drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32 * 4MB minimal write chunk size
33 */
34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37 * Passed into wb_writeback(), essentially a subset of writeback_control
38 */
39 struct wb_writeback_work {
40 long nr_pages;
41 struct super_block *sb;
42 unsigned long *older_than_this;
43 enum writeback_sync_modes sync_mode;
44 unsigned int tagged_writepages:1;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48 enum wb_reason reason; /* why was writeback initiated? */
49
50 struct list_head list; /* pending work list */
51 struct completion *done; /* set if the caller waits */
52 };
53
54 /**
55 * writeback_in_progress - determine whether there is writeback in progress
56 * @bdi: the device's backing_dev_info structure.
57 *
58 * Determine whether there is writeback waiting to be handled against a
59 * backing device.
60 */
61 int writeback_in_progress(struct backing_dev_info *bdi)
62 {
63 return test_bit(BDI_writeback_running, &bdi->state);
64 }
65 EXPORT_SYMBOL(writeback_in_progress);
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69 struct super_block *sb = inode->i_sb;
70
71 if (strcmp(sb->s_type->name, "bdev") == 0)
72 return inode->i_mapping->backing_dev_info;
73
74 return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79 return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
86 */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
91 {
92 spin_lock_bh(&bdi->wb_lock);
93 if (test_bit(BDI_registered, &bdi->state))
94 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
95 spin_unlock_bh(&bdi->wb_lock);
96 }
97
98 static void bdi_queue_work(struct backing_dev_info *bdi,
99 struct wb_writeback_work *work)
100 {
101 trace_writeback_queue(bdi, work);
102
103 spin_lock_bh(&bdi->wb_lock);
104 if (!test_bit(BDI_registered, &bdi->state)) {
105 if (work->done)
106 complete(work->done);
107 goto out_unlock;
108 }
109 list_add_tail(&work->list, &bdi->work_list);
110 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
111 out_unlock:
112 spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117 bool range_cyclic, enum wb_reason reason)
118 {
119 struct wb_writeback_work *work;
120
121 /*
122 * This is WB_SYNC_NONE writeback, so if allocation fails just
123 * wakeup the thread for old dirty data writeback
124 */
125 work = kzalloc(sizeof(*work), GFP_ATOMIC);
126 if (!work) {
127 trace_writeback_nowork(bdi);
128 bdi_wakeup_thread(bdi);
129 return;
130 }
131
132 work->sync_mode = WB_SYNC_NONE;
133 work->nr_pages = nr_pages;
134 work->range_cyclic = range_cyclic;
135 work->reason = reason;
136
137 bdi_queue_work(bdi, work);
138 }
139
140 /**
141 * bdi_start_writeback - start writeback
142 * @bdi: the backing device to write from
143 * @nr_pages: the number of pages to write
144 * @reason: reason why some writeback work was initiated
145 *
146 * Description:
147 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
148 * started when this function returns, we make no guarantees on
149 * completion. Caller need not hold sb s_umount semaphore.
150 *
151 */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
153 enum wb_reason reason)
154 {
155 __bdi_start_writeback(bdi, nr_pages, true, reason);
156 }
157
158 /**
159 * bdi_start_background_writeback - start background writeback
160 * @bdi: the backing device to write from
161 *
162 * Description:
163 * This makes sure WB_SYNC_NONE background writeback happens. When
164 * this function returns, it is only guaranteed that for given BDI
165 * some IO is happening if we are over background dirty threshold.
166 * Caller need not hold sb s_umount semaphore.
167 */
168 void bdi_start_background_writeback(struct backing_dev_info *bdi)
169 {
170 /*
171 * We just wake up the flusher thread. It will perform background
172 * writeback as soon as there is no other work to do.
173 */
174 trace_writeback_wake_background(bdi);
175 bdi_wakeup_thread(bdi);
176 }
177
178 /*
179 * Remove the inode from the writeback list it is on.
180 */
181 void inode_wb_list_del(struct inode *inode)
182 {
183 struct backing_dev_info *bdi = inode_to_bdi(inode);
184
185 spin_lock(&bdi->wb.list_lock);
186 list_del_init(&inode->i_wb_list);
187 spin_unlock(&bdi->wb.list_lock);
188 }
189
190 /*
191 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
192 * furthest end of its superblock's dirty-inode list.
193 *
194 * Before stamping the inode's ->dirtied_when, we check to see whether it is
195 * already the most-recently-dirtied inode on the b_dirty list. If that is
196 * the case then the inode must have been redirtied while it was being written
197 * out and we don't reset its dirtied_when.
198 */
199 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
200 {
201 assert_spin_locked(&wb->list_lock);
202 if (!list_empty(&wb->b_dirty)) {
203 struct inode *tail;
204
205 tail = wb_inode(wb->b_dirty.next);
206 if (time_before(inode->dirtied_when, tail->dirtied_when))
207 inode->dirtied_when = jiffies;
208 }
209 list_move(&inode->i_wb_list, &wb->b_dirty);
210 }
211
212 /*
213 * requeue inode for re-scanning after bdi->b_io list is exhausted.
214 */
215 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
216 {
217 assert_spin_locked(&wb->list_lock);
218 list_move(&inode->i_wb_list, &wb->b_more_io);
219 }
220
221 static void inode_sync_complete(struct inode *inode)
222 {
223 inode->i_state &= ~I_SYNC;
224 /* If inode is clean an unused, put it into LRU now... */
225 inode_add_lru(inode);
226 /* Waiters must see I_SYNC cleared before being woken up */
227 smp_mb();
228 wake_up_bit(&inode->i_state, __I_SYNC);
229 }
230
231 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
232 {
233 bool ret = time_after(inode->dirtied_when, t);
234 #ifndef CONFIG_64BIT
235 /*
236 * For inodes being constantly redirtied, dirtied_when can get stuck.
