Merge branch 'cleanup' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
58 *
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
61 */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 struct super_block *sb = inode->i_sb;
71
72 if (strcmp(sb->s_type->name, "bdev") == 0)
73 return inode->i_mapping->backing_dev_info;
74
75 return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
87 */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94 if (bdi->wb.task) {
95 wake_up_process(bdi->wb.task);
96 } else {
97 /*
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
100 */
101 wake_up_process(default_backing_dev_info.wb.task);
102 }
103 }
104
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 struct wb_writeback_work *work)
107 {
108 trace_writeback_queue(bdi, work);
109
110 spin_lock_bh(&bdi->wb_lock);
111 list_add_tail(&work->list, &bdi->work_list);
112 if (!bdi->wb.task)
113 trace_writeback_nothread(bdi, work);
114 bdi_wakeup_flusher(bdi);
115 spin_unlock_bh(&bdi->wb_lock);
116 }
117
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 bool range_cyclic, enum wb_reason reason)
121 {
122 struct wb_writeback_work *work;
123
124 /*
125 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 * wakeup the thread for old dirty data writeback
127 */
128 work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 if (!work) {
130 if (bdi->wb.task) {
131 trace_writeback_nowork(bdi);
132 wake_up_process(bdi->wb.task);
133 }
134 return;
135 }
136
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
141
142 bdi_queue_work(bdi, work);
143 }
144
145 /**
146 * bdi_start_writeback - start writeback
147 * @bdi: the backing device to write from
148 * @nr_pages: the number of pages to write
149 * @reason: reason why some writeback work was initiated
150 *
151 * Description:
152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
153 * started when this function returns, we make no guarantees on
154 * completion. Caller need not hold sb s_umount semaphore.
155 *
156 */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 enum wb_reason reason)
159 {
160 __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164 * bdi_start_background_writeback - start background writeback
165 * @bdi: the backing device to write from
166 *
167 * Description:
168 * This makes sure WB_SYNC_NONE background writeback happens. When
169 * this function returns, it is only guaranteed that for given BDI
170 * some IO is happening if we are over background dirty threshold.
171 * Caller need not hold sb s_umount semaphore.
172 */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175 /*
176 * We just wake up the flusher thread. It will perform background
177 * writeback as soon as there is no other work to do.
178 */
179 trace_writeback_wake_background(bdi);
180 spin_lock_bh(&bdi->wb_lock);
181 bdi_wakeup_flusher(bdi);
182 spin_unlock_bh(&bdi->wb_lock);
183 }
184
185 /*
186 * Remove the inode from the writeback list it is on.
187 */
188 void inode_wb_list_del(struct inode *inode)
189 {
190 struct backing_dev_info *bdi = inode_to_bdi(inode);
191
192 spin_lock(&bdi->wb.list_lock);
193 list_del_init(&inode->i_wb_list);
194 spin_unlock(&bdi->wb.list_lock);
195 }
196
197 /*
198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199 * furthest end of its superblock's dirty-inode list.
200 *
201 * Before stamping the inode's ->dirtied_when, we check to see whether it is
202 * already the most-recently-dirtied inode on the b_dirty list. If that is
203 * the case then the inode must have been redirtied while it was being written
204 * out and we don't reset its dirtied_when.
205 */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208 assert_spin_locked(&wb->list_lock);
209 if (!list_empty(&wb->b_dirty)) {
210 struct inode *tail;
211
212 tail = wb_inode(wb->b_dirty.next);
213 if (time_before(inode->dirtied_when, tail->dirtied_when))
214 inode->dirtied_when = jiffies;
215 }
216 list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218
219 /*
220 * requeue inode for re-scanning after bdi->b_io list is exhausted.
221 */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224 assert_spin_locked(&wb->list_lock);
225 list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227
228 static void inode_sync_complete(struct inode *inode)
229 {
230 inode->i_state &= ~I_SYNC;
231 /* If inode is clean an unused, put it into LRU now... */
232 inode_add_lru(inode);
233 /* Waiters must see I_SYNC cleared before being woken up */
234 smp_mb();
235 wake_up_bit(&inode->i_state, __I_SYNC);
236 }
237
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
239 {
240 bool ret = time_after(inode->dirtied_when, t);
241 #ifndef CONFIG_64BIT
242 /*
243 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 * It _appears_ to be in the future, but is actually in distant past.
245 * This test is necessary to prevent such wrapped-around relative times
246 * from permanently stopping the whole bdi writeback.
247 */
248 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
249 #endif
250 return ret;
251 }
252
253 /*
254 * Move expired (dirtied before work->older_than_this) dirty inodes from
255 * @delaying_queue to @dispatch_queue.
256 */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 struct list_head *dispatch_queue,
259 struct wb_writeback_work *work)
260 {
261 LIST_HEAD(tmp);
262 struct list_head *pos, *node;
263 struct super_block *sb = NULL;
264 struct inode *inode;
265 int do_sb_sort = 0;
266 int moved = 0;
267
268 while (!list_empty(delaying_queue)) {
269 inode = wb_inode(delaying_queue->prev);
270 if (work->older_than_this &&
271 inode_dirtied_after(inode, *work->older_than_this))
272 break;
273 if (sb && sb != inode->i_sb)
274 do_sb_sort = 1;
275 sb = inode->i_sb;
276 list_move(&inode->i_wb_list, &tmp);
277 moved++;
278 }
279
280 /* just one sb in list, splice to dispatch_queue and we're done */
281 if (!do_sb_sort) {
282 list_splice(&tmp, dispatch_queue);
283 goto out;
284 }
285
286 /* Move inodes from one superblock together */
287 while (!list_empty(&tmp)) {
288 sb = wb_inode(tmp.prev)->i_sb;
289 list_for_each_prev_safe(pos, node, &tmp) {
290 inode = wb_inode(pos);
291 if (inode->i_sb == sb)
292 list_move(&inode->i_wb_list, dispatch_queue);
293 }
294 }
295 out:
296 return moved;
297 }
298
299 /*
300 * Queue all expired dirty inodes for io, eldest first.
