ARM: mxs: icoll: Fix interrupts gpio bank 0
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 static const char valid_change[16] = {
61 /* current */
62 /* n */ 0, 1, 1, 1,
63 /* e */ 1, 0, 0, 0,
64 /* w */ 0, 0, 0, 1,
65 1, 0, 0, 0
66 };
67
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69 const struct gfs2_inode *ip, bool nowrap);
70
71
72 /**
73 * gfs2_setbit - Set a bit in the bitmaps
74 * @rbm: The position of the bit to set
75 * @do_clone: Also set the clone bitmap, if it exists
76 * @new_state: the new state of the block
77 *
78 */
79
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 unsigned char new_state)
82 {
83 unsigned char *byte1, *byte2, *end, cur_state;
84 unsigned int buflen = rbm->bi->bi_len;
85 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86
87 byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89
90 BUG_ON(byte1 >= end);
91
92 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93
94 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 "new_state=%d\n", rbm->offset, cur_state, new_state);
97 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 (unsigned long long)rbm->rgd->rd_addr,
99 rbm->bi->bi_start);
100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 rbm->bi->bi_offset, rbm->bi->bi_len);
102 dump_stack();
103 gfs2_consist_rgrpd(rbm->rgd);
104 return;
105 }
106 *byte1 ^= (cur_state ^ new_state) << bit;
107
108 if (do_clone && rbm->bi->bi_clone) {
109 byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 *byte2 ^= (cur_state ^ new_state) << bit;
112 }
113 }
114
115 /**
116 * gfs2_testbit - test a bit in the bitmaps
117 * @rbm: The bit to test
118 *
119 * Returns: The two bit block state of the requested bit
120 */
121
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 const u8 *byte;
126 unsigned int bit;
127
128 byte = buffer + (rbm->offset / GFS2_NBBY);
129 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130
131 return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133
134 /**
135 * gfs2_bit_search
136 * @ptr: Pointer to bitmap data
137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138 * @state: The state we are searching for
139 *
140 * We xor the bitmap data with a patter which is the bitwise opposite
141 * of what we are looking for, this gives rise to a pattern of ones
142 * wherever there is a match. Since we have two bits per entry, we
143 * take this pattern, shift it down by one place and then and it with
144 * the original. All the even bit positions (0,2,4, etc) then represent
145 * successful matches, so we mask with 0x55555..... to remove the unwanted
146 * odd bit positions.
147 *
148 * This allows searching of a whole u64 at once (32 blocks) with a
149 * single test (on 64 bit arches).
150 */
151
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 u64 tmp;
155 static const u64 search[] = {
156 [0] = 0xffffffffffffffffULL,
157 [1] = 0xaaaaaaaaaaaaaaaaULL,
158 [2] = 0x5555555555555555ULL,
159 [3] = 0x0000000000000000ULL,
160 };
161 tmp = le64_to_cpu(*ptr) ^ search[state];
162 tmp &= (tmp >> 1);
163 tmp &= mask;
164 return tmp;
165 }
166
167 /**
168 * rs_cmp - multi-block reservation range compare
169 * @blk: absolute file system block number of the new reservation
170 * @len: number of blocks in the new reservation
171 * @rs: existing reservation to compare against
172 *
173 * returns: 1 if the block range is beyond the reach of the reservation
174 * -1 if the block range is before the start of the reservation
175 * 0 if the block range overlaps with the reservation
176 */
177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180
181 if (blk >= startblk + rs->rs_free)
182 return 1;
183 if (blk + len - 1 < startblk)
184 return -1;
185 return 0;
186 }
187
188 /**
189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190 * a block in a given allocation state.
191 * @buf: the buffer that holds the bitmaps
192 * @len: the length (in bytes) of the buffer
193 * @goal: start search at this block's bit-pair (within @buffer)
194 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195 *
196 * Scope of @goal and returned block number is only within this bitmap buffer,
197 * not entire rgrp or filesystem. @buffer will be offset from the actual
198 * beginning of a bitmap block buffer, skipping any header structures, but
199 * headers are always a multiple of 64 bits long so that the buffer is
200 * always aligned to a 64 bit boundary.
201 *
202 * The size of the buffer is in bytes, but is it assumed that it is
203 * always ok to read a complete multiple of 64 bits at the end
204 * of the block in case the end is no aligned to a natural boundary.
205 *
206 * Return: the block number (bitmap buffer scope) that was found
207 */
208
209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 u32 goal, u8 state)
211 {
212 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 u64 tmp;
216 u64 mask = 0x5555555555555555ULL;
217 u32 bit;
218
219 /* Mask off bits we don't care about at the start of the search */
220 mask <<= spoint;
221 tmp = gfs2_bit_search(ptr, mask, state);
222 ptr++;
223 while(tmp == 0 && ptr < end) {
224 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 ptr++;
226 }
227 /* Mask off any bits which are more than len bytes from the start */
228 if (ptr == end && (len & (sizeof(u64) - 1)))
229 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 /* Didn't find anything, so return */
231 if (tmp == 0)
232 return BFITNOENT;
233 ptr--;
234 bit = __ffs64(tmp);
235 bit /= 2; /* two bits per entry in the bitmap */
236 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238
239 /**
240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241 * @rbm: The rbm with rgd already set correctly
242 * @block: The block number (filesystem relative)
243 *
244 * This sets the bi and offset members of an rbm based on a
245 * resource group and a filesystem relative block number. The
246 * resource group must be set in the rbm on entry, the bi and
247 * offset members will be set by this function.
248 *
249 * Returns: 0 on success, or an error code
250 */
251
252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 u64 rblock = block - rbm->rgd->rd_data0;
255 u32 x;
256
257 if (WARN_ON_ONCE(rblock > UINT_MAX))
258 return -EINVAL;
259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 return -E2BIG;
261
262 rbm->bi = rbm->rgd->rd_bits;
263 rbm->offset = (u32)(rblock);
264 /* Check if the block is within the first block */
265 if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 return 0;
267
268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 rbm->offset += (sizeof(struct gfs2_rgrp) -
270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 rbm->bi += x;
274 return 0;
275 }
276
277 /**
278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279 * @rbm: Position to search (value/result)
280 * @n_unaligned: Number of unaligned blocks to check
281 * @len: Decremented for each block found (terminate on zero)
282 *
283 * Returns: true if a non-free block is encountered
284 */
285
286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 u64 block;
289 u32 n;
290 u8 res;
291
292 for (n = 0; n < n_unaligned; n++) {
293 res = gfs2_testbit(rbm);
294 if (res != GFS2_BLKST_FREE)
295 return true;
296 (*len)--;
297 if (*len == 0)
298 return true;
299 block = gfs2_rbm_to_block(rbm);
300 if (gfs2_rbm_from_block(rbm, block + 1))
301 return true;
302 }
303
304 return false;
305 }
306
307 /**
308 * gfs2_free_extlen - Return extent length of free blocks
309 * @rbm: Starting position
310 * @len: Max length to check
311 *
312 * Starting at the block specified by the rbm, see how many free blocks
313 * there are, not reading more than len blocks ahead. This can be done
314 * using memchr_inv when the blocks are byte aligned, but has to be done
315 * on a block by block basis in case of unaligned blocks. Also this
316 * function can cope with bitmap boundaries (although it must stop on
317 * a resource group boundary)
318 *
319 * Returns: Number of free blocks in the extent
320 */
321
322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 struct gfs2_rbm rbm = *rrbm;
325 u32 n_unaligned = rbm.offset & 3;
326 u32 size = len;
327 u32 bytes;
328 u32 chunk_size;
329 u8 *ptr, *start, *end;
330 u64 block;
331
332 if (n_unaligned &&