237 * It _appears_ to be in the future, but is actually in distant past.
238 * This test is necessary to prevent such wrapped-around relative times
239 * from permanently stopping the whole bdi writeback.
240 */
241 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
242 #endif
243 return ret;
244 }
245
246 /*
247 * Move expired (dirtied before work->older_than_this) dirty inodes from
248 * @delaying_queue to @dispatch_queue.
249 */
250 static int move_expired_inodes(struct list_head *delaying_queue,
251 struct list_head *dispatch_queue,
252 struct wb_writeback_work *work)
253 {
254 LIST_HEAD(tmp);
255 struct list_head *pos, *node;
256 struct super_block *sb = NULL;
257 struct inode *inode;
258 int do_sb_sort = 0;
259 int moved = 0;
260
261 while (!list_empty(delaying_queue)) {
262 inode = wb_inode(delaying_queue->prev);
263 if (work->older_than_this &&
264 inode_dirtied_after(inode, *work->older_than_this))
265 break;
266 if (sb && sb != inode->i_sb)
267 do_sb_sort = 1;
268 sb = inode->i_sb;
269 list_move(&inode->i_wb_list, &tmp);
270 moved++;
271 }
272
273 /* just one sb in list, splice to dispatch_queue and we're done */
274 if (!do_sb_sort) {
275 list_splice(&tmp, dispatch_queue);
276 goto out;
277 }
278
279 /* Move inodes from one superblock together */
280 while (!list_empty(&tmp)) {
281 sb = wb_inode(tmp.prev)->i_sb;
282 list_for_each_prev_safe(pos, node, &tmp) {
283 inode = wb_inode(pos);
284 if (inode->i_sb == sb)
285 list_move(&inode->i_wb_list, dispatch_queue);
286 }
287 }
288 out:
289 return moved;
290 }
291
292 /*
293 * Queue all expired dirty inodes for io, eldest first.
294 * Before
295 * newly dirtied b_dirty b_io b_more_io
296 * =============> gf edc BA
297 * After
298 * newly dirtied b_dirty b_io b_more_io
299 * =============> g fBAedc
300 * |
301 * +--> dequeue for IO
302 */
303 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
304 {
305 int moved;
306 assert_spin_locked(&wb->list_lock);
307 list_splice_init(&wb->b_more_io, &wb->b_io);
308 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
309 trace_writeback_queue_io(wb, work, moved);
310 }
311
312 static int write_inode(struct inode *inode, struct writeback_control *wbc)
313 {
314 int ret;
315
316 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
317 trace_writeback_write_inode_start(inode, wbc);
318 ret = inode->i_sb->s_op->write_inode(inode, wbc);
319 trace_writeback_write_inode(inode, wbc);
320 return ret;
321 }
322 return 0;
323 }
324
325 /*
326 * Wait for writeback on an inode to complete. Called with i_lock held.
327 * Caller must make sure inode cannot go away when we drop i_lock.
328 */
329 static void __inode_wait_for_writeback(struct inode *inode)
330 __releases(inode->i_lock)
331 __acquires(inode->i_lock)
332 {
333 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
334 wait_queue_head_t *wqh;
335
336 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
337 while (inode->i_state & I_SYNC) {
338 spin_unlock(&inode->i_lock);
339 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340 spin_lock(&inode->i_lock);
341 }
342 }
343
344 /*
345 * Wait for writeback on an inode to complete. Caller must have inode pinned.
346 */
347 void inode_wait_for_writeback(struct inode *inode)
348 {
349 spin_lock(&inode->i_lock);
350 __inode_wait_for_writeback(inode);
351 spin_unlock(&inode->i_lock);
352 }
353
354 /*
355 * Sleep until I_SYNC is cleared. This function must be called with i_lock
356 * held and drops it. It is aimed for callers not holding any inode reference
357 * so once i_lock is dropped, inode can go away.
358 */
359 static void inode_sleep_on_writeback(struct inode *inode)
360 __releases(inode->i_lock)
361 {
362 DEFINE_WAIT(wait);
363 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
364 int sleep;
365
366 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
367 sleep = inode->i_state & I_SYNC;
368 spin_unlock(&inode->i_lock);
369 if (sleep)
370 schedule();
371 finish_wait(wqh, &wait);
372 }
373
374 /*
375 * Find proper writeback list for the inode depending on its current state and
376 * possibly also change of its state while we were doing writeback. Here we
377 * handle things such as livelock prevention or fairness of writeback among
378 * inodes. This function can be called only by flusher thread - noone else
379 * processes all inodes in writeback lists and requeueing inodes behind flusher
380 * thread's back can have unexpected consequences.
381 */
382 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
383 struct writeback_control *wbc)
384 {
385 if (inode->i_state & I_FREEING)
386 return;
387
388 /*
389 * Sync livelock prevention. Each inode is tagged and synced in one
390 * shot. If still dirty, it will be redirty_tail()'ed below. Update
391 * the dirty time to prevent enqueue and sync it again.
392 */
393 if ((inode->i_state & I_DIRTY) &&
394 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
395 inode->dirtied_when = jiffies;
396
397 if (wbc->pages_skipped) {
398 /*
399 * writeback is not making progress due to locked
400 * buffers. Skip this inode for now.
401 */
402 redirty_tail(inode, wb);
403 return;
404 }
405
406 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
407 /*
408 * We didn't write back all the pages. nfs_writepages()
409 * sometimes bales out without doing anything.