301 * Before
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> gf edc BA
304 * After
305 * newly dirtied b_dirty b_io b_more_io
306 * =============> g fBAedc
307 * |
308 * +--> dequeue for IO
309 */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312 int moved;
313 assert_spin_locked(&wb->list_lock);
314 list_splice_init(&wb->b_more_io, &wb->b_io);
315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316 trace_writeback_queue_io(wb, work, moved);
317 }
318
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321 int ret;
322
323 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
324 trace_writeback_write_inode_start(inode, wbc);
325 ret = inode->i_sb->s_op->write_inode(inode, wbc);
326 trace_writeback_write_inode(inode, wbc);
327 return ret;
328 }
329 return 0;
330 }
331
332 /*
333 * Wait for writeback on an inode to complete. Called with i_lock held.
334 * Caller must make sure inode cannot go away when we drop i_lock.
335 */
336 static void __inode_wait_for_writeback(struct inode *inode)
337 __releases(inode->i_lock)
338 __acquires(inode->i_lock)
339 {
340 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
341 wait_queue_head_t *wqh;
342
343 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
344 while (inode->i_state & I_SYNC) {
345 spin_unlock(&inode->i_lock);
346 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
347 spin_lock(&inode->i_lock);
348 }
349 }
350
351 /*
352 * Wait for writeback on an inode to complete. Caller must have inode pinned.
353 */
354 void inode_wait_for_writeback(struct inode *inode)
355 {
356 spin_lock(&inode->i_lock);
357 __inode_wait_for_writeback(inode);
358 spin_unlock(&inode->i_lock);
359 }
360
361 /*
362 * Sleep until I_SYNC is cleared. This function must be called with i_lock
363 * held and drops it. It is aimed for callers not holding any inode reference
364 * so once i_lock is dropped, inode can go away.
365 */
366 static void inode_sleep_on_writeback(struct inode *inode)
367 __releases(inode->i_lock)
368 {
369 DEFINE_WAIT(wait);
370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
371 int sleep;
372
373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 sleep = inode->i_state & I_SYNC;
375 spin_unlock(&inode->i_lock);
376 if (sleep)
377 schedule();
378 finish_wait(wqh, &wait);
379 }
380
381 /*
382 * Find proper writeback list for the inode depending on its current state and
383 * possibly also change of its state while we were doing writeback. Here we
384 * handle things such as livelock prevention or fairness of writeback among
385 * inodes. This function can be called only by flusher thread - noone else
386 * processes all inodes in writeback lists and requeueing inodes behind flusher
387 * thread's back can have unexpected consequences.
388 */
389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 struct writeback_control *wbc)
391 {
392 if (inode->i_state & I_FREEING)
393 return;
394
395 /*
396 * Sync livelock prevention. Each inode is tagged and synced in one
397 * shot. If still dirty, it will be redirty_tail()'ed below. Update
398 * the dirty time to prevent enqueue and sync it again.
399 */
400 if ((inode->i_state & I_DIRTY) &&
401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 inode->dirtied_when = jiffies;
403
404 if (wbc->pages_skipped) {
405 /*
406 * writeback is not making progress due to locked
407 * buffers. Skip this inode for now.
408 */
409 redirty_tail(inode, wb);
410 return;
411 }
412
413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
414 /*
415 * We didn't write back all the pages. nfs_writepages()
416 * sometimes bales out without doing anything.
417 */
418 if (wbc->nr_to_write <= 0) {
419 /* Slice used up. Queue for next turn. */
420 requeue_io(inode, wb);
421 } else {
422 /*
423 * Writeback blocked by something other than
424 * congestion. Delay the inode for some time to
425 * avoid spinning on the CPU (100% iowait)
426 * retrying writeback of the dirty page/inode
427 * that cannot be performed immediately.
428 */
429 redirty_tail(inode, wb);
430 }
431 } else if (inode->i_state & I_DIRTY) {
432 /*
433 * Filesystems can dirty the inode during writeback operations,
434 * such as delayed allocation during submission or metadata
435 * updates after data IO completion.
436 */
437 redirty_tail(inode, wb);
438 } else {
439 /* The inode is clean. Remove from writeback lists. */
440 list_del_init(&inode->i_wb_list);
441 }
442 }
443
444 /*
445 * Write out an inode and its dirty pages. Do not update the writeback list
446 * linkage. That is left to the caller. The caller is also responsible for
447 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
448 */
449 static int
450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
451 {
452 struct address_space *mapping = inode->i_mapping;
453 long nr_to_write = wbc->nr_to_write;
454 unsigned dirty;
455 int ret;
456
457 WARN_ON(!(inode->i_state & I_SYNC));
458
459 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
460
461 ret = do_writepages(mapping, wbc);
462
463 /*
464 * Make sure to wait on the data before writing out the metadata.