333 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 goto out;
335
336 n_unaligned = len & 3;
337 /* Start is now byte aligned */
338 while (len > 3) {
339 start = rbm.bi->bi_bh->b_data;
340 if (rbm.bi->bi_clone)
341 start = rbm.bi->bi_clone;
342 end = start + rbm.bi->bi_bh->b_size;
343 start += rbm.bi->bi_offset;
344 BUG_ON(rbm.offset & 3);
345 start += (rbm.offset / GFS2_NBBY);
346 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 ptr = memchr_inv(start, 0, bytes);
348 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 chunk_size *= GFS2_NBBY;
350 BUG_ON(len < chunk_size);
351 len -= chunk_size;
352 block = gfs2_rbm_to_block(&rbm);
353 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
354 n_unaligned = 0;
355 break;
356 }
357 if (ptr) {
358 n_unaligned = 3;
359 break;
360 }
361 n_unaligned = len & 3;
362 }
363
364 /* Deal with any bits left over at the end */
365 if (n_unaligned)
366 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
367 out:
368 return size - len;
369 }
370
371 /**
372 * gfs2_bitcount - count the number of bits in a certain state
373 * @rgd: the resource group descriptor
374 * @buffer: the buffer that holds the bitmaps
375 * @buflen: the length (in bytes) of the buffer
376 * @state: the state of the block we're looking for
377 *
378 * Returns: The number of bits
379 */
380
381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
382 unsigned int buflen, u8 state)
383 {
384 const u8 *byte = buffer;
385 const u8 *end = buffer + buflen;
386 const u8 state1 = state << 2;
387 const u8 state2 = state << 4;
388 const u8 state3 = state << 6;
389 u32 count = 0;
390
391 for (; byte < end; byte++) {
392 if (((*byte) & 0x03) == state)
393 count++;
394 if (((*byte) & 0x0C) == state1)
395 count++;
396 if (((*byte) & 0x30) == state2)
397 count++;
398 if (((*byte) & 0xC0) == state3)
399 count++;
400 }
401
402 return count;
403 }
404
405 /**
406 * gfs2_rgrp_verify - Verify that a resource group is consistent
407 * @rgd: the rgrp
408 *
409 */
410
411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
412 {
413 struct gfs2_sbd *sdp = rgd->rd_sbd;
414 struct gfs2_bitmap *bi = NULL;
415 u32 length = rgd->rd_length;
416 u32 count[4], tmp;
417 int buf, x;
418
419 memset(count, 0, 4 * sizeof(u32));
420
421 /* Count # blocks in each of 4 possible allocation states */
422 for (buf = 0; buf < length; buf++) {
423 bi = rgd->rd_bits + buf;
424 for (x = 0; x < 4; x++)
425 count[x] += gfs2_bitcount(rgd,
426 bi->bi_bh->b_data +
427 bi->bi_offset,
428 bi->bi_len, x);
429 }
430
431 if (count[0] != rgd->rd_free) {
432 if (gfs2_consist_rgrpd(rgd))
433 fs_err(sdp, "free data mismatch: %u != %u\n",
434 count[0], rgd->rd_free);
435 return;
436 }
437
438 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
439 if (count[1] != tmp) {
440 if (gfs2_consist_rgrpd(rgd))
441 fs_err(sdp, "used data mismatch: %u != %u\n",
442 count[1], tmp);
443 return;
444 }
445
446 if (count[2] + count[3] != rgd->rd_dinodes) {
447 if (gfs2_consist_rgrpd(rgd))
448 fs_err(sdp, "used metadata mismatch: %u != %u\n",
449 count[2] + count[3], rgd->rd_dinodes);
450 return;
451 }
452 }
453
454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
455 {
456 u64 first = rgd->rd_data0;
457 u64 last = first + rgd->rd_data;
458 return first <= block && block < last;
459 }
460
461 /**
462 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
463 * @sdp: The GFS2 superblock
464 * @blk: The data block number
465 * @exact: True if this needs to be an exact match
466 *
467 * Returns: The resource group, or NULL if not found
468 */
469
470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
471 {
472 struct rb_node *n, *next;
473 struct gfs2_rgrpd *cur;
474
475 spin_lock(&sdp->sd_rindex_spin);
476 n = sdp->sd_rindex_tree.rb_node;
477 while (n) {
478 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
479 next = NULL;
480 if (blk < cur->rd_addr)
481 next = n->rb_left;
482 else if (blk >= cur->rd_data0 + cur->rd_data)
483 next = n->rb_right;
484 if (next == NULL) {
485 spin_unlock(&sdp->sd_rindex_spin);
486 if (exact) {
487 if (blk < cur->rd_addr)
488 return NULL;
489 if (blk >= cur->rd_data0 + cur->rd_data)
490 return NULL;
491 }
492 return cur;
493 }
494 n = next;
495 }
496 spin_unlock(&sdp->sd_rindex_spin);
497
498 return NULL;
499 }
500
501 /**
502 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
503 * @sdp: The GFS2 superblock
504 *
505 * Returns: The first rgrp in the filesystem
506 */
507
508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
509 {
510 const struct rb_node *n;
511 struct gfs2_rgrpd *rgd;
512
513 spin_lock(&sdp->sd_rindex_spin);
514 n = rb_first(&sdp->sd_rindex_tree);
515 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
516 spin_unlock(&sdp->sd_rindex_spin);
517
518 return rgd;
519 }
520
521 /**
522 * gfs2_rgrpd_get_next - get the next RG
523 * @rgd: the resource group descriptor
524 *
525 * Returns: The next rgrp
526 */
527
528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
529 {
530 struct gfs2_sbd *sdp = rgd->rd_sbd;
531 const struct rb_node *n;
532
533 spin_lock(&sdp->sd_rindex_spin);
534 n = rb_next(&rgd->rd_node);
535 if (n == NULL)
536 n = rb_first(&sdp->sd_rindex_tree);
537
538 if (unlikely(&rgd->rd_node == n)) {
539 spin_unlock(&sdp->sd_rindex_spin);
540 return NULL;
541 }
542 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
543 spin_unlock(&sdp->sd_rindex_spin);
544 return rgd;
545 }
546
547 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
548 {
549 int x;
550
551 for (x = 0; x < rgd->rd_length; x++) {
552 struct gfs2_bitmap *bi = rgd->rd_bits + x;
553 kfree(bi->bi_clone);
554 bi->bi_clone = NULL;
555 }
556 }
557
558 /**
559 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
560 * @ip: the inode for this reservation
561 */
562 int gfs2_rs_alloc(struct gfs2_inode *ip)
563 {
564 int error = 0;
565
566 down_write(&ip->i_rw_mutex);
567 if (ip->i_res)
568 goto out;
569
570 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
571 if (!ip->i_res) {
572 error = -ENOMEM;
573 goto out;
574 }
575
576 RB_CLEAR_NODE(&ip->i_res->rs_node);
577 out:
578 up_write(&ip->i_rw_mutex);
579 return error;
580 }
581
582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
583 {
584 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
585 (unsigned long long)rs->rs_inum,
586 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
587 rs->rs_rbm.offset, rs->rs_free);
588 }
589
590 /**
591 * __rs_deltree - remove a multi-block reservation from the rgd tree
592 * @rs: The reservation to remove
593 *
594 */
595 static void __rs_deltree(struct gfs2_blkreserv *rs)
596 {
597 struct gfs2_rgrpd *rgd;
598
599 if (!gfs2_rs_active(rs))
600 return;
601
602 rgd = rs->rs_rbm.rgd;
603 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
604 rb_erase(&rs->rs_node, &rgd->rd_rstree);
605 RB_CLEAR_NODE(&rs->rs_node);
606
607 if (rs->rs_free) {
608 /* return reserved blocks to the rgrp */
609 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
610 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
611 rs->rs_free = 0;
612 clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
613 smp_mb__after_clear_bit();
614 }
615 }
616
617 /**
618 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
619 * @rs: The reservation to remove
620 *
621 */
622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
623 {
624 struct gfs2_rgrpd *rgd;
625
626 rgd = rs->rs_rbm.rgd;
627 if (rgd) {
628 spin_lock(&rgd->rd_rsspin);
629 __rs_deltree(rs);
630 spin_unlock(&rgd->rd_rsspin);
631 }
632 }
633
634 /**
635 * gfs2_rs_delete - delete a multi-block reservation
636 * @ip: The inode for this reservation
637 *
638 */
639 void gfs2_rs_delete(struct gfs2_inode *ip)
640 {
641 down_write(&ip->i_rw_mutex);
642 if (ip->i_res) {
643 gfs2_rs_deltree(ip->i_res);
644 BUG_ON(ip->i_res->rs_free);
645 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
646 ip->i_res = NULL;
647 }
648 up_write(&ip->i_rw_mutex);
649 }
650
651 /**
652 * return_all_reservations - return all reserved blocks back to the rgrp.
653 * @rgd: the rgrp that needs its space back
654 *
655 * We previously reserved a bunch of blocks for allocation. Now we need to
656 * give them back. This leave the reservation structures in tact, but removes
657 * all of their corresponding "no-fly zones".
