include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
32
33 /*
34 * We don't actually have pdflush, but this one is exported though /proc...
35 */
36 int nr_pdflush_threads;
37
38 /*
39 * Passed into wb_writeback(), essentially a subset of writeback_control
40 */
41 struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 int for_kupdate:1;
46 int range_cyclic:1;
47 int for_background:1;
48 };
49
50 /*
51 * Work items for the bdi_writeback threads
52 */
53 struct bdi_work {
54 struct list_head list; /* pending work list */
55 struct rcu_head rcu_head; /* for RCU free/clear of work */
56
57 unsigned long seen; /* threads that have seen this work */
58 atomic_t pending; /* number of threads still to do work */
59
60 struct wb_writeback_args args; /* writeback arguments */
61
62 unsigned long state; /* flag bits, see WS_* */
63 };
64
65 enum {
66 WS_USED_B = 0,
67 WS_ONSTACK_B,
68 };
69
70 #define WS_USED (1 << WS_USED_B)
71 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72
73 static inline bool bdi_work_on_stack(struct bdi_work *work)
74 {
75 return test_bit(WS_ONSTACK_B, &work->state);
76 }
77
78 static inline void bdi_work_init(struct bdi_work *work,
79 struct wb_writeback_args *args)
80 {
81 INIT_RCU_HEAD(&work->rcu_head);
82 work->args = *args;
83 work->state = WS_USED;
84 }
85
86 /**
87 * writeback_in_progress - determine whether there is writeback in progress
88 * @bdi: the device's backing_dev_info structure.
89 *
90 * Determine whether there is writeback waiting to be handled against a
91 * backing device.
92 */
93 int writeback_in_progress(struct backing_dev_info *bdi)
94 {
95 return !list_empty(&bdi->work_list);
96 }
97
98 static void bdi_work_clear(struct bdi_work *work)
99 {
100 clear_bit(WS_USED_B, &work->state);
101 smp_mb__after_clear_bit();
102 /*
103 * work can have disappeared at this point. bit waitq functions
104 * should be able to tolerate this, provided bdi_sched_wait does
105 * not dereference it's pointer argument.
106 */
107 wake_up_bit(&work->state, WS_USED_B);
108 }
109
110 static void bdi_work_free(struct rcu_head *head)
111 {
112 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
113
114 if (!bdi_work_on_stack(work))
115 kfree(work);
116 else
117 bdi_work_clear(work);
118 }
119
120 static void wb_work_complete(struct bdi_work *work)
121 {
122 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
123 int onstack = bdi_work_on_stack(work);
124
125 /*
126 * For allocated work, we can clear the done/seen bit right here.
127 * For on-stack work, we need to postpone both the clear and free
128 * to after the RCU grace period, since the stack could be invalidated
129 * as soon as bdi_work_clear() has done the wakeup.
130 */
131 if (!onstack)
132 bdi_work_clear(work);
133 if (sync_mode == WB_SYNC_NONE || onstack)
134 call_rcu(&work->rcu_head, bdi_work_free);
135 }
136
137 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
138 {
139 /*
140 * The caller has retrieved the work arguments from this work,
141 * drop our reference. If this is the last ref, delete and free it
142 */
143 if (atomic_dec_and_test(&work->pending)) {
144 struct backing_dev_info *bdi = wb->bdi;
145
146 spin_lock(&bdi->wb_lock);
147 list_del_rcu(&work->list);
148 spin_unlock(&bdi->wb_lock);
149
150 wb_work_complete(work);
151 }
152 }
153
154 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
155 {
156 work->seen = bdi->wb_mask;
157 BUG_ON(!work->seen);
158 atomic_set(&work->pending, bdi->wb_cnt);
159 BUG_ON(!bdi->wb_cnt);
160
161 /*
162 * list_add_tail_rcu() contains the necessary barriers to
163 * make sure the above stores are seen before the item is
164 * noticed on the list
165 */
166 spin_lock(&bdi->wb_lock);
167 list_add_tail_rcu(&work->list, &bdi->work_list);
168 spin_unlock(&bdi->wb_lock);
169
170 /*
171 * If the default thread isn't there, make sure we add it. When
172 * it gets created and wakes up, we'll run this work.
173 */
174 if (unlikely(list_empty_careful(&bdi->wb_list)))
175 wake_up_process(default_backing_dev_info.wb.task);
176 else {
177 struct bdi_writeback *wb = &bdi->wb;
178
179 if (wb->task)
180 wake_up_process(wb->task);
181 }
182 }
183
184 /*
185 * Used for on-stack allocated work items. The caller needs to wait until
186 * the wb threads have acked the work before it's safe to continue.