465 * This is important for filesystems that modify metadata on data
466 * I/O completion.
467 */
468 if (wbc->sync_mode == WB_SYNC_ALL) {
469 int err = filemap_fdatawait(mapping);
470 if (ret == 0)
471 ret = err;
472 }
473
474 /*
475 * Some filesystems may redirty the inode during the writeback
476 * due to delalloc, clear dirty metadata flags right before
477 * write_inode()
478 */
479 spin_lock(&inode->i_lock);
480 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
481 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
482 inode->i_state &= ~I_DIRTY_PAGES;
483 dirty = inode->i_state & I_DIRTY;
484 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
485 spin_unlock(&inode->i_lock);
486 /* Don't write the inode if only I_DIRTY_PAGES was set */
487 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
488 int err = write_inode(inode, wbc);
489 if (ret == 0)
490 ret = err;
491 }
492 trace_writeback_single_inode(inode, wbc, nr_to_write);
493 return ret;
494 }
495
496 /*
497 * Write out an inode's dirty pages. Either the caller has an active reference
498 * on the inode or the inode has I_WILL_FREE set.
499 *
500 * This function is designed to be called for writing back one inode which
501 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
502 * and does more profound writeback list handling in writeback_sb_inodes().
503 */
504 static int
505 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
506 struct writeback_control *wbc)
507 {
508 int ret = 0;
509
510 spin_lock(&inode->i_lock);
511 if (!atomic_read(&inode->i_count))
512 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
513 else
514 WARN_ON(inode->i_state & I_WILL_FREE);
515
516 if (inode->i_state & I_SYNC) {
517 if (wbc->sync_mode != WB_SYNC_ALL)
518 goto out;
519 /*
520 * It's a data-integrity sync. We must wait. Since callers hold
521 * inode reference or inode has I_WILL_FREE set, it cannot go
522 * away under us.
523 */
524 __inode_wait_for_writeback(inode);
525 }
526 WARN_ON(inode->i_state & I_SYNC);
527 /*
528 * Skip inode if it is clean. We don't want to mess with writeback
529 * lists in this function since flusher thread may be doing for example
530 * sync in parallel and if we move the inode, it could get skipped. So
531 * here we make sure inode is on some writeback list and leave it there
532 * unless we have completely cleaned the inode.
533 */
534 if (!(inode->i_state & I_DIRTY))
535 goto out;
536 inode->i_state |= I_SYNC;
537 spin_unlock(&inode->i_lock);
538
539 ret = __writeback_single_inode(inode, wbc);
540
541 spin_lock(&wb->list_lock);
542 spin_lock(&inode->i_lock);
543 /*
544 * If inode is clean, remove it from writeback lists. Otherwise don't
545 * touch it. See comment above for explanation.
546 */
547 if (!(inode->i_state & I_DIRTY))
548 list_del_init(&inode->i_wb_list);
549 spin_unlock(&wb->list_lock);
550 inode_sync_complete(inode);
551 out:
552 spin_unlock(&inode->i_lock);
553 return ret;
554 }
555
556 static long writeback_chunk_size(struct backing_dev_info *bdi,
557 struct wb_writeback_work *work)
558 {
559 long pages;
560
561 /*
562 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
563 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
564 * here avoids calling into writeback_inodes_wb() more than once.
565 *
566 * The intended call sequence for WB_SYNC_ALL writeback is:
567 *
568 * wb_writeback()
569 * writeback_sb_inodes() <== called only once
570 * write_cache_pages() <== called once for each inode
571 * (quickly) tag currently dirty pages
572 * (maybe slowly) sync all tagged pages
573 */
574 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
575 pages = LONG_MAX;
576 else {
577 pages = min(bdi->avg_write_bandwidth / 2,
578 global_dirty_limit / DIRTY_SCOPE);
579 pages = min(pages, work->nr_pages);
580 pages = round_down(pages + MIN_WRITEBACK_PAGES,
581 MIN_WRITEBACK_PAGES);
582 }
583
584 return pages;
585 }
586
587 /*
588 * Write a portion of b_io inodes which belong to @sb.
589 *
590 * Return the number of pages and/or inodes written.
591 */
592 static long writeback_sb_inodes(struct super_block *sb,
593 struct bdi_writeback *wb,
594 struct wb_writeback_work *work)
595 {
596 struct writeback_control wbc = {
597 .sync_mode = work->sync_mode,
598 .tagged_writepages = work->tagged_writepages,
599 .for_kupdate = work->for_kupdate,
600 .for_background = work->for_background,
601 .range_cyclic = work->range_cyclic,
602 .range_start = 0,
603 .range_end = LLONG_MAX,
604 };
605 unsigned long start_time = jiffies;
606 long write_chunk;
607 long wrote = 0; /* count both pages and inodes */
608
609 while (!list_empty(&wb->b_io)) {
610 struct inode *inode = wb_inode(wb->b_io.prev);
611
612 if (inode->i_sb != sb) {
613 if (work->sb) {
614 /*
615 * We only want to write back data for this
616 * superblock, move all inodes not belonging
617 * to it back onto the dirty list.
618 */
619 redirty_tail(inode, wb);
620 continue;
621 }
622
623 /*
624 * The inode belongs to a different superblock.