410 */
411 if (wbc->nr_to_write <= 0) {
412 /* Slice used up. Queue for next turn. */
413 requeue_io(inode, wb);
414 } else {
415 /*
416 * Writeback blocked by something other than
417 * congestion. Delay the inode for some time to
418 * avoid spinning on the CPU (100% iowait)
419 * retrying writeback of the dirty page/inode
420 * that cannot be performed immediately.
421 */
422 redirty_tail(inode, wb);
423 }
424 } else if (inode->i_state & I_DIRTY) {
425 /*
426 * Filesystems can dirty the inode during writeback operations,
427 * such as delayed allocation during submission or metadata
428 * updates after data IO completion.
429 */
430 redirty_tail(inode, wb);
431 } else {
432 /* The inode is clean. Remove from writeback lists. */
433 list_del_init(&inode->i_wb_list);
434 }
435 }
436
437 /*
438 * Write out an inode and its dirty pages. Do not update the writeback list
439 * linkage. That is left to the caller. The caller is also responsible for
440 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
441 */
442 static int
443 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
444 {
445 struct address_space *mapping = inode->i_mapping;
446 long nr_to_write = wbc->nr_to_write;
447 unsigned dirty;
448 int ret;
449
450 WARN_ON(!(inode->i_state & I_SYNC));
451
452 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
453
454 ret = do_writepages(mapping, wbc);
455
456 /*
457 * Make sure to wait on the data before writing out the metadata.
458 * This is important for filesystems that modify metadata on data
459 * I/O completion.
460 */
461 if (wbc->sync_mode == WB_SYNC_ALL) {
462 int err = filemap_fdatawait(mapping);
463 if (ret == 0)
464 ret = err;
465 }
466
467 /*
468 * Some filesystems may redirty the inode during the writeback
469 * due to delalloc, clear dirty metadata flags right before
470 * write_inode()
471 */
472 spin_lock(&inode->i_lock);
473
474 dirty = inode->i_state & I_DIRTY;
475 inode->i_state &= ~I_DIRTY;
476
477 /*
478 * Paired with smp_mb() in __mark_inode_dirty(). This allows
479 * __mark_inode_dirty() to test i_state without grabbing i_lock -
480 * either they see the I_DIRTY bits cleared or we see the dirtied
481 * inode.
482 *
483 * I_DIRTY_PAGES is always cleared together above even if @mapping
484 * still has dirty pages. The flag is reinstated after smp_mb() if
485 * necessary. This guarantees that either __mark_inode_dirty()
486 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
487 */
488 smp_mb();
489
490 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
491 inode->i_state |= I_DIRTY_PAGES;
492
493 spin_unlock(&inode->i_lock);
494
495 /* Don't write the inode if only I_DIRTY_PAGES was set */
496 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
497 int err = write_inode(inode, wbc);
498 if (ret == 0)
499 ret = err;
500 }
501 trace_writeback_single_inode(inode, wbc, nr_to_write);
502 return ret;
503 }
504
505 /*
506 * Write out an inode's dirty pages. Either the caller has an active reference
507 * on the inode or the inode has I_WILL_FREE set.
508 *
509 * This function is designed to be called for writing back one inode which
510 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
511 * and does more profound writeback list handling in writeback_sb_inodes().
512 */
513 static int
514 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
515 struct writeback_control *wbc)
516 {
517 int ret = 0;
518
519 spin_lock(&inode->i_lock);
520 if (!atomic_read(&inode->i_count))
521 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
522 else
523 WARN_ON(inode->i_state & I_WILL_FREE);
524
525 if (inode->i_state & I_SYNC) {
526 if (wbc->sync_mode != WB_SYNC_ALL)
527 goto out;
528 /*
529 * It's a data-integrity sync. We must wait. Since callers hold
530 * inode reference or inode has I_WILL_FREE set, it cannot go
531 * away under us.
532 */
533 __inode_wait_for_writeback(inode);
534 }
535 WARN_ON(inode->i_state & I_SYNC);
536 /*
537 * Skip inode if it is clean and we have no outstanding writeback in
538 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
539 * function since flusher thread may be doing for example sync in
540 * parallel and if we move the inode, it could get skipped. So here we
541 * make sure inode is on some writeback list and leave it there unless
542 * we have completely cleaned the inode.
543 */
544 if (!(inode->i_state & I_DIRTY) &&
545 (wbc->sync_mode != WB_SYNC_ALL ||
546 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
547 goto out;
548 inode->i_state |= I_SYNC;
549 spin_unlock(&inode->i_lock);
550
551 ret = __writeback_single_inode(inode, wbc);
552
553 spin_lock(&wb->list_lock);
554 spin_lock(&inode->i_lock);
555 /*
556 * If inode is clean, remove it from writeback lists. Otherwise don't
557 * touch it. See comment above for explanation.
558 */
559 if (!(inode->i_state & I_DIRTY))
560 list_del_init(&inode->i_wb_list);
561 spin_unlock(&wb->list_lock);
562 inode_sync_complete(inode);
563 out:
564 spin_unlock(&inode->i_lock);
565 return ret;
566 }
567
568 static long writeback_chunk_size(struct backing_dev_info *bdi,
569 struct wb_writeback_work *work)
570 {
571 long pages;
572
573 /*
574 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
575 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
576 * here avoids calling into writeback_inodes_wb() more than once.