187 */
188 static void bdi_wait_on_work_clear(struct bdi_work *work)
189 {
190 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
191 TASK_UNINTERRUPTIBLE);
192 }
193
194 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
195 struct wb_writeback_args *args)
196 {
197 struct bdi_work *work;
198
199 /*
200 * This is WB_SYNC_NONE writeback, so if allocation fails just
201 * wakeup the thread for old dirty data writeback
202 */
203 work = kmalloc(sizeof(*work), GFP_ATOMIC);
204 if (work) {
205 bdi_work_init(work, args);
206 bdi_queue_work(bdi, work);
207 } else {
208 struct bdi_writeback *wb = &bdi->wb;
209
210 if (wb->task)
211 wake_up_process(wb->task);
212 }
213 }
214
215 /**
216 * bdi_sync_writeback - start and wait for writeback
217 * @bdi: the backing device to write from
218 * @sb: write inodes from this super_block
219 *
220 * Description:
221 * This does WB_SYNC_ALL data integrity writeback and waits for the
222 * IO to complete. Callers must hold the sb s_umount semaphore for
223 * reading, to avoid having the super disappear before we are done.
224 */
225 static void bdi_sync_writeback(struct backing_dev_info *bdi,
226 struct super_block *sb)
227 {
228 struct wb_writeback_args args = {
229 .sb = sb,
230 .sync_mode = WB_SYNC_ALL,
231 .nr_pages = LONG_MAX,
232 .range_cyclic = 0,
233 };
234 struct bdi_work work;
235
236 bdi_work_init(&work, &args);
237 work.state |= WS_ONSTACK;
238
239 bdi_queue_work(bdi, &work);
240 bdi_wait_on_work_clear(&work);
241 }
242
243 /**
244 * bdi_start_writeback - start writeback
245 * @bdi: the backing device to write from
246 * @sb: write inodes from this super_block
247 * @nr_pages: the number of pages to write
248 *
249 * Description:
250 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
251 * started when this function returns, we make no guarentees on
252 * completion. Caller need not hold sb s_umount semaphore.
253 *
254 */
255 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
256 long nr_pages)
257 {
258 struct wb_writeback_args args = {
259 .sb = sb,
260 .sync_mode = WB_SYNC_NONE,
261 .nr_pages = nr_pages,
262 .range_cyclic = 1,
263 };
264
265 /*
266 * We treat @nr_pages=0 as the special case to do background writeback,
267 * ie. to sync pages until the background dirty threshold is reached.
268 */
269 if (!nr_pages) {
270 args.nr_pages = LONG_MAX;
271 args.for_background = 1;
272 }
273
274 bdi_alloc_queue_work(bdi, &args);
275 }
276
277 /*
278 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
279 * furthest end of its superblock's dirty-inode list.
280 *
281 * Before stamping the inode's ->dirtied_when, we check to see whether it is
282 * already the most-recently-dirtied inode on the b_dirty list. If that is
283 * the case then the inode must have been redirtied while it was being written
284 * out and we don't reset its dirtied_when.
285 */
286 static void redirty_tail(struct inode *inode)
287 {
288 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
289
290 if (!list_empty(&wb->b_dirty)) {
291 struct inode *tail;
292
293 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
294 if (time_before(inode->dirtied_when, tail->dirtied_when))
295 inode->dirtied_when = jiffies;
296 }
297 list_move(&inode->i_list, &wb->b_dirty);
298 }
299
300 /*
301 * requeue inode for re-scanning after bdi->b_io list is exhausted.
302 */
303 static void requeue_io(struct inode *inode)
304 {
305 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
306
307 list_move(&inode->i_list, &wb->b_more_io);
308 }
309
310 static void inode_sync_complete(struct inode *inode)
311 {
312 /*
313 * Prevent speculative execution through spin_unlock(&inode_lock);
314 */
315 smp_mb();
316 wake_up_bit(&inode->i_state, __I_SYNC);
317 }
318
319 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
320 {
321 bool ret = time_after(inode->dirtied_when, t);
322 #ifndef CONFIG_64BIT
323 /*
324 * For inodes being constantly redirtied, dirtied_when can get stuck.
325 * It _appears_ to be in the future, but is actually in distant past.
326 * This test is necessary to prevent such wrapped-around relative times
327 * from permanently stopping the whole bdi writeback.