625 * Bounce back to the caller to unpin this and
626 * pin the next superblock.
627 */
628 break;
629 }
630
631 /*
632 * Don't bother with new inodes or inodes being freed, first
633 * kind does not need periodic writeout yet, and for the latter
634 * kind writeout is handled by the freer.
635 */
636 spin_lock(&inode->i_lock);
637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 spin_unlock(&inode->i_lock);
639 redirty_tail(inode, wb);
640 continue;
641 }
642 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
643 /*
644 * If this inode is locked for writeback and we are not
645 * doing writeback-for-data-integrity, move it to
646 * b_more_io so that writeback can proceed with the
647 * other inodes on s_io.
648 *
649 * We'll have another go at writing back this inode
650 * when we completed a full scan of b_io.
651 */
652 spin_unlock(&inode->i_lock);
653 requeue_io(inode, wb);
654 trace_writeback_sb_inodes_requeue(inode);
655 continue;
656 }
657 spin_unlock(&wb->list_lock);
658
659 /*
660 * We already requeued the inode if it had I_SYNC set and we
661 * are doing WB_SYNC_NONE writeback. So this catches only the
662 * WB_SYNC_ALL case.
663 */
664 if (inode->i_state & I_SYNC) {
665 /* Wait for I_SYNC. This function drops i_lock... */
666 inode_sleep_on_writeback(inode);
667 /* Inode may be gone, start again */
668 spin_lock(&wb->list_lock);
669 continue;
670 }
671 inode->i_state |= I_SYNC;
672 spin_unlock(&inode->i_lock);
673
674 write_chunk = writeback_chunk_size(wb->bdi, work);
675 wbc.nr_to_write = write_chunk;
676 wbc.pages_skipped = 0;
677
678 /*
679 * We use I_SYNC to pin the inode in memory. While it is set
680 * evict_inode() will wait so the inode cannot be freed.
681 */
682 __writeback_single_inode(inode, &wbc);
683
684 work->nr_pages -= write_chunk - wbc.nr_to_write;
685 wrote += write_chunk - wbc.nr_to_write;
686 spin_lock(&wb->list_lock);
687 spin_lock(&inode->i_lock);
688 if (!(inode->i_state & I_DIRTY))
689 wrote++;
690 requeue_inode(inode, wb, &wbc);
691 inode_sync_complete(inode);
692 spin_unlock(&inode->i_lock);
693 cond_resched_lock(&wb->list_lock);
694 /*
695 * bail out to wb_writeback() often enough to check
696 * background threshold and other termination conditions.
697 */
698 if (wrote) {
699 if (time_is_before_jiffies(start_time + HZ / 10UL))
700 break;
701 if (work->nr_pages <= 0)
702 break;
703 }
704 }
705 return wrote;
706 }
707
708 static long __writeback_inodes_wb(struct bdi_writeback *wb,
709 struct wb_writeback_work *work)
710 {
711 unsigned long start_time = jiffies;
712 long wrote = 0;
713
714 while (!list_empty(&wb->b_io)) {
715 struct inode *inode = wb_inode(wb->b_io.prev);
716 struct super_block *sb = inode->i_sb;
717
718 if (!grab_super_passive(sb)) {
719 /*
720 * grab_super_passive() may fail consistently due to
721 * s_umount being grabbed by someone else. Don't use
722 * requeue_io() to avoid busy retrying the inode/sb.
723 */
724 redirty_tail(inode, wb);
725 continue;
726 }
727 wrote += writeback_sb_inodes(sb, wb, work);
728 drop_super(sb);
729
730 /* refer to the same tests at the end of writeback_sb_inodes */
731 if (wrote) {
732 if (time_is_before_jiffies(start_time + HZ / 10UL))
733 break;
734 if (work->nr_pages <= 0)
735 break;
736 }
737 }
738 /* Leave any unwritten inodes on b_io */
739 return wrote;
740 }
741
742 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
743 enum wb_reason reason)
744 {
745 struct wb_writeback_work work = {
746 .nr_pages = nr_pages,
747 .sync_mode = WB_SYNC_NONE,
748 .range_cyclic = 1,
749 .reason = reason,
750 };
751
752 spin_lock(&wb->list_lock);
753 if (list_empty(&wb->b_io))
754 queue_io(wb, &work);
755 __writeback_inodes_wb(wb, &work);
756 spin_unlock(&wb->list_lock);
757
758 return nr_pages - work.nr_pages;
759 }
760
761 static bool over_bground_thresh(struct backing_dev_info *bdi)
762 {
763 unsigned long background_thresh, dirty_thresh;
764
765 global_dirty_limits(&background_thresh, &dirty_thresh);
766
767 if (global_page_state(NR_FILE_DIRTY) +
768 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
769 return true;
770
771 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
772 bdi_dirty_limit(bdi, background_thresh))
773 return true;
774
775 return false;
776 }
777
778 /*
779 * Called under wb->list_lock. If there are multiple wb per bdi,
780 * only the flusher working on the first wb should do it.
781 */
782 static void wb_update_bandwidth(struct bdi_writeback *wb,
783 unsigned long start_time)
784 {
785 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
786 }
787
788 /*
789 * Explicit flushing or periodic writeback of "old" data.
790 *
791 * Define "old": the first time one of an inode's pages is dirtied, we mark the
792 * dirtying-time in the inode's address_space. So this periodic writeback code
793 * just walks the superblock inode list, writing back any inodes which are
794 * older than a specific point in time.