577 *
578 * The intended call sequence for WB_SYNC_ALL writeback is:
579 *
580 * wb_writeback()
581 * writeback_sb_inodes() <== called only once
582 * write_cache_pages() <== called once for each inode
583 * (quickly) tag currently dirty pages
584 * (maybe slowly) sync all tagged pages
585 */
586 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
587 pages = LONG_MAX;
588 else {
589 pages = min(bdi->avg_write_bandwidth / 2,
590 global_dirty_limit / DIRTY_SCOPE);
591 pages = min(pages, work->nr_pages);
592 pages = round_down(pages + MIN_WRITEBACK_PAGES,
593 MIN_WRITEBACK_PAGES);
594 }
595
596 return pages;
597 }
598
599 /*
600 * Write a portion of b_io inodes which belong to @sb.
601 *
602 * Return the number of pages and/or inodes written.
603 */
604 static long writeback_sb_inodes(struct super_block *sb,
605 struct bdi_writeback *wb,
606 struct wb_writeback_work *work)
607 {
608 struct writeback_control wbc = {
609 .sync_mode = work->sync_mode,
610 .tagged_writepages = work->tagged_writepages,
611 .for_kupdate = work->for_kupdate,
612 .for_background = work->for_background,
613 .range_cyclic = work->range_cyclic,
614 .range_start = 0,
615 .range_end = LLONG_MAX,
616 };
617 unsigned long start_time = jiffies;
618 long write_chunk;
619 long wrote = 0; /* count both pages and inodes */
620
621 while (!list_empty(&wb->b_io)) {
622 struct inode *inode = wb_inode(wb->b_io.prev);
623
624 if (inode->i_sb != sb) {
625 if (work->sb) {
626 /*
627 * We only want to write back data for this
628 * superblock, move all inodes not belonging
629 * to it back onto the dirty list.
630 */
631 redirty_tail(inode, wb);
632 continue;
633 }
634
635 /*
636 * The inode belongs to a different superblock.
637 * Bounce back to the caller to unpin this and
638 * pin the next superblock.
639 */
640 break;
641 }
642
643 /*
644 * Don't bother with new inodes or inodes being freed, first
645 * kind does not need periodic writeout yet, and for the latter
646 * kind writeout is handled by the freer.
647 */
648 spin_lock(&inode->i_lock);
649 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 spin_unlock(&inode->i_lock);
651 redirty_tail(inode, wb);
652 continue;
653 }
654 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
655 /*
656 * If this inode is locked for writeback and we are not
657 * doing writeback-for-data-integrity, move it to
658 * b_more_io so that writeback can proceed with the
659 * other inodes on s_io.
660 *
661 * We'll have another go at writing back this inode
662 * when we completed a full scan of b_io.
663 */
664 spin_unlock(&inode->i_lock);
665 requeue_io(inode, wb);
666 trace_writeback_sb_inodes_requeue(inode);
667 continue;
668 }
669 spin_unlock(&wb->list_lock);
670
671 /*
672 * We already requeued the inode if it had I_SYNC set and we
673 * are doing WB_SYNC_NONE writeback. So this catches only the
674 * WB_SYNC_ALL case.
675 */
676 if (inode->i_state & I_SYNC) {
677 /* Wait for I_SYNC. This function drops i_lock... */
678 inode_sleep_on_writeback(inode);
679 /* Inode may be gone, start again */
680 spin_lock(&wb->list_lock);
681 continue;
682 }
683 inode->i_state |= I_SYNC;
684 spin_unlock(&inode->i_lock);
685
686 write_chunk = writeback_chunk_size(wb->bdi, work);
687 wbc.nr_to_write = write_chunk;
688 wbc.pages_skipped = 0;
689
690 /*
691 * We use I_SYNC to pin the inode in memory. While it is set
692 * evict_inode() will wait so the inode cannot be freed.
693 */
694 __writeback_single_inode(inode, &wbc);
695
696 work->nr_pages -= write_chunk - wbc.nr_to_write;
697 wrote += write_chunk - wbc.nr_to_write;
698 spin_lock(&wb->list_lock);
699 spin_lock(&inode->i_lock);
700 if (!(inode->i_state & I_DIRTY))
701 wrote++;
702 requeue_inode(inode, wb, &wbc);
703 inode_sync_complete(inode);
704 spin_unlock(&inode->i_lock);
705 cond_resched_lock(&wb->list_lock);
706 /*
707 * bail out to wb_writeback() often enough to check
708 * background threshold and other termination conditions.
709 */
710 if (wrote) {
711 if (time_is_before_jiffies(start_time + HZ / 10UL))
712 break;
713 if (work->nr_pages <= 0)
714 break;
715 }
716 }
717 return wrote;
718 }
719
720 static long __writeback_inodes_wb(struct bdi_writeback *wb,
721 struct wb_writeback_work *work)
722 {
723 unsigned long start_time = jiffies;
724 long wrote = 0;
725
726 while (!list_empty(&wb->b_io)) {
727 struct inode *inode = wb_inode(wb->b_io.prev);
728 struct super_block *sb = inode->i_sb;
729
730 if (!grab_super_passive(sb)) {
731 /*
732 * grab_super_passive() may fail consistently due to
733 * s_umount being grabbed by someone else. Don't use
734 * requeue_io() to avoid busy retrying the inode/sb.
