Merge remote-tracking branch 'pfdo/drm-fixes' into drm-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 bdev = sbi->journal_bdev;
715 if (bdev) {
716 ext4_blkdev_put(bdev);
717 sbi->journal_bdev = NULL;
718 }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728 struct list_head *l;
729
730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731 le32_to_cpu(sbi->s_es->s_last_orphan));
732
733 printk(KERN_ERR "sb_info orphan list:\n");
734 list_for_each(l, &sbi->s_orphan) {
735 struct inode *inode = orphan_list_entry(l);
736 printk(KERN_ERR " "
737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738 inode->i_sb->s_id, inode->i_ino, inode,
739 inode->i_mode, inode->i_nlink,
740 NEXT_ORPHAN(inode));
741 }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746 struct ext4_sb_info *sbi = EXT4_SB(sb);
747 struct ext4_super_block *es = sbi->s_es;
748 int i, err;
749
750 ext4_unregister_li_request(sb);
751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753 flush_workqueue(sbi->dio_unwritten_wq);
754 destroy_workqueue(sbi->dio_unwritten_wq);
755
756 if (sbi->s_journal) {
757 err = jbd2_journal_destroy(sbi->s_journal);
758 sbi->s_journal = NULL;
759 if (err < 0)
760 ext4_abort(sb, "Couldn't clean up the journal");
761 }
762
763 ext4_es_unregister_shrinker(sb);
764 del_timer(&sbi->s_err_report);
765 ext4_release_system_zone(sb);
766 ext4_mb_release(sb);
767 ext4_ext_release(sb);
768 ext4_xattr_put_super(sb);
769
770 if (!(sb->s_flags & MS_RDONLY)) {
771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772 es->s_state = cpu_to_le16(sbi->s_mount_state);
773 }
774 if (!(sb->s_flags & MS_RDONLY))
775 ext4_commit_super(sb, 1);
776
777 if (sbi->s_proc) {
778 remove_proc_entry("options", sbi->s_proc);
779 remove_proc_entry(sb->s_id, ext4_proc_root);
780 }
781 kobject_del(&sbi->s_kobj);
782
783 for (i = 0; i < sbi->s_gdb_count; i++)
784 brelse(sbi->s_group_desc[i]);
785 ext4_kvfree(sbi->s_group_desc);
786 ext4_kvfree(sbi->s_flex_groups);
787 percpu_counter_destroy(&sbi->s_freeclusters_counter);
788 percpu_counter_destroy(&sbi->s_freeinodes_counter);
789 percpu_counter_destroy(&sbi->s_dirs_counter);
790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792 brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794 for (i = 0; i < MAXQUOTAS; i++)
795 kfree(sbi->s_qf_names[i]);
796 #endif
797
798 /* Debugging code just in case the in-memory inode orphan list
799 * isn't empty. The on-disk one can be non-empty if we've
800 * detected an error and taken the fs readonly, but the
801 * in-memory list had better be clean by this point. */
802 if (!list_empty(&sbi->s_orphan))
803 dump_orphan_list(sb, sbi);
804 J_ASSERT(list_empty(&sbi->s_orphan));
805
806 invalidate_bdev(sb->s_bdev);
807 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
808 /*
809 * Invalidate the journal device's buffers. We don't want them
810 * floating about in memory - the physical journal device may
811 * hotswapped, and it breaks the `ro-after' testing code.
812 */
813 sync_blockdev(sbi->journal_bdev);
814 invalidate_bdev(sbi->journal_bdev);
815 ext4_blkdev_remove(sbi);
816 }
817 if (sbi->s_mmp_tsk)
818 kthread_stop(sbi->s_mmp_tsk);
819 sb->s_fs_info = NULL;
820 /*
821 * Now that we are completely done shutting down the
822 * superblock, we need to actually destroy the kobject.
823 */
824 kobject_put(&sbi->s_kobj);
825 wait_for_completion(&sbi->s_kobj_unregister);
826 if (sbi->s_chksum_driver)
827 crypto_free_shash(sbi->s_chksum_driver);
828 kfree(sbi->s_blockgroup_lock);
829 kfree(sbi);
830 }
831
832 static struct kmem_cache *ext4_inode_cachep;
833
834 /*
835 * Called inside transaction, so use GFP_NOFS
836 */
837 static struct inode *ext4_alloc_inode(struct super_block *sb)
838 {
839 struct ext4_inode_info *ei;
840
841 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
842 if (!ei)
843 return NULL;
844
845 ei->vfs_inode.i_version = 1;
846 INIT_LIST_HEAD(&ei->i_prealloc_list);
847 spin_lock_init(&ei->i_prealloc_lock);
848 ext4_es_init_tree(&ei->i_es_tree);
849 rwlock_init(&ei->i_es_lock);
850 INIT_LIST_HEAD(&ei->i_es_lru);
851 ei->i_es_lru_nr = 0;
852 ei->i_reserved_data_blocks = 0;
853 ei->i_reserved_meta_blocks = 0;
854 ei->i_allocated_meta_blocks = 0;
855 ei->i_da_metadata_calc_len = 0;
856 ei->i_da_metadata_calc_last_lblock = 0;
857 spin_lock_init(&(ei->i_block_reservation_lock));
858 #ifdef CONFIG_QUOTA
859 ei->i_reserved_quota = 0;
860 #endif
861 ei->jinode = NULL;
862 INIT_LIST_HEAD(&ei->i_completed_io_list);
863 spin_lock_init(&ei->i_completed_io_lock);
864 ei->i_sync_tid = 0;
865 ei->i_datasync_tid = 0;
866 atomic_set(&ei->i_ioend_count, 0);
867 atomic_set(&ei->i_unwritten, 0);
868 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
869
870 return &ei->vfs_inode;
871 }
872
873 static int ext4_drop_inode(struct inode *inode)
874 {
875 int drop = generic_drop_inode(inode);
876
877 trace_ext4_drop_inode(inode, drop);
878 return drop;
879 }
880
881 static void ext4_i_callback(struct rcu_head *head)
882 {
883 struct inode *inode = container_of(head, struct inode, i_rcu);
884 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
885 }
886
887 static void ext4_destroy_inode(struct inode *inode)
888 {
889 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
890 ext4_msg(inode->i_sb, KERN_ERR,
891 "Inode %lu (%p): orphan list check failed!",
892 inode->i_ino, EXT4_I(inode));
893 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
894 EXT4_I(inode), sizeof(struct ext4_inode_info),
895 true);
896 dump_stack();
897 }
898 call_rcu(&inode->i_rcu, ext4_i_callback);
899 }
900
901 static void init_once(void *foo)
902 {
903 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
904
905 INIT_LIST_HEAD(&ei->i_orphan);
906 init_rwsem(&ei->xattr_sem);
907 init_rwsem(&ei->i_data_sem);
908 inode_init_once(&ei->vfs_inode);
909 }
910
911 static int init_inodecache(void)
912 {
913 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
914 sizeof(struct ext4_inode_info),
915 0, (SLAB_RECLAIM_ACCOUNT|
916 SLAB_MEM_SPREAD),
917 init_once);
918 if (ext4_inode_cachep == NULL)
919 return -ENOMEM;
920 return 0;
921 }
922
923 static void destroy_inodecache(void)
924 {
925 /*
926 * Make sure all delayed rcu free inodes are flushed before we
927 * destroy cache.
928 */
929 rcu_barrier();
930 kmem_cache_destroy(ext4_inode_cachep);
931 }
932
933 void ext4_clear_inode(struct inode *inode)
934 {
935 invalidate_inode_buffers(inode);
936 clear_inode(inode);
937 dquot_drop(inode);
938 ext4_discard_preallocations(inode);
939 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
940 ext4_es_lru_del(inode);
941 if (EXT4_I(inode)->jinode) {
942 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
943 EXT4_I(inode)->jinode);
944 jbd2_free_inode(EXT4_I(inode)->jinode);
945 EXT4_I(inode)->jinode = NULL;
946 }
947 }
948
949 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
950 u64 ino, u32 generation)
951 {
952 struct inode *inode;
953
954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
955 return ERR_PTR(-ESTALE);
956 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
957 return ERR_PTR(-ESTALE);
958
959 /* iget isn't really right if the inode is currently unallocated!!
960 *
961 * ext4_read_inode will return a bad_inode if the inode had been
962 * deleted, so we should be safe.
963 *
964 * Currently we don't know the generation for parent directory, so
965 * a generation of 0 means "accept any"
966 */
967 inode = ext4_iget(sb, ino);
968 if (IS_ERR(inode))
969 return ERR_CAST(inode);
970 if (generation && inode->i_generation != generation) {
971 iput(inode);
972 return ERR_PTR(-ESTALE);
973 }
974
975 return inode;
976 }
977
978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
979 int fh_len, int fh_type)
980 {
981 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
982 ext4_nfs_get_inode);
983 }
984
985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
986 int fh_len, int fh_type)
987 {
988 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
989 ext4_nfs_get_inode);
990 }
991
992 /*
993 * Try to release metadata pages (indirect blocks, directories) which are
994 * mapped via the block device. Since these pages could have journal heads
995 * which would prevent try_to_free_buffers() from freeing them, we must use
996 * jbd2 layer's try_to_free_buffers() function to release them.
997 */
998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
999 gfp_t wait)
1000 {
1001 journal_t *journal = EXT4_SB(sb)->s_journal;
1002
1003 WARN_ON(PageChecked(page));
1004 if (!page_has_buffers(page))
1005 return 0;
1006 if (journal)
1007 return jbd2_journal_try_to_free_buffers(journal, page,
1008 wait & ~__GFP_WAIT);
1009 return try_to_free_buffers(page);
1010 }
1011
1012 #ifdef CONFIG_QUOTA
1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1015
1016 static int ext4_write_dquot(struct dquot *dquot);
1017 static int ext4_acquire_dquot(struct dquot *dquot);
1018 static int ext4_release_dquot(struct dquot *dquot);
1019 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1020 static int ext4_write_info(struct super_block *sb, int type);
1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1022 struct path *path);
1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1024 int format_id);
1025 static int ext4_quota_off(struct super_block *sb, int type);
1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1027 static int ext4_quota_on_mount(struct super_block *sb, int type);
1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1029 size_t len, loff_t off);
1030 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1031 const char *data, size_t len, loff_t off);
1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1033 unsigned int flags);
1034 static int ext4_enable_quotas(struct super_block *sb);
1035
1036 static const struct dquot_operations ext4_quota_operations = {
1037 .get_reserved_space = ext4_get_reserved_space,
1038 .write_dquot = ext4_write_dquot,
1039 .acquire_dquot = ext4_acquire_dquot,
1040 .release_dquot = ext4_release_dquot,
1041 .mark_dirty = ext4_mark_dquot_dirty,
1042 .write_info = ext4_write_info,
1043 .alloc_dquot = dquot_alloc,
1044 .destroy_dquot = dquot_destroy,
1045 };
1046
1047 static const struct quotactl_ops ext4_qctl_operations = {
1048 .quota_on = ext4_quota_on,
1049 .quota_off = ext4_quota_off,
1050 .quota_sync = dquot_quota_sync,
1051 .get_info = dquot_get_dqinfo,
1052 .set_info = dquot_set_dqinfo,
1053 .get_dqblk = dquot_get_dqblk,
1054 .set_dqblk = dquot_set_dqblk
1055 };
1056
1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1058 .quota_on_meta = ext4_quota_on_sysfile,
1059 .quota_off = ext4_quota_off_sysfile,
1060 .quota_sync = dquot_quota_sync,
1061 .get_info = dquot_get_dqinfo,
1062 .set_info = dquot_set_dqinfo,
1063 .get_dqblk = dquot_get_dqblk,
1064 .set_dqblk = dquot_set_dqblk
1065 };
1066 #endif
1067
1068 static const struct super_operations ext4_sops = {
1069 .alloc_inode = ext4_alloc_inode,
1070 .destroy_inode = ext4_destroy_inode,
1071 .write_inode = ext4_write_inode,
1072 .dirty_inode = ext4_dirty_inode,
1073 .drop_inode = ext4_drop_inode,
1074 .evict_inode = ext4_evict_inode,
1075 .put_super = ext4_put_super,
1076 .sync_fs = ext4_sync_fs,
1077 .freeze_fs = ext4_freeze,
1078 .unfreeze_fs = ext4_unfreeze,
1079 .statfs = ext4_statfs,
1080 .remount_fs = ext4_remount,
1081 .show_options = ext4_show_options,
1082 #ifdef CONFIG_QUOTA
1083 .quota_read = ext4_quota_read,
1084 .quota_write = ext4_quota_write,
1085 #endif
1086 .bdev_try_to_free_page = bdev_try_to_free_page,
1087 };
1088
1089 static const struct super_operations ext4_nojournal_sops = {
1090 .alloc_inode = ext4_alloc_inode,
1091 .destroy_inode = ext4_destroy_inode,
1092 .write_inode = ext4_write_inode,
1093 .dirty_inode = ext4_dirty_inode,
1094 .drop_inode = ext4_drop_inode,
1095 .evict_inode = ext4_evict_inode,
1096 .put_super = ext4_put_super,
1097 .statfs = ext4_statfs,
1098 .remount_fs = ext4_remount,
1099 .show_options = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101 .quota_read = ext4_quota_read,
1102 .quota_write = ext4_quota_write,
1103 #endif
1104 .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108 .fh_to_dentry = ext4_fh_to_dentry,
1109 .fh_to_parent = ext4_fh_to_parent,
1110 .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116 Opt_nouid32, Opt_debug, Opt_removed,
1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1120 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122 Opt_data_err_abort, Opt_data_err_ignore,
1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126 Opt_usrquota, Opt_grpquota, Opt_i_version,
1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1129 Opt_inode_readahead_blks, Opt_journal_ioprio,
1130 Opt_dioread_nolock, Opt_dioread_lock,
1131 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1132 Opt_max_dir_size_kb,
1133 };
1134
1135 static const match_table_t tokens = {
1136 {Opt_bsd_df, "bsddf"},
1137 {Opt_minix_df, "minixdf"},
1138 {Opt_grpid, "grpid"},
1139 {Opt_grpid, "bsdgroups"},
1140 {Opt_nogrpid, "nogrpid"},
1141 {Opt_nogrpid, "sysvgroups"},
1142 {Opt_resgid, "resgid=%u"},
1143 {Opt_resuid, "resuid=%u"},
1144 {Opt_sb, "sb=%u"},
1145 {Opt_err_cont, "errors=continue"},
1146 {Opt_err_panic, "errors=panic"},
1147 {Opt_err_ro, "errors=remount-ro"},
1148 {Opt_nouid32, "nouid32"},
1149 {Opt_debug, "debug"},
1150 {Opt_removed, "oldalloc"},
1151 {Opt_removed, "orlov"},
1152 {Opt_user_xattr, "user_xattr"},
1153 {Opt_nouser_xattr, "nouser_xattr"},
1154 {Opt_acl, "acl"},
1155 {Opt_noacl, "noacl"},
1156 {Opt_noload, "norecovery"},
1157 {Opt_noload, "noload"},
1158 {Opt_removed, "nobh"},
1159 {Opt_removed, "bh"},
1160 {Opt_commit, "commit=%u"},
1161 {Opt_min_batch_time, "min_batch_time=%u"},
1162 {Opt_max_batch_time, "max_batch_time=%u"},
1163 {Opt_journal_dev, "journal_dev=%u"},
1164 {Opt_journal_checksum, "journal_checksum"},
1165 {Opt_journal_async_commit, "journal_async_commit"},
1166 {Opt_abort, "abort"},
1167 {Opt_data_journal, "data=journal"},
1168 {Opt_data_ordered, "data=ordered"},
1169 {Opt_data_writeback, "data=writeback"},
1170 {Opt_data_err_abort, "data_err=abort"},