328 */
329 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
330 #endif
331 return ret;
332 }
333
334 /*
335 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
336 */
337 static void move_expired_inodes(struct list_head *delaying_queue,
338 struct list_head *dispatch_queue,
339 unsigned long *older_than_this)
340 {
341 LIST_HEAD(tmp);
342 struct list_head *pos, *node;
343 struct super_block *sb = NULL;
344 struct inode *inode;
345 int do_sb_sort = 0;
346
347 while (!list_empty(delaying_queue)) {
348 inode = list_entry(delaying_queue->prev, struct inode, i_list);
349 if (older_than_this &&
350 inode_dirtied_after(inode, *older_than_this))
351 break;
352 if (sb && sb != inode->i_sb)
353 do_sb_sort = 1;
354 sb = inode->i_sb;
355 list_move(&inode->i_list, &tmp);
356 }
357
358 /* just one sb in list, splice to dispatch_queue and we're done */
359 if (!do_sb_sort) {
360 list_splice(&tmp, dispatch_queue);
361 return;
362 }
363
364 /* Move inodes from one superblock together */
365 while (!list_empty(&tmp)) {
366 inode = list_entry(tmp.prev, struct inode, i_list);
367 sb = inode->i_sb;
368 list_for_each_prev_safe(pos, node, &tmp) {
369 inode = list_entry(pos, struct inode, i_list);
370 if (inode->i_sb == sb)
371 list_move(&inode->i_list, dispatch_queue);
372 }
373 }
374 }
375
376 /*
377 * Queue all expired dirty inodes for io, eldest first.
378 */
379 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
380 {
381 list_splice_init(&wb->b_more_io, wb->b_io.prev);
382 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
383 }
384
385 static int write_inode(struct inode *inode, struct writeback_control *wbc)
386 {
387 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
388 return inode->i_sb->s_op->write_inode(inode, wbc);
389 return 0;
390 }
391
392 /*
393 * Wait for writeback on an inode to complete.
394 */
395 static void inode_wait_for_writeback(struct inode *inode)
396 {
397 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
398 wait_queue_head_t *wqh;
399
400 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
401 do {
402 spin_unlock(&inode_lock);
403 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
404 spin_lock(&inode_lock);
405 } while (inode->i_state & I_SYNC);
406 }
407
408 /*
409 * Write out an inode's dirty pages. Called under inode_lock. Either the
410 * caller has ref on the inode (either via __iget or via syscall against an fd)
411 * or the inode has I_WILL_FREE set (via generic_forget_inode)
412 *
413 * If `wait' is set, wait on the writeout.
414 *
415 * The whole writeout design is quite complex and fragile. We want to avoid
416 * starvation of particular inodes when others are being redirtied, prevent
417 * livelocks, etc.
418 *
419 * Called under inode_lock.
420 */
421 static int
422 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
423 {
424 struct address_space *mapping = inode->i_mapping;
425 unsigned dirty;
426 int ret;
427
428 if (!atomic_read(&inode->i_count))
429 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
430 else
431 WARN_ON(inode->i_state & I_WILL_FREE);
432
433 if (inode->i_state & I_SYNC) {
434 /*
435 * If this inode is locked for writeback and we are not doing
436 * writeback-for-data-integrity, move it to b_more_io so that
437 * writeback can proceed with the other inodes on s_io.
438 *
439 * We'll have another go at writing back this inode when we
440 * completed a full scan of b_io.
441 */
442 if (wbc->sync_mode != WB_SYNC_ALL) {
443 requeue_io(inode);
444 return 0;
445 }
446
447 /*
448 * It's a data-integrity sync. We must wait.
449 */
450 inode_wait_for_writeback(inode);
451 }
452
453 BUG_ON(inode->i_state & I_SYNC);
454
455 /* Set I_SYNC, reset I_DIRTY */
456 dirty = inode->i_state & I_DIRTY;
457 inode->i_state |= I_SYNC;
458 inode->i_state &= ~I_DIRTY;
459
460 spin_unlock(&inode_lock);
461
462 ret = do_writepages(mapping, wbc);
463
464 /*
465 * Make sure to wait on the data before writing out the metadata.
466 * This is important for filesystems that modify metadata on data
467 * I/O completion.
468 */
469 if (wbc->sync_mode == WB_SYNC_ALL) {
470 int err = filemap_fdatawait(mapping);
471 if (ret == 0)
472 ret = err;
473 }
474
475 /* Don't write the inode if only I_DIRTY_PAGES was set */
476 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
477 int err = write_inode(inode, wbc);
478 if (ret == 0)
479 ret = err;
480 }
481
482 spin_lock(&inode_lock);
483 inode->i_state &= ~I_SYNC;
484 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
485 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
486 /*
487 * More pages get dirtied by a fast dirtier.
488 */
489 goto select_queue;
490 } else if (inode->i_state & I_DIRTY) {
491 /*
492 * At least XFS will redirty the inode during the
493 * writeback (delalloc) and on io completion (isize).
494 */
495 redirty_tail(inode);
496 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
497 /*
498 * We didn't write back all the pages. nfs_writepages()
499 * sometimes bales out without doing anything. Redirty
500 * the inode; Move it from b_io onto b_more_io/b_dirty.