735 */
736 redirty_tail(inode, wb);
737 continue;
738 }
739 wrote += writeback_sb_inodes(sb, wb, work);
740 drop_super(sb);
741
742 /* refer to the same tests at the end of writeback_sb_inodes */
743 if (wrote) {
744 if (time_is_before_jiffies(start_time + HZ / 10UL))
745 break;
746 if (work->nr_pages <= 0)
747 break;
748 }
749 }
750 /* Leave any unwritten inodes on b_io */
751 return wrote;
752 }
753
754 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
755 enum wb_reason reason)
756 {
757 struct wb_writeback_work work = {
758 .nr_pages = nr_pages,
759 .sync_mode = WB_SYNC_NONE,
760 .range_cyclic = 1,
761 .reason = reason,
762 };
763
764 spin_lock(&wb->list_lock);
765 if (list_empty(&wb->b_io))
766 queue_io(wb, &work);
767 __writeback_inodes_wb(wb, &work);
768 spin_unlock(&wb->list_lock);
769
770 return nr_pages - work.nr_pages;
771 }
772
773 static bool over_bground_thresh(struct backing_dev_info *bdi)
774 {
775 unsigned long background_thresh, dirty_thresh;
776
777 global_dirty_limits(&background_thresh, &dirty_thresh);
778
779 if (global_page_state(NR_FILE_DIRTY) +
780 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
781 return true;
782
783 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
784 bdi_dirty_limit(bdi, background_thresh))
785 return true;
786
787 return false;
788 }
789
790 /*
791 * Called under wb->list_lock. If there are multiple wb per bdi,
792 * only the flusher working on the first wb should do it.
793 */
794 static void wb_update_bandwidth(struct bdi_writeback *wb,
795 unsigned long start_time)
796 {
797 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
798 }
799
800 /*
801 * Explicit flushing or periodic writeback of "old" data.
802 *
803 * Define "old": the first time one of an inode's pages is dirtied, we mark the
804 * dirtying-time in the inode's address_space. So this periodic writeback code
805 * just walks the superblock inode list, writing back any inodes which are
806 * older than a specific point in time.
807 *
808 * Try to run once per dirty_writeback_interval. But if a writeback event
809 * takes longer than a dirty_writeback_interval interval, then leave a
810 * one-second gap.
811 *
812 * older_than_this takes precedence over nr_to_write. So we'll only write back
813 * all dirty pages if they are all attached to "old" mappings.
814 */
815 static long wb_writeback(struct bdi_writeback *wb,
816 struct wb_writeback_work *work)
817 {
818 unsigned long wb_start = jiffies;
819 long nr_pages = work->nr_pages;
820 unsigned long oldest_jif;
821 struct inode *inode;
822 long progress;
823
824 oldest_jif = jiffies;
825 work->older_than_this = &oldest_jif;
826
827 spin_lock(&wb->list_lock);
828 for (;;) {
829 /*
830 * Stop writeback when nr_pages has been consumed
831 */
832 if (work->nr_pages <= 0)
833 break;
834
835 /*
836 * Background writeout and kupdate-style writeback may
837 * run forever. Stop them if there is other work to do
838 * so that e.g. sync can proceed. They'll be restarted
839 * after the other works are all done.
840 */
841 if ((work->for_background || work->for_kupdate) &&
842 !list_empty(&wb->bdi->work_list))
843 break;
844
845 /*
846 * For background writeout, stop when we are below the
847 * background dirty threshold
848 */
849 if (work->for_background && !over_bground_thresh(wb->bdi))
850 break;
851
852 /*
853 * Kupdate and background works are special and we want to
854 * include all inodes that need writing. Livelock avoidance is
855 * handled by these works yielding to any other work so we are
856 * safe.
857 */
858 if (work->for_kupdate) {
859 oldest_jif = jiffies -
860 msecs_to_jiffies(dirty_expire_interval * 10);
861 } else if (work->for_background)
862 oldest_jif = jiffies;
863
864 trace_writeback_start(wb->bdi, work);
865 if (list_empty(&wb->b_io))
866 queue_io(wb, work);
867 if (work->sb)
868 progress = writeback_sb_inodes(work->sb, wb, work);
869 else
870 progress = __writeback_inodes_wb(wb, work);
871 trace_writeback_written(wb->bdi, work);
872
873 wb_update_bandwidth(wb, wb_start);
874
875 /*
876 * Did we write something? Try for more
877 *
878 * Dirty inodes are moved to b_io for writeback in batches.
879 * The completion of the current batch does not necessarily
880 * mean the overall work is done. So we keep looping as long
881 * as made some progress on cleaning pages or inodes.
882 */
883 if (progress)
884 continue;
885 /*
886 * No more inodes for IO, bail
887 */
888 if (list_empty(&wb->b_more_io))
889 break;
890 /*
891 * Nothing written. Wait for some inode to
892 * become available for writeback. Otherwise
893 * we'll just busyloop.
894 */
895 if (!list_empty(&wb->b_more_io)) {
896 trace_writeback_wait(wb->bdi, work);
897 inode = wb_inode(wb->b_more_io.prev);
898 spin_lock(&inode->i_lock);
899 spin_unlock(&wb->list_lock);
900 /* This function drops i_lock... */
901 inode_sleep_on_writeback(inode);
902 spin_lock(&wb->list_lock);
903 }
904 }
905 spin_unlock(&wb->list_lock);
906
907 return nr_pages - work->nr_pages;
908 }
909
910 /*
911 * Return the next wb_writeback_work struct that hasn't been processed yet.
912 */
913 static struct wb_writeback_work *
914 get_next_work_item(struct backing_dev_info *bdi)
915 {
916 struct wb_writeback_work *work = NULL;
917
918 spin_lock_bh(&bdi->wb_lock);
919 if (!list_empty(&bdi->work_list)) {
920 work = list_entry(bdi->work_list.next,
921 struct wb_writeback_work, list);
922 list_del_init(&work->list);
923 }
924 spin_unlock_bh(&bdi->wb_lock);
925 return work;
926 }
927
928 /*
929 * Add in the number of potentially dirty inodes, because each inode
930 * write can dirty pagecache in the underlying blockdev.