1171 {Opt_data_err_ignore, "data_err=ignore"},
1172 {Opt_offusrjquota, "usrjquota="},
1173 {Opt_usrjquota, "usrjquota=%s"},
1174 {Opt_offgrpjquota, "grpjquota="},
1175 {Opt_grpjquota, "grpjquota=%s"},
1176 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1177 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1178 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1179 {Opt_grpquota, "grpquota"},
1180 {Opt_noquota, "noquota"},
1181 {Opt_quota, "quota"},
1182 {Opt_usrquota, "usrquota"},
1183 {Opt_barrier, "barrier=%u"},
1184 {Opt_barrier, "barrier"},
1185 {Opt_nobarrier, "nobarrier"},
1186 {Opt_i_version, "i_version"},
1187 {Opt_stripe, "stripe=%u"},
1188 {Opt_delalloc, "delalloc"},
1189 {Opt_nodelalloc, "nodelalloc"},
1190 {Opt_removed, "mblk_io_submit"},
1191 {Opt_removed, "nomblk_io_submit"},
1192 {Opt_block_validity, "block_validity"},
1193 {Opt_noblock_validity, "noblock_validity"},
1194 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1195 {Opt_journal_ioprio, "journal_ioprio=%u"},
1196 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1197 {Opt_auto_da_alloc, "auto_da_alloc"},
1198 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1199 {Opt_dioread_nolock, "dioread_nolock"},
1200 {Opt_dioread_lock, "dioread_lock"},
1201 {Opt_discard, "discard"},
1202 {Opt_nodiscard, "nodiscard"},
1203 {Opt_init_itable, "init_itable=%u"},
1204 {Opt_init_itable, "init_itable"},
1205 {Opt_noinit_itable, "noinit_itable"},
1206 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1207 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1208 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1209 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1210 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1211 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1212 {Opt_err, NULL},
1213 };
1214
1215 static ext4_fsblk_t get_sb_block(void **data)
1216 {
1217 ext4_fsblk_t sb_block;
1218 char *options = (char *) *data;
1219
1220 if (!options || strncmp(options, "sb=", 3) != 0)
1221 return 1; /* Default location */
1222
1223 options += 3;
1224 /* TODO: use simple_strtoll with >32bit ext4 */
1225 sb_block = simple_strtoul(options, &options, 0);
1226 if (*options && *options != ',') {
1227 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1228 (char *) *data);
1229 return 1;
1230 }
1231 if (*options == ',')
1232 options++;
1233 *data = (void *) options;
1234
1235 return sb_block;
1236 }
1237
1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1240 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1241
1242 #ifdef CONFIG_QUOTA
1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1244 {
1245 struct ext4_sb_info *sbi = EXT4_SB(sb);
1246 char *qname;
1247 int ret = -1;
1248
1249 if (sb_any_quota_loaded(sb) &&
1250 !sbi->s_qf_names[qtype]) {
1251 ext4_msg(sb, KERN_ERR,
1252 "Cannot change journaled "
1253 "quota options when quota turned on");
1254 return -1;
1255 }
1256 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1257 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1258 "when QUOTA feature is enabled");
1259 return -1;
1260 }
1261 qname = match_strdup(args);
1262 if (!qname) {
1263 ext4_msg(sb, KERN_ERR,
1264 "Not enough memory for storing quotafile name");
1265 return -1;
1266 }
1267 if (sbi->s_qf_names[qtype]) {
1268 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1269 ret = 1;
1270 else
1271 ext4_msg(sb, KERN_ERR,
1272 "%s quota file already specified",
1273 QTYPE2NAME(qtype));
1274 goto errout;
1275 }
1276 if (strchr(qname, '/')) {
1277 ext4_msg(sb, KERN_ERR,
1278 "quotafile must be on filesystem root");
1279 goto errout;
1280 }
1281 sbi->s_qf_names[qtype] = qname;
1282 set_opt(sb, QUOTA);
1283 return 1;
1284 errout:
1285 kfree(qname);
1286 return ret;
1287 }
1288
1289 static int clear_qf_name(struct super_block *sb, int qtype)
1290 {
1291
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293
1294 if (sb_any_quota_loaded(sb) &&
1295 sbi->s_qf_names[qtype]) {
1296 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1297 " when quota turned on");
1298 return -1;
1299 }
1300 kfree(sbi->s_qf_names[qtype]);
1301 sbi->s_qf_names[qtype] = NULL;
1302 return 1;
1303 }
1304 #endif
1305
1306 #define MOPT_SET 0x0001
1307 #define MOPT_CLEAR 0x0002
1308 #define MOPT_NOSUPPORT 0x0004
1309 #define MOPT_EXPLICIT 0x0008
1310 #define MOPT_CLEAR_ERR 0x0010
1311 #define MOPT_GTE0 0x0020
1312 #ifdef CONFIG_QUOTA
1313 #define MOPT_Q 0
1314 #define MOPT_QFMT 0x0040
1315 #else
1316 #define MOPT_Q MOPT_NOSUPPORT
1317 #define MOPT_QFMT MOPT_NOSUPPORT
1318 #endif
1319 #define MOPT_DATAJ 0x0080
1320 #define MOPT_NO_EXT2 0x0100
1321 #define MOPT_NO_EXT3 0x0200
1322 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1323
1324 static const struct mount_opts {
1325 int token;
1326 int mount_opt;
1327 int flags;
1328 } ext4_mount_opts[] = {
1329 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1330 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1331 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1332 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1333 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1334 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1335 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1336 MOPT_EXT4_ONLY | MOPT_SET},
1337 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338 MOPT_EXT4_ONLY | MOPT_CLEAR},
1339 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1340 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1341 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1342 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1343 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1344 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1345 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1346 MOPT_EXT4_ONLY | MOPT_SET},
1347 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1348 EXT4_MOUNT_JOURNAL_CHECKSUM),
1349 MOPT_EXT4_ONLY | MOPT_SET},
1350 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1351 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1355 MOPT_NO_EXT2 | MOPT_SET},
1356 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1357 MOPT_NO_EXT2 | MOPT_CLEAR},
1358 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1359 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1360 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1361 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1362 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1363 {Opt_commit, 0, MOPT_GTE0},
1364 {Opt_max_batch_time, 0, MOPT_GTE0},
1365 {Opt_min_batch_time, 0, MOPT_GTE0},
1366 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1367 {Opt_init_itable, 0, MOPT_GTE0},
1368 {Opt_stripe, 0, MOPT_GTE0},
1369 {Opt_resuid, 0, MOPT_GTE0},
1370 {Opt_resgid, 0, MOPT_GTE0},
1371 {Opt_journal_dev, 0, MOPT_GTE0},
1372 {Opt_journal_ioprio, 0, MOPT_GTE0},
1373 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1376 MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1378 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1380 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1381 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1382 #else
1383 {Opt_acl, 0, MOPT_NOSUPPORT},
1384 {Opt_noacl, 0, MOPT_NOSUPPORT},
1385 #endif
1386 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1387 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1388 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1389 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1390 MOPT_SET | MOPT_Q},
1391 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1392 MOPT_SET | MOPT_Q},
1393 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1394 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1395 {Opt_usrjquota, 0, MOPT_Q},
1396 {Opt_grpjquota, 0, MOPT_Q},
1397 {Opt_offusrjquota, 0, MOPT_Q},
1398 {Opt_offgrpjquota, 0, MOPT_Q},
1399 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1400 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1402 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1403 {Opt_err, 0, 0}
1404 };
1405
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407 substring_t *args, unsigned long *journal_devnum,
1408 unsigned int *journal_ioprio, int is_remount)
1409 {
1410 struct ext4_sb_info *sbi = EXT4_SB(sb);
1411 const struct mount_opts *m;
1412 kuid_t uid;
1413 kgid_t gid;
1414 int arg = 0;
1415
1416 #ifdef CONFIG_QUOTA
1417 if (token == Opt_usrjquota)
1418 return set_qf_name(sb, USRQUOTA, &args[0]);
1419 else if (token == Opt_grpjquota)
1420 return set_qf_name(sb, GRPQUOTA, &args[0]);
1421 else if (token == Opt_offusrjquota)
1422 return clear_qf_name(sb, USRQUOTA);
1423 else if (token == Opt_offgrpjquota)
1424 return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426 switch (token) {
1427 case Opt_noacl:
1428 case Opt_nouser_xattr:
1429 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430 break;
1431 case Opt_sb:
1432 return 1; /* handled by get_sb_block() */
1433 case Opt_removed:
1434 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435 return 1;
1436 case Opt_abort:
1437 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438 return 1;
1439 case Opt_i_version:
1440 sb->s_flags |= MS_I_VERSION;
1441 return 1;
1442 }
1443
1444 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1445 if (token == m->token)
1446 break;
1447
1448 if (m->token == Opt_err) {
1449 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1450 "or missing value", opt);
1451 return -1;
1452 }
1453
1454 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1455 ext4_msg(sb, KERN_ERR,
1456 "Mount option \"%s\" incompatible with ext2", opt);
1457 return -1;
1458 }
1459 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1460 ext4_msg(sb, KERN_ERR,
1461 "Mount option \"%s\" incompatible with ext3", opt);
1462 return -1;
1463 }
1464
1465 if (args->from && match_int(args, &arg))
1466 return -1;
1467 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1468 return -1;
1469 if (m->flags & MOPT_EXPLICIT)
1470 set_opt2(sb, EXPLICIT_DELALLOC);
1471 if (m->flags & MOPT_CLEAR_ERR)
1472 clear_opt(sb, ERRORS_MASK);
1473 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1474 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1475 "options when quota turned on");
1476 return -1;
1477 }
1478
1479 if (m->flags & MOPT_NOSUPPORT) {
1480 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1481 } else if (token == Opt_commit) {
1482 if (arg == 0)
1483 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1484 sbi->s_commit_interval = HZ * arg;
1485 } else if (token == Opt_max_batch_time) {
1486 if (arg == 0)
1487 arg = EXT4_DEF_MAX_BATCH_TIME;
1488 sbi->s_max_batch_time = arg;
1489 } else if (token == Opt_min_batch_time) {
1490 sbi->s_min_batch_time = arg;
1491 } else if (token == Opt_inode_readahead_blks) {
1492 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1493 ext4_msg(sb, KERN_ERR,
1494 "EXT4-fs: inode_readahead_blks must be "
1495 "0 or a power of 2 smaller than 2^31");
1496 return -1;
1497 }
1498 sbi->s_inode_readahead_blks = arg;
1499 } else if (token == Opt_init_itable) {
1500 set_opt(sb, INIT_INODE_TABLE);
1501 if (!args->from)
1502 arg = EXT4_DEF_LI_WAIT_MULT;
1503 sbi->s_li_wait_mult = arg;
1504 } else if (token == Opt_max_dir_size_kb) {
1505 sbi->s_max_dir_size_kb = arg;
1506 } else if (token == Opt_stripe) {
1507 sbi->s_stripe = arg;
1508 } else if (token == Opt_resuid) {
1509 uid = make_kuid(current_user_ns(), arg);
1510 if (!uid_valid(uid)) {
1511 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1512 return -1;
1513 }
1514 sbi->s_resuid = uid;
1515 } else if (token == Opt_resgid) {
1516 gid = make_kgid(current_user_ns(), arg);
1517 if (!gid_valid(gid)) {
1518 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1519 return -1;
1520 }
1521 sbi->s_resgid = gid;
1522 } else if (token == Opt_journal_dev) {
1523 if (is_remount) {
1524 ext4_msg(sb, KERN_ERR,
1525 "Cannot specify journal on remount");
1526 return -1;
1527 }
1528 *journal_devnum = arg;
1529 } else if (token == Opt_journal_ioprio) {
1530 if (arg > 7) {
1531 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1532 " (must be 0-7)");
1533 return -1;
1534 }
1535 *journal_ioprio =
1536 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1537 } else if (m->flags & MOPT_DATAJ) {
1538 if (is_remount) {
1539 if (!sbi->s_journal)
1540 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1541 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Cannot change data mode on remount");
1544 return -1;
1545 }
1546 } else {
1547 clear_opt(sb, DATA_FLAGS);
1548 sbi->s_mount_opt |= m->mount_opt;
1549 }
1550 #ifdef CONFIG_QUOTA
1551 } else if (m->flags & MOPT_QFMT) {
1552 if (sb_any_quota_loaded(sb) &&
1553 sbi->s_jquota_fmt != m->mount_opt) {
1554 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1555 "quota options when quota turned on");
1556 return -1;
1557 }
1558 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1559 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1560 ext4_msg(sb, KERN_ERR,
1561 "Cannot set journaled quota options "
1562 "when QUOTA feature is enabled");
1563 return -1;
1564 }
1565 sbi->s_jquota_fmt = m->mount_opt;
1566 #endif
1567 } else {
1568 if (!args->from)
1569 arg = 1;
1570 if (m->flags & MOPT_CLEAR)
1571 arg = !arg;
1572 else if (unlikely(!(m->flags & MOPT_SET))) {
1573 ext4_msg(sb, KERN_WARNING,
1574 "buggy handling of option %s", opt);
1575 WARN_ON(1);
1576 return -1;
1577 }
1578 if (arg != 0)
1579 sbi->s_mount_opt |= m->mount_opt;
1580 else
1581 sbi->s_mount_opt &= ~m->mount_opt;
1582 }
1583 return 1;
1584 }
1585
1586 static int parse_options(char *options, struct super_block *sb,
1587 unsigned long *journal_devnum,
1588 unsigned int *journal_ioprio,
1589 int is_remount)
1590 {
1591 struct ext4_sb_info *sbi = EXT4_SB(sb);
1592 char *p;
1593 substring_t args[MAX_OPT_ARGS];
1594 int token;
1595
1596 if (!options)
1597 return 1;
1598
1599 while ((p = strsep(&options, ",")) != NULL) {
1600 if (!*p)
1601 continue;
1602 /*
1603 * Initialize args struct so we know whether arg was
1604 * found; some options take optional arguments.