501 */
502 /*
503 * akpm: if the caller was the kupdate function we put
504 * this inode at the head of b_dirty so it gets first
505 * consideration. Otherwise, move it to the tail, for
506 * the reasons described there. I'm not really sure
507 * how much sense this makes. Presumably I had a good
508 * reasons for doing it this way, and I'd rather not
509 * muck with it at present.
510 */
511 if (wbc->for_kupdate) {
512 /*
513 * For the kupdate function we move the inode
514 * to b_more_io so it will get more writeout as
515 * soon as the queue becomes uncongested.
516 */
517 inode->i_state |= I_DIRTY_PAGES;
518 select_queue:
519 if (wbc->nr_to_write <= 0) {
520 /*
521 * slice used up: queue for next turn
522 */
523 requeue_io(inode);
524 } else {
525 /*
526 * somehow blocked: retry later
527 */
528 redirty_tail(inode);
529 }
530 } else {
531 /*
532 * Otherwise fully redirty the inode so that
533 * other inodes on this superblock will get some
534 * writeout. Otherwise heavy writing to one
535 * file would indefinitely suspend writeout of
536 * all the other files.
537 */
538 inode->i_state |= I_DIRTY_PAGES;
539 redirty_tail(inode);
540 }
541 } else if (atomic_read(&inode->i_count)) {
542 /*
543 * The inode is clean, inuse
544 */
545 list_move(&inode->i_list, &inode_in_use);
546 } else {
547 /*
548 * The inode is clean, unused
549 */
550 list_move(&inode->i_list, &inode_unused);
551 }
552 }
553 inode_sync_complete(inode);
554 return ret;
555 }
556
557 static void unpin_sb_for_writeback(struct super_block **psb)
558 {
559 struct super_block *sb = *psb;
560
561 if (sb) {
562 up_read(&sb->s_umount);
563 put_super(sb);
564 *psb = NULL;
565 }
566 }
567
568 /*
569 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
570 * before calling writeback. So make sure that we do pin it, so it doesn't
571 * go away while we are writing inodes from it.
572 *
573 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
574 * 1 if we failed.
575 */
576 static int pin_sb_for_writeback(struct writeback_control *wbc,
577 struct inode *inode, struct super_block **psb)
578 {
579 struct super_block *sb = inode->i_sb;
580
581 /*
582 * If this sb is already pinned, nothing more to do. If not and
583 * *psb is non-NULL, unpin the old one first
584 */
585 if (sb == *psb)
586 return 0;
587 else if (*psb)
588 unpin_sb_for_writeback(psb);
589
590 /*
591 * Caller must already hold the ref for this
592 */
593 if (wbc->sync_mode == WB_SYNC_ALL) {
594 WARN_ON(!rwsem_is_locked(&sb->s_umount));
595 return 0;
596 }
597
598 spin_lock(&sb_lock);
599 sb->s_count++;
600 if (down_read_trylock(&sb->s_umount)) {
601 if (sb->s_root) {
602 spin_unlock(&sb_lock);
603 goto pinned;
604 }
605 /*
606 * umounted, drop rwsem again and fall through to failure
607 */
608 up_read(&sb->s_umount);
609 }
610
611 sb->s_count--;
612 spin_unlock(&sb_lock);
613 return 1;
614 pinned:
615 *psb = sb;
616 return 0;
617 }
618
619 static void writeback_inodes_wb(struct bdi_writeback *wb,
620 struct writeback_control *wbc)
621 {
622 struct super_block *sb = wbc->sb, *pin_sb = NULL;
623 const unsigned long start = jiffies; /* livelock avoidance */
624
625 spin_lock(&inode_lock);
626
627 if (!wbc->for_kupdate || list_empty(&wb->b_io))
628 queue_io(wb, wbc->older_than_this);
629
630 while (!list_empty(&wb->b_io)) {
631 struct inode *inode = list_entry(wb->b_io.prev,
632 struct inode, i_list);
633 long pages_skipped;
634
635 /*
636 * super block given and doesn't match, skip this inode
637 */
638 if (sb && sb != inode->i_sb) {
639 redirty_tail(inode);
640 continue;
641 }
642
643 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
644 requeue_io(inode);
645 continue;
646 }
647
648 /*
649 * Was this inode dirtied after sync_sb_inodes was called?
650 * This keeps sync from extra jobs and livelock.
651 */
652 if (inode_dirtied_after(inode, start))
653 break;
654
655 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
656 requeue_io(inode);
657 continue;
658 }
659
660 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
661 __iget(inode);
662 pages_skipped = wbc->pages_skipped;
663 writeback_single_inode(inode, wbc);
664 if (wbc->pages_skipped != pages_skipped) {
665 /*
666 * writeback is not making progress due to locked
667 * buffers. Skip this inode for now.