931 */
932 static unsigned long get_nr_dirty_pages(void)
933 {
934 return global_page_state(NR_FILE_DIRTY) +
935 global_page_state(NR_UNSTABLE_NFS) +
936 get_nr_dirty_inodes();
937 }
938
939 static long wb_check_background_flush(struct bdi_writeback *wb)
940 {
941 if (over_bground_thresh(wb->bdi)) {
942
943 struct wb_writeback_work work = {
944 .nr_pages = LONG_MAX,
945 .sync_mode = WB_SYNC_NONE,
946 .for_background = 1,
947 .range_cyclic = 1,
948 .reason = WB_REASON_BACKGROUND,
949 };
950
951 return wb_writeback(wb, &work);
952 }
953
954 return 0;
955 }
956
957 static long wb_check_old_data_flush(struct bdi_writeback *wb)
958 {
959 unsigned long expired;
960 long nr_pages;
961
962 /*
963 * When set to zero, disable periodic writeback
964 */
965 if (!dirty_writeback_interval)
966 return 0;
967
968 expired = wb->last_old_flush +
969 msecs_to_jiffies(dirty_writeback_interval * 10);
970 if (time_before(jiffies, expired))
971 return 0;
972
973 wb->last_old_flush = jiffies;
974 nr_pages = get_nr_dirty_pages();
975
976 if (nr_pages) {
977 struct wb_writeback_work work = {
978 .nr_pages = nr_pages,
979 .sync_mode = WB_SYNC_NONE,
980 .for_kupdate = 1,
981 .range_cyclic = 1,
982 .reason = WB_REASON_PERIODIC,
983 };
984
985 return wb_writeback(wb, &work);
986 }
987
988 return 0;
989 }
990
991 /*
992 * Retrieve work items and do the writeback they describe
993 */
994 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
995 {
996 struct backing_dev_info *bdi = wb->bdi;
997 struct wb_writeback_work *work;
998 long wrote = 0;
999
1000 set_bit(BDI_writeback_running, &wb->bdi->state);
1001 while ((work = get_next_work_item(bdi)) != NULL) {
1002 /*
1003 * Override sync mode, in case we must wait for completion
1004 * because this thread is exiting now.
1005 */
1006 if (force_wait)
1007 work->sync_mode = WB_SYNC_ALL;
1008
1009 trace_writeback_exec(bdi, work);
1010
1011 wrote += wb_writeback(wb, work);
1012
1013 /*
1014 * Notify the caller of completion if this is a synchronous
1015 * work item, otherwise just free it.
1016 */
1017 if (work->done)
1018 complete(work->done);
1019 else
1020 kfree(work);
1021 }
1022
1023 /*
1024 * Check for periodic writeback, kupdated() style
1025 */
1026 wrote += wb_check_old_data_flush(wb);
1027 wrote += wb_check_background_flush(wb);
1028 clear_bit(BDI_writeback_running, &wb->bdi->state);
1029
1030 return wrote;
1031 }
1032
1033 /*
1034 * Handle writeback of dirty data for the device backed by this bdi. Also
1035 * reschedules periodically and does kupdated style flushing.
1036 */
1037 void bdi_writeback_workfn(struct work_struct *work)
1038 {
1039 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1040 struct bdi_writeback, dwork);
1041 struct backing_dev_info *bdi = wb->bdi;
1042 long pages_written;
1043
1044 set_worker_desc("flush-%s", dev_name(bdi->dev));
1045 current->flags |= PF_SWAPWRITE;
1046
1047 if (likely(!current_is_workqueue_rescuer() ||
1048 !test_bit(BDI_registered, &bdi->state))) {
1049 /*
1050 * The normal path. Keep writing back @bdi until its
1051 * work_list is empty. Note that this path is also taken
1052 * if @bdi is shutting down even when we're running off the
1053 * rescuer as work_list needs to be drained.
1054 */
1055 do {
1056 pages_written = wb_do_writeback(wb, 0);
1057 trace_writeback_pages_written(pages_written);
1058 } while (!list_empty(&bdi->work_list));
1059 } else {
1060 /*
1061 * bdi_wq can't get enough workers and we're running off
1062 * the emergency worker. Don't hog it. Hopefully, 1024 is
1063 * enough for efficient IO.
1064 */
1065 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1066 WB_REASON_FORKER_THREAD);
1067 trace_writeback_pages_written(pages_written);
1068 }
1069
1070 if (!list_empty(&bdi->work_list))
1071 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1072 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1073 bdi_wakeup_thread_delayed(bdi);
1074
1075 current->flags &= ~PF_SWAPWRITE;
1076 }
1077
1078 /*
1079 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1080 * the whole world.
1081 */
1082 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1083 {
1084 struct backing_dev_info *bdi;
1085
1086 if (!nr_pages) {
1087 nr_pages = global_page_state(NR_FILE_DIRTY) +
1088 global_page_state(NR_UNSTABLE_NFS);
1089 }
1090
1091 rcu_read_lock();
1092 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1093 if (!bdi_has_dirty_io(bdi))
1094 continue;
1095 __bdi_start_writeback(bdi, nr_pages, false, reason);
1096 }
1097 rcu_read_unlock();
1098 }
1099
1100 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1101 {
1102 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1103 struct dentry *dentry;
1104 const char *name = "?";
1105
1106 dentry = d_find_alias(inode);
1107 if (dentry) {
1108 spin_lock(&dentry->d_lock);
1109 name = (const char *) dentry->d_name.name;
1110 }
1111 printk(KERN_DEBUG
1112 "%s(%d): dirtied inode %lu (%s) on %s\n",
1113 current->comm, task_pid_nr(current), inode->i_ino,
1114 name, inode->i_sb->s_id);
1115 if (dentry) {
1116 spin_unlock(&dentry->d_lock);
1117 dput(dentry);
1118 }
1119 }
1120 }
1121
1122 /**
1123 * __mark_inode_dirty - internal function
1124 * @inode: inode to mark
1125 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1126 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1127 * mark_inode_dirty_sync.