1605 */
1606 args[0].to = args[0].from = NULL;
1607 token = match_token(p, tokens, args);
1608 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1609 journal_ioprio, is_remount) < 0)
1610 return 0;
1611 }
1612 #ifdef CONFIG_QUOTA
1613 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1614 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1615 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1616 "feature is enabled");
1617 return 0;
1618 }
1619 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1620 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1621 clear_opt(sb, USRQUOTA);
1622
1623 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1624 clear_opt(sb, GRPQUOTA);
1625
1626 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1627 ext4_msg(sb, KERN_ERR, "old and new quota "
1628 "format mixing");
1629 return 0;
1630 }
1631
1632 if (!sbi->s_jquota_fmt) {
1633 ext4_msg(sb, KERN_ERR, "journaled quota format "
1634 "not specified");
1635 return 0;
1636 }
1637 } else {
1638 if (sbi->s_jquota_fmt) {
1639 ext4_msg(sb, KERN_ERR, "journaled quota format "
1640 "specified with no journaling "
1641 "enabled");
1642 return 0;
1643 }
1644 }
1645 #endif
1646 if (test_opt(sb, DIOREAD_NOLOCK)) {
1647 int blocksize =
1648 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1649
1650 if (blocksize < PAGE_CACHE_SIZE) {
1651 ext4_msg(sb, KERN_ERR, "can't mount with "
1652 "dioread_nolock if block size != PAGE_SIZE");
1653 return 0;
1654 }
1655 }
1656 return 1;
1657 }
1658
1659 static inline void ext4_show_quota_options(struct seq_file *seq,
1660 struct super_block *sb)
1661 {
1662 #if defined(CONFIG_QUOTA)
1663 struct ext4_sb_info *sbi = EXT4_SB(sb);
1664
1665 if (sbi->s_jquota_fmt) {
1666 char *fmtname = "";
1667
1668 switch (sbi->s_jquota_fmt) {
1669 case QFMT_VFS_OLD:
1670 fmtname = "vfsold";
1671 break;
1672 case QFMT_VFS_V0:
1673 fmtname = "vfsv0";
1674 break;
1675 case QFMT_VFS_V1:
1676 fmtname = "vfsv1";
1677 break;
1678 }
1679 seq_printf(seq, ",jqfmt=%s", fmtname);
1680 }
1681
1682 if (sbi->s_qf_names[USRQUOTA])
1683 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1684
1685 if (sbi->s_qf_names[GRPQUOTA])
1686 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1687
1688 if (test_opt(sb, USRQUOTA))
1689 seq_puts(seq, ",usrquota");
1690
1691 if (test_opt(sb, GRPQUOTA))
1692 seq_puts(seq, ",grpquota");
1693 #endif
1694 }
1695
1696 static const char *token2str(int token)
1697 {
1698 const struct match_token *t;
1699
1700 for (t = tokens; t->token != Opt_err; t++)
1701 if (t->token == token && !strchr(t->pattern, '='))
1702 break;
1703 return t->pattern;
1704 }
1705
1706 /*
1707 * Show an option if
1708 * - it's set to a non-default value OR
1709 * - if the per-sb default is different from the global default
1710 */
1711 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1712 int nodefs)
1713 {
1714 struct ext4_sb_info *sbi = EXT4_SB(sb);
1715 struct ext4_super_block *es = sbi->s_es;
1716 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1717 const struct mount_opts *m;
1718 char sep = nodefs ? '\n' : ',';
1719
1720 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1721 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1722
1723 if (sbi->s_sb_block != 1)
1724 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1725
1726 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1727 int want_set = m->flags & MOPT_SET;
1728 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1729 (m->flags & MOPT_CLEAR_ERR))
1730 continue;
1731 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1732 continue; /* skip if same as the default */
1733 if ((want_set &&
1734 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1735 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1736 continue; /* select Opt_noFoo vs Opt_Foo */
1737 SEQ_OPTS_PRINT("%s", token2str(m->token));
1738 }
1739
1740 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1741 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1742 SEQ_OPTS_PRINT("resuid=%u",
1743 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1744 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1745 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1746 SEQ_OPTS_PRINT("resgid=%u",
1747 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1748 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1749 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1750 SEQ_OPTS_PUTS("errors=remount-ro");
1751 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1752 SEQ_OPTS_PUTS("errors=continue");
1753 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1754 SEQ_OPTS_PUTS("errors=panic");
1755 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1756 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1757 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1758 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1759 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1760 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1761 if (sb->s_flags & MS_I_VERSION)
1762 SEQ_OPTS_PUTS("i_version");
1763 if (nodefs || sbi->s_stripe)
1764 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1765 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1766 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1767 SEQ_OPTS_PUTS("data=journal");
1768 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1769 SEQ_OPTS_PUTS("data=ordered");
1770 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1771 SEQ_OPTS_PUTS("data=writeback");
1772 }
1773 if (nodefs ||
1774 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1775 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1776 sbi->s_inode_readahead_blks);
1777
1778 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1779 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1780 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1781 if (nodefs || sbi->s_max_dir_size_kb)
1782 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1783
1784 ext4_show_quota_options(seq, sb);
1785 return 0;
1786 }
1787
1788 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1789 {
1790 return _ext4_show_options(seq, root->d_sb, 0);
1791 }
1792
1793 static int options_seq_show(struct seq_file *seq, void *offset)
1794 {
1795 struct super_block *sb = seq->private;
1796 int rc;
1797
1798 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1799 rc = _ext4_show_options(seq, sb, 1);
1800 seq_puts(seq, "\n");
1801 return rc;
1802 }
1803
1804 static int options_open_fs(struct inode *inode, struct file *file)
1805 {
1806 return single_open(file, options_seq_show, PDE_DATA(inode));
1807 }
1808
1809 static const struct file_operations ext4_seq_options_fops = {
1810 .owner = THIS_MODULE,
1811 .open = options_open_fs,
1812 .read = seq_read,
1813 .llseek = seq_lseek,
1814 .release = single_release,
1815 };
1816
1817 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1818 int read_only)
1819 {
1820 struct ext4_sb_info *sbi = EXT4_SB(sb);
1821 int res = 0;
1822
1823 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1824 ext4_msg(sb, KERN_ERR, "revision level too high, "
1825 "forcing read-only mode");
1826 res = MS_RDONLY;
1827 }
1828 if (read_only)
1829 goto done;
1830 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1831 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1832 "running e2fsck is recommended");
1833 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1834 ext4_msg(sb, KERN_WARNING,
1835 "warning: mounting fs with errors, "
1836 "running e2fsck is recommended");
1837 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1838 le16_to_cpu(es->s_mnt_count) >=
1839 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1840 ext4_msg(sb, KERN_WARNING,
1841 "warning: maximal mount count reached, "
1842 "running e2fsck is recommended");
1843 else if (le32_to_cpu(es->s_checkinterval) &&
1844 (le32_to_cpu(es->s_lastcheck) +
1845 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1846 ext4_msg(sb, KERN_WARNING,
1847 "warning: checktime reached, "
1848 "running e2fsck is recommended");
1849 if (!sbi->s_journal)
1850 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1851 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1852 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1853 le16_add_cpu(&es->s_mnt_count, 1);
1854 es->s_mtime = cpu_to_le32(get_seconds());
1855 ext4_update_dynamic_rev(sb);
1856 if (sbi->s_journal)
1857 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1858
1859 ext4_commit_super(sb, 1);
1860 done:
1861 if (test_opt(sb, DEBUG))
1862 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1863 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1864 sb->s_blocksize,
1865 sbi->s_groups_count,
1866 EXT4_BLOCKS_PER_GROUP(sb),
1867 EXT4_INODES_PER_GROUP(sb),
1868 sbi->s_mount_opt, sbi->s_mount_opt2);
1869
1870 cleancache_init_fs(sb);
1871 return res;
1872 }
1873
1874 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1875 {
1876 struct ext4_sb_info *sbi = EXT4_SB(sb);
1877 struct flex_groups *new_groups;
1878 int size;
1879
1880 if (!sbi->s_log_groups_per_flex)
1881 return 0;
1882
1883 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1884 if (size <= sbi->s_flex_groups_allocated)
1885 return 0;
1886
1887 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1888 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1889 if (!new_groups) {
1890 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1891 size / (int) sizeof(struct flex_groups));
1892 return -ENOMEM;
1893 }
1894
1895 if (sbi->s_flex_groups) {
1896 memcpy(new_groups, sbi->s_flex_groups,
1897 (sbi->s_flex_groups_allocated *
1898 sizeof(struct flex_groups)));
1899 ext4_kvfree(sbi->s_flex_groups);
1900 }
1901 sbi->s_flex_groups = new_groups;
1902 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1903 return 0;
1904 }
1905
1906 static int ext4_fill_flex_info(struct super_block *sb)
1907 {
1908 struct ext4_sb_info *sbi = EXT4_SB(sb);
1909 struct ext4_group_desc *gdp = NULL;
1910 ext4_group_t flex_group;
1911 unsigned int groups_per_flex = 0;
1912 int i, err;
1913
1914 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1915 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1916 sbi->s_log_groups_per_flex = 0;
1917 return 1;
1918 }
1919 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1920
1921 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1922 if (err)
1923 goto failed;
1924
1925 for (i = 0; i < sbi->s_groups_count; i++) {
1926 gdp = ext4_get_group_desc(sb, i, NULL);
1927
1928 flex_group = ext4_flex_group(sbi, i);
1929 atomic_add(ext4_free_inodes_count(sb, gdp),
1930 &sbi->s_flex_groups[flex_group].free_inodes);
1931 atomic64_add(ext4_free_group_clusters(sb, gdp),
1932 &sbi->s_flex_groups[flex_group].free_clusters);
1933 atomic_add(ext4_used_dirs_count(sb, gdp),
1934 &sbi->s_flex_groups[flex_group].used_dirs);
1935 }
1936
1937 return 1;
1938 failed:
1939 return 0;
1940 }
1941
1942 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1943 struct ext4_group_desc *gdp)
1944 {
1945 int offset;
1946 __u16 crc = 0;
1947 __le32 le_group = cpu_to_le32(block_group);
1948
1949 if ((sbi->s_es->s_feature_ro_compat &
1950 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1951 /* Use new metadata_csum algorithm */
1952 __le16 save_csum;
1953 __u32 csum32;
1954
1955 save_csum = gdp->bg_checksum;
1956 gdp->bg_checksum = 0;
1957 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1958 sizeof(le_group));
1959 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1960 sbi->s_desc_size);
1961 gdp->bg_checksum = save_csum;
1962
1963 crc = csum32 & 0xFFFF;
1964 goto out;
1965 }
1966
1967 /* old crc16 code */
1968 offset = offsetof(struct ext4_group_desc, bg_checksum);
1969
1970 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1971 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1972 crc = crc16(crc, (__u8 *)gdp, offset);
1973 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1974 /* for checksum of struct ext4_group_desc do the rest...*/
1975 if ((sbi->s_es->s_feature_incompat &
1976 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1977 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1978 crc = crc16(crc, (__u8 *)gdp + offset,
1979 le16_to_cpu(sbi->s_es->s_desc_size) -
1980 offset);
1981
1982 out:
1983 return cpu_to_le16(crc);
1984 }
1985
1986 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1987 struct ext4_group_desc *gdp)
1988 {
1989 if (ext4_has_group_desc_csum(sb) &&
1990 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1991 block_group, gdp)))
1992 return 0;
1993
1994 return 1;
1995 }
1996
1997 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1998 struct ext4_group_desc *gdp)
1999 {
2000 if (!ext4_has_group_desc_csum(sb))
2001 return;
2002 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2003 }
2004
2005 /* Called at mount-time, super-block is locked */
2006 static int ext4_check_descriptors(struct super_block *sb,
2007 ext4_group_t *first_not_zeroed)
2008 {
2009 struct ext4_sb_info *sbi = EXT4_SB(sb);
2010 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2011 ext4_fsblk_t last_block;
2012 ext4_fsblk_t block_bitmap;
2013 ext4_fsblk_t inode_bitmap;
2014 ext4_fsblk_t inode_table;
2015 int flexbg_flag = 0;
2016 ext4_group_t i, grp = sbi->s_groups_count;
2017
2018 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2019 flexbg_flag = 1;
2020
2021 ext4_debug("Checking group descriptors");
2022
2023 for (i = 0; i < sbi->s_groups_count; i++) {
2024 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2025
2026 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2027 last_block = ext4_blocks_count(sbi->s_es) - 1;
2028 else
2029 last_block = first_block +
2030 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2031
2032 if ((grp == sbi->s_groups_count) &&
2033 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2034 grp = i;
2035
2036 block_bitmap = ext4_block_bitmap(sb, gdp);
2037 if (block_bitmap < first_block || block_bitmap > last_block) {
2038 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2039 "Block bitmap for group %u not in group "
2040 "(block %llu)!", i, block_bitmap);
2041 return 0;
2042 }
2043 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2044 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2045 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2046 "Inode bitmap for group %u not in group "
2047 "(block %llu)!", i, inode_bitmap);
2048 return 0;
2049 }
2050 inode_table = ext4_inode_table(sb, gdp);
2051 if (inode_table < first_block ||
2052 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2053 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2054 "Inode table for group %u not in group "
2055 "(block %llu)!", i, inode_table);
2056 return 0;
2057 }
2058 ext4_lock_group(sb, i);
2059 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2060 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2061 "Checksum for group %u failed (%u!=%u)",
2062 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2063 gdp)), le16_to_cpu(gdp->bg_checksum));
2064 if (!(sb->s_flags & MS_RDONLY)) {
2065 ext4_unlock_group(sb, i);
2066 return 0;
2067 }
2068 }
2069 ext4_unlock_group(sb, i);
2070 if (!flexbg_flag)
2071 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2072 }
2073 if (NULL != first_not_zeroed)
2074 *first_not_zeroed = grp;
2075
2076 ext4_free_blocks_count_set(sbi->s_es,
2077 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2078 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2079 return 1;
2080 }
2081
2082 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2083 * the superblock) which were deleted from all directories, but held open by
2084 * a process at the time of a crash. We walk the list and try to delete these
2085 * inodes at recovery time (only with a read-write filesystem).
2086 *
2087 * In order to keep the orphan inode chain consistent during traversal (in
2088 * case of crash during recovery), we link each inode into the superblock
2089 * orphan list_head and handle it the same way as an inode deletion during
2090 * normal operation (which journals the operations for us).
2091 *
2092 * We only do an iget() and an iput() on each inode, which is very safe if we
2093 * accidentally point at an in-use or already deleted inode. The worst that
2094 * can happen in this case is that we get a "bit already cleared" message from
2095 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2096 * e2fsck was run on this filesystem, and it must have already done the orphan
2097 * inode cleanup for us, so we can safely abort without any further action.
2098 */
2099 static void ext4_orphan_cleanup(struct super_block *sb,
2100 struct ext4_super_block *es)
2101 {
2102 unsigned int s_flags = sb->s_flags;
2103 int nr_orphans = 0, nr_truncates = 0;
2104 #ifdef CONFIG_QUOTA
2105 int i;
2106 #endif
2107 if (!es->s_last_orphan) {
2108 jbd_debug(4, "no orphan inodes to clean up\n");
2109 return;
2110 }
2111
2112 if (bdev_read_only(sb->s_bdev)) {
2113 ext4_msg(sb, KERN_ERR, "write access "
2114 "unavailable, skipping orphan cleanup");
2115 return;
2116 }
2117
2118 /* Check if feature set would not allow a r/w mount */
2119 if (!ext4_feature_set_ok(sb, 0)) {
2120 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2121 "unknown ROCOMPAT features");
2122 return;
2123 }
2124
2125 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2126 /* don't clear list on RO mount w/ errors */
2127 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2128 jbd_debug(1, "Errors on filesystem, "
2129 "clearing orphan list.\n");
2130 es->s_last_orphan = 0;
2131 }
2132 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2133 return;
2134 }
2135
2136 if (s_flags & MS_RDONLY) {
2137 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2138 sb->s_flags &= ~MS_RDONLY;
2139 }
2140 #ifdef CONFIG_QUOTA
2141 /* Needed for iput() to work correctly and not trash data */
2142 sb->s_flags |= MS_ACTIVE;
2143 /* Turn on quotas so that they are updated correctly */
2144 for (i = 0; i < MAXQUOTAS; i++) {
2145 if (EXT4_SB(sb)->s_qf_names[i]) {
2146 int ret = ext4_quota_on_mount(sb, i);
2147 if (ret < 0)
2148 ext4_msg(sb, KERN_ERR,
2149 "Cannot turn on journaled "
2150 "quota: error %d", ret);
2151 }
2152 }
2153 #endif
2154
2155 while (es->s_last_orphan) {
2156 struct inode *inode;
2157
2158 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2159 if (IS_ERR(inode)) {
2160 es->s_last_orphan = 0;
2161 break;
2162 }
2163
2164 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2165 dquot_initialize(inode);
2166 if (inode->i_nlink) {
2167 ext4_msg(sb, KERN_DEBUG,
2168 "%s: truncating inode %lu to %lld bytes",
2169 __func__, inode->i_ino, inode->i_size);
2170 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2171 inode->i_ino, inode->i_size);
2172 mutex_lock(&inode->i_mutex);
2173 ext4_truncate(inode);
2174 mutex_unlock(&inode->i_mutex);
2175 nr_truncates++;
2176 } else {
2177 ext4_msg(sb, KERN_DEBUG,
2178 "%s: deleting unreferenced inode %lu",
2179 __func__, inode->i_ino);
2180 jbd_debug(2, "deleting unreferenced inode %lu\n",
2181 inode->i_ino);
2182 nr_orphans++;
2183 }
2184 iput(inode); /* The delete magic happens here! */
2185 }
2186
2187 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2188
2189 if (nr_orphans)
2190 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2191 PLURAL(nr_orphans));
2192 if (nr_truncates)
2193 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2194 PLURAL(nr_truncates));
2195 #ifdef CONFIG_QUOTA
2196 /* Turn quotas off */
2197 for (i = 0; i < MAXQUOTAS; i++) {
2198 if (sb_dqopt(sb)->files[i])
2199 dquot_quota_off(sb, i);
2200 }
2201 #endif
2202 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2203 }
2204
2205 /*
2206 * Maximal extent format file size.
2207 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2208 * extent format containers, within a sector_t, and within i_blocks
2209 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2210 * so that won't be a limiting factor.