668 */
669 redirty_tail(inode);
670 }
671 spin_unlock(&inode_lock);
672 iput(inode);
673 cond_resched();
674 spin_lock(&inode_lock);
675 if (wbc->nr_to_write <= 0) {
676 wbc->more_io = 1;
677 break;
678 }
679 if (!list_empty(&wb->b_more_io))
680 wbc->more_io = 1;
681 }
682
683 unpin_sb_for_writeback(&pin_sb);
684
685 spin_unlock(&inode_lock);
686 /* Leave any unwritten inodes on b_io */
687 }
688
689 void writeback_inodes_wbc(struct writeback_control *wbc)
690 {
691 struct backing_dev_info *bdi = wbc->bdi;
692
693 writeback_inodes_wb(&bdi->wb, wbc);
694 }
695
696 /*
697 * The maximum number of pages to writeout in a single bdi flush/kupdate
698 * operation. We do this so we don't hold I_SYNC against an inode for
699 * enormous amounts of time, which would block a userspace task which has
700 * been forced to throttle against that inode. Also, the code reevaluates
701 * the dirty each time it has written this many pages.
702 */
703 #define MAX_WRITEBACK_PAGES 1024
704
705 static inline bool over_bground_thresh(void)
706 {
707 unsigned long background_thresh, dirty_thresh;
708
709 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
710
711 return (global_page_state(NR_FILE_DIRTY) +
712 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
713 }
714
715 /*
716 * Explicit flushing or periodic writeback of "old" data.
717 *
718 * Define "old": the first time one of an inode's pages is dirtied, we mark the
719 * dirtying-time in the inode's address_space. So this periodic writeback code
720 * just walks the superblock inode list, writing back any inodes which are
721 * older than a specific point in time.
722 *
723 * Try to run once per dirty_writeback_interval. But if a writeback event
724 * takes longer than a dirty_writeback_interval interval, then leave a
725 * one-second gap.
726 *
727 * older_than_this takes precedence over nr_to_write. So we'll only write back
728 * all dirty pages if they are all attached to "old" mappings.
729 */
730 static long wb_writeback(struct bdi_writeback *wb,
731 struct wb_writeback_args *args)
732 {
733 struct writeback_control wbc = {
734 .bdi = wb->bdi,
735 .sb = args->sb,
736 .sync_mode = args->sync_mode,
737 .older_than_this = NULL,
738 .for_kupdate = args->for_kupdate,
739 .for_background = args->for_background,
740 .range_cyclic = args->range_cyclic,
741 };
742 unsigned long oldest_jif;
743 long wrote = 0;
744 struct inode *inode;
745
746 if (wbc.for_kupdate) {
747 wbc.older_than_this = &oldest_jif;
748 oldest_jif = jiffies -
749 msecs_to_jiffies(dirty_expire_interval * 10);
750 }
751 if (!wbc.range_cyclic) {
752 wbc.range_start = 0;
753 wbc.range_end = LLONG_MAX;
754 }
755
756 for (;;) {
757 /*
758 * Stop writeback when nr_pages has been consumed
759 */
760 if (args->nr_pages <= 0)
761 break;
762
763 /*
764 * For background writeout, stop when we are below the
765 * background dirty threshold
766 */
767 if (args->for_background && !over_bground_thresh())
768 break;
769
770 wbc.more_io = 0;
771 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
772 wbc.pages_skipped = 0;
773 writeback_inodes_wb(wb, &wbc);
774 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
775 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
776
777 /*
778 * If we consumed everything, see if we have more
779 */
780 if (wbc.nr_to_write <= 0)
781 continue;
782 /*
783 * Didn't write everything and we don't have more IO, bail
784 */
785 if (!wbc.more_io)
786 break;
787 /*
788 * Did we write something? Try for more
789 */
790 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
791 continue;
792 /*
793 * Nothing written. Wait for some inode to
794 * become available for writeback. Otherwise
795 * we'll just busyloop.
796 */
797 spin_lock(&inode_lock);
798 if (!list_empty(&wb->b_more_io)) {
799 inode = list_entry(wb->b_more_io.prev,
800 struct inode, i_list);
801 inode_wait_for_writeback(inode);
802 }
803 spin_unlock(&inode_lock);
804 }
805
806 return wrote;
807 }
808
809 /*
810 * Return the next bdi_work struct that hasn't been processed by this
811 * wb thread yet. ->seen is initially set for each thread that exists
812 * for this device, when a thread first notices a piece of work it
813 * clears its bit. Depending on writeback type, the thread will notify
814 * completion on either receiving the work (WB_SYNC_NONE) or after
815 * it is done (WB_SYNC_ALL).