658 */
659 static void return_all_reservations(struct gfs2_rgrpd *rgd)
660 {
661 struct rb_node *n;
662 struct gfs2_blkreserv *rs;
663
664 spin_lock(&rgd->rd_rsspin);
665 while ((n = rb_first(&rgd->rd_rstree))) {
666 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
667 __rs_deltree(rs);
668 }
669 spin_unlock(&rgd->rd_rsspin);
670 }
671
672 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
673 {
674 struct rb_node *n;
675 struct gfs2_rgrpd *rgd;
676 struct gfs2_glock *gl;
677
678 while ((n = rb_first(&sdp->sd_rindex_tree))) {
679 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
680 gl = rgd->rd_gl;
681
682 rb_erase(n, &sdp->sd_rindex_tree);
683
684 if (gl) {
685 spin_lock(&gl->gl_spin);
686 gl->gl_object = NULL;
687 spin_unlock(&gl->gl_spin);
688 gfs2_glock_add_to_lru(gl);
689 gfs2_glock_put(gl);
690 }
691
692 gfs2_free_clones(rgd);
693 kfree(rgd->rd_bits);
694 return_all_reservations(rgd);
695 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
696 }
697 }
698
699 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
700 {
701 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
702 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
703 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
704 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
705 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
706 }
707
708 /**
709 * gfs2_compute_bitstructs - Compute the bitmap sizes
710 * @rgd: The resource group descriptor
711 *
712 * Calculates bitmap descriptors, one for each block that contains bitmap data
713 *
714 * Returns: errno
715 */
716
717 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
718 {
719 struct gfs2_sbd *sdp = rgd->rd_sbd;
720 struct gfs2_bitmap *bi;
721 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
722 u32 bytes_left, bytes;
723 int x;
724
725 if (!length)
726 return -EINVAL;
727
728 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
729 if (!rgd->rd_bits)
730 return -ENOMEM;
731
732 bytes_left = rgd->rd_bitbytes;
733
734 for (x = 0; x < length; x++) {
735 bi = rgd->rd_bits + x;
736
737 bi->bi_flags = 0;
738 /* small rgrp; bitmap stored completely in header block */
739 if (length == 1) {
740 bytes = bytes_left;
741 bi->bi_offset = sizeof(struct gfs2_rgrp);
742 bi->bi_start = 0;
743 bi->bi_len = bytes;
744 /* header block */
745 } else if (x == 0) {
746 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
747 bi->bi_offset = sizeof(struct gfs2_rgrp);
748 bi->bi_start = 0;
749 bi->bi_len = bytes;
750 /* last block */
751 } else if (x + 1 == length) {
752 bytes = bytes_left;
753 bi->bi_offset = sizeof(struct gfs2_meta_header);
754 bi->bi_start = rgd->rd_bitbytes - bytes_left;
755 bi->bi_len = bytes;
756 /* other blocks */
757 } else {
758 bytes = sdp->sd_sb.sb_bsize -
759 sizeof(struct gfs2_meta_header);
760 bi->bi_offset = sizeof(struct gfs2_meta_header);
761 bi->bi_start = rgd->rd_bitbytes - bytes_left;
762 bi->bi_len = bytes;
763 }
764
765 bytes_left -= bytes;
766 }
767
768 if (bytes_left) {
769 gfs2_consist_rgrpd(rgd);
770 return -EIO;
771 }
772 bi = rgd->rd_bits + (length - 1);
773 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
774 if (gfs2_consist_rgrpd(rgd)) {
775 gfs2_rindex_print(rgd);
776 fs_err(sdp, "start=%u len=%u offset=%u\n",
777 bi->bi_start, bi->bi_len, bi->bi_offset);
778 }
779 return -EIO;
780 }
781
782 return 0;
783 }
784
785 /**
786 * gfs2_ri_total - Total up the file system space, according to the rindex.
787 * @sdp: the filesystem
788 *
789 */
790 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
791 {
792 u64 total_data = 0;
793 struct inode *inode = sdp->sd_rindex;
794 struct gfs2_inode *ip = GFS2_I(inode);
795 char buf[sizeof(struct gfs2_rindex)];
796 int error, rgrps;
797
798 for (rgrps = 0;; rgrps++) {
799 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
800
801 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
802 break;
803 error = gfs2_internal_read(ip, buf, &pos,
804 sizeof(struct gfs2_rindex));
805 if (error != sizeof(struct gfs2_rindex))
806 break;
807 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
808 }
809 return total_data;
810 }
811
812 static int rgd_insert(struct gfs2_rgrpd *rgd)
813 {
814 struct gfs2_sbd *sdp = rgd->rd_sbd;
815 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
816
817 /* Figure out where to put new node */
818 while (*newn) {
819 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
820 rd_node);
821
822 parent = *newn;
823 if (rgd->rd_addr < cur->rd_addr)
824 newn = &((*newn)->rb_left);
825 else if (rgd->rd_addr > cur->rd_addr)
826 newn = &((*newn)->rb_right);
827 else
828 return -EEXIST;
829 }
830
831 rb_link_node(&rgd->rd_node, parent, newn);
832 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
833 sdp->sd_rgrps++;
834 return 0;
835 }
836
837 /**
838 * read_rindex_entry - Pull in a new resource index entry from the disk
839 * @ip: Pointer to the rindex inode
840 *
841 * Returns: 0 on success, > 0 on EOF, error code otherwise
842 */
843
844 static int read_rindex_entry(struct gfs2_inode *ip)
845 {
846 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
847 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
848 struct gfs2_rindex buf;
849 int error;
850 struct gfs2_rgrpd *rgd;
851
852 if (pos >= i_size_read(&ip->i_inode))
853 return 1;
854
855 error = gfs2_internal_read(ip, (char *)&buf, &pos,
856 sizeof(struct gfs2_rindex));
857
858 if (error != sizeof(struct gfs2_rindex))
859 return (error == 0) ? 1 : error;
860
861 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
862 error = -ENOMEM;
863 if (!rgd)
864 return error;
865
866 rgd->rd_sbd = sdp;
867 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
868 rgd->rd_length = be32_to_cpu(buf.ri_length);
869 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
870 rgd->rd_data = be32_to_cpu(buf.ri_data);
871 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
872 spin_lock_init(&rgd->rd_rsspin);
873
874 error = compute_bitstructs(rgd);
875 if (error)
876 goto fail;
877
878 error = gfs2_glock_get(sdp, rgd->rd_addr,
879 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
880 if (error)
881 goto fail;
882
883 rgd->rd_gl->gl_object = rgd;
884 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
885 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
886 if (rgd->rd_data > sdp->sd_max_rg_data)
887 sdp->sd_max_rg_data = rgd->rd_data;
888 spin_lock(&sdp->sd_rindex_spin);
889 error = rgd_insert(rgd);
890 spin_unlock(&sdp->sd_rindex_spin);
891 if (!error)
892 return 0;
893
894 error = 0; /* someone else read in the rgrp; free it and ignore it */
895 gfs2_glock_put(rgd->rd_gl);
896
897 fail:
898 kfree(rgd->rd_bits);
899 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
900 return error;
901 }
902
903 /**
904 * gfs2_ri_update - Pull in a new resource index from the disk
905 * @ip: pointer to the rindex inode
906 *
907 * Returns: 0 on successful update, error code otherwise
908 */
909
910 static int gfs2_ri_update(struct gfs2_inode *ip)
911 {
912 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
913 int error;
914
915 do {
916 error = read_rindex_entry(ip);
917 } while (error == 0);
918
919 if (error < 0)
920 return error;
921
922 sdp->sd_rindex_uptodate = 1;
923 return 0;
924 }
925
926 /**
927 * gfs2_rindex_update - Update the rindex if required
928 * @sdp: The GFS2 superblock
929 *
930 * We grab a lock on the rindex inode to make sure that it doesn't
931 * change whilst we are performing an operation. We keep this lock
932 * for quite long periods of time compared to other locks. This
933 * doesn't matter, since it is shared and it is very, very rarely
934 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
935 *
936 * This makes sure that we're using the latest copy of the resource index
937 * special file, which might have been updated if someone expanded the
938 * filesystem (via gfs2_grow utility), which adds new resource groups.