2211 *
2212 * However there is other limiting factor. We do store extents in the form
2213 * of starting block and length, hence the resulting length of the extent
2214 * covering maximum file size must fit into on-disk format containers as
2215 * well. Given that length is always by 1 unit bigger than max unit (because
2216 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2217 *
2218 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2219 */
2220 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2221 {
2222 loff_t res;
2223 loff_t upper_limit = MAX_LFS_FILESIZE;
2224
2225 /* small i_blocks in vfs inode? */
2226 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2227 /*
2228 * CONFIG_LBDAF is not enabled implies the inode
2229 * i_block represent total blocks in 512 bytes
2230 * 32 == size of vfs inode i_blocks * 8
2231 */
2232 upper_limit = (1LL << 32) - 1;
2233
2234 /* total blocks in file system block size */
2235 upper_limit >>= (blkbits - 9);
2236 upper_limit <<= blkbits;
2237 }
2238
2239 /*
2240 * 32-bit extent-start container, ee_block. We lower the maxbytes
2241 * by one fs block, so ee_len can cover the extent of maximum file
2242 * size
2243 */
2244 res = (1LL << 32) - 1;
2245 res <<= blkbits;
2246
2247 /* Sanity check against vm- & vfs- imposed limits */
2248 if (res > upper_limit)
2249 res = upper_limit;
2250
2251 return res;
2252 }
2253
2254 /*
2255 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2256 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2257 * We need to be 1 filesystem block less than the 2^48 sector limit.
2258 */
2259 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2260 {
2261 loff_t res = EXT4_NDIR_BLOCKS;
2262 int meta_blocks;
2263 loff_t upper_limit;
2264 /* This is calculated to be the largest file size for a dense, block
2265 * mapped file such that the file's total number of 512-byte sectors,
2266 * including data and all indirect blocks, does not exceed (2^48 - 1).
2267 *
2268 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2269 * number of 512-byte sectors of the file.
2270 */
2271
2272 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2273 /*
2274 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2275 * the inode i_block field represents total file blocks in
2276 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2277 */
2278 upper_limit = (1LL << 32) - 1;
2279
2280 /* total blocks in file system block size */
2281 upper_limit >>= (bits - 9);
2282
2283 } else {
2284 /*
2285 * We use 48 bit ext4_inode i_blocks
2286 * With EXT4_HUGE_FILE_FL set the i_blocks
2287 * represent total number of blocks in
2288 * file system block size
2289 */
2290 upper_limit = (1LL << 48) - 1;
2291
2292 }
2293
2294 /* indirect blocks */
2295 meta_blocks = 1;
2296 /* double indirect blocks */
2297 meta_blocks += 1 + (1LL << (bits-2));
2298 /* tripple indirect blocks */
2299 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2300
2301 upper_limit -= meta_blocks;
2302 upper_limit <<= bits;
2303
2304 res += 1LL << (bits-2);
2305 res += 1LL << (2*(bits-2));
2306 res += 1LL << (3*(bits-2));
2307 res <<= bits;
2308 if (res > upper_limit)
2309 res = upper_limit;
2310
2311 if (res > MAX_LFS_FILESIZE)
2312 res = MAX_LFS_FILESIZE;
2313
2314 return res;
2315 }
2316
2317 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2318 ext4_fsblk_t logical_sb_block, int nr)
2319 {
2320 struct ext4_sb_info *sbi = EXT4_SB(sb);
2321 ext4_group_t bg, first_meta_bg;
2322 int has_super = 0;
2323
2324 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2325
2326 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2327 nr < first_meta_bg)
2328 return logical_sb_block + nr + 1;
2329 bg = sbi->s_desc_per_block * nr;
2330 if (ext4_bg_has_super(sb, bg))
2331 has_super = 1;
2332
2333 return (has_super + ext4_group_first_block_no(sb, bg));
2334 }
2335
2336 /**
2337 * ext4_get_stripe_size: Get the stripe size.
2338 * @sbi: In memory super block info
2339 *
2340 * If we have specified it via mount option, then
2341 * use the mount option value. If the value specified at mount time is
2342 * greater than the blocks per group use the super block value.
2343 * If the super block value is greater than blocks per group return 0.
2344 * Allocator needs it be less than blocks per group.
2345 *
2346 */
2347 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2348 {
2349 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2350 unsigned long stripe_width =
2351 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2352 int ret;
2353
2354 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2355 ret = sbi->s_stripe;
2356 else if (stripe_width <= sbi->s_blocks_per_group)
2357 ret = stripe_width;
2358 else if (stride <= sbi->s_blocks_per_group)
2359 ret = stride;
2360 else
2361 ret = 0;
2362
2363 /*
2364 * If the stripe width is 1, this makes no sense and
2365 * we set it to 0 to turn off stripe handling code.
2366 */
2367 if (ret <= 1)
2368 ret = 0;
2369
2370 return ret;
2371 }
2372
2373 /* sysfs supprt */
2374
2375 struct ext4_attr {
2376 struct attribute attr;
2377 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2378 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2379 const char *, size_t);
2380 int offset;
2381 };
2382
2383 static int parse_strtoull(const char *buf,
2384 unsigned long long max, unsigned long long *value)
2385 {
2386 int ret;
2387
2388 ret = kstrtoull(skip_spaces(buf), 0, value);
2389 if (!ret && *value > max)
2390 ret = -EINVAL;
2391 return ret;
2392 }
2393
2394 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2395 struct ext4_sb_info *sbi,
2396 char *buf)
2397 {
2398 return snprintf(buf, PAGE_SIZE, "%llu\n",
2399 (s64) EXT4_C2B(sbi,
2400 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2401 }
2402
2403 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2404 struct ext4_sb_info *sbi, char *buf)
2405 {
2406 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2407
2408 if (!sb->s_bdev->bd_part)
2409 return snprintf(buf, PAGE_SIZE, "0\n");
2410 return snprintf(buf, PAGE_SIZE, "%lu\n",
2411 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2412 sbi->s_sectors_written_start) >> 1);
2413 }
2414
2415 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2416 struct ext4_sb_info *sbi, char *buf)
2417 {
2418 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2419
2420 if (!sb->s_bdev->bd_part)
2421 return snprintf(buf, PAGE_SIZE, "0\n");
2422 return snprintf(buf, PAGE_SIZE, "%llu\n",
2423 (unsigned long long)(sbi->s_kbytes_written +
2424 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2425 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2426 }
2427
2428 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2429 struct ext4_sb_info *sbi,
2430 const char *buf, size_t count)
2431 {
2432 unsigned long t;
2433 int ret;
2434
2435 ret = kstrtoul(skip_spaces(buf), 0, &t);
2436 if (ret)
2437 return ret;
2438
2439 if (t && (!is_power_of_2(t) || t > 0x40000000))
2440 return -EINVAL;
2441
2442 sbi->s_inode_readahead_blks = t;
2443 return count;
2444 }
2445
2446 static ssize_t sbi_ui_show(struct ext4_attr *a,
2447 struct ext4_sb_info *sbi, char *buf)
2448 {
2449 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2450
2451 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2452 }
2453
2454 static ssize_t sbi_ui_store(struct ext4_attr *a,
2455 struct ext4_sb_info *sbi,
2456 const char *buf, size_t count)
2457 {
2458 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2459 unsigned long t;
2460 int ret;
2461
2462 ret = kstrtoul(skip_spaces(buf), 0, &t);
2463 if (ret)
2464 return ret;
2465 *ui = t;
2466 return count;
2467 }
2468
2469 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2470 struct ext4_sb_info *sbi, char *buf)
2471 {
2472 return snprintf(buf, PAGE_SIZE, "%llu\n",
2473 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2474 }
2475
2476 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2477 struct ext4_sb_info *sbi,
2478 const char *buf, size_t count)
2479 {
2480 unsigned long long val;
2481 int ret;
2482
2483 if (parse_strtoull(buf, -1ULL, &val))
2484 return -EINVAL;
2485 ret = ext4_reserve_clusters(sbi, val);
2486
2487 return ret ? ret : count;
2488 }
2489
2490 static ssize_t trigger_test_error(struct ext4_attr *a,
2491 struct ext4_sb_info *sbi,
2492 const char *buf, size_t count)
2493 {
2494 int len = count;
2495
2496 if (!capable(CAP_SYS_ADMIN))
2497 return -EPERM;
2498
2499 if (len && buf[len-1] == '\n')
2500 len--;
2501
2502 if (len)
2503 ext4_error(sbi->s_sb, "%.*s", len, buf);
2504 return count;
2505 }
2506
2507 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2508 static struct ext4_attr ext4_attr_##_name = { \
2509 .attr = {.name = __stringify(_name), .mode = _mode }, \
2510 .show = _show, \
2511 .store = _store, \
2512 .offset = offsetof(struct ext4_sb_info, _elname), \
2513 }
2514 #define EXT4_ATTR(name, mode, show, store) \
2515 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2516
2517 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2518 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2519 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2520 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2521 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2522 #define ATTR_LIST(name) &ext4_attr_##name.attr
2523
2524 EXT4_RO_ATTR(delayed_allocation_blocks);
2525 EXT4_RO_ATTR(session_write_kbytes);
2526 EXT4_RO_ATTR(lifetime_write_kbytes);
2527 EXT4_RW_ATTR(reserved_clusters);
2528 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2529 inode_readahead_blks_store, s_inode_readahead_blks);
2530 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2531 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2532 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2533 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2534 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2535 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2536 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2537 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2538 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2539 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2540
2541 static struct attribute *ext4_attrs[] = {
2542 ATTR_LIST(delayed_allocation_blocks),
2543 ATTR_LIST(session_write_kbytes),
2544 ATTR_LIST(lifetime_write_kbytes),
2545 ATTR_LIST(reserved_clusters),
2546 ATTR_LIST(inode_readahead_blks),
2547 ATTR_LIST(inode_goal),
2548 ATTR_LIST(mb_stats),
2549 ATTR_LIST(mb_max_to_scan),
2550 ATTR_LIST(mb_min_to_scan),
2551 ATTR_LIST(mb_order2_req),
2552 ATTR_LIST(mb_stream_req),
2553 ATTR_LIST(mb_group_prealloc),
2554 ATTR_LIST(max_writeback_mb_bump),
2555 ATTR_LIST(extent_max_zeroout_kb),
2556 ATTR_LIST(trigger_fs_error),
2557 NULL,
2558 };
2559
2560 /* Features this copy of ext4 supports */
2561 EXT4_INFO_ATTR(lazy_itable_init);
2562 EXT4_INFO_ATTR(batched_discard);
2563 EXT4_INFO_ATTR(meta_bg_resize);
2564
2565 static struct attribute *ext4_feat_attrs[] = {
2566 ATTR_LIST(lazy_itable_init),
2567 ATTR_LIST(batched_discard),
2568 ATTR_LIST(meta_bg_resize),
2569 NULL,
2570 };
2571
2572 static ssize_t ext4_attr_show(struct kobject *kobj,
2573 struct attribute *attr, char *buf)
2574 {
2575 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2576 s_kobj);
2577 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2578
2579 return a->show ? a->show(a, sbi, buf) : 0;
2580 }
2581
2582 static ssize_t ext4_attr_store(struct kobject *kobj,
2583 struct attribute *attr,
2584 const char *buf, size_t len)
2585 {
2586 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2587 s_kobj);
2588 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2589
2590 return a->store ? a->store(a, sbi, buf, len) : 0;
2591 }
2592
2593 static void ext4_sb_release(struct kobject *kobj)
2594 {
2595 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2596 s_kobj);
2597 complete(&sbi->s_kobj_unregister);
2598 }
2599
2600 static const struct sysfs_ops ext4_attr_ops = {
2601 .show = ext4_attr_show,
2602 .store = ext4_attr_store,
2603 };
2604
2605 static struct kobj_type ext4_ktype = {
2606 .default_attrs = ext4_attrs,
2607 .sysfs_ops = &ext4_attr_ops,
2608 .release = ext4_sb_release,
2609 };
2610
2611 static void ext4_feat_release(struct kobject *kobj)
2612 {
2613 complete(&ext4_feat->f_kobj_unregister);
2614 }
2615
2616 static struct kobj_type ext4_feat_ktype = {
2617 .default_attrs = ext4_feat_attrs,
2618 .sysfs_ops = &ext4_attr_ops,
2619 .release = ext4_feat_release,
2620 };
2621
2622 /*
2623 * Check whether this filesystem can be mounted based on
2624 * the features present and the RDONLY/RDWR mount requested.
2625 * Returns 1 if this filesystem can be mounted as requested,
2626 * 0 if it cannot be.
2627 */
2628 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2629 {
2630 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2631 ext4_msg(sb, KERN_ERR,
2632 "Couldn't mount because of "
2633 "unsupported optional features (%x)",
2634 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2635 ~EXT4_FEATURE_INCOMPAT_SUPP));
2636 return 0;
2637 }
2638
2639 if (readonly)
2640 return 1;
2641
2642 /* Check that feature set is OK for a read-write mount */
2643 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2644 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2645 "unsupported optional features (%x)",
2646 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2647 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2648 return 0;
2649 }
2650 /*
2651 * Large file size enabled file system can only be mounted
2652 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2653 */
2654 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2655 if (sizeof(blkcnt_t) < sizeof(u64)) {
2656 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2657 "cannot be mounted RDWR without "
2658 "CONFIG_LBDAF");
2659 return 0;
2660 }
2661 }
2662 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2663 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2664 ext4_msg(sb, KERN_ERR,
2665 "Can't support bigalloc feature without "
2666 "extents feature\n");
2667 return 0;
2668 }
2669
2670 #ifndef CONFIG_QUOTA
2671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2672 !readonly) {
2673 ext4_msg(sb, KERN_ERR,
2674 "Filesystem with quota feature cannot be mounted RDWR "
2675 "without CONFIG_QUOTA");
2676 return 0;
2677 }
2678 #endif /* CONFIG_QUOTA */
2679 return 1;
2680 }
2681
2682 /*
2683 * This function is called once a day if we have errors logged
2684 * on the file system
2685 */
2686 static void print_daily_error_info(unsigned long arg)
2687 {
2688 struct super_block *sb = (struct super_block *) arg;
2689 struct ext4_sb_info *sbi;
2690 struct ext4_super_block *es;
2691
2692 sbi = EXT4_SB(sb);
2693 es = sbi->s_es;
2694
2695 if (es->s_error_count)
2696 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2697 le32_to_cpu(es->s_error_count));
2698 if (es->s_first_error_time) {
2699 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2700 sb->s_id, le32_to_cpu(es->s_first_error_time),
2701 (int) sizeof(es->s_first_error_func),
2702 es->s_first_error_func,
2703 le32_to_cpu(es->s_first_error_line));
2704 if (es->s_first_error_ino)
2705 printk(": inode %u",
2706 le32_to_cpu(es->s_first_error_ino));
2707 if (es->s_first_error_block)
2708 printk(": block %llu", (unsigned long long)
2709 le64_to_cpu(es->s_first_error_block));
2710 printk("\n");
2711 }
2712 if (es->s_last_error_time) {
2713 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2714 sb->s_id, le32_to_cpu(es->s_last_error_time),
2715 (int) sizeof(es->s_last_error_func),
2716 es->s_last_error_func,
2717 le32_to_cpu(es->s_last_error_line));
2718 if (es->s_last_error_ino)
2719 printk(": inode %u",
2720 le32_to_cpu(es->s_last_error_ino));
2721 if (es->s_last_error_block)
2722 printk(": block %llu", (unsigned long long)
2723 le64_to_cpu(es->s_last_error_block));
2724 printk("\n");
2725 }
2726 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2727 }
2728
2729 /* Find next suitable group and run ext4_init_inode_table */
2730 static int ext4_run_li_request(struct ext4_li_request *elr)
2731 {
2732 struct ext4_group_desc *gdp = NULL;
2733 ext4_group_t group, ngroups;
2734 struct super_block *sb;
2735 unsigned long timeout = 0;
2736 int ret = 0;
2737
2738 sb = elr->lr_super;
2739 ngroups = EXT4_SB(sb)->s_groups_count;
2740
2741 sb_start_write(sb);
2742 for (group = elr->lr_next_group; group < ngroups; group++) {
2743 gdp = ext4_get_group_desc(sb, group, NULL);
2744 if (!gdp) {
2745 ret = 1;
2746 break;
2747 }
2748
2749 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2750 break;
2751 }
2752
2753 if (group >= ngroups)
2754 ret = 1;
2755
2756 if (!ret) {
2757 timeout = jiffies;
2758 ret = ext4_init_inode_table(sb, group,
2759 elr->lr_timeout ? 0 : 1);
2760 if (elr->lr_timeout == 0) {
2761 timeout = (jiffies - timeout) *
2762 elr->lr_sbi->s_li_wait_mult;
2763 elr->lr_timeout = timeout;
2764 }
2765 elr->lr_next_sched = jiffies + elr->lr_timeout;
2766 elr->lr_next_group = group + 1;
2767 }
2768 sb_end_write(sb);
2769
2770 return ret;
2771 }
2772
2773 /*
2774 * Remove lr_request from the list_request and free the
2775 * request structure. Should be called with li_list_mtx held
2776 */
2777 static void ext4_remove_li_request(struct ext4_li_request *elr)
2778 {
2779 struct ext4_sb_info *sbi;
2780
2781 if (!elr)
2782 return;
2783
2784 sbi = elr->lr_sbi;
2785
2786 list_del(&elr->lr_request);
2787 sbi->s_li_request = NULL;
2788 kfree(elr);
2789 }
2790
2791 static void ext4_unregister_li_request(struct super_block *sb)
2792 {
2793 mutex_lock(&ext4_li_mtx);
2794 if (!ext4_li_info) {
2795 mutex_unlock(&ext4_li_mtx);
2796 return;
2797 }
2798
2799 mutex_lock(&ext4_li_info->li_list_mtx);
2800 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2801 mutex_unlock(&ext4_li_info->li_list_mtx);
2802 mutex_unlock(&ext4_li_mtx);
2803 }
2804
2805 static struct task_struct *ext4_lazyinit_task;
2806
2807 /*
2808 * This is the function where ext4lazyinit thread lives. It walks
2809 * through the request list searching for next scheduled filesystem.