816 */
817 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
818 struct bdi_writeback *wb)
819 {
820 struct bdi_work *work, *ret = NULL;
821
822 rcu_read_lock();
823
824 list_for_each_entry_rcu(work, &bdi->work_list, list) {
825 if (!test_bit(wb->nr, &work->seen))
826 continue;
827 clear_bit(wb->nr, &work->seen);
828
829 ret = work;
830 break;
831 }
832
833 rcu_read_unlock();
834 return ret;
835 }
836
837 static long wb_check_old_data_flush(struct bdi_writeback *wb)
838 {
839 unsigned long expired;
840 long nr_pages;
841
842 expired = wb->last_old_flush +
843 msecs_to_jiffies(dirty_writeback_interval * 10);
844 if (time_before(jiffies, expired))
845 return 0;
846
847 wb->last_old_flush = jiffies;
848 nr_pages = global_page_state(NR_FILE_DIRTY) +
849 global_page_state(NR_UNSTABLE_NFS) +
850 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
851
852 if (nr_pages) {
853 struct wb_writeback_args args = {
854 .nr_pages = nr_pages,
855 .sync_mode = WB_SYNC_NONE,
856 .for_kupdate = 1,
857 .range_cyclic = 1,
858 };
859
860 return wb_writeback(wb, &args);
861 }
862
863 return 0;
864 }
865
866 /*
867 * Retrieve work items and do the writeback they describe
868 */
869 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
870 {
871 struct backing_dev_info *bdi = wb->bdi;
872 struct bdi_work *work;
873 long wrote = 0;
874
875 while ((work = get_next_work_item(bdi, wb)) != NULL) {
876 struct wb_writeback_args args = work->args;
877
878 /*
879 * Override sync mode, in case we must wait for completion
880 */
881 if (force_wait)
882 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
883
884 /*
885 * If this isn't a data integrity operation, just notify
886 * that we have seen this work and we are now starting it.
887 */
888 if (args.sync_mode == WB_SYNC_NONE)
889 wb_clear_pending(wb, work);
890
891 wrote += wb_writeback(wb, &args);
892
893 /*
894 * This is a data integrity writeback, so only do the
895 * notification when we have completed the work.
896 */
897 if (args.sync_mode == WB_SYNC_ALL)
898 wb_clear_pending(wb, work);
899 }
900
901 /*
902 * Check for periodic writeback, kupdated() style
903 */
904 wrote += wb_check_old_data_flush(wb);
905
906 return wrote;
907 }
908
909 /*
910 * Handle writeback of dirty data for the device backed by this bdi. Also
911 * wakes up periodically and does kupdated style flushing.
912 */
913 int bdi_writeback_task(struct bdi_writeback *wb)
914 {
915 unsigned long last_active = jiffies;
916 unsigned long wait_jiffies = -1UL;
917 long pages_written;
918
919 while (!kthread_should_stop()) {
920 pages_written = wb_do_writeback(wb, 0);
921
922 if (pages_written)
923 last_active = jiffies;
924 else if (wait_jiffies != -1UL) {
925 unsigned long max_idle;
926
927 /*
928 * Longest period of inactivity that we tolerate. If we
929 * see dirty data again later, the task will get
930 * recreated automatically.
931 */
932 max_idle = max(5UL * 60 * HZ, wait_jiffies);
933 if (time_after(jiffies, max_idle + last_active))
934 break;
935 }
936
937 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
938 schedule_timeout_interruptible(wait_jiffies);
939 try_to_freeze();
940 }
941
942 return 0;
943 }
944
945 /*
946 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
947 * writeback, for integrity writeback see bdi_sync_writeback().
948 */
949 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
950 {
951 struct wb_writeback_args args = {
952 .sb = sb,
953 .nr_pages = nr_pages,
954 .sync_mode = WB_SYNC_NONE,
955 };
956 struct backing_dev_info *bdi;
957
958 rcu_read_lock();
959
960 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
961 if (!bdi_has_dirty_io(bdi))
962 continue;
963
964 bdi_alloc_queue_work(bdi, &args);
965 }
966
967 rcu_read_unlock();
968 }
969
970 /*
971 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
972 * the whole world.