795 *
796 * Try to run once per dirty_writeback_interval. But if a writeback event
797 * takes longer than a dirty_writeback_interval interval, then leave a
798 * one-second gap.
799 *
800 * older_than_this takes precedence over nr_to_write. So we'll only write back
801 * all dirty pages if they are all attached to "old" mappings.
802 */
803 static long wb_writeback(struct bdi_writeback *wb,
804 struct wb_writeback_work *work)
805 {
806 unsigned long wb_start = jiffies;
807 long nr_pages = work->nr_pages;
808 unsigned long oldest_jif;
809 struct inode *inode;
810 long progress;
811
812 oldest_jif = jiffies;
813 work->older_than_this = &oldest_jif;
814
815 spin_lock(&wb->list_lock);
816 for (;;) {
817 /*
818 * Stop writeback when nr_pages has been consumed
819 */
820 if (work->nr_pages <= 0)
821 break;
822
823 /*
824 * Background writeout and kupdate-style writeback may
825 * run forever. Stop them if there is other work to do
826 * so that e.g. sync can proceed. They'll be restarted
827 * after the other works are all done.
828 */
829 if ((work->for_background || work->for_kupdate) &&
830 !list_empty(&wb->bdi->work_list))
831 break;
832
833 /*
834 * For background writeout, stop when we are below the
835 * background dirty threshold
836 */
837 if (work->for_background && !over_bground_thresh(wb->bdi))
838 break;
839
840 /*
841 * Kupdate and background works are special and we want to
842 * include all inodes that need writing. Livelock avoidance is
843 * handled by these works yielding to any other work so we are
844 * safe.
845 */
846 if (work->for_kupdate) {
847 oldest_jif = jiffies -
848 msecs_to_jiffies(dirty_expire_interval * 10);
849 } else if (work->for_background)
850 oldest_jif = jiffies;
851
852 trace_writeback_start(wb->bdi, work);
853 if (list_empty(&wb->b_io))
854 queue_io(wb, work);
855 if (work->sb)
856 progress = writeback_sb_inodes(work->sb, wb, work);
857 else
858 progress = __writeback_inodes_wb(wb, work);
859 trace_writeback_written(wb->bdi, work);
860
861 wb_update_bandwidth(wb, wb_start);
862
863 /*
864 * Did we write something? Try for more
865 *
866 * Dirty inodes are moved to b_io for writeback in batches.
867 * The completion of the current batch does not necessarily
868 * mean the overall work is done. So we keep looping as long
869 * as made some progress on cleaning pages or inodes.
870 */
871 if (progress)
872 continue;
873 /*
874 * No more inodes for IO, bail
875 */
876 if (list_empty(&wb->b_more_io))
877 break;
878 /*
879 * Nothing written. Wait for some inode to
880 * become available for writeback. Otherwise
881 * we'll just busyloop.
882 */
883 if (!list_empty(&wb->b_more_io)) {
884 trace_writeback_wait(wb->bdi, work);
885 inode = wb_inode(wb->b_more_io.prev);
886 spin_lock(&inode->i_lock);
887 spin_unlock(&wb->list_lock);
888 /* This function drops i_lock... */
889 inode_sleep_on_writeback(inode);
890 spin_lock(&wb->list_lock);
891 }
892 }
893 spin_unlock(&wb->list_lock);
894
895 return nr_pages - work->nr_pages;
896 }
897
898 /*
899 * Return the next wb_writeback_work struct that hasn't been processed yet.
900 */
901 static struct wb_writeback_work *
902 get_next_work_item(struct backing_dev_info *bdi)
903 {
904 struct wb_writeback_work *work = NULL;
905
906 spin_lock_bh(&bdi->wb_lock);
907 if (!list_empty(&bdi->work_list)) {
908 work = list_entry(bdi->work_list.next,
909 struct wb_writeback_work, list);
910 list_del_init(&work->list);
911 }
912 spin_unlock_bh(&bdi->wb_lock);
913 return work;
914 }
915
916 /*
917 * Add in the number of potentially dirty inodes, because each inode
918 * write can dirty pagecache in the underlying blockdev.
919 */
920 static unsigned long get_nr_dirty_pages(void)
921 {
922 return global_page_state(NR_FILE_DIRTY) +
923 global_page_state(NR_UNSTABLE_NFS) +
924 get_nr_dirty_inodes();
925 }
926
927 static long wb_check_background_flush(struct bdi_writeback *wb)
928 {
929 if (over_bground_thresh(wb->bdi)) {
930
931 struct wb_writeback_work work = {
932 .nr_pages = LONG_MAX,
933 .sync_mode = WB_SYNC_NONE,
934 .for_background = 1,
935 .range_cyclic = 1,
936 .reason = WB_REASON_BACKGROUND,
937 };
938
939 return wb_writeback(wb, &work);
940 }
941
942 return 0;
943 }
944
945 static long wb_check_old_data_flush(struct bdi_writeback *wb)
946 {
947 unsigned long expired;
948 long nr_pages;
949
950 /*
951 * When set to zero, disable periodic writeback
952 */
953 if (!dirty_writeback_interval)
954 return 0;
955
956 expired = wb->last_old_flush +
957 msecs_to_jiffies(dirty_writeback_interval * 10);
958 if (time_before(jiffies, expired))
959 return 0;
960
961 wb->last_old_flush = jiffies;
962 nr_pages = get_nr_dirty_pages();
963
964 if (nr_pages) {
965 struct wb_writeback_work work = {
966 .nr_pages = nr_pages,
967 .sync_mode = WB_SYNC_NONE,
968 .for_kupdate = 1,
969 .range_cyclic = 1,
970 .reason = WB_REASON_PERIODIC,
971 };
972
973 return wb_writeback(wb, &work);
974 }
975
976 return 0;
977 }
978
979 /*
980 * Retrieve work items and do the writeback they describe
981 */
982 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
983 {
984 struct backing_dev_info *bdi = wb->bdi;
985 struct wb_writeback_work *work;
986 long wrote = 0;
987
988 set_bit(BDI_writeback_running, &wb->bdi->state);
989 while ((work = get_next_work_item(bdi)) != NULL) {
990 /*
991 * Override sync mode, in case we must wait for completion
992 * because this thread is exiting now.