939 *
940 * Returns: 0 on succeess, error code otherwise
941 */
942
943 int gfs2_rindex_update(struct gfs2_sbd *sdp)
944 {
945 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
946 struct gfs2_glock *gl = ip->i_gl;
947 struct gfs2_holder ri_gh;
948 int error = 0;
949 int unlock_required = 0;
950
951 /* Read new copy from disk if we don't have the latest */
952 if (!sdp->sd_rindex_uptodate) {
953 if (!gfs2_glock_is_locked_by_me(gl)) {
954 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
955 if (error)
956 return error;
957 unlock_required = 1;
958 }
959 if (!sdp->sd_rindex_uptodate)
960 error = gfs2_ri_update(ip);
961 if (unlock_required)
962 gfs2_glock_dq_uninit(&ri_gh);
963 }
964
965 return error;
966 }
967
968 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
969 {
970 const struct gfs2_rgrp *str = buf;
971 u32 rg_flags;
972
973 rg_flags = be32_to_cpu(str->rg_flags);
974 rg_flags &= ~GFS2_RDF_MASK;
975 rgd->rd_flags &= GFS2_RDF_MASK;
976 rgd->rd_flags |= rg_flags;
977 rgd->rd_free = be32_to_cpu(str->rg_free);
978 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
979 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
980 }
981
982 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
983 {
984 struct gfs2_rgrp *str = buf;
985
986 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
987 str->rg_free = cpu_to_be32(rgd->rd_free);
988 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
989 str->__pad = cpu_to_be32(0);
990 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
991 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
992 }
993
994 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
995 {
996 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
997 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
998
999 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1000 rgl->rl_dinodes != str->rg_dinodes ||
1001 rgl->rl_igeneration != str->rg_igeneration)
1002 return 0;
1003 return 1;
1004 }
1005
1006 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1007 {
1008 const struct gfs2_rgrp *str = buf;
1009
1010 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1011 rgl->rl_flags = str->rg_flags;
1012 rgl->rl_free = str->rg_free;
1013 rgl->rl_dinodes = str->rg_dinodes;
1014 rgl->rl_igeneration = str->rg_igeneration;
1015 rgl->__pad = 0UL;
1016 }
1017
1018 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1019 {
1020 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1021 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1022 rgl->rl_unlinked = cpu_to_be32(unlinked);
1023 }
1024
1025 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1026 {
1027 struct gfs2_bitmap *bi;
1028 const u32 length = rgd->rd_length;
1029 const u8 *buffer = NULL;
1030 u32 i, goal, count = 0;
1031
1032 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1033 goal = 0;
1034 buffer = bi->bi_bh->b_data + bi->bi_offset;
1035 WARN_ON(!buffer_uptodate(bi->bi_bh));
1036 while (goal < bi->bi_len * GFS2_NBBY) {
1037 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1038 GFS2_BLKST_UNLINKED);
1039 if (goal == BFITNOENT)
1040 break;
1041 count++;
1042 goal++;
1043 }
1044 }
1045
1046 return count;
1047 }
1048
1049
1050 /**
1051 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1052 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1053 *
1054 * Read in all of a Resource Group's header and bitmap blocks.
1055 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1056 *
1057 * Returns: errno
1058 */
1059
1060 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1061 {
1062 struct gfs2_sbd *sdp = rgd->rd_sbd;
1063 struct gfs2_glock *gl = rgd->rd_gl;
1064 unsigned int length = rgd->rd_length;
1065 struct gfs2_bitmap *bi;
1066 unsigned int x, y;
1067 int error;
1068
1069 if (rgd->rd_bits[0].bi_bh != NULL)
1070 return 0;
1071
1072 for (x = 0; x < length; x++) {
1073 bi = rgd->rd_bits + x;
1074 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1075 if (error)
1076 goto fail;
1077 }
1078
1079 for (y = length; y--;) {
1080 bi = rgd->rd_bits + y;
1081 error = gfs2_meta_wait(sdp, bi->bi_bh);
1082 if (error)
1083 goto fail;
1084 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1085 GFS2_METATYPE_RG)) {
1086 error = -EIO;
1087 goto fail;
1088 }
1089 }
1090
1091 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1092 for (x = 0; x < length; x++)
1093 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1094 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1095 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1096 rgd->rd_free_clone = rgd->rd_free;
1097 }
1098 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1099 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1100 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1101 rgd->rd_bits[0].bi_bh->b_data);
1102 }
1103 else if (sdp->sd_args.ar_rgrplvb) {
1104 if (!gfs2_rgrp_lvb_valid(rgd)){
1105 gfs2_consist_rgrpd(rgd);
1106 error = -EIO;
1107 goto fail;
1108 }
1109 if (rgd->rd_rgl->rl_unlinked == 0)
1110 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1111 }
1112 return 0;
1113
1114 fail:
1115 while (x--) {
1116 bi = rgd->rd_bits + x;
1117 brelse(bi->bi_bh);
1118 bi->bi_bh = NULL;
1119 gfs2_assert_warn(sdp, !bi->bi_clone);
1120 }
1121
1122 return error;
1123 }
1124
1125 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1126 {
1127 u32 rl_flags;
1128
1129 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1130 return 0;
1131
1132 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1133 return gfs2_rgrp_bh_get(rgd);
1134
1135 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1136 rl_flags &= ~GFS2_RDF_MASK;
1137 rgd->rd_flags &= GFS2_RDF_MASK;
1138 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1139 if (rgd->rd_rgl->rl_unlinked == 0)
1140 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1141 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1142 rgd->rd_free_clone = rgd->rd_free;
1143 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1144 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1145 return 0;
1146 }
1147
1148 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1149 {
1150 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1151 struct gfs2_sbd *sdp = rgd->rd_sbd;
1152
1153 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1154 return 0;
1155 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1156 }
1157
1158 /**
1159 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1160 * @gh: The glock holder for the resource group
1161 *
1162 */
1163
1164 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1165 {
1166 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1167 int x, length = rgd->rd_length;
1168
1169 for (x = 0; x < length; x++) {
1170 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1171 if (bi->bi_bh) {
1172 brelse(bi->bi_bh);
1173 bi->bi_bh = NULL;
1174 }
1175 }
1176
1177 }
1178
1179 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1180 struct buffer_head *bh,
1181 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1182 {
1183 struct super_block *sb = sdp->sd_vfs;
1184 u64 blk;
1185 sector_t start = 0;
1186 sector_t nr_blks = 0;
1187 int rv;
1188 unsigned int x;
1189 u32 trimmed = 0;
1190 u8 diff;
1191
1192 for (x = 0; x < bi->bi_len; x++) {
1193 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1194 clone += bi->bi_offset;
1195 clone += x;
1196 if (bh) {
1197 const u8 *orig = bh->b_data + bi->bi_offset + x;
1198 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1199 } else {
1200 diff = ~(*clone | (*clone >> 1));
1201 }
1202 diff &= 0x55;
1203 if (diff == 0)
1204 continue;
1205 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1206 while(diff) {
1207 if (diff & 1) {
1208 if (nr_blks == 0)
1209 goto start_new_extent;
1210 if ((start + nr_blks) != blk) {
1211 if (nr_blks >= minlen) {
1212 rv = sb_issue_discard(sb,
1213 start, nr_blks,
1214 GFP_NOFS, 0);
1215 if (rv)
1216 goto fail;
1217 trimmed += nr_blks;
1218 }
1219 nr_blks = 0;
1220 start_new_extent:
1221 start = blk;
1222 }
1223 nr_blks++;
1224 }
1225 diff >>= 2;
1226 blk++;
1227 }
1228 }
1229 if (nr_blks >= minlen) {
1230 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1231 if (rv)
1232 goto fail;
1233 trimmed += nr_blks;
1234 }
1235 if (ptrimmed)
1236 *ptrimmed = trimmed;
1237 return 0;
1238
1239 fail:
1240 if (sdp->sd_args.ar_discard)
1241 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1242 sdp->sd_args.ar_discard = 0;
1243 return -EIO;
1244 }
1245
1246 /**
1247 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1248 * @filp: Any file on the filesystem
1249 * @argp: Pointer to the arguments (also used to pass result)
1250 *
1251 * Returns: 0 on success, otherwise error code
1252 */
1253
1254 int gfs2_fitrim(struct file *filp, void __user *argp)
1255 {