973 */
974 void wakeup_flusher_threads(long nr_pages)
975 {
976 if (nr_pages == 0)
977 nr_pages = global_page_state(NR_FILE_DIRTY) +
978 global_page_state(NR_UNSTABLE_NFS);
979 bdi_writeback_all(NULL, nr_pages);
980 }
981
982 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
983 {
984 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
985 struct dentry *dentry;
986 const char *name = "?";
987
988 dentry = d_find_alias(inode);
989 if (dentry) {
990 spin_lock(&dentry->d_lock);
991 name = (const char *) dentry->d_name.name;
992 }
993 printk(KERN_DEBUG
994 "%s(%d): dirtied inode %lu (%s) on %s\n",
995 current->comm, task_pid_nr(current), inode->i_ino,
996 name, inode->i_sb->s_id);
997 if (dentry) {
998 spin_unlock(&dentry->d_lock);
999 dput(dentry);
1000 }
1001 }
1002 }
1003
1004 /**
1005 * __mark_inode_dirty - internal function
1006 * @inode: inode to mark
1007 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1008 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1009 * mark_inode_dirty_sync.
1010 *
1011 * Put the inode on the super block's dirty list.
1012 *
1013 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1014 * dirty list only if it is hashed or if it refers to a blockdev.
1015 * If it was not hashed, it will never be added to the dirty list
1016 * even if it is later hashed, as it will have been marked dirty already.
1017 *
1018 * In short, make sure you hash any inodes _before_ you start marking
1019 * them dirty.
1020 *
1021 * This function *must* be atomic for the I_DIRTY_PAGES case -
1022 * set_page_dirty() is called under spinlock in several places.
1023 *
1024 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1025 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1026 * the kernel-internal blockdev inode represents the dirtying time of the
1027 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1028 * page->mapping->host, so the page-dirtying time is recorded in the internal
1029 * blockdev inode.
1030 */
1031 void __mark_inode_dirty(struct inode *inode, int flags)
1032 {
1033 struct super_block *sb = inode->i_sb;
1034
1035 /*
1036 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1037 * dirty the inode itself
1038 */
1039 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1040 if (sb->s_op->dirty_inode)
1041 sb->s_op->dirty_inode(inode);
1042 }
1043
1044 /*
1045 * make sure that changes are seen by all cpus before we test i_state
1046 * -- mikulas
1047 */
1048 smp_mb();
1049
1050 /* avoid the locking if we can */
1051 if ((inode->i_state & flags) == flags)
1052 return;
1053
1054 if (unlikely(block_dump))
1055 block_dump___mark_inode_dirty(inode);
1056
1057 spin_lock(&inode_lock);
1058 if ((inode->i_state & flags) != flags) {
1059 const int was_dirty = inode->i_state & I_DIRTY;
1060
1061 inode->i_state |= flags;
1062
1063 /*
1064 * If the inode is being synced, just update its dirty state.
1065 * The unlocker will place the inode on the appropriate
1066 * superblock list, based upon its state.
1067 */
1068 if (inode->i_state & I_SYNC)
1069 goto out;
1070
1071 /*
1072 * Only add valid (hashed) inodes to the superblock's
1073 * dirty list. Add blockdev inodes as well.
1074 */
1075 if (!S_ISBLK(inode->i_mode)) {
1076 if (hlist_unhashed(&inode->i_hash))
1077 goto out;
1078 }
1079 if (inode->i_state & (I_FREEING|I_CLEAR))
1080 goto out;
1081
1082 /*
1083 * If the inode was already on b_dirty/b_io/b_more_io, don't
1084 * reposition it (that would break b_dirty time-ordering).
1085 */
1086 if (!was_dirty) {
1087 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1088 struct backing_dev_info *bdi = wb->bdi;
1089
1090 if (bdi_cap_writeback_dirty(bdi) &&
1091 !test_bit(BDI_registered, &bdi->state)) {
1092 WARN_ON(1);
1093 printk(KERN_ERR "bdi-%s not registered\n",
1094 bdi->name);
1095 }
1096
1097 inode->dirtied_when = jiffies;
1098 list_move(&inode->i_list, &wb->b_dirty);
1099 }
1100 }
1101 out:
1102 spin_unlock(&inode_lock);
1103 }
1104 EXPORT_SYMBOL(__mark_inode_dirty);
1105
1106 /*
1107 * Write out a superblock's list of dirty inodes. A wait will be performed
1108 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1109 *
1110 * If older_than_this is non-NULL, then only write out inodes which
1111 * had their first dirtying at a time earlier than *older_than_this.
1112 *
1113 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1114 * This function assumes that the blockdev superblock's inodes are backed by
1115 * a variety of queues, so all inodes are searched. For other superblocks,
1116 * assume that all inodes are backed by the same queue.
1117 *
1118 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1119 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1120 * on the writer throttling path, and we get decent balancing between many
1121 * throttled threads: we don't want them all piling up on inode_sync_wait.
1122 */
1123 static void wait_sb_inodes(struct super_block *sb)
1124 {
1125 struct inode *inode, *old_inode = NULL;
1126
1127 /*
1128 * We need to be protected against the filesystem going from
1129 * r/o to r/w or vice versa.