2810 * When such a fs is found, run the lazy initialization request
2811 * (ext4_rn_li_request) and keep track of the time spend in this
2812 * function. Based on that time we compute next schedule time of
2813 * the request. When walking through the list is complete, compute
2814 * next waking time and put itself into sleep.
2815 */
2816 static int ext4_lazyinit_thread(void *arg)
2817 {
2818 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2819 struct list_head *pos, *n;
2820 struct ext4_li_request *elr;
2821 unsigned long next_wakeup, cur;
2822
2823 BUG_ON(NULL == eli);
2824
2825 cont_thread:
2826 while (true) {
2827 next_wakeup = MAX_JIFFY_OFFSET;
2828
2829 mutex_lock(&eli->li_list_mtx);
2830 if (list_empty(&eli->li_request_list)) {
2831 mutex_unlock(&eli->li_list_mtx);
2832 goto exit_thread;
2833 }
2834
2835 list_for_each_safe(pos, n, &eli->li_request_list) {
2836 elr = list_entry(pos, struct ext4_li_request,
2837 lr_request);
2838
2839 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2840 if (ext4_run_li_request(elr) != 0) {
2841 /* error, remove the lazy_init job */
2842 ext4_remove_li_request(elr);
2843 continue;
2844 }
2845 }
2846
2847 if (time_before(elr->lr_next_sched, next_wakeup))
2848 next_wakeup = elr->lr_next_sched;
2849 }
2850 mutex_unlock(&eli->li_list_mtx);
2851
2852 try_to_freeze();
2853
2854 cur = jiffies;
2855 if ((time_after_eq(cur, next_wakeup)) ||
2856 (MAX_JIFFY_OFFSET == next_wakeup)) {
2857 cond_resched();
2858 continue;
2859 }
2860
2861 schedule_timeout_interruptible(next_wakeup - cur);
2862
2863 if (kthread_should_stop()) {
2864 ext4_clear_request_list();
2865 goto exit_thread;
2866 }
2867 }
2868
2869 exit_thread:
2870 /*
2871 * It looks like the request list is empty, but we need
2872 * to check it under the li_list_mtx lock, to prevent any
2873 * additions into it, and of course we should lock ext4_li_mtx
2874 * to atomically free the list and ext4_li_info, because at
2875 * this point another ext4 filesystem could be registering
2876 * new one.
2877 */
2878 mutex_lock(&ext4_li_mtx);
2879 mutex_lock(&eli->li_list_mtx);
2880 if (!list_empty(&eli->li_request_list)) {
2881 mutex_unlock(&eli->li_list_mtx);
2882 mutex_unlock(&ext4_li_mtx);
2883 goto cont_thread;
2884 }
2885 mutex_unlock(&eli->li_list_mtx);
2886 kfree(ext4_li_info);
2887 ext4_li_info = NULL;
2888 mutex_unlock(&ext4_li_mtx);
2889
2890 return 0;
2891 }
2892
2893 static void ext4_clear_request_list(void)
2894 {
2895 struct list_head *pos, *n;
2896 struct ext4_li_request *elr;
2897
2898 mutex_lock(&ext4_li_info->li_list_mtx);
2899 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2900 elr = list_entry(pos, struct ext4_li_request,
2901 lr_request);
2902 ext4_remove_li_request(elr);
2903 }
2904 mutex_unlock(&ext4_li_info->li_list_mtx);
2905 }
2906
2907 static int ext4_run_lazyinit_thread(void)
2908 {
2909 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2910 ext4_li_info, "ext4lazyinit");
2911 if (IS_ERR(ext4_lazyinit_task)) {
2912 int err = PTR_ERR(ext4_lazyinit_task);
2913 ext4_clear_request_list();
2914 kfree(ext4_li_info);
2915 ext4_li_info = NULL;
2916 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2917 "initialization thread\n",
2918 err);
2919 return err;
2920 }
2921 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2922 return 0;
2923 }
2924
2925 /*
2926 * Check whether it make sense to run itable init. thread or not.
2927 * If there is at least one uninitialized inode table, return
2928 * corresponding group number, else the loop goes through all
2929 * groups and return total number of groups.
2930 */
2931 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2932 {
2933 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2934 struct ext4_group_desc *gdp = NULL;
2935
2936 for (group = 0; group < ngroups; group++) {
2937 gdp = ext4_get_group_desc(sb, group, NULL);
2938 if (!gdp)
2939 continue;
2940
2941 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2942 break;
2943 }
2944
2945 return group;
2946 }
2947
2948 static int ext4_li_info_new(void)
2949 {
2950 struct ext4_lazy_init *eli = NULL;
2951
2952 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2953 if (!eli)
2954 return -ENOMEM;
2955
2956 INIT_LIST_HEAD(&eli->li_request_list);
2957 mutex_init(&eli->li_list_mtx);
2958
2959 eli->li_state |= EXT4_LAZYINIT_QUIT;
2960
2961 ext4_li_info = eli;
2962
2963 return 0;
2964 }
2965
2966 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2967 ext4_group_t start)
2968 {
2969 struct ext4_sb_info *sbi = EXT4_SB(sb);
2970 struct ext4_li_request *elr;
2971 unsigned long rnd;
2972
2973 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2974 if (!elr)
2975 return NULL;
2976
2977 elr->lr_super = sb;
2978 elr->lr_sbi = sbi;
2979 elr->lr_next_group = start;
2980
2981 /*
2982 * Randomize first schedule time of the request to
2983 * spread the inode table initialization requests
2984 * better.
2985 */
2986 get_random_bytes(&rnd, sizeof(rnd));
2987 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2988 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2989
2990 return elr;
2991 }
2992
2993 int ext4_register_li_request(struct super_block *sb,
2994 ext4_group_t first_not_zeroed)
2995 {
2996 struct ext4_sb_info *sbi = EXT4_SB(sb);
2997 struct ext4_li_request *elr = NULL;
2998 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2999 int ret = 0;
3000
3001 mutex_lock(&ext4_li_mtx);
3002 if (sbi->s_li_request != NULL) {
3003 /*
3004 * Reset timeout so it can be computed again, because
3005 * s_li_wait_mult might have changed.
3006 */
3007 sbi->s_li_request->lr_timeout = 0;
3008 goto out;
3009 }
3010
3011 if (first_not_zeroed == ngroups ||
3012 (sb->s_flags & MS_RDONLY) ||
3013 !test_opt(sb, INIT_INODE_TABLE))
3014 goto out;
3015
3016 elr = ext4_li_request_new(sb, first_not_zeroed);
3017 if (!elr) {
3018 ret = -ENOMEM;
3019 goto out;
3020 }
3021
3022 if (NULL == ext4_li_info) {
3023 ret = ext4_li_info_new();
3024 if (ret)
3025 goto out;
3026 }
3027
3028 mutex_lock(&ext4_li_info->li_list_mtx);
3029 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3030 mutex_unlock(&ext4_li_info->li_list_mtx);
3031
3032 sbi->s_li_request = elr;
3033 /*
3034 * set elr to NULL here since it has been inserted to
3035 * the request_list and the removal and free of it is
3036 * handled by ext4_clear_request_list from now on.
3037 */
3038 elr = NULL;
3039
3040 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3041 ret = ext4_run_lazyinit_thread();
3042 if (ret)
3043 goto out;
3044 }
3045 out:
3046 mutex_unlock(&ext4_li_mtx);
3047 if (ret)
3048 kfree(elr);
3049 return ret;
3050 }
3051
3052 /*
3053 * We do not need to lock anything since this is called on
3054 * module unload.
3055 */
3056 static void ext4_destroy_lazyinit_thread(void)
3057 {
3058 /*
3059 * If thread exited earlier
3060 * there's nothing to be done.
3061 */
3062 if (!ext4_li_info || !ext4_lazyinit_task)
3063 return;
3064
3065 kthread_stop(ext4_lazyinit_task);
3066 }
3067
3068 static int set_journal_csum_feature_set(struct super_block *sb)
3069 {
3070 int ret = 1;
3071 int compat, incompat;
3072 struct ext4_sb_info *sbi = EXT4_SB(sb);
3073
3074 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3075 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3076 /* journal checksum v2 */
3077 compat = 0;
3078 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3079 } else {
3080 /* journal checksum v1 */
3081 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3082 incompat = 0;
3083 }
3084
3085 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3086 ret = jbd2_journal_set_features(sbi->s_journal,
3087 compat, 0,
3088 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3089 incompat);
3090 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3091 ret = jbd2_journal_set_features(sbi->s_journal,
3092 compat, 0,
3093 incompat);
3094 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3095 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3096 } else {
3097 jbd2_journal_clear_features(sbi->s_journal,
3098 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3099 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3100 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3101 }
3102
3103 return ret;
3104 }
3105
3106 /*
3107 * Note: calculating the overhead so we can be compatible with
3108 * historical BSD practice is quite difficult in the face of
3109 * clusters/bigalloc. This is because multiple metadata blocks from
3110 * different block group can end up in the same allocation cluster.
3111 * Calculating the exact overhead in the face of clustered allocation
3112 * requires either O(all block bitmaps) in memory or O(number of block
3113 * groups**2) in time. We will still calculate the superblock for
3114 * older file systems --- and if we come across with a bigalloc file
3115 * system with zero in s_overhead_clusters the estimate will be close to
3116 * correct especially for very large cluster sizes --- but for newer
3117 * file systems, it's better to calculate this figure once at mkfs
3118 * time, and store it in the superblock. If the superblock value is
3119 * present (even for non-bigalloc file systems), we will use it.
3120 */
3121 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3122 char *buf)
3123 {
3124 struct ext4_sb_info *sbi = EXT4_SB(sb);
3125 struct ext4_group_desc *gdp;
3126 ext4_fsblk_t first_block, last_block, b;
3127 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3128 int s, j, count = 0;
3129
3130 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3131 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3132 sbi->s_itb_per_group + 2);
3133
3134 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3135 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3136 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3137 for (i = 0; i < ngroups; i++) {
3138 gdp = ext4_get_group_desc(sb, i, NULL);
3139 b = ext4_block_bitmap(sb, gdp);
3140 if (b >= first_block && b <= last_block) {
3141 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3142 count++;
3143 }
3144 b = ext4_inode_bitmap(sb, gdp);
3145 if (b >= first_block && b <= last_block) {
3146 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3147 count++;
3148 }
3149 b = ext4_inode_table(sb, gdp);
3150 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3151 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3152 int c = EXT4_B2C(sbi, b - first_block);
3153 ext4_set_bit(c, buf);
3154 count++;
3155 }
3156 if (i != grp)
3157 continue;
3158 s = 0;
3159 if (ext4_bg_has_super(sb, grp)) {
3160 ext4_set_bit(s++, buf);
3161 count++;
3162 }
3163 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3164 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3165 count++;
3166 }
3167 }
3168 if (!count)
3169 return 0;
3170 return EXT4_CLUSTERS_PER_GROUP(sb) -
3171 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3172 }
3173
3174 /*
3175 * Compute the overhead and stash it in sbi->s_overhead
3176 */
3177 int ext4_calculate_overhead(struct super_block *sb)
3178 {
3179 struct ext4_sb_info *sbi = EXT4_SB(sb);
3180 struct ext4_super_block *es = sbi->s_es;
3181 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3182 ext4_fsblk_t overhead = 0;
3183 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3184
3185 if (!buf)
3186 return -ENOMEM;
3187
3188 /*
3189 * Compute the overhead (FS structures). This is constant
3190 * for a given filesystem unless the number of block groups
3191 * changes so we cache the previous value until it does.
3192 */
3193
3194 /*
3195 * All of the blocks before first_data_block are overhead
3196 */
3197 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3198
3199 /*
3200 * Add the overhead found in each block group
3201 */
3202 for (i = 0; i < ngroups; i++) {
3203 int blks;
3204
3205 blks = count_overhead(sb, i, buf);
3206 overhead += blks;
3207 if (blks)
3208 memset(buf, 0, PAGE_SIZE);
3209 cond_resched();
3210 }
3211 /* Add the journal blocks as well */
3212 if (sbi->s_journal)
3213 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3214
3215 sbi->s_overhead = overhead;
3216 smp_wmb();
3217 free_page((unsigned long) buf);
3218 return 0;
3219 }
3220
3221
3222 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi)
3223 {
3224 ext4_fsblk_t resv_clusters;
3225
3226 /*
3227 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3228 * This should cover the situations where we can not afford to run
3229 * out of space like for example punch hole, or converting
3230 * uninitialized extents in delalloc path. In most cases such
3231 * allocation would require 1, or 2 blocks, higher numbers are
3232 * very rare.
3233 */
3234 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits;
3235
3236 do_div(resv_clusters, 50);
3237 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3238
3239 return resv_clusters;
3240 }
3241
3242
3243 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3244 {
3245 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3246 sbi->s_cluster_bits;
3247
3248 if (count >= clusters)
3249 return -EINVAL;
3250
3251 atomic64_set(&sbi->s_resv_clusters, count);
3252 return 0;
3253 }
3254
3255 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3256 {
3257 char *orig_data = kstrdup(data, GFP_KERNEL);
3258 struct buffer_head *bh;
3259 struct ext4_super_block *es = NULL;
3260 struct ext4_sb_info *sbi;
3261 ext4_fsblk_t block;
3262 ext4_fsblk_t sb_block = get_sb_block(&data);
3263 ext4_fsblk_t logical_sb_block;
3264 unsigned long offset = 0;
3265 unsigned long journal_devnum = 0;
3266 unsigned long def_mount_opts;
3267 struct inode *root;
3268 char *cp;
3269 const char *descr;
3270 int ret = -ENOMEM;
3271 int blocksize, clustersize;
3272 unsigned int db_count;
3273 unsigned int i;
3274 int needs_recovery, has_huge_files, has_bigalloc;
3275 __u64 blocks_count;
3276 int err = 0;
3277 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3278 ext4_group_t first_not_zeroed;
3279
3280 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3281 if (!sbi)
3282 goto out_free_orig;
3283
3284 sbi->s_blockgroup_lock =
3285 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3286 if (!sbi->s_blockgroup_lock) {
3287 kfree(sbi);
3288 goto out_free_orig;
3289 }
3290 sb->s_fs_info = sbi;
3291 sbi->s_sb = sb;
3292 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3293 sbi->s_sb_block = sb_block;
3294 if (sb->s_bdev->bd_part)
3295 sbi->s_sectors_written_start =
3296 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3297
3298 /* Cleanup superblock name */
3299 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3300 *cp = '!';
3301
3302 /* -EINVAL is default */
3303 ret = -EINVAL;
3304 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3305 if (!blocksize) {
3306 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3307 goto out_fail;
3308 }
3309
3310 /*
3311 * The ext4 superblock will not be buffer aligned for other than 1kB
3312 * block sizes. We need to calculate the offset from buffer start.