993 */
994 if (force_wait)
995 work->sync_mode = WB_SYNC_ALL;
996
997 trace_writeback_exec(bdi, work);
998
999 wrote += wb_writeback(wb, work);
1000
1001 /*
1002 * Notify the caller of completion if this is a synchronous
1003 * work item, otherwise just free it.
1004 */
1005 if (work->done)
1006 complete(work->done);
1007 else
1008 kfree(work);
1009 }
1010
1011 /*
1012 * Check for periodic writeback, kupdated() style
1013 */
1014 wrote += wb_check_old_data_flush(wb);
1015 wrote += wb_check_background_flush(wb);
1016 clear_bit(BDI_writeback_running, &wb->bdi->state);
1017
1018 return wrote;
1019 }
1020
1021 /*
1022 * Handle writeback of dirty data for the device backed by this bdi. Also
1023 * wakes up periodically and does kupdated style flushing.
1024 */
1025 int bdi_writeback_thread(void *data)
1026 {
1027 struct bdi_writeback *wb = data;
1028 struct backing_dev_info *bdi = wb->bdi;
1029 long pages_written;
1030
1031 current->flags |= PF_SWAPWRITE;
1032 set_freezable();
1033 wb->last_active = jiffies;
1034
1035 /*
1036 * Our parent may run at a different priority, just set us to normal
1037 */
1038 set_user_nice(current, 0);
1039
1040 trace_writeback_thread_start(bdi);
1041
1042 while (!kthread_freezable_should_stop(NULL)) {
1043 /*
1044 * Remove own delayed wake-up timer, since we are already awake
1045 * and we'll take care of the periodic write-back.
1046 */
1047 del_timer(&wb->wakeup_timer);
1048
1049 pages_written = wb_do_writeback(wb, 0);
1050
1051 trace_writeback_pages_written(pages_written);
1052
1053 if (pages_written)
1054 wb->last_active = jiffies;
1055
1056 set_current_state(TASK_INTERRUPTIBLE);
1057 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1058 __set_current_state(TASK_RUNNING);
1059 continue;
1060 }
1061
1062 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1063 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1064 else {
1065 /*
1066 * We have nothing to do, so can go sleep without any
1067 * timeout and save power. When a work is queued or
1068 * something is made dirty - we will be woken up.
1069 */
1070 schedule();
1071 }
1072 }
1073
1074 /* Flush any work that raced with us exiting */
1075 if (!list_empty(&bdi->work_list))
1076 wb_do_writeback(wb, 1);
1077
1078 trace_writeback_thread_stop(bdi);
1079 return 0;
1080 }
1081
1082
1083 /*
1084 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1085 * the whole world.
1086 */
1087 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1088 {
1089 struct backing_dev_info *bdi;
1090
1091 if (!nr_pages) {
1092 nr_pages = global_page_state(NR_FILE_DIRTY) +
1093 global_page_state(NR_UNSTABLE_NFS);
1094 }
1095
1096 rcu_read_lock();
1097 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1098 if (!bdi_has_dirty_io(bdi))
1099 continue;
1100 __bdi_start_writeback(bdi, nr_pages, false, reason);
1101 }
1102 rcu_read_unlock();
1103 }
1104
1105 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1106 {
1107 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1108 struct dentry *dentry;
1109 const char *name = "?";
1110
1111 dentry = d_find_alias(inode);
1112 if (dentry) {
1113 spin_lock(&dentry->d_lock);
1114 name = (const char *) dentry->d_name.name;
1115 }
1116 printk(KERN_DEBUG
1117 "%s(%d): dirtied inode %lu (%s) on %s\n",
1118 current->comm, task_pid_nr(current), inode->i_ino,
1119 name, inode->i_sb->s_id);
1120 if (dentry) {
1121 spin_unlock(&dentry->d_lock);
1122 dput(dentry);
1123 }
1124 }
1125 }
1126
1127 /**
1128 * __mark_inode_dirty - internal function
1129 * @inode: inode to mark
1130 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1131 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1132 * mark_inode_dirty_sync.
1133 *
1134 * Put the inode on the super block's dirty list.
1135 *
1136 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1137 * dirty list only if it is hashed or if it refers to a blockdev.
1138 * If it was not hashed, it will never be added to the dirty list
1139 * even if it is later hashed, as it will have been marked dirty already.
1140 *
1141 * In short, make sure you hash any inodes _before_ you start marking
1142 * them dirty.