1256 struct inode *inode = file_inode(filp);
1257 struct gfs2_sbd *sdp = GFS2_SB(inode);
1258 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1259 struct buffer_head *bh;
1260 struct gfs2_rgrpd *rgd;
1261 struct gfs2_rgrpd *rgd_end;
1262 struct gfs2_holder gh;
1263 struct fstrim_range r;
1264 int ret = 0;
1265 u64 amt;
1266 u64 trimmed = 0;
1267 u64 start, end, minlen;
1268 unsigned int x;
1269 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1270
1271 if (!capable(CAP_SYS_ADMIN))
1272 return -EPERM;
1273
1274 if (!blk_queue_discard(q))
1275 return -EOPNOTSUPP;
1276
1277 if (copy_from_user(&r, argp, sizeof(r)))
1278 return -EFAULT;
1279
1280 ret = gfs2_rindex_update(sdp);
1281 if (ret)
1282 return ret;
1283
1284 start = r.start >> bs_shift;
1285 end = start + (r.len >> bs_shift);
1286 minlen = max_t(u64, r.minlen,
1287 q->limits.discard_granularity) >> bs_shift;
1288
1289 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1290 rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1291
1292 if (end <= start ||
1293 minlen > sdp->sd_max_rg_data ||
1294 start > rgd_end->rd_data0 + rgd_end->rd_data)
1295 return -EINVAL;
1296
1297 while (1) {
1298
1299 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1300 if (ret)
1301 goto out;
1302
1303 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1304 /* Trim each bitmap in the rgrp */
1305 for (x = 0; x < rgd->rd_length; x++) {
1306 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1307 ret = gfs2_rgrp_send_discards(sdp,
1308 rgd->rd_data0, NULL, bi, minlen,
1309 &amt);
1310 if (ret) {
1311 gfs2_glock_dq_uninit(&gh);
1312 goto out;
1313 }
1314 trimmed += amt;
1315 }
1316
1317 /* Mark rgrp as having been trimmed */
1318 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1319 if (ret == 0) {
1320 bh = rgd->rd_bits[0].bi_bh;
1321 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1322 gfs2_trans_add_meta(rgd->rd_gl, bh);
1323 gfs2_rgrp_out(rgd, bh->b_data);
1324 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1325 gfs2_trans_end(sdp);
1326 }
1327 }
1328 gfs2_glock_dq_uninit(&gh);
1329
1330 if (rgd == rgd_end)
1331 break;
1332
1333 rgd = gfs2_rgrpd_get_next(rgd);
1334 }
1335
1336 out:
1337 r.len = trimmed << 9;
1338 if (copy_to_user(argp, &r, sizeof(r)))
1339 return -EFAULT;
1340
1341 return ret;
1342 }
1343
1344 /**
1345 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1346 * @ip: the inode structure
1347 *
1348 */
1349 static void rs_insert(struct gfs2_inode *ip)
1350 {
1351 struct rb_node **newn, *parent = NULL;
1352 int rc;
1353 struct gfs2_blkreserv *rs = ip->i_res;
1354 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1355 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1356
1357 BUG_ON(gfs2_rs_active(rs));
1358
1359 spin_lock(&rgd->rd_rsspin);
1360 newn = &rgd->rd_rstree.rb_node;
1361 while (*newn) {
1362 struct gfs2_blkreserv *cur =
1363 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1364
1365 parent = *newn;
1366 rc = rs_cmp(fsblock, rs->rs_free, cur);
1367 if (rc > 0)
1368 newn = &((*newn)->rb_right);
1369 else if (rc < 0)
1370 newn = &((*newn)->rb_left);
1371 else {
1372 spin_unlock(&rgd->rd_rsspin);
1373 WARN_ON(1);
1374 return;
1375 }
1376 }
1377
1378 rb_link_node(&rs->rs_node, parent, newn);
1379 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1380
1381 /* Do our rgrp accounting for the reservation */
1382 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1383 spin_unlock(&rgd->rd_rsspin);
1384 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1385 }
1386
1387 /**
1388 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1389 * @rgd: the resource group descriptor
1390 * @ip: pointer to the inode for which we're reserving blocks
1391 * @requested: number of blocks required for this allocation
1392 *
1393 */
1394
1395 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1396 unsigned requested)
1397 {
1398 struct gfs2_rbm rbm = { .rgd = rgd, };
1399 u64 goal;
1400 struct gfs2_blkreserv *rs = ip->i_res;
1401 u32 extlen;
1402 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1403 int ret;
1404
1405 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1406 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1407 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1408 return;
1409
1410 /* Find bitmap block that contains bits for goal block */
1411 if (rgrp_contains_block(rgd, ip->i_goal))
1412 goal = ip->i_goal;
1413 else
1414 goal = rgd->rd_last_alloc + rgd->rd_data0;
1415
1416 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1417 return;
1418
1419 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1420 if (ret == 0) {
1421 rs->rs_rbm = rbm;
1422 rs->rs_free = extlen;
1423 rs->rs_inum = ip->i_no_addr;
1424 rs_insert(ip);
1425 } else {
1426 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1427 rgd->rd_last_alloc = 0;
1428 }
1429 }
1430
1431 /**
1432 * gfs2_next_unreserved_block - Return next block that is not reserved
1433 * @rgd: The resource group
1434 * @block: The starting block
1435 * @length: The required length
1436 * @ip: Ignore any reservations for this inode
1437 *
1438 * If the block does not appear in any reservation, then return the
1439 * block number unchanged. If it does appear in the reservation, then
1440 * keep looking through the tree of reservations in order to find the
1441 * first block number which is not reserved.
1442 */
1443
1444 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1445 u32 length,
1446 const struct gfs2_inode *ip)
1447 {
1448 struct gfs2_blkreserv *rs;
1449 struct rb_node *n;
1450 int rc;
1451
1452 spin_lock(&rgd->rd_rsspin);
1453 n = rgd->rd_rstree.rb_node;
1454 while (n) {
1455 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1456 rc = rs_cmp(block, length, rs);
1457 if (rc < 0)
1458 n = n->rb_left;
1459 else if (rc > 0)
1460 n = n->rb_right;
1461 else
1462 break;
1463 }
1464
1465 if (n) {
1466 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1467 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1468 n = n->rb_right;
1469 if (n == NULL)
1470 break;
1471 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1472 }
1473 }
1474
1475 spin_unlock(&rgd->rd_rsspin);
1476 return block;
1477 }
1478
1479 /**
1480 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1481 * @rbm: The current position in the resource group
1482 * @ip: The inode for which we are searching for blocks
1483 * @minext: The minimum extent length
1484 *
1485 * This checks the current position in the rgrp to see whether there is
1486 * a reservation covering this block. If not then this function is a
1487 * no-op. If there is, then the position is moved to the end of the
1488 * contiguous reservation(s) so that we are pointing at the first
1489 * non-reserved block.
1490 *
1491 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1492 */
1493
1494 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1495 const struct gfs2_inode *ip,
1496 u32 minext)
1497 {
1498 u64 block = gfs2_rbm_to_block(rbm);
1499 u32 extlen = 1;
1500 u64 nblock;
1501 int ret;
1502
1503 /*
1504 * If we have a minimum extent length, then skip over any extent
1505 * which is less than the min extent length in size.
1506 */
1507 if (minext) {
1508 extlen = gfs2_free_extlen(rbm, minext);
1509 nblock = block + extlen;
1510 if (extlen < minext)
1511 goto fail;
1512 }
1513
1514 /*
1515 * Check the extent which has been found against the reservations
1516 * and skip if parts of it are already reserved
1517 */
1518 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1519 if (nblock == block)
1520 return 0;
1521 fail:
1522 ret = gfs2_rbm_from_block(rbm, nblock);
1523 if (ret < 0)
1524 return ret;
1525 return 1;
1526 }
1527
1528 /**
1529 * gfs2_rbm_find - Look for blocks of a particular state
1530 * @rbm: Value/result starting position and final position
1531 * @state: The state which we want to find
1532 * @minext: The requested extent length (0 for a single block)
1533 * @ip: If set, check for reservations
1534 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1535 * around until we've reached the starting point.
1536 *
1537 * Side effects:
1538 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1539 * has no free blocks in it.
1540 *
1541 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1542 */
1543
1544 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1545 const struct gfs2_inode *ip, bool nowrap)
1546 {
1547 struct buffer_head *bh;
1548 struct gfs2_bitmap *initial_bi;
1549 u32 initial_offset;
1550 u32 offset;
1551 u8 *buffer;
1552 int index;
1553 int n = 0;
1554 int iters = rbm->rgd->rd_length;
1555 int ret;
1556
1557 /* If we are not starting at the beginning of a bitmap, then we
1558 * need to add one to the bitmap count to ensure that we search
1559 * the starting bitmap twice.