3313 */
3314 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3315 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3316 offset = do_div(logical_sb_block, blocksize);
3317 } else {
3318 logical_sb_block = sb_block;
3319 }
3320
3321 if (!(bh = sb_bread(sb, logical_sb_block))) {
3322 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3323 goto out_fail;
3324 }
3325 /*
3326 * Note: s_es must be initialized as soon as possible because
3327 * some ext4 macro-instructions depend on its value
3328 */
3329 es = (struct ext4_super_block *) (bh->b_data + offset);
3330 sbi->s_es = es;
3331 sb->s_magic = le16_to_cpu(es->s_magic);
3332 if (sb->s_magic != EXT4_SUPER_MAGIC)
3333 goto cantfind_ext4;
3334 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3335
3336 /* Warn if metadata_csum and gdt_csum are both set. */
3337 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3338 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3339 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3340 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3341 "redundant flags; please run fsck.");
3342
3343 /* Check for a known checksum algorithm */
3344 if (!ext4_verify_csum_type(sb, es)) {
3345 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3346 "unknown checksum algorithm.");
3347 silent = 1;
3348 goto cantfind_ext4;
3349 }
3350
3351 /* Load the checksum driver */
3352 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3353 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3354 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3355 if (IS_ERR(sbi->s_chksum_driver)) {
3356 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3357 ret = PTR_ERR(sbi->s_chksum_driver);
3358 sbi->s_chksum_driver = NULL;
3359 goto failed_mount;
3360 }
3361 }
3362
3363 /* Check superblock checksum */
3364 if (!ext4_superblock_csum_verify(sb, es)) {
3365 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3366 "invalid superblock checksum. Run e2fsck?");
3367 silent = 1;
3368 goto cantfind_ext4;
3369 }
3370
3371 /* Precompute checksum seed for all metadata */
3372 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3373 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3374 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3375 sizeof(es->s_uuid));
3376
3377 /* Set defaults before we parse the mount options */
3378 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3379 set_opt(sb, INIT_INODE_TABLE);
3380 if (def_mount_opts & EXT4_DEFM_DEBUG)
3381 set_opt(sb, DEBUG);
3382 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3383 set_opt(sb, GRPID);
3384 if (def_mount_opts & EXT4_DEFM_UID16)
3385 set_opt(sb, NO_UID32);
3386 /* xattr user namespace & acls are now defaulted on */
3387 set_opt(sb, XATTR_USER);
3388 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3389 set_opt(sb, POSIX_ACL);
3390 #endif
3391 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3392 set_opt(sb, JOURNAL_DATA);
3393 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3394 set_opt(sb, ORDERED_DATA);
3395 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3396 set_opt(sb, WRITEBACK_DATA);
3397
3398 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3399 set_opt(sb, ERRORS_PANIC);
3400 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3401 set_opt(sb, ERRORS_CONT);
3402 else
3403 set_opt(sb, ERRORS_RO);
3404 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3405 set_opt(sb, BLOCK_VALIDITY);
3406 if (def_mount_opts & EXT4_DEFM_DISCARD)
3407 set_opt(sb, DISCARD);
3408
3409 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3410 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3411 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3412 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3413 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3414
3415 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3416 set_opt(sb, BARRIER);
3417
3418 /*
3419 * enable delayed allocation by default
3420 * Use -o nodelalloc to turn it off
3421 */
3422 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3423 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3424 set_opt(sb, DELALLOC);
3425
3426 /*
3427 * set default s_li_wait_mult for lazyinit, for the case there is
3428 * no mount option specified.
3429 */
3430 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3431
3432 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3433 &journal_devnum, &journal_ioprio, 0)) {
3434 ext4_msg(sb, KERN_WARNING,
3435 "failed to parse options in superblock: %s",
3436 sbi->s_es->s_mount_opts);
3437 }
3438 sbi->s_def_mount_opt = sbi->s_mount_opt;
3439 if (!parse_options((char *) data, sb, &journal_devnum,
3440 &journal_ioprio, 0))
3441 goto failed_mount;
3442
3443 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3444 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3445 "with data=journal disables delayed "
3446 "allocation and O_DIRECT support!\n");
3447 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3448 ext4_msg(sb, KERN_ERR, "can't mount with "
3449 "both data=journal and delalloc");
3450 goto failed_mount;
3451 }
3452 if (test_opt(sb, DIOREAD_NOLOCK)) {
3453 ext4_msg(sb, KERN_ERR, "can't mount with "
3454 "both data=journal and delalloc");
3455 goto failed_mount;
3456 }
3457 if (test_opt(sb, DELALLOC))
3458 clear_opt(sb, DELALLOC);
3459 }
3460
3461 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3462 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3463
3464 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3465 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3466 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3467 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3468 ext4_msg(sb, KERN_WARNING,
3469 "feature flags set on rev 0 fs, "
3470 "running e2fsck is recommended");
3471
3472 if (IS_EXT2_SB(sb)) {
3473 if (ext2_feature_set_ok(sb))
3474 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3475 "using the ext4 subsystem");
3476 else {
3477 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3478 "to feature incompatibilities");
3479 goto failed_mount;
3480 }
3481 }
3482
3483 if (IS_EXT3_SB(sb)) {
3484 if (ext3_feature_set_ok(sb))
3485 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3486 "using the ext4 subsystem");
3487 else {
3488 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3489 "to feature incompatibilities");
3490 goto failed_mount;
3491 }
3492 }
3493
3494 /*
3495 * Check feature flags regardless of the revision level, since we
3496 * previously didn't change the revision level when setting the flags,
3497 * so there is a chance incompat flags are set on a rev 0 filesystem.
3498 */
3499 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3500 goto failed_mount;
3501
3502 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3503 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3504 blocksize > EXT4_MAX_BLOCK_SIZE) {
3505 ext4_msg(sb, KERN_ERR,
3506 "Unsupported filesystem blocksize %d", blocksize);
3507 goto failed_mount;
3508 }
3509
3510 if (sb->s_blocksize != blocksize) {
3511 /* Validate the filesystem blocksize */
3512 if (!sb_set_blocksize(sb, blocksize)) {
3513 ext4_msg(sb, KERN_ERR, "bad block size %d",
3514 blocksize);
3515 goto failed_mount;
3516 }
3517
3518 brelse(bh);
3519 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3520 offset = do_div(logical_sb_block, blocksize);
3521 bh = sb_bread(sb, logical_sb_block);
3522 if (!bh) {
3523 ext4_msg(sb, KERN_ERR,
3524 "Can't read superblock on 2nd try");
3525 goto failed_mount;
3526 }
3527 es = (struct ext4_super_block *)(bh->b_data + offset);
3528 sbi->s_es = es;
3529 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3530 ext4_msg(sb, KERN_ERR,
3531 "Magic mismatch, very weird!");
3532 goto failed_mount;
3533 }
3534 }
3535
3536 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3537 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3538 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3539 has_huge_files);
3540 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3541
3542 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3543 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3544 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3545 } else {
3546 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3547 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3548 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3549 (!is_power_of_2(sbi->s_inode_size)) ||
3550 (sbi->s_inode_size > blocksize)) {
3551 ext4_msg(sb, KERN_ERR,
3552 "unsupported inode size: %d",
3553 sbi->s_inode_size);
3554 goto failed_mount;
3555 }
3556 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3557 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3558 }
3559
3560 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3561 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3562 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3563 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3564 !is_power_of_2(sbi->s_desc_size)) {
3565 ext4_msg(sb, KERN_ERR,
3566 "unsupported descriptor size %lu",
3567 sbi->s_desc_size);
3568 goto failed_mount;
3569 }
3570 } else
3571 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3572
3573 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3574 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3575 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3576 goto cantfind_ext4;
3577
3578 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3579 if (sbi->s_inodes_per_block == 0)
3580 goto cantfind_ext4;
3581 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3582 sbi->s_inodes_per_block;
3583 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3584 sbi->s_sbh = bh;
3585 sbi->s_mount_state = le16_to_cpu(es->s_state);
3586 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3587 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3588
3589 /* Do we have standard group size of blocksize * 8 blocks ? */
3590 if (sbi->s_blocks_per_group == blocksize << 3)
3591 set_opt2(sb, STD_GROUP_SIZE);
3592
3593 for (i = 0; i < 4; i++)
3594 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3595 sbi->s_def_hash_version = es->s_def_hash_version;
3596 i = le32_to_cpu(es->s_flags);
3597 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3598 sbi->s_hash_unsigned = 3;
3599 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3600 #ifdef __CHAR_UNSIGNED__
3601 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3602 sbi->s_hash_unsigned = 3;
3603 #else
3604 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3605 #endif
3606 }
3607
3608 /* Handle clustersize */
3609 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3610 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3611 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3612 if (has_bigalloc) {
3613 if (clustersize < blocksize) {
3614 ext4_msg(sb, KERN_ERR,
3615 "cluster size (%d) smaller than "
3616 "block size (%d)", clustersize, blocksize);
3617 goto failed_mount;
3618 }
3619 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3620 le32_to_cpu(es->s_log_block_size);
3621 sbi->s_clusters_per_group =
3622 le32_to_cpu(es->s_clusters_per_group);
3623 if (sbi->s_clusters_per_group > blocksize * 8) {
3624 ext4_msg(sb, KERN_ERR,
3625 "#clusters per group too big: %lu",
3626 sbi->s_clusters_per_group);
3627 goto failed_mount;
3628 }
3629 if (sbi->s_blocks_per_group !=
3630 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3631 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3632 "clusters per group (%lu) inconsistent",
3633 sbi->s_blocks_per_group,
3634 sbi->s_clusters_per_group);
3635 goto failed_mount;
3636 }
3637 } else {
3638 if (clustersize != blocksize) {
3639 ext4_warning(sb, "fragment/cluster size (%d) != "
3640 "block size (%d)", clustersize,
3641 blocksize);
3642 clustersize = blocksize;
3643 }
3644 if (sbi->s_blocks_per_group > blocksize * 8) {
3645 ext4_msg(sb, KERN_ERR,
3646 "#blocks per group too big: %lu",
3647 sbi->s_blocks_per_group);
3648 goto failed_mount;
3649 }
3650 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3651 sbi->s_cluster_bits = 0;
3652 }
3653 sbi->s_cluster_ratio = clustersize / blocksize;
3654
3655 if (sbi->s_inodes_per_group > blocksize * 8) {
3656 ext4_msg(sb, KERN_ERR,
3657 "#inodes per group too big: %lu",
3658 sbi->s_inodes_per_group);
3659 goto failed_mount;
3660 }
3661
3662 /*
3663 * Test whether we have more sectors than will fit in sector_t,
3664 * and whether the max offset is addressable by the page cache.
3665 */
3666 err = generic_check_addressable(sb->s_blocksize_bits,
3667 ext4_blocks_count(es));
3668 if (err) {
3669 ext4_msg(sb, KERN_ERR, "filesystem"
3670 " too large to mount safely on this system");
3671 if (sizeof(sector_t) < 8)
3672 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3673 goto failed_mount;
3674 }
3675
3676 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3677 goto cantfind_ext4;
3678
3679 /* check blocks count against device size */
3680 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3681 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3682 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3683 "exceeds size of device (%llu blocks)",
3684 ext4_blocks_count(es), blocks_count);
3685 goto failed_mount;
3686 }
3687
3688 /*
3689 * It makes no sense for the first data block to be beyond the end
3690 * of the filesystem.
3691 */
3692 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3693 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3694 "block %u is beyond end of filesystem (%llu)",
3695 le32_to_cpu(es->s_first_data_block),
3696 ext4_blocks_count(es));
3697 goto failed_mount;
3698 }
3699 blocks_count = (ext4_blocks_count(es) -
3700 le32_to_cpu(es->s_first_data_block) +
3701 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3702 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3703 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3704 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3705 "(block count %llu, first data block %u, "
3706 "blocks per group %lu)", sbi->s_groups_count,
3707 ext4_blocks_count(es),
3708 le32_to_cpu(es->s_first_data_block),
3709 EXT4_BLOCKS_PER_GROUP(sb));
3710 goto failed_mount;
3711 }
3712 sbi->s_groups_count = blocks_count;
3713 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3714 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3715 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3716 EXT4_DESC_PER_BLOCK(sb);
3717 sbi->s_group_desc = ext4_kvmalloc(db_count *
3718 sizeof(struct buffer_head *),
3719 GFP_KERNEL);
3720 if (sbi->s_group_desc == NULL) {
3721 ext4_msg(sb, KERN_ERR, "not enough memory");
3722 ret = -ENOMEM;
3723 goto failed_mount;
3724 }
3725
3726 if (ext4_proc_root)
3727 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3728
3729 if (sbi->s_proc)
3730 proc_create_data("options", S_IRUGO, sbi->s_proc,
3731 &ext4_seq_options_fops, sb);
3732
3733 bgl_lock_init(sbi->s_blockgroup_lock);
3734
3735 for (i = 0; i < db_count; i++) {
3736 block = descriptor_loc(sb, logical_sb_block, i);
3737 sbi->s_group_desc[i] = sb_bread(sb, block);
3738 if (!sbi->s_group_desc[i]) {
3739 ext4_msg(sb, KERN_ERR,
3740 "can't read group descriptor %d", i);
3741 db_count = i;
3742 goto failed_mount2;
3743 }
3744 }
3745 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3746 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3747 goto failed_mount2;
3748 }
3749 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3750 if (!ext4_fill_flex_info(sb)) {
3751 ext4_msg(sb, KERN_ERR,
3752 "unable to initialize "
3753 "flex_bg meta info!");
3754 goto failed_mount2;
3755 }
3756
3757 sbi->s_gdb_count = db_count;
3758 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3759 spin_lock_init(&sbi->s_next_gen_lock);
3760
3761 init_timer(&sbi->s_err_report);
3762 sbi->s_err_report.function = print_daily_error_info;
3763 sbi->s_err_report.data = (unsigned long) sb;
3764
3765 /* Register extent status tree shrinker */
3766 ext4_es_register_shrinker(sb);
3767
3768 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3769 ext4_count_free_clusters(sb));
3770 if (!err) {
3771 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3772 ext4_count_free_inodes(sb));
3773 }
3774 if (!err) {
3775 err = percpu_counter_init(&sbi->s_dirs_counter,
3776 ext4_count_dirs(sb));
3777 }
3778 if (!err) {
3779 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3780 }
3781 if (!err) {
3782 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3783 }
3784 if (err) {
3785 ext4_msg(sb, KERN_ERR, "insufficient memory");
3786 goto failed_mount3;
3787 }
3788
3789 sbi->s_stripe = ext4_get_stripe_size(sbi);
3790 sbi->s_max_writeback_mb_bump = 128;
3791 sbi->s_extent_max_zeroout_kb = 32;
3792
3793 /*
3794 * set up enough so that it can read an inode
3795 */
3796 if (!test_opt(sb, NOLOAD) &&
3797 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3798 sb->s_op = &ext4_sops;
3799 else
3800 sb->s_op = &ext4_nojournal_sops;
3801 sb->s_export_op = &ext4_export_ops;
3802 sb->s_xattr = ext4_xattr_handlers;
3803 #ifdef CONFIG_QUOTA
3804 sb->dq_op = &ext4_quota_operations;
3805 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3806 sb->s_qcop = &ext4_qctl_sysfile_operations;
3807 else
3808 sb->s_qcop = &ext4_qctl_operations;
3809 #endif
3810 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3811
3812 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3813 mutex_init(&sbi->s_orphan_lock);
3814
3815 sb->s_root = NULL;
3816
3817 needs_recovery = (es->s_last_orphan != 0 ||
3818 EXT4_HAS_INCOMPAT_FEATURE(sb,
3819 EXT4_FEATURE_INCOMPAT_RECOVER));
3820
3821 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3822 !(sb->s_flags & MS_RDONLY))
3823 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3824 goto failed_mount3;
3825
3826 /*
3827 * The first inode we look at is the journal inode. Don't try
3828 * root first: it may be modified in the journal!