1128 *
1129 * Put the inode on the super block's dirty list.
1130 *
1131 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1132 * dirty list only if it is hashed or if it refers to a blockdev.
1133 * If it was not hashed, it will never be added to the dirty list
1134 * even if it is later hashed, as it will have been marked dirty already.
1135 *
1136 * In short, make sure you hash any inodes _before_ you start marking
1137 * them dirty.
1138 *
1139 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1140 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1141 * the kernel-internal blockdev inode represents the dirtying time of the
1142 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1143 * page->mapping->host, so the page-dirtying time is recorded in the internal
1144 * blockdev inode.
1145 */
1146 void __mark_inode_dirty(struct inode *inode, int flags)
1147 {
1148 struct super_block *sb = inode->i_sb;
1149 struct backing_dev_info *bdi = NULL;
1150
1151 /*
1152 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1153 * dirty the inode itself
1154 */
1155 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1156 trace_writeback_dirty_inode_start(inode, flags);
1157
1158 if (sb->s_op->dirty_inode)
1159 sb->s_op->dirty_inode(inode, flags);
1160
1161 trace_writeback_dirty_inode(inode, flags);
1162 }
1163
1164 /*
1165 * Paired with smp_mb() in __writeback_single_inode() for the
1166 * following lockless i_state test. See there for details.
1167 */
1168 smp_mb();
1169
1170 if ((inode->i_state & flags) == flags)
1171 return;
1172
1173 if (unlikely(block_dump > 1))
1174 block_dump___mark_inode_dirty(inode);
1175
1176 spin_lock(&inode->i_lock);
1177 if ((inode->i_state & flags) != flags) {
1178 const int was_dirty = inode->i_state & I_DIRTY;
1179
1180 inode->i_state |= flags;
1181
1182 /*
1183 * If the inode is being synced, just update its dirty state.
1184 * The unlocker will place the inode on the appropriate
1185 * superblock list, based upon its state.
1186 */
1187 if (inode->i_state & I_SYNC)
1188 goto out_unlock_inode;
1189
1190 /*
1191 * Only add valid (hashed) inodes to the superblock's
1192 * dirty list. Add blockdev inodes as well.
1193 */
1194 if (!S_ISBLK(inode->i_mode)) {
1195 if (inode_unhashed(inode))
1196 goto out_unlock_inode;
1197 }
1198 if (inode->i_state & I_FREEING)
1199 goto out_unlock_inode;
1200
1201 /*
1202 * If the inode was already on b_dirty/b_io/b_more_io, don't
1203 * reposition it (that would break b_dirty time-ordering).
1204 */
1205 if (!was_dirty) {
1206 bool wakeup_bdi = false;
1207 bdi = inode_to_bdi(inode);
1208
1209 if (bdi_cap_writeback_dirty(bdi)) {
1210 WARN(!test_bit(BDI_registered, &bdi->state),
1211 "bdi-%s not registered\n", bdi->name);
1212
1213 /*
1214 * If this is the first dirty inode for this
1215 * bdi, we have to wake-up the corresponding
1216 * bdi thread to make sure background
1217 * write-back happens later.
1218 */
1219 if (!wb_has_dirty_io(&bdi->wb))
1220 wakeup_bdi = true;
1221 }
1222
1223 spin_unlock(&inode->i_lock);
1224 spin_lock(&bdi->wb.list_lock);
1225 inode->dirtied_when = jiffies;
1226 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1227 spin_unlock(&bdi->wb.list_lock);
1228
1229 if (wakeup_bdi)
1230 bdi_wakeup_thread_delayed(bdi);
1231 return;
1232 }
1233 }
1234 out_unlock_inode:
1235 spin_unlock(&inode->i_lock);
1236
1237 }
1238 EXPORT_SYMBOL(__mark_inode_dirty);
1239
1240 static void wait_sb_inodes(struct super_block *sb)
1241 {
1242 struct inode *inode, *old_inode = NULL;
1243
1244 /*
1245 * We need to be protected against the filesystem going from
1246 * r/o to r/w or vice versa.
1247 */
1248 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1249
1250 spin_lock(&inode_sb_list_lock);
1251
1252 /*
1253 * Data integrity sync. Must wait for all pages under writeback,
1254 * because there may have been pages dirtied before our sync
1255 * call, but which had writeout started before we write it out.
1256 * In which case, the inode may not be on the dirty list, but
1257 * we still have to wait for that writeout.
1258 */
1259 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1260 struct address_space *mapping = inode->i_mapping;
1261
1262 spin_lock(&inode->i_lock);
1263 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1264 (mapping->nrpages == 0)) {
1265 spin_unlock(&inode->i_lock);
1266 continue;
1267 }
1268 __iget(inode);
1269 spin_unlock(&inode->i_lock);
1270 spin_unlock(&inode_sb_list_lock);
1271
1272 /*
1273 * We hold a reference to 'inode' so it couldn't have been
1274 * removed from s_inodes list while we dropped the
1275 * inode_sb_list_lock. We cannot iput the inode now as we can
1276 * be holding the last reference and we cannot iput it under
1277 * inode_sb_list_lock. So we keep the reference and iput it
1278 * later.