1560 */
1561 if (rbm->offset != 0)
1562 iters++;
1563
1564 while(1) {
1565 if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1566 (state == GFS2_BLKST_FREE))
1567 goto next_bitmap;
1568
1569 bh = rbm->bi->bi_bh;
1570 buffer = bh->b_data + rbm->bi->bi_offset;
1571 WARN_ON(!buffer_uptodate(bh));
1572 if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1573 buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1574 initial_offset = rbm->offset;
1575 offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1576 if (offset == BFITNOENT)
1577 goto bitmap_full;
1578 rbm->offset = offset;
1579 if (ip == NULL)
1580 return 0;
1581
1582 initial_bi = rbm->bi;
1583 ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1584 if (ret == 0)
1585 return 0;
1586 if (ret > 0) {
1587 n += (rbm->bi - initial_bi);
1588 goto next_iter;
1589 }
1590 if (ret == -E2BIG) {
1591 index = 0;
1592 rbm->offset = 0;
1593 n += (rbm->bi - initial_bi);
1594 goto res_covered_end_of_rgrp;
1595 }
1596 return ret;
1597
1598 bitmap_full: /* Mark bitmap as full and fall through */
1599 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1600 set_bit(GBF_FULL, &rbm->bi->bi_flags);
1601
1602 next_bitmap: /* Find next bitmap in the rgrp */
1603 rbm->offset = 0;
1604 index = rbm->bi - rbm->rgd->rd_bits;
1605 index++;
1606 if (index == rbm->rgd->rd_length)
1607 index = 0;
1608 res_covered_end_of_rgrp:
1609 rbm->bi = &rbm->rgd->rd_bits[index];
1610 if ((index == 0) && nowrap)
1611 break;
1612 n++;
1613 next_iter:
1614 if (n >= iters)
1615 break;
1616 }
1617
1618 return -ENOSPC;
1619 }
1620
1621 /**
1622 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1623 * @rgd: The rgrp
1624 * @last_unlinked: block address of the last dinode we unlinked
1625 * @skip: block address we should explicitly not unlink
1626 *
1627 * Returns: 0 if no error
1628 * The inode, if one has been found, in inode.
1629 */
1630
1631 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1632 {
1633 u64 block;
1634 struct gfs2_sbd *sdp = rgd->rd_sbd;
1635 struct gfs2_glock *gl;
1636 struct gfs2_inode *ip;
1637 int error;
1638 int found = 0;
1639 struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1640
1641 while (1) {
1642 down_write(&sdp->sd_log_flush_lock);
1643 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1644 up_write(&sdp->sd_log_flush_lock);
1645 if (error == -ENOSPC)
1646 break;
1647 if (WARN_ON_ONCE(error))
1648 break;
1649
1650 block = gfs2_rbm_to_block(&rbm);
1651 if (gfs2_rbm_from_block(&rbm, block + 1))
1652 break;
1653 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1654 continue;
1655 if (block == skip)
1656 continue;
1657 *last_unlinked = block;
1658
1659 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1660 if (error)
1661 continue;
1662
1663 /* If the inode is already in cache, we can ignore it here
1664 * because the existing inode disposal code will deal with
1665 * it when all refs have gone away. Accessing gl_object like
1666 * this is not safe in general. Here it is ok because we do
1667 * not dereference the pointer, and we only need an approx
1668 * answer to whether it is NULL or not.
1669 */
1670 ip = gl->gl_object;
1671
1672 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1673 gfs2_glock_put(gl);
1674 else
1675 found++;
1676
1677 /* Limit reclaim to sensible number of tasks */
1678 if (found > NR_CPUS)
1679 return;
1680 }
1681
1682 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1683 return;
1684 }
1685
1686 /**
1687 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1688 * @rgd: The rgrp in question
1689 * @loops: An indication of how picky we can be (0=very, 1=less so)
1690 *
1691 * This function uses the recently added glock statistics in order to
1692 * figure out whether a parciular resource group is suffering from
1693 * contention from multiple nodes. This is done purely on the basis
1694 * of timings, since this is the only data we have to work with and
1695 * our aim here is to reject a resource group which is highly contended
1696 * but (very important) not to do this too often in order to ensure that
1697 * we do not land up introducing fragmentation by changing resource
1698 * groups when not actually required.
1699 *
1700 * The calculation is fairly simple, we want to know whether the SRTTB
1701 * (i.e. smoothed round trip time for blocking operations) to acquire
1702 * the lock for this rgrp's glock is significantly greater than the
1703 * time taken for resource groups on average. We introduce a margin in
1704 * the form of the variable @var which is computed as the sum of the two
1705 * respective variences, and multiplied by a factor depending on @loops
1706 * and whether we have a lot of data to base the decision on. This is
1707 * then tested against the square difference of the means in order to
1708 * decide whether the result is statistically significant or not.
1709 *
1710 * Returns: A boolean verdict on the congestion status
1711 */
1712
1713 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1714 {
1715 const struct gfs2_glock *gl = rgd->rd_gl;
1716 const struct gfs2_sbd *sdp = gl->gl_sbd;
1717 struct gfs2_lkstats *st;
1718 s64 r_dcount, l_dcount;
1719 s64 r_srttb, l_srttb;
1720 s64 srttb_diff;
1721 s64 sqr_diff;
1722 s64 var;
1723
1724 preempt_disable();
1725 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1726 r_srttb = st->stats[GFS2_LKS_SRTTB];
1727 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1728 var = st->stats[GFS2_LKS_SRTTVARB] +
1729 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1730 preempt_enable();
1731
1732 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1733 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1734
1735 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1736 return false;
1737
1738 srttb_diff = r_srttb - l_srttb;
1739 sqr_diff = srttb_diff * srttb_diff;
1740
1741 var *= 2;
1742 if (l_dcount < 8 || r_dcount < 8)
1743 var *= 2;
1744 if (loops == 1)
1745 var *= 2;
1746
1747 return ((srttb_diff < 0) && (sqr_diff > var));
1748 }
1749
1750 /**
1751 * gfs2_rgrp_used_recently
1752 * @rs: The block reservation with the rgrp to test
1753 * @msecs: The time limit in milliseconds
1754 *
1755 * Returns: True if the rgrp glock has been used within the time limit
1756 */
1757 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1758 u64 msecs)
1759 {
1760 u64 tdiff;
1761
1762 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1763 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1764
1765 return tdiff > (msecs * 1000 * 1000);
1766 }
1767
1768 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1769 {
1770 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1771 u32 skip;
1772
1773 get_random_bytes(&skip, sizeof(skip));
1774 return skip % sdp->sd_rgrps;
1775 }
1776
1777 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1778 {
1779 struct gfs2_rgrpd *rgd = *pos;
1780 struct gfs2_sbd *sdp = rgd->rd_sbd;
1781
1782 rgd = gfs2_rgrpd_get_next(rgd);
1783 if (rgd == NULL)
1784 rgd = gfs2_rgrpd_get_first(sdp);
1785 *pos = rgd;
1786 if (rgd != begin) /* If we didn't wrap */
1787 return true;
1788 return false;
1789 }
1790
1791 /**
1792 * gfs2_inplace_reserve - Reserve space in the filesystem
1793 * @ip: the inode to reserve space for
1794 * @requested: the number of blocks to be reserved
1795 *
1796 * Returns: errno
1797 */
1798
1799 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1800 {
1801 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1802 struct gfs2_rgrpd *begin = NULL;
1803 struct gfs2_blkreserv *rs = ip->i_res;
1804 int error = 0, rg_locked, flags = 0;
1805 u64 last_unlinked = NO_BLOCK;
1806 int loops = 0;
1807 u32 skip = 0;
1808
1809 if (sdp->sd_args.ar_rgrplvb)
1810 flags |= GL_SKIP;
1811 if (gfs2_assert_warn(sdp, requested))
1812 return -EINVAL;
1813 if (gfs2_rs_active(rs)) {
1814 begin = rs->rs_rbm.rgd;
1815 flags = 0; /* Yoda: Do or do not. There is no try */
1816 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1817 rs->rs_rbm.rgd = begin = ip->i_rgd;
1818 } else {
1819 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1820 }
1821 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1822 skip = gfs2_orlov_skip(ip);
1823 if (rs->rs_rbm.rgd == NULL)
1824 return -EBADSLT;
1825
1826 while (loops < 3) {
1827 rg_locked = 1;
1828
1829 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1830 rg_locked = 0;
1831 if (skip && skip--)
1832 goto next_rgrp;
1833 if (!gfs2_rs_active(rs) && (loops < 2) &&
1834 gfs2_rgrp_used_recently(rs, 1000) &&
1835 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1836 goto next_rgrp;
1837 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1838 LM_ST_EXCLUSIVE, flags,
1839 &rs->rs_rgd_gh);
1840 if (unlikely(error))
1841 return error;
1842 if (!gfs2_rs_active(rs) && (loops < 2) &&
1843 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1844 goto skip_rgrp;
1845 if (sdp->sd_args.ar_rgrplvb) {
1846 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1847 if (unlikely(error)) {
1848 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1849 return error;
1850 }
1851 }
1852 }
1853
1854 /* Skip unuseable resource groups */
1855 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1856 goto skip_rgrp;
1857
1858 if (sdp->sd_args.ar_rgrplvb)
1859 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1860
1861 /* Get a reservation if we don't already have one */
1862 if (!gfs2_rs_active(rs))
1863 rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1864
1865 /* Skip rgrps when we can't get a reservation on first pass */
1866 if (!gfs2_rs_active(rs) && (loops < 1))
1867 goto check_rgrp;
1868
1869 /* If rgrp has enough free space, use it */
1870 if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1871 ip->i_rgd = rs->rs_rbm.rgd;
1872 return 0;
1873 }
1874
1875 /* Drop reservation, if we couldn't use reserved rgrp */
1876 if (gfs2_rs_active(rs))
1877 gfs2_rs_deltree(rs);
1878 check_rgrp:
1879 /* Check for unlinked inodes which can be reclaimed */
1880 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1881 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1882 ip->i_no_addr);
1883 skip_rgrp:
1884 /* Unlock rgrp if required */
1885 if (!rg_locked)
1886 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1887 next_rgrp:
1888 /* Find the next rgrp, and continue looking */
1889 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1890 continue;
1891 if (skip)
1892 continue;
1893
1894 /* If we've scanned all the rgrps, but found no free blocks
1895 * then this checks for some less likely conditions before
1896 * trying again.