3829 */
3830 if (!test_opt(sb, NOLOAD) &&
3831 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3832 if (ext4_load_journal(sb, es, journal_devnum))
3833 goto failed_mount3;
3834 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3835 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3836 ext4_msg(sb, KERN_ERR, "required journal recovery "
3837 "suppressed and not mounted read-only");
3838 goto failed_mount_wq;
3839 } else {
3840 clear_opt(sb, DATA_FLAGS);
3841 sbi->s_journal = NULL;
3842 needs_recovery = 0;
3843 goto no_journal;
3844 }
3845
3846 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3847 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3848 JBD2_FEATURE_INCOMPAT_64BIT)) {
3849 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3850 goto failed_mount_wq;
3851 }
3852
3853 if (!set_journal_csum_feature_set(sb)) {
3854 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3855 "feature set");
3856 goto failed_mount_wq;
3857 }
3858
3859 /* We have now updated the journal if required, so we can
3860 * validate the data journaling mode. */
3861 switch (test_opt(sb, DATA_FLAGS)) {
3862 case 0:
3863 /* No mode set, assume a default based on the journal
3864 * capabilities: ORDERED_DATA if the journal can
3865 * cope, else JOURNAL_DATA
3866 */
3867 if (jbd2_journal_check_available_features
3868 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3869 set_opt(sb, ORDERED_DATA);
3870 else
3871 set_opt(sb, JOURNAL_DATA);
3872 break;
3873
3874 case EXT4_MOUNT_ORDERED_DATA:
3875 case EXT4_MOUNT_WRITEBACK_DATA:
3876 if (!jbd2_journal_check_available_features
3877 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3878 ext4_msg(sb, KERN_ERR, "Journal does not support "
3879 "requested data journaling mode");
3880 goto failed_mount_wq;
3881 }
3882 default:
3883 break;
3884 }
3885 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3886
3887 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3888
3889 /*
3890 * The journal may have updated the bg summary counts, so we
3891 * need to update the global counters.
3892 */
3893 percpu_counter_set(&sbi->s_freeclusters_counter,
3894 ext4_count_free_clusters(sb));
3895 percpu_counter_set(&sbi->s_freeinodes_counter,
3896 ext4_count_free_inodes(sb));
3897 percpu_counter_set(&sbi->s_dirs_counter,
3898 ext4_count_dirs(sb));
3899 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3900
3901 no_journal:
3902 /*
3903 * Get the # of file system overhead blocks from the
3904 * superblock if present.
3905 */
3906 if (es->s_overhead_clusters)
3907 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3908 else {
3909 err = ext4_calculate_overhead(sb);
3910 if (err)
3911 goto failed_mount_wq;
3912 }
3913
3914 /*
3915 * The maximum number of concurrent works can be high and
3916 * concurrency isn't really necessary. Limit it to 1.
3917 */
3918 EXT4_SB(sb)->dio_unwritten_wq =
3919 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3920 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3921 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3922 ret = -ENOMEM;
3923 goto failed_mount_wq;
3924 }
3925
3926 /*
3927 * The jbd2_journal_load will have done any necessary log recovery,
3928 * so we can safely mount the rest of the filesystem now.
3929 */
3930
3931 root = ext4_iget(sb, EXT4_ROOT_INO);
3932 if (IS_ERR(root)) {
3933 ext4_msg(sb, KERN_ERR, "get root inode failed");
3934 ret = PTR_ERR(root);
3935 root = NULL;
3936 goto failed_mount4;
3937 }
3938 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3939 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3940 iput(root);
3941 goto failed_mount4;
3942 }
3943 sb->s_root = d_make_root(root);
3944 if (!sb->s_root) {
3945 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3946 ret = -ENOMEM;
3947 goto failed_mount4;
3948 }
3949
3950 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3951 sb->s_flags |= MS_RDONLY;
3952
3953 /* determine the minimum size of new large inodes, if present */
3954 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3955 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3956 EXT4_GOOD_OLD_INODE_SIZE;
3957 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3958 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3959 if (sbi->s_want_extra_isize <
3960 le16_to_cpu(es->s_want_extra_isize))
3961 sbi->s_want_extra_isize =
3962 le16_to_cpu(es->s_want_extra_isize);
3963 if (sbi->s_want_extra_isize <
3964 le16_to_cpu(es->s_min_extra_isize))
3965 sbi->s_want_extra_isize =
3966 le16_to_cpu(es->s_min_extra_isize);
3967 }
3968 }
3969 /* Check if enough inode space is available */
3970 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3971 sbi->s_inode_size) {
3972 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3973 EXT4_GOOD_OLD_INODE_SIZE;
3974 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3975 "available");
3976 }
3977
3978 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi));
3979 if (err) {
3980 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3981 "reserved pool", ext4_calculate_resv_clusters(sbi));
3982 goto failed_mount4a;
3983 }
3984
3985 err = ext4_setup_system_zone(sb);
3986 if (err) {
3987 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3988 "zone (%d)", err);
3989 goto failed_mount4a;
3990 }
3991
3992 ext4_ext_init(sb);
3993 err = ext4_mb_init(sb);
3994 if (err) {
3995 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3996 err);
3997 goto failed_mount5;
3998 }
3999
4000 err = ext4_register_li_request(sb, first_not_zeroed);
4001 if (err)
4002 goto failed_mount6;
4003
4004 sbi->s_kobj.kset = ext4_kset;
4005 init_completion(&sbi->s_kobj_unregister);
4006 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4007 "%s", sb->s_id);
4008 if (err)
4009 goto failed_mount7;
4010
4011 #ifdef CONFIG_QUOTA
4012 /* Enable quota usage during mount. */
4013 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4014 !(sb->s_flags & MS_RDONLY)) {
4015 err = ext4_enable_quotas(sb);
4016 if (err)
4017 goto failed_mount8;
4018 }
4019 #endif /* CONFIG_QUOTA */
4020
4021 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4022 ext4_orphan_cleanup(sb, es);
4023 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4024 if (needs_recovery) {
4025 ext4_msg(sb, KERN_INFO, "recovery complete");
4026 ext4_mark_recovery_complete(sb, es);
4027 }
4028 if (EXT4_SB(sb)->s_journal) {
4029 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4030 descr = " journalled data mode";
4031 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4032 descr = " ordered data mode";
4033 else
4034 descr = " writeback data mode";
4035 } else
4036 descr = "out journal";
4037
4038 if (test_opt(sb, DISCARD)) {
4039 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4040 if (!blk_queue_discard(q))
4041 ext4_msg(sb, KERN_WARNING,
4042 "mounting with \"discard\" option, but "
4043 "the device does not support discard");
4044 }
4045
4046 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4047 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4048 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4049
4050 if (es->s_error_count)
4051 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4052
4053 kfree(orig_data);
4054 return 0;
4055
4056 cantfind_ext4:
4057 if (!silent)
4058 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4059 goto failed_mount;
4060
4061 #ifdef CONFIG_QUOTA
4062 failed_mount8:
4063 kobject_del(&sbi->s_kobj);
4064 #endif
4065 failed_mount7:
4066 ext4_unregister_li_request(sb);
4067 failed_mount6:
4068 ext4_mb_release(sb);
4069 failed_mount5:
4070 ext4_ext_release(sb);
4071 ext4_release_system_zone(sb);
4072 failed_mount4a:
4073 dput(sb->s_root);
4074 sb->s_root = NULL;
4075 failed_mount4:
4076 ext4_msg(sb, KERN_ERR, "mount failed");
4077 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4078 failed_mount_wq:
4079 if (sbi->s_journal) {
4080 jbd2_journal_destroy(sbi->s_journal);
4081 sbi->s_journal = NULL;
4082 }
4083 failed_mount3:
4084 ext4_es_unregister_shrinker(sb);
4085 del_timer(&sbi->s_err_report);
4086 if (sbi->s_flex_groups)
4087 ext4_kvfree(sbi->s_flex_groups);
4088 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4089 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4090 percpu_counter_destroy(&sbi->s_dirs_counter);
4091 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4092 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4093 if (sbi->s_mmp_tsk)
4094 kthread_stop(sbi->s_mmp_tsk);
4095 failed_mount2:
4096 for (i = 0; i < db_count; i++)
4097 brelse(sbi->s_group_desc[i]);
4098 ext4_kvfree(sbi->s_group_desc);
4099 failed_mount:
4100 if (sbi->s_chksum_driver)
4101 crypto_free_shash(sbi->s_chksum_driver);
4102 if (sbi->s_proc) {
4103 remove_proc_entry("options", sbi->s_proc);
4104 remove_proc_entry(sb->s_id, ext4_proc_root);
4105 }
4106 #ifdef CONFIG_QUOTA
4107 for (i = 0; i < MAXQUOTAS; i++)
4108 kfree(sbi->s_qf_names[i]);
4109 #endif
4110 ext4_blkdev_remove(sbi);
4111 brelse(bh);
4112 out_fail:
4113 sb->s_fs_info = NULL;
4114 kfree(sbi->s_blockgroup_lock);
4115 kfree(sbi);
4116 out_free_orig:
4117 kfree(orig_data);
4118 return err ? err : ret;
4119 }
4120
4121 /*
4122 * Setup any per-fs journal parameters now. We'll do this both on
4123 * initial mount, once the journal has been initialised but before we've
4124 * done any recovery; and again on any subsequent remount.
4125 */
4126 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4127 {
4128 struct ext4_sb_info *sbi = EXT4_SB(sb);
4129
4130 journal->j_commit_interval = sbi->s_commit_interval;
4131 journal->j_min_batch_time = sbi->s_min_batch_time;
4132 journal->j_max_batch_time = sbi->s_max_batch_time;
4133
4134 write_lock(&journal->j_state_lock);
4135 if (test_opt(sb, BARRIER))
4136 journal->j_flags |= JBD2_BARRIER;
4137 else
4138 journal->j_flags &= ~JBD2_BARRIER;
4139 if (test_opt(sb, DATA_ERR_ABORT))
4140 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4141 else
4142 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4143 write_unlock(&journal->j_state_lock);
4144 }
4145
4146 static journal_t *ext4_get_journal(struct super_block *sb,
4147 unsigned int journal_inum)
4148 {
4149 struct inode *journal_inode;
4150 journal_t *journal;
4151
4152 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4153
4154 /* First, test for the existence of a valid inode on disk. Bad
4155 * things happen if we iget() an unused inode, as the subsequent
4156 * iput() will try to delete it. */
4157
4158 journal_inode = ext4_iget(sb, journal_inum);
4159 if (IS_ERR(journal_inode)) {
4160 ext4_msg(sb, KERN_ERR, "no journal found");
4161 return NULL;
4162 }
4163 if (!journal_inode->i_nlink) {
4164 make_bad_inode(journal_inode);
4165 iput(journal_inode);
4166 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4167 return NULL;
4168 }
4169
4170 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4171 journal_inode, journal_inode->i_size);
4172 if (!S_ISREG(journal_inode->i_mode)) {
4173 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4174 iput(journal_inode);
4175 return NULL;
4176 }
4177
4178 journal = jbd2_journal_init_inode(journal_inode);
4179 if (!journal) {
4180 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4181 iput(journal_inode);
4182 return NULL;
4183 }
4184 journal->j_private = sb;
4185 ext4_init_journal_params(sb, journal);
4186 return journal;
4187 }
4188
4189 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4190 dev_t j_dev)
4191 {
4192 struct buffer_head *bh;
4193 journal_t *journal;
4194 ext4_fsblk_t start;
4195 ext4_fsblk_t len;
4196 int hblock, blocksize;
4197 ext4_fsblk_t sb_block;
4198 unsigned long offset;
4199 struct ext4_super_block *es;
4200 struct block_device *bdev;
4201
4202 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4203
4204 bdev = ext4_blkdev_get(j_dev, sb);
4205 if (bdev == NULL)
4206 return NULL;
4207
4208 blocksize = sb->s_blocksize;
4209 hblock = bdev_logical_block_size(bdev);
4210 if (blocksize < hblock) {
4211 ext4_msg(sb, KERN_ERR,
4212 "blocksize too small for journal device");
4213 goto out_bdev;
4214 }
4215
4216 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4217 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4218 set_blocksize(bdev, blocksize);
4219 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4220 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4221 "external journal");
4222 goto out_bdev;
4223 }
4224
4225 es = (struct ext4_super_block *) (bh->b_data + offset);
4226 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4227 !(le32_to_cpu(es->s_feature_incompat) &
4228 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4229 ext4_msg(sb, KERN_ERR, "external journal has "
4230 "bad superblock");
4231 brelse(bh);
4232 goto out_bdev;
4233 }
4234
4235 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4236 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4237 brelse(bh);
4238 goto out_bdev;
4239 }
4240
4241 len = ext4_blocks_count(es);
4242 start = sb_block + 1;
4243 brelse(bh); /* we're done with the superblock */
4244
4245 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4246 start, len, blocksize);
4247 if (!journal) {
4248 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4249 goto out_bdev;
4250 }
4251 journal->j_private = sb;
4252 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4253 wait_on_buffer(journal->j_sb_buffer);
4254 if (!buffer_uptodate(journal->j_sb_buffer)) {
4255 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4256 goto out_journal;
4257 }
4258 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4259 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4260 "user (unsupported) - %d",
4261 be32_to_cpu(journal->j_superblock->s_nr_users));
4262 goto out_journal;
4263 }
4264 EXT4_SB(sb)->journal_bdev = bdev;
4265 ext4_init_journal_params(sb, journal);
4266 return journal;
4267
4268 out_journal:
4269 jbd2_journal_destroy(journal);
4270 out_bdev:
4271 ext4_blkdev_put(bdev);
4272 return NULL;
4273 }
4274
4275 static int ext4_load_journal(struct super_block *sb,
4276 struct ext4_super_block *es,
4277 unsigned long journal_devnum)
4278 {
4279 journal_t *journal;
4280 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4281 dev_t journal_dev;
4282 int err = 0;
4283 int really_read_only;
4284
4285 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4286
4287 if (journal_devnum &&
4288 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4289 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4290 "numbers have changed");
4291 journal_dev = new_decode_dev(journal_devnum);
4292 } else
4293 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4294
4295 really_read_only = bdev_read_only(sb->s_bdev);
4296
4297 /*
4298 * Are we loading a blank journal or performing recovery after a
4299 * crash? For recovery, we need to check in advance whether we
4300 * can get read-write access to the device.
4301 */
4302 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4303 if (sb->s_flags & MS_RDONLY) {
4304 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4305 "required on readonly filesystem");
4306 if (really_read_only) {
4307 ext4_msg(sb, KERN_ERR, "write access "
4308 "unavailable, cannot proceed");
4309 return -EROFS;
4310 }
4311 ext4_msg(sb, KERN_INFO, "write access will "
4312 "be enabled during recovery");
4313 }
4314 }
4315
4316 if (journal_inum && journal_dev) {
4317 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4318 "and inode journals!");
4319 return -EINVAL;
4320 }
4321
4322 if (journal_inum) {
4323 if (!(journal = ext4_get_journal(sb, journal_inum)))
4324 return -EINVAL;
4325 } else {
4326 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4327 return -EINVAL;
4328 }
4329
4330 if (!(journal->j_flags & JBD2_BARRIER))
4331 ext4_msg(sb, KERN_INFO, "barriers disabled");
4332
4333 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4334 err = jbd2_journal_wipe(journal, !really_read_only);
4335 if (!err) {
4336 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4337 if (save)
4338 memcpy(save, ((char *) es) +
4339 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4340 err = jbd2_journal_load(journal);
4341 if (save)
4342 memcpy(((char *) es) + EXT4_S_ERR_START,
4343 save, EXT4_S_ERR_LEN);
4344 kfree(save);
4345 }
4346
4347 if (err) {
4348 ext4_msg(sb, KERN_ERR, "error loading journal");
4349 jbd2_journal_destroy(journal);
4350 return err;
4351 }
4352
4353 EXT4_SB(sb)->s_journal = journal;
4354 ext4_clear_journal_err(sb, es);
4355
4356 if (!really_read_only && journal_devnum &&
4357 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4358 es->s_journal_dev = cpu_to_le32(journal_devnum);
4359
4360 /* Make sure we flush the recovery flag to disk. */
4361 ext4_commit_super(sb, 1);
4362 }
4363
4364 return 0;
4365 }
4366
4367 static int ext4_commit_super(struct super_block *sb, int sync)
4368 {
4369 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4370 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4371 int error = 0;
4372
4373 if (!sbh || block_device_ejected(sb))
4374 return error;
4375 if (buffer_write_io_error(sbh)) {
4376 /*
4377 * Oh, dear. A previous attempt to write the
4378 * superblock failed. This could happen because the
4379 * USB device was yanked out. Or it could happen to
4380 * be a transient write error and maybe the block will
4381 * be remapped. Nothing we can do but to retry the
4382 * write and hope for the best.