1143 *
1144 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1145 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1146 * the kernel-internal blockdev inode represents the dirtying time of the
1147 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1148 * page->mapping->host, so the page-dirtying time is recorded in the internal
1149 * blockdev inode.
1150 */
1151 void __mark_inode_dirty(struct inode *inode, int flags)
1152 {
1153 struct super_block *sb = inode->i_sb;
1154 struct backing_dev_info *bdi = NULL;
1155
1156 /*
1157 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1158 * dirty the inode itself
1159 */
1160 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1161 trace_writeback_dirty_inode_start(inode, flags);
1162
1163 if (sb->s_op->dirty_inode)
1164 sb->s_op->dirty_inode(inode, flags);
1165
1166 trace_writeback_dirty_inode(inode, flags);
1167 }
1168
1169 /*
1170 * make sure that changes are seen by all cpus before we test i_state
1171 * -- mikulas
1172 */
1173 smp_mb();
1174
1175 /* avoid the locking if we can */
1176 if ((inode->i_state & flags) == flags)
1177 return;
1178
1179 if (unlikely(block_dump))
1180 block_dump___mark_inode_dirty(inode);
1181
1182 spin_lock(&inode->i_lock);
1183 if ((inode->i_state & flags) != flags) {
1184 const int was_dirty = inode->i_state & I_DIRTY;
1185
1186 inode->i_state |= flags;
1187
1188 /*
1189 * If the inode is being synced, just update its dirty state.
1190 * The unlocker will place the inode on the appropriate
1191 * superblock list, based upon its state.
1192 */
1193 if (inode->i_state & I_SYNC)
1194 goto out_unlock_inode;
1195
1196 /*
1197 * Only add valid (hashed) inodes to the superblock's
1198 * dirty list. Add blockdev inodes as well.
1199 */
1200 if (!S_ISBLK(inode->i_mode)) {
1201 if (inode_unhashed(inode))
1202 goto out_unlock_inode;
1203 }
1204 if (inode->i_state & I_FREEING)
1205 goto out_unlock_inode;
1206
1207 /*
1208 * If the inode was already on b_dirty/b_io/b_more_io, don't
1209 * reposition it (that would break b_dirty time-ordering).
1210 */
1211 if (!was_dirty) {
1212 bool wakeup_bdi = false;
1213 bdi = inode_to_bdi(inode);
1214
1215 if (bdi_cap_writeback_dirty(bdi)) {
1216 WARN(!test_bit(BDI_registered, &bdi->state),
1217 "bdi-%s not registered\n", bdi->name);
1218
1219 /*
1220 * If this is the first dirty inode for this
1221 * bdi, we have to wake-up the corresponding
1222 * bdi thread to make sure background
1223 * write-back happens later.
1224 */
1225 if (!wb_has_dirty_io(&bdi->wb))
1226 wakeup_bdi = true;
1227 }
1228
1229 spin_unlock(&inode->i_lock);
1230 spin_lock(&bdi->wb.list_lock);
1231 inode->dirtied_when = jiffies;
1232 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1233 spin_unlock(&bdi->wb.list_lock);
1234
1235 if (wakeup_bdi)
1236 bdi_wakeup_thread_delayed(bdi);
1237 return;
1238 }
1239 }
1240 out_unlock_inode:
1241 spin_unlock(&inode->i_lock);
1242
1243 }
1244 EXPORT_SYMBOL(__mark_inode_dirty);
1245
1246 static void wait_sb_inodes(struct super_block *sb)
1247 {
1248 struct inode *inode, *old_inode = NULL;
1249
1250 /*
1251 * We need to be protected against the filesystem going from
1252 * r/o to r/w or vice versa.
1253 */
1254 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1255
1256 spin_lock(&inode_sb_list_lock);
1257
1258 /*
1259 * Data integrity sync. Must wait for all pages under writeback,
1260 * because there may have been pages dirtied before our sync
1261 * call, but which had writeout started before we write it out.
1262 * In which case, the inode may not be on the dirty list, but
1263 * we still have to wait for that writeout.
1264 */
1265 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1266 struct address_space *mapping = inode->i_mapping;
1267
1268 spin_lock(&inode->i_lock);
1269 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1270 (mapping->nrpages == 0)) {
1271 spin_unlock(&inode->i_lock);
1272 continue;
1273 }
1274 __iget(inode);
1275 spin_unlock(&inode->i_lock);
1276 spin_unlock(&inode_sb_list_lock);
1277
1278 /*
1279 * We hold a reference to 'inode' so it couldn't have been
1280 * removed from s_inodes list while we dropped the
1281 * inode_sb_list_lock. We cannot iput the inode now as we can
1282 * be holding the last reference and we cannot iput it under
1283 * inode_sb_list_lock. So we keep the reference and iput it
1284 * later.
1285 */
1286 iput(old_inode);
1287 old_inode = inode;
1288
1289 filemap_fdatawait(mapping);
1290
1291 cond_resched();
1292
1293 spin_lock(&inode_sb_list_lock);
1294 }
1295 spin_unlock(&inode_sb_list_lock);
1296 iput(old_inode);
1297 }
1298
1299 /**
1300 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1301 * @sb: the superblock
1302 * @nr: the number of pages to write
1303 * @reason: reason why some writeback work initiated
1304 *
1305 * Start writeback on some inodes on this super_block. No guarantees are made
1306 * on how many (if any) will be written, and this function does not wait
1307 * for IO completion of submitted IO.