1897 */
1898 loops++;
1899 /* Check that fs hasn't grown if writing to rindex */
1900 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1901 error = gfs2_ri_update(ip);
1902 if (error)
1903 return error;
1904 }
1905 /* Flushing the log may release space */
1906 if (loops == 2)
1907 gfs2_log_flush(sdp, NULL);
1908 }
1909
1910 return -ENOSPC;
1911 }
1912
1913 /**
1914 * gfs2_inplace_release - release an inplace reservation
1915 * @ip: the inode the reservation was taken out on
1916 *
1917 * Release a reservation made by gfs2_inplace_reserve().
1918 */
1919
1920 void gfs2_inplace_release(struct gfs2_inode *ip)
1921 {
1922 struct gfs2_blkreserv *rs = ip->i_res;
1923
1924 if (rs->rs_rgd_gh.gh_gl)
1925 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1926 }
1927
1928 /**
1929 * gfs2_get_block_type - Check a block in a RG is of given type
1930 * @rgd: the resource group holding the block
1931 * @block: the block number
1932 *
1933 * Returns: The block type (GFS2_BLKST_*)
1934 */
1935
1936 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1937 {
1938 struct gfs2_rbm rbm = { .rgd = rgd, };
1939 int ret;
1940
1941 ret = gfs2_rbm_from_block(&rbm, block);
1942 WARN_ON_ONCE(ret != 0);
1943
1944 return gfs2_testbit(&rbm);
1945 }
1946
1947
1948 /**
1949 * gfs2_alloc_extent - allocate an extent from a given bitmap
1950 * @rbm: the resource group information
1951 * @dinode: TRUE if the first block we allocate is for a dinode
1952 * @n: The extent length (value/result)
1953 *
1954 * Add the bitmap buffer to the transaction.
1955 * Set the found bits to @new_state to change block's allocation state.
1956 */
1957 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1958 unsigned int *n)
1959 {
1960 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1961 const unsigned int elen = *n;
1962 u64 block;
1963 int ret;
1964
1965 *n = 1;
1966 block = gfs2_rbm_to_block(rbm);
1967 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
1968 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1969 block++;
1970 while (*n < elen) {
1971 ret = gfs2_rbm_from_block(&pos, block);
1972 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1973 break;
1974 gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
1975 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1976 (*n)++;
1977 block++;
1978 }
1979 }
1980
1981 /**
1982 * rgblk_free - Change alloc state of given block(s)
1983 * @sdp: the filesystem
1984 * @bstart: the start of a run of blocks to free
1985 * @blen: the length of the block run (all must lie within ONE RG!)
1986 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1987 *
1988 * Returns: Resource group containing the block(s)
1989 */
1990
1991 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1992 u32 blen, unsigned char new_state)
1993 {
1994 struct gfs2_rbm rbm;
1995
1996 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1997 if (!rbm.rgd) {
1998 if (gfs2_consist(sdp))
1999 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2000 return NULL;
2001 }
2002
2003 while (blen--) {
2004 gfs2_rbm_from_block(&rbm, bstart);
2005 bstart++;
2006 if (!rbm.bi->bi_clone) {
2007 rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2008 GFP_NOFS | __GFP_NOFAIL);
2009 memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2010 rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2011 rbm.bi->bi_len);
2012 }
2013 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
2014 gfs2_setbit(&rbm, false, new_state);
2015 }
2016
2017 return rbm.rgd;
2018 }
2019
2020 /**
2021 * gfs2_rgrp_dump - print out an rgrp
2022 * @seq: The iterator
2023 * @gl: The glock in question
2024 *
2025 */
2026
2027 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2028 {
2029 struct gfs2_rgrpd *rgd = gl->gl_object;
2030 struct gfs2_blkreserv *trs;
2031 const struct rb_node *n;
2032
2033 if (rgd == NULL)
2034 return 0;
2035 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2036 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2037 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2038 rgd->rd_reserved);
2039 spin_lock(&rgd->rd_rsspin);
2040 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2041 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2042 dump_rs(seq, trs);
2043 }
2044 spin_unlock(&rgd->rd_rsspin);
2045 return 0;
2046 }
2047
2048 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2049 {
2050 struct gfs2_sbd *sdp = rgd->rd_sbd;
2051 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2052 (unsigned long long)rgd->rd_addr);
2053 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2054 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2055 rgd->rd_flags |= GFS2_RDF_ERROR;
2056 }
2057
2058 /**
2059 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2060 * @ip: The inode we have just allocated blocks for
2061 * @rbm: The start of the allocated blocks
2062 * @len: The extent length
2063 *
2064 * Adjusts a reservation after an allocation has taken place. If the
2065 * reservation does not match the allocation, or if it is now empty
2066 * then it is removed.