1279 */
1280 iput(old_inode);
1281 old_inode = inode;
1282
1283 filemap_fdatawait(mapping);
1284
1285 cond_resched();
1286
1287 spin_lock(&inode_sb_list_lock);
1288 }
1289 spin_unlock(&inode_sb_list_lock);
1290 iput(old_inode);
1291 }
1292
1293 /**
1294 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1295 * @sb: the superblock
1296 * @nr: the number of pages to write
1297 * @reason: reason why some writeback work initiated
1298 *
1299 * Start writeback on some inodes on this super_block. No guarantees are made
1300 * on how many (if any) will be written, and this function does not wait
1301 * for IO completion of submitted IO.
1302 */
1303 void writeback_inodes_sb_nr(struct super_block *sb,
1304 unsigned long nr,
1305 enum wb_reason reason)
1306 {
1307 DECLARE_COMPLETION_ONSTACK(done);
1308 struct wb_writeback_work work = {
1309 .sb = sb,
1310 .sync_mode = WB_SYNC_NONE,
1311 .tagged_writepages = 1,
1312 .done = &done,
1313 .nr_pages = nr,
1314 .reason = reason,
1315 };
1316
1317 if (sb->s_bdi == &noop_backing_dev_info)
1318 return;
1319 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1320 bdi_queue_work(sb->s_bdi, &work);
1321 wait_for_completion(&done);
1322 }
1323 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1324
1325 /**
1326 * writeback_inodes_sb - writeback dirty inodes from given super_block
1327 * @sb: the superblock
1328 * @reason: reason why some writeback work was initiated
1329 *
1330 * Start writeback on some inodes on this super_block. No guarantees are made
1331 * on how many (if any) will be written, and this function does not wait
1332 * for IO completion of submitted IO.
1333 */
1334 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1335 {
1336 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1337 }
1338 EXPORT_SYMBOL(writeback_inodes_sb);
1339
1340 /**
1341 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1342 * @sb: the superblock
1343 * @nr: the number of pages to write
1344 * @reason: the reason of writeback
1345 *
1346 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1347 * Returns 1 if writeback was started, 0 if not.
1348 */
1349 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1350 unsigned long nr,
1351 enum wb_reason reason)
1352 {
1353 if (writeback_in_progress(sb->s_bdi))
1354 return 1;
1355
1356 if (!down_read_trylock(&sb->s_umount))
1357 return 0;
1358
1359 writeback_inodes_sb_nr(sb, nr, reason);
1360 up_read(&sb->s_umount);
1361 return 1;
1362 }
1363 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1364
1365 /**
1366 * try_to_writeback_inodes_sb - try to start writeback if none underway
1367 * @sb: the superblock
1368 * @reason: reason why some writeback work was initiated
1369 *
1370 * Implement by try_to_writeback_inodes_sb_nr()
1371 * Returns 1 if writeback was started, 0 if not.
1372 */
1373 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1374 {
1375 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1376 }
1377 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1378
1379 /**
1380 * sync_inodes_sb - sync sb inode pages
1381 * @sb: the superblock
1382 *
1383 * This function writes and waits on any dirty inode belonging to this
1384 * super_block.
1385 */
1386 void sync_inodes_sb(struct super_block *sb)
1387 {
1388 DECLARE_COMPLETION_ONSTACK(done);
1389 struct wb_writeback_work work = {
1390 .sb = sb,
1391 .sync_mode = WB_SYNC_ALL,
1392 .nr_pages = LONG_MAX,
1393 .range_cyclic = 0,
1394 .done = &done,
1395 .reason = WB_REASON_SYNC,
1396 };
1397
1398 /* Nothing to do? */
1399 if (sb->s_bdi == &noop_backing_dev_info)
1400 return;
1401 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1402
1403 bdi_queue_work(sb->s_bdi, &work);
1404 wait_for_completion(&done);
1405
1406 wait_sb_inodes(sb);
1407 }
1408 EXPORT_SYMBOL(sync_inodes_sb);
1409
1410 /**
1411 * write_inode_now - write an inode to disk
1412 * @inode: inode to write to disk
1413 * @sync: whether the write should be synchronous or not
1414 *
1415 * This function commits an inode to disk immediately if it is dirty. This is
1416 * primarily needed by knfsd.
1417 *
1418 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1419 */
1420 int write_inode_now(struct inode *inode, int sync)
1421 {
1422 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1423 struct writeback_control wbc = {
1424 .nr_to_write = LONG_MAX,
1425 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1426 .range_start = 0,
1427 .range_end = LLONG_MAX,
1428 };
1429
1430 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1431 wbc.nr_to_write = 0;
1432
1433 might_sleep();
1434 return writeback_single_inode(inode, wb, &wbc);
1435 }
1436 EXPORT_SYMBOL(write_inode_now);
1437
1438 /**
1439 * sync_inode - write an inode and its pages to disk.
1440 * @inode: the inode to sync
1441 * @wbc: controls the writeback mode
1442 *
1443 * sync_inode() will write an inode and its pages to disk. It will also
1444 * correctly update the inode on its superblock's dirty inode lists and will
1445 * update inode->i_state.
1446 *
1447 * The caller must have a ref on the inode.
1448 */
1449 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1450 {
1451 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1452 }
1453 EXPORT_SYMBOL(sync_inode);
1454
1455 /**
1456 * sync_inode_metadata - write an inode to disk
1457 * @inode: the inode to sync
1458 * @wait: wait for I/O to complete.
1459 *
1460 * Write an inode to disk and adjust its dirty state after completion.
1461 *
1462 * Note: only writes the actual inode, no associated data or other metadata.
1463 */
1464 int sync_inode_metadata(struct inode *inode, int wait)
1465 {
1466 struct writeback_control wbc = {
1467 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1468 .nr_to_write = 0, /* metadata-only */
1469 };
1470
1471 return sync_inode(inode, &wbc);
1472 }
1473 EXPORT_SYMBOL(sync_inode_metadata);