1308 */
1309 void writeback_inodes_sb_nr(struct super_block *sb,
1310 unsigned long nr,
1311 enum wb_reason reason)
1312 {
1313 DECLARE_COMPLETION_ONSTACK(done);
1314 struct wb_writeback_work work = {
1315 .sb = sb,
1316 .sync_mode = WB_SYNC_NONE,
1317 .tagged_writepages = 1,
1318 .done = &done,
1319 .nr_pages = nr,
1320 .reason = reason,
1321 };
1322
1323 if (sb->s_bdi == &noop_backing_dev_info)
1324 return;
1325 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1326 bdi_queue_work(sb->s_bdi, &work);
1327 wait_for_completion(&done);
1328 }
1329 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1330
1331 /**
1332 * writeback_inodes_sb - writeback dirty inodes from given super_block
1333 * @sb: the superblock
1334 * @reason: reason why some writeback work was initiated
1335 *
1336 * Start writeback on some inodes on this super_block. No guarantees are made
1337 * on how many (if any) will be written, and this function does not wait
1338 * for IO completion of submitted IO.
1339 */
1340 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1341 {
1342 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1343 }
1344 EXPORT_SYMBOL(writeback_inodes_sb);
1345
1346 /**
1347 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1348 * @sb: the superblock
1349 * @nr: the number of pages to write
1350 * @reason: the reason of writeback
1351 *
1352 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1353 * Returns 1 if writeback was started, 0 if not.
1354 */
1355 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1356 unsigned long nr,
1357 enum wb_reason reason)
1358 {
1359 if (writeback_in_progress(sb->s_bdi))
1360 return 1;
1361
1362 if (!down_read_trylock(&sb->s_umount))
1363 return 0;
1364
1365 writeback_inodes_sb_nr(sb, nr, reason);
1366 up_read(&sb->s_umount);
1367 return 1;
1368 }
1369 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1370
1371 /**
1372 * try_to_writeback_inodes_sb - try to start writeback if none underway
1373 * @sb: the superblock
1374 * @reason: reason why some writeback work was initiated
1375 *
1376 * Implement by try_to_writeback_inodes_sb_nr()
1377 * Returns 1 if writeback was started, 0 if not.
1378 */
1379 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1380 {
1381 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1382 }
1383 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1384
1385 /**
1386 * sync_inodes_sb - sync sb inode pages
1387 * @sb: the superblock
1388 *
1389 * This function writes and waits on any dirty inode belonging to this
1390 * super_block.
1391 */
1392 void sync_inodes_sb(struct super_block *sb)
1393 {
1394 DECLARE_COMPLETION_ONSTACK(done);
1395 struct wb_writeback_work work = {
1396 .sb = sb,
1397 .sync_mode = WB_SYNC_ALL,
1398 .nr_pages = LONG_MAX,
1399 .range_cyclic = 0,
1400 .done = &done,
1401 .reason = WB_REASON_SYNC,
1402 };
1403
1404 /* Nothing to do? */
1405 if (sb->s_bdi == &noop_backing_dev_info)
1406 return;
1407 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1408
1409 bdi_queue_work(sb->s_bdi, &work);
1410 wait_for_completion(&done);
1411
1412 wait_sb_inodes(sb);
1413 }
1414 EXPORT_SYMBOL(sync_inodes_sb);
1415
1416 /**
1417 * write_inode_now - write an inode to disk
1418 * @inode: inode to write to disk
1419 * @sync: whether the write should be synchronous or not
1420 *
1421 * This function commits an inode to disk immediately if it is dirty. This is
1422 * primarily needed by knfsd.
1423 *
1424 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1425 */
1426 int write_inode_now(struct inode *inode, int sync)
1427 {
1428 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1429 struct writeback_control wbc = {
1430 .nr_to_write = LONG_MAX,
1431 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1432 .range_start = 0,
1433 .range_end = LLONG_MAX,
1434 };
1435
1436 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1437 wbc.nr_to_write = 0;
1438
1439 might_sleep();
1440 return writeback_single_inode(inode, wb, &wbc);
1441 }
1442 EXPORT_SYMBOL(write_inode_now);
1443
1444 /**
1445 * sync_inode - write an inode and its pages to disk.
1446 * @inode: the inode to sync
1447 * @wbc: controls the writeback mode
1448 *
1449 * sync_inode() will write an inode and its pages to disk. It will also
1450 * correctly update the inode on its superblock's dirty inode lists and will
1451 * update inode->i_state.
1452 *
1453 * The caller must have a ref on the inode.
1454 */
1455 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1456 {
1457 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1458 }
1459 EXPORT_SYMBOL(sync_inode);
1460
1461 /**
1462 * sync_inode_metadata - write an inode to disk
1463 * @inode: the inode to sync
1464 * @wait: wait for I/O to complete.
1465 *
1466 * Write an inode to disk and adjust its dirty state after completion.
1467 *
1468 * Note: only writes the actual inode, no associated data or other metadata.
1469 */
1470 int sync_inode_metadata(struct inode *inode, int wait)
1471 {
1472 struct writeback_control wbc = {
1473 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1474 .nr_to_write = 0, /* metadata-only */
1475 };
1476
1477 return sync_inode(inode, &wbc);
1478 }
1479 EXPORT_SYMBOL(sync_inode_metadata);