2067 */
2068
2069 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2070 const struct gfs2_rbm *rbm, unsigned len)
2071 {
2072 struct gfs2_blkreserv *rs = ip->i_res;
2073 struct gfs2_rgrpd *rgd = rbm->rgd;
2074 unsigned rlen;
2075 u64 block;
2076 int ret;
2077
2078 spin_lock(&rgd->rd_rsspin);
2079 if (gfs2_rs_active(rs)) {
2080 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2081 block = gfs2_rbm_to_block(rbm);
2082 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2083 rlen = min(rs->rs_free, len);
2084 rs->rs_free -= rlen;
2085 rgd->rd_reserved -= rlen;
2086 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2087 if (rs->rs_free && !ret)
2088 goto out;
2089 }
2090 __rs_deltree(rs);
2091 }
2092 out:
2093 spin_unlock(&rgd->rd_rsspin);
2094 }
2095
2096 /**
2097 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2098 * @ip: the inode to allocate the block for
2099 * @bn: Used to return the starting block number
2100 * @nblocks: requested number of blocks/extent length (value/result)
2101 * @dinode: 1 if we're allocating a dinode block, else 0
2102 * @generation: the generation number of the inode
2103 *
2104 * Returns: 0 or error
2105 */
2106
2107 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2108 bool dinode, u64 *generation)
2109 {
2110 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2111 struct buffer_head *dibh;
2112 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2113 unsigned int ndata;
2114 u64 goal;
2115 u64 block; /* block, within the file system scope */
2116 int error;
2117
2118 if (gfs2_rs_active(ip->i_res))
2119 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2120 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2121 goal = ip->i_goal;
2122 else
2123 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2124
2125 gfs2_rbm_from_block(&rbm, goal);
2126 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2127
2128 if (error == -ENOSPC) {
2129 gfs2_rbm_from_block(&rbm, goal);
2130 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2131 }
2132
2133 /* Since all blocks are reserved in advance, this shouldn't happen */
2134 if (error) {
2135 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2136 (unsigned long long)ip->i_no_addr, error, *nblocks,
2137 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2138 goto rgrp_error;
2139 }
2140
2141 gfs2_alloc_extent(&rbm, dinode, nblocks);
2142 block = gfs2_rbm_to_block(&rbm);
2143 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2144 if (gfs2_rs_active(ip->i_res))
2145 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2146 ndata = *nblocks;
2147 if (dinode)
2148 ndata--;
2149
2150 if (!dinode) {
2151 ip->i_goal = block + ndata - 1;
2152 error = gfs2_meta_inode_buffer(ip, &dibh);
2153 if (error == 0) {
2154 struct gfs2_dinode *di =
2155 (struct gfs2_dinode *)dibh->b_data;
2156 gfs2_trans_add_meta(ip->i_gl, dibh);
2157 di->di_goal_meta = di->di_goal_data =
2158 cpu_to_be64(ip->i_goal);
2159 brelse(dibh);
2160 }
2161 }
2162 if (rbm.rgd->rd_free < *nblocks) {
2163 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2164 goto rgrp_error;
2165 }
2166
2167 rbm.rgd->rd_free -= *nblocks;
2168 if (dinode) {
2169 rbm.rgd->rd_dinodes++;
2170 *generation = rbm.rgd->rd_igeneration++;
2171 if (*generation == 0)
2172 *generation = rbm.rgd->rd_igeneration++;
2173 }
2174
2175 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2176 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2177 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2178
2179 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2180 if (dinode)
2181 gfs2_trans_add_unrevoke(sdp, block, 1);
2182
2183 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2184
2185 rbm.rgd->rd_free_clone -= *nblocks;
2186 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2187 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2188 *bn = block;
2189 return 0;
2190
2191 rgrp_error:
2192 gfs2_rgrp_error(rbm.rgd);
2193 return -EIO;
2194 }
2195
2196 /**
2197 * __gfs2_free_blocks - free a contiguous run of block(s)
2198 * @ip: the inode these blocks are being freed from
2199 * @bstart: first block of a run of contiguous blocks
2200 * @blen: the length of the block run
2201 * @meta: 1 if the blocks represent metadata
2202 *
2203 */
2204
2205 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2206 {
2207 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2208 struct gfs2_rgrpd *rgd;
2209
2210 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2211 if (!rgd)
2212 return;
2213 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2214 rgd->rd_free += blen;
2215 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2216 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2217 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2218 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2219
2220 /* Directories keep their data in the metadata address space */
2221 if (meta || ip->i_depth)
2222 gfs2_meta_wipe(ip, bstart, blen);
2223 }
2224
2225 /**
2226 * gfs2_free_meta - free a contiguous run of data block(s)
2227 * @ip: the inode these blocks are being freed from
2228 * @bstart: first block of a run of contiguous blocks
2229 * @blen: the length of the block run
2230 *
2231 */
2232
2233 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2234 {
2235 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2236
2237 __gfs2_free_blocks(ip, bstart, blen, 1);
2238 gfs2_statfs_change(sdp, 0, +blen, 0);
2239 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2240 }
2241
2242 void gfs2_unlink_di(struct inode *inode)
2243 {
2244 struct gfs2_inode *ip = GFS2_I(inode);
2245 struct gfs2_sbd *sdp = GFS2_SB(inode);
2246 struct gfs2_rgrpd *rgd;
2247 u64 blkno = ip->i_no_addr;
2248
2249 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2250 if (!rgd)
2251 return;
2252 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2253 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2254 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2255 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2256 update_rgrp_lvb_unlinked(rgd, 1);
2257 }
2258
2259 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2260 {
2261 struct gfs2_sbd *sdp = rgd->rd_sbd;
2262 struct gfs2_rgrpd *tmp_rgd;
2263
2264 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2265 if (!tmp_rgd)
2266 return;
2267 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2268
2269 if (!rgd->rd_dinodes)
2270 gfs2_consist_rgrpd(rgd);
2271 rgd->rd_dinodes--;
2272 rgd->rd_free++;
2273
2274 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2275 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2276 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2277 update_rgrp_lvb_unlinked(rgd, -1);
2278
2279 gfs2_statfs_change(sdp, 0, +1, -1);
2280 }
2281
2282
2283 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2284 {
2285 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2286 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2287 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2288 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2289 }
2290
2291 /**
2292 * gfs2_check_blk_type - Check the type of a block
2293 * @sdp: The superblock
2294 * @no_addr: The block number to check
2295 * @type: The block type we are looking for
2296 *
2297 * Returns: 0 if the block type matches the expected type
2298 * -ESTALE if it doesn't match
2299 * or -ve errno if something went wrong while checking
2300 */
2301
2302 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2303 {
2304 struct gfs2_rgrpd *rgd;
2305 struct gfs2_holder rgd_gh;
2306 int error = -EINVAL;
2307
2308 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2309 if (!rgd)
2310 goto fail;
2311
2312 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2313 if (error)
2314 goto fail;
2315
2316 if (gfs2_get_block_type(rgd, no_addr) != type)
2317 error = -ESTALE;
2318
2319 gfs2_glock_dq_uninit(&rgd_gh);
2320 fail:
2321 return error;
2322 }
2323
2324 /**
2325 * gfs2_rlist_add - add a RG to a list of RGs
2326 * @ip: the inode
2327 * @rlist: the list of resource groups
2328 * @block: the block
2329 *
2330 * Figure out what RG a block belongs to and add that RG to the list
2331 *
2332 * FIXME: Don't use NOFAIL
2333 *
2334 */
2335
2336 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2337 u64 block)
2338 {
2339 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2340 struct gfs2_rgrpd *rgd;
2341 struct gfs2_rgrpd **tmp;
2342 unsigned int new_space;
2343 unsigned int x;
2344
2345 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2346 return;
2347
2348 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2349 rgd = ip->i_rgd;
2350 else
2351 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2352 if (!rgd) {
2353 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2354 return;
2355 }
2356 ip->i_rgd = rgd;
2357
2358 for (x = 0; x < rlist->rl_rgrps; x++)
2359 if (rlist->rl_rgd[x] == rgd)
2360 return;
2361
2362 if (rlist->rl_rgrps == rlist->rl_space) {
2363 new_space = rlist->rl_space + 10;
2364
2365 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2366 GFP_NOFS | __GFP_NOFAIL);
2367
2368 if (rlist->rl_rgd) {
2369 memcpy(tmp, rlist->rl_rgd,
2370 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2371 kfree(rlist->rl_rgd);
2372 }
2373
2374 rlist->rl_space = new_space;
2375 rlist->rl_rgd = tmp;
2376 }
2377
2378 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2379 }
2380
2381 /**
2382 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2383 * and initialize an array of glock holders for them
2384 * @rlist: the list of resource groups
2385 * @state: the lock state to acquire the RG lock in
2386 *
2387 * FIXME: Don't use NOFAIL
2388 *
2389 */
2390
2391 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2392 {
2393 unsigned int x;
2394
2395 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2396 GFP_NOFS | __GFP_NOFAIL);
2397 for (x = 0; x < rlist->rl_rgrps; x++)
2398 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2399 state, 0,
2400 &rlist->rl_ghs[x]);
2401 }
2402
2403 /**
2404 * gfs2_rlist_free - free a resource group list
2405 * @list: the list of resource groups
2406 *
2407 */
2408
2409 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2410 {
2411 unsigned int x;
2412
2413 kfree(rlist->rl_rgd);
2414
2415 if (rlist->rl_ghs) {
2416 for (x = 0; x < rlist->rl_rgrps; x++)
2417 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2418 kfree(rlist->rl_ghs);
2419 rlist->rl_ghs = NULL;
2420 }
2421 }
2422