1130 */
1131 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1132
1133 spin_lock(&inode_lock);
1134
1135 /*
1136 * Data integrity sync. Must wait for all pages under writeback,
1137 * because there may have been pages dirtied before our sync
1138 * call, but which had writeout started before we write it out.
1139 * In which case, the inode may not be on the dirty list, but
1140 * we still have to wait for that writeout.
1141 */
1142 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1143 struct address_space *mapping;
1144
1145 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1146 continue;
1147 mapping = inode->i_mapping;
1148 if (mapping->nrpages == 0)
1149 continue;
1150 __iget(inode);
1151 spin_unlock(&inode_lock);
1152 /*
1153 * We hold a reference to 'inode' so it couldn't have
1154 * been removed from s_inodes list while we dropped the
1155 * inode_lock. We cannot iput the inode now as we can
1156 * be holding the last reference and we cannot iput it
1157 * under inode_lock. So we keep the reference and iput
1158 * it later.
1159 */
1160 iput(old_inode);
1161 old_inode = inode;
1162
1163 filemap_fdatawait(mapping);
1164
1165 cond_resched();
1166
1167 spin_lock(&inode_lock);
1168 }
1169 spin_unlock(&inode_lock);
1170 iput(old_inode);
1171 }
1172
1173 /**
1174 * writeback_inodes_sb - writeback dirty inodes from given super_block
1175 * @sb: the superblock
1176 *
1177 * Start writeback on some inodes on this super_block. No guarantees are made
1178 * on how many (if any) will be written, and this function does not wait
1179 * for IO completion of submitted IO. The number of pages submitted is
1180 * returned.
1181 */
1182 void writeback_inodes_sb(struct super_block *sb)
1183 {
1184 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1185 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1186 long nr_to_write;
1187
1188 nr_to_write = nr_dirty + nr_unstable +
1189 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1190
1191 bdi_start_writeback(sb->s_bdi, sb, nr_to_write);
1192 }
1193 EXPORT_SYMBOL(writeback_inodes_sb);
1194
1195 /**
1196 * writeback_inodes_sb_if_idle - start writeback if none underway
1197 * @sb: the superblock
1198 *
1199 * Invoke writeback_inodes_sb if no writeback is currently underway.
1200 * Returns 1 if writeback was started, 0 if not.
1201 */
1202 int writeback_inodes_sb_if_idle(struct super_block *sb)
1203 {
1204 if (!writeback_in_progress(sb->s_bdi)) {
1205 writeback_inodes_sb(sb);
1206 return 1;
1207 } else
1208 return 0;
1209 }
1210 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1211
1212 /**
1213 * sync_inodes_sb - sync sb inode pages
1214 * @sb: the superblock
1215 *
1216 * This function writes and waits on any dirty inode belonging to this
1217 * super_block. The number of pages synced is returned.
1218 */
1219 void sync_inodes_sb(struct super_block *sb)
1220 {
1221 bdi_sync_writeback(sb->s_bdi, sb);
1222 wait_sb_inodes(sb);
1223 }
1224 EXPORT_SYMBOL(sync_inodes_sb);
1225
1226 /**
1227 * write_inode_now - write an inode to disk
1228 * @inode: inode to write to disk
1229 * @sync: whether the write should be synchronous or not
1230 *
1231 * This function commits an inode to disk immediately if it is dirty. This is
1232 * primarily needed by knfsd.
1233 *
1234 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1235 */
1236 int write_inode_now(struct inode *inode, int sync)
1237 {
1238 int ret;
1239 struct writeback_control wbc = {
1240 .nr_to_write = LONG_MAX,
1241 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1242 .range_start = 0,
1243 .range_end = LLONG_MAX,
1244 };
1245
1246 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1247 wbc.nr_to_write = 0;
1248
1249 might_sleep();
1250 spin_lock(&inode_lock);
1251 ret = writeback_single_inode(inode, &wbc);
1252 spin_unlock(&inode_lock);
1253 if (sync)
1254 inode_sync_wait(inode);
1255 return ret;
1256 }
1257 EXPORT_SYMBOL(write_inode_now);
1258
1259 /**
1260 * sync_inode - write an inode and its pages to disk.
1261 * @inode: the inode to sync
1262 * @wbc: controls the writeback mode
1263 *
1264 * sync_inode() will write an inode and its pages to disk. It will also
1265 * correctly update the inode on its superblock's dirty inode lists and will
1266 * update inode->i_state.
1267 *
1268 * The caller must have a ref on the inode.
1269 */
1270 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1271 {
1272 int ret;
1273
1274 spin_lock(&inode_lock);
1275 ret = writeback_single_inode(inode, wbc);
1276 spin_unlock(&inode_lock);
1277 return ret;
1278 }
1279 EXPORT_SYMBOL(sync_inode);