash_entries,
1657 14,
1658 HASH_EARLY,
1659 &i_hash_shift,
1660 &i_hash_mask,
1661 0);
1662
1663 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1664 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1665 }
1666
1667 void __init inode_init(void)
1668 {
1669 int loop;
1670
1671 /* inode slab cache */
1672 inode_cachep = kmem_cache_create("inode_cache",
1673 sizeof(struct inode),
1674 0,
1675 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1676 SLAB_MEM_SPREAD),
1677 init_once);
1678 register_shrinker(&icache_shrinker);
1679
1680 /* Hash may have been set up in inode_init_early */
1681 if (!hashdist)
1682 return;
1683
1684 inode_hashtable =
1685 alloc_large_system_hash("Inode-cache",
1686 sizeof(struct hlist_head),
1687 ihash_entries,
1688 14,
1689 0,
1690 &i_hash_shift,
1691 &i_hash_mask,
1692 0);
1693
1694 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1695 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1696 }
1697
1698 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1699 {
1700 inode->i_mode = mode;
1701 if (S_ISCHR(mode)) {
1702 inode->i_fop = &def_chr_fops;
1703 inode->i_rdev = rdev;
1704 } else if (S_ISBLK(mode)) {
1705 inode->i_fop = &def_blk_fops;
1706 inode->i_rdev = rdev;
1707 } else if (S_ISFIFO(mode))
1708 inode->i_fop = &def_fifo_fops;
1709 else if (S_ISSOCK(mode))
1710 inode->i_fop = &bad_sock_fops;
1711 else
1712 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1713 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1714 inode->i_ino);
1715 }
1716 EXPORT_SYMBOL(init_special_inode);
1717
1718 /**
1719 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1720 * @inode: New inode
1721 * @dir: Directory inode
1722 * @mode: mode of the new inode
1723 */
1724 void inode_init_owner(struct inode *inode, const struct inode *dir,
1725 mode_t mode)
1726 {
1727 inode->i_uid = current_fsuid();
1728 if (dir && dir->i_mode & S_ISGID) {
1729 inode->i_gid = dir->i_gid;
1730 if (S_ISDIR(mode))
1731 mode |= S_ISGID;
1732 } else
1733 inode->i_gid = current_fsgid();
1734 inode->i_mode = mode;
1735 }
1736 EXPORT_SYMBOL(inode_init_owner);
1737
1738 /**
1739 * inode_owner_or_capable - check current task permissions to inode
1740 * @inode: inode being checked
1741 *
1742 * Return true if current either has CAP_FOWNER to the inode, or
1743 * owns the file.
1744 */
1745 bool inode_owner_or_capable(const struct inode *inode)
1746 {
1747 struct user_namespace *ns = inode_userns(inode);
1748
1749 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1750 return true;
1751 if (ns_capable(ns, CAP_FOWNER))
1752 return true;
1753 return false;
1754 }
1755 EXPORT_SYMBOL(inode_owner_or_capable);