4383 */
4384 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4385 "superblock detected");
4386 clear_buffer_write_io_error(sbh);
4387 set_buffer_uptodate(sbh);
4388 }
4389 /*
4390 * If the file system is mounted read-only, don't update the
4391 * superblock write time. This avoids updating the superblock
4392 * write time when we are mounting the root file system
4393 * read/only but we need to replay the journal; at that point,
4394 * for people who are east of GMT and who make their clock
4395 * tick in localtime for Windows bug-for-bug compatibility,
4396 * the clock is set in the future, and this will cause e2fsck
4397 * to complain and force a full file system check.
4398 */
4399 if (!(sb->s_flags & MS_RDONLY))
4400 es->s_wtime = cpu_to_le32(get_seconds());
4401 if (sb->s_bdev->bd_part)
4402 es->s_kbytes_written =
4403 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4404 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4405 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4406 else
4407 es->s_kbytes_written =
4408 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4409 ext4_free_blocks_count_set(es,
4410 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4411 &EXT4_SB(sb)->s_freeclusters_counter)));
4412 es->s_free_inodes_count =
4413 cpu_to_le32(percpu_counter_sum_positive(
4414 &EXT4_SB(sb)->s_freeinodes_counter));
4415 BUFFER_TRACE(sbh, "marking dirty");
4416 ext4_superblock_csum_set(sb);
4417 mark_buffer_dirty(sbh);
4418 if (sync) {
4419 error = sync_dirty_buffer(sbh);
4420 if (error)
4421 return error;
4422
4423 error = buffer_write_io_error(sbh);
4424 if (error) {
4425 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4426 "superblock");
4427 clear_buffer_write_io_error(sbh);
4428 set_buffer_uptodate(sbh);
4429 }
4430 }
4431 return error;
4432 }
4433
4434 /*
4435 * Have we just finished recovery? If so, and if we are mounting (or
4436 * remounting) the filesystem readonly, then we will end up with a
4437 * consistent fs on disk. Record that fact.
4438 */
4439 static void ext4_mark_recovery_complete(struct super_block *sb,
4440 struct ext4_super_block *es)
4441 {
4442 journal_t *journal = EXT4_SB(sb)->s_journal;
4443
4444 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4445 BUG_ON(journal != NULL);
4446 return;
4447 }
4448 jbd2_journal_lock_updates(journal);
4449 if (jbd2_journal_flush(journal) < 0)
4450 goto out;
4451
4452 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4453 sb->s_flags & MS_RDONLY) {
4454 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4455 ext4_commit_super(sb, 1);
4456 }
4457
4458 out:
4459 jbd2_journal_unlock_updates(journal);
4460 }
4461
4462 /*
4463 * If we are mounting (or read-write remounting) a filesystem whose journal
4464 * has recorded an error from a previous lifetime, move that error to the
4465 * main filesystem now.
4466 */
4467 static void ext4_clear_journal_err(struct super_block *sb,
4468 struct ext4_super_block *es)
4469 {
4470 journal_t *journal;
4471 int j_errno;
4472 const char *errstr;
4473
4474 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4475
4476 journal = EXT4_SB(sb)->s_journal;
4477
4478 /*
4479 * Now check for any error status which may have been recorded in the
4480 * journal by a prior ext4_error() or ext4_abort()
4481 */
4482
4483 j_errno = jbd2_journal_errno(journal);
4484 if (j_errno) {
4485 char nbuf[16];
4486
4487 errstr = ext4_decode_error(sb, j_errno, nbuf);
4488 ext4_warning(sb, "Filesystem error recorded "
4489 "from previous mount: %s", errstr);
4490 ext4_warning(sb, "Marking fs in need of filesystem check.");
4491
4492 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4493 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4494 ext4_commit_super(sb, 1);
4495
4496 jbd2_journal_clear_err(journal);
4497 jbd2_journal_update_sb_errno(journal);
4498 }
4499 }
4500
4501 /*
4502 * Force the running and committing transactions to commit,
4503 * and wait on the commit.
4504 */
4505 int ext4_force_commit(struct super_block *sb)
4506 {
4507 journal_t *journal;
4508
4509 if (sb->s_flags & MS_RDONLY)
4510 return 0;
4511
4512 journal = EXT4_SB(sb)->s_journal;
4513 return ext4_journal_force_commit(journal);
4514 }
4515
4516 static int ext4_sync_fs(struct super_block *sb, int wait)
4517 {
4518 int ret = 0;
4519 tid_t target;
4520 struct ext4_sb_info *sbi = EXT4_SB(sb);
4521
4522 trace_ext4_sync_fs(sb, wait);
4523 flush_workqueue(sbi->dio_unwritten_wq);
4524 /*
4525 * Writeback quota in non-journalled quota case - journalled quota has
4526 * no dirty dquots
4527 */
4528 dquot_writeback_dquots(sb, -1);
4529 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4530 if (wait)
4531 jbd2_log_wait_commit(sbi->s_journal, target);
4532 }
4533 return ret;
4534 }
4535
4536 /*
4537 * LVM calls this function before a (read-only) snapshot is created. This
4538 * gives us a chance to flush the journal completely and mark the fs clean.
4539 *
4540 * Note that only this function cannot bring a filesystem to be in a clean
4541 * state independently. It relies on upper layer to stop all data & metadata
4542 * modifications.
4543 */
4544 static int ext4_freeze(struct super_block *sb)
4545 {
4546 int error = 0;
4547 journal_t *journal;
4548
4549 if (sb->s_flags & MS_RDONLY)
4550 return 0;
4551
4552 journal = EXT4_SB(sb)->s_journal;
4553
4554 /* Now we set up the journal barrier. */
4555 jbd2_journal_lock_updates(journal);
4556
4557 /*
4558 * Don't clear the needs_recovery flag if we failed to flush
4559 * the journal.
4560 */
4561 error = jbd2_journal_flush(journal);
4562 if (error < 0)
4563 goto out;
4564
4565 /* Journal blocked and flushed, clear needs_recovery flag. */
4566 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4567 error = ext4_commit_super(sb, 1);
4568 out:
4569 /* we rely on upper layer to stop further updates */
4570 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4571 return error;
4572 }
4573
4574 /*
4575 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4576 * flag here, even though the filesystem is not technically dirty yet.
4577 */
4578 static int ext4_unfreeze(struct super_block *sb)
4579 {
4580 if (sb->s_flags & MS_RDONLY)
4581 return 0;
4582
4583 /* Reset the needs_recovery flag before the fs is unlocked. */
4584 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4585 ext4_commit_super(sb, 1);
4586 return 0;
4587 }
4588
4589 /*
4590 * Structure to save mount options for ext4_remount's benefit
4591 */
4592 struct ext4_mount_options {
4593 unsigned long s_mount_opt;
4594 unsigned long s_mount_opt2;
4595 kuid_t s_resuid;
4596 kgid_t s_resgid;
4597 unsigned long s_commit_interval;
4598 u32 s_min_batch_time, s_max_batch_time;
4599 #ifdef CONFIG_QUOTA
4600 int s_jquota_fmt;
4601 char *s_qf_names[MAXQUOTAS];
4602 #endif
4603 };
4604
4605 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4606 {
4607 struct ext4_super_block *es;
4608 struct ext4_sb_info *sbi = EXT4_SB(sb);
4609 unsigned long old_sb_flags;
4610 struct ext4_mount_options old_opts;
4611 int enable_quota = 0;
4612 ext4_group_t g;
4613 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4614 int err = 0;
4615 #ifdef CONFIG_QUOTA
4616 int i, j;
4617 #endif
4618 char *orig_data = kstrdup(data, GFP_KERNEL);
4619
4620 /* Store the original options */
4621 old_sb_flags = sb->s_flags;
4622 old_opts.s_mount_opt = sbi->s_mount_opt;
4623 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4624 old_opts.s_resuid = sbi->s_resuid;
4625 old_opts.s_resgid = sbi->s_resgid;
4626 old_opts.s_commit_interval = sbi->s_commit_interval;
4627 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4628 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4629 #ifdef CONFIG_QUOTA
4630 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4631 for (i = 0; i < MAXQUOTAS; i++)
4632 if (sbi->s_qf_names[i]) {
4633 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4634 GFP_KERNEL);
4635 if (!old_opts.s_qf_names[i]) {
4636 for (j = 0; j < i; j++)
4637 kfree(old_opts.s_qf_names[j]);
4638 kfree(orig_data);
4639 return -ENOMEM;
4640 }
4641 } else
4642 old_opts.s_qf_names[i] = NULL;
4643 #endif
4644 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4645 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4646
4647 /*
4648 * Allow the "check" option to be passed as a remount option.
4649 */
4650 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4651 err = -EINVAL;
4652 goto restore_opts;
4653 }
4654
4655 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4656 ext4_abort(sb, "Abort forced by user");
4657
4658 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4659 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4660
4661 es = sbi->s_es;
4662
4663 if (sbi->s_journal) {
4664 ext4_init_journal_params(sb, sbi->s_journal);
4665 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4666 }
4667
4668 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4669 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4670 err = -EROFS;
4671 goto restore_opts;
4672 }
4673
4674 if (*flags & MS_RDONLY) {
4675 err = dquot_suspend(sb, -1);
4676 if (err < 0)
4677 goto restore_opts;
4678
4679 /*
4680 * First of all, the unconditional stuff we have to do
4681 * to disable replay of the journal when we next remount
4682 */
4683 sb->s_flags |= MS_RDONLY;
4684
4685 /*
4686 * OK, test if we are remounting a valid rw partition
4687 * readonly, and if so set the rdonly flag and then
4688 * mark the partition as valid again.
4689 */
4690 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4691 (sbi->s_mount_state & EXT4_VALID_FS))
4692 es->s_state = cpu_to_le16(sbi->s_mount_state);
4693
4694 if (sbi->s_journal)
4695 ext4_mark_recovery_complete(sb, es);
4696 } else {
4697 /* Make sure we can mount this feature set readwrite */
4698 if (!ext4_feature_set_ok(sb, 0)) {
4699 err = -EROFS;
4700 goto restore_opts;
4701 }
4702 /*
4703 * Make sure the group descriptor checksums
4704 * are sane. If they aren't, refuse to remount r/w.
4705 */
4706 for (g = 0; g < sbi->s_groups_count; g++) {
4707 struct ext4_group_desc *gdp =
4708 ext4_get_group_desc(sb, g, NULL);
4709
4710 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4711 ext4_msg(sb, KERN_ERR,
4712 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4713 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4714 le16_to_cpu(gdp->bg_checksum));
4715 err = -EINVAL;
4716 goto restore_opts;
4717 }
4718 }
4719
4720 /*
4721 * If we have an unprocessed orphan list hanging
4722 * around from a previously readonly bdev mount,
4723 * require a full umount/remount for now.
4724 */
4725 if (es->s_last_orphan) {
4726 ext4_msg(sb, KERN_WARNING, "Couldn't "
4727 "remount RDWR because of unprocessed "
4728 "orphan inode list. Please "
4729 "umount/remount instead");
4730 err = -EINVAL;
4731 goto restore_opts;
4732 }
4733
4734 /*
4735 * Mounting a RDONLY partition read-write, so reread
4736 * and store the current valid flag. (It may have
4737 * been changed by e2fsck since we originally mounted
4738 * the partition.)
4739 */
4740 if (sbi->s_journal)
4741 ext4_clear_journal_err(sb, es);
4742 sbi->s_mount_state = le16_to_cpu(es->s_state);
4743 if (!ext4_setup_super(sb, es, 0))
4744 sb->s_flags &= ~MS_RDONLY;
4745 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4746 EXT4_FEATURE_INCOMPAT_MMP))
4747 if (ext4_multi_mount_protect(sb,
4748 le64_to_cpu(es->s_mmp_block))) {
4749 err = -EROFS;
4750 goto restore_opts;
4751 }
4752 enable_quota = 1;
4753 }
4754 }
4755
4756 /*
4757 * Reinitialize lazy itable initialization thread based on
4758 * current settings
4759 */
4760 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4761 ext4_unregister_li_request(sb);
4762 else {
4763 ext4_group_t first_not_zeroed;
4764 first_not_zeroed = ext4_has_uninit_itable(sb);
4765 ext4_register_li_request(sb, first_not_zeroed);
4766 }
4767
4768 ext4_setup_system_zone(sb);
4769 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4770 ext4_commit_super(sb, 1);
4771
4772 #ifdef CONFIG_QUOTA
4773 /* Release old quota file names */
4774 for (i = 0; i < MAXQUOTAS; i++)
4775 kfree(old_opts.s_qf_names[i]);
4776 if (enable_quota) {
4777 if (sb_any_quota_suspended(sb))
4778 dquot_resume(sb, -1);
4779 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4780 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4781 err = ext4_enable_quotas(sb);
4782 if (err)
4783 goto restore_opts;
4784 }
4785 }
4786 #endif
4787
4788 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4789 kfree(orig_data);
4790 return 0;
4791
4792 restore_opts:
4793 sb->s_flags = old_sb_flags;
4794 sbi->s_mount_opt = old_opts.s_mount_opt;
4795 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4796 sbi->s_resuid = old_opts.s_resuid;
4797 sbi->s_resgid = old_opts.s_resgid;
4798 sbi->s_commit_interval = old_opts.s_commit_interval;
4799 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4800 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4801 #ifdef CONFIG_QUOTA
4802 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4803 for (i = 0; i < MAXQUOTAS; i++) {
4804 kfree(sbi->s_qf_names[i]);
4805 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4806 }
4807 #endif
4808 kfree(orig_data);
4809 return err;
4810 }
4811
4812 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4813 {
4814 struct super_block *sb = dentry->d_sb;
4815 struct ext4_sb_info *sbi = EXT4_SB(sb);
4816 struct ext4_super_block *es = sbi->s_es;
4817 ext4_fsblk_t overhead = 0, resv_blocks;
4818 u64 fsid;
4819 s64 bfree;
4820 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4821
4822 if (!test_opt(sb, MINIX_DF))
4823 overhead = sbi->s_overhead;
4824
4825 buf->f_type = EXT4_SUPER_MAGIC;
4826 buf->f_bsize = sb->s_blocksize;
4827 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4828 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4829 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4830 /* prevent underflow in case that few free space is available */
4831 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4832 buf->f_bavail = buf->f_bfree -
4833 (ext4_r_blocks_count(es) + resv_blocks);
4834 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4835 buf->f_bavail = 0;
4836 buf->f_files = le32_to_cpu(es->s_inodes_count);
4837 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4838 buf->f_namelen = EXT4_NAME_LEN;
4839 fsid = le64_to_cpup((void *)es->s_uuid) ^
4840 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4841 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4842 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4843
4844 return 0;
4845 }
4846
4847 /* Helper function for writing quotas on sync - we need to start transaction
4848 * before quota file is locked for write. Otherwise the are possible deadlocks:
4849 * Process 1 Process 2
4850 * ext4_create() quota_sync()
4851 * jbd2_journal_start() write_dquot()
4852 * dquot_initialize() down(dqio_mutex)
4853 * down(dqio_mutex) jbd2_journal_start()
4854 *
4855 */
4856
4857 #ifdef CONFIG_QUOTA
4858
4859 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4860 {
4861 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4862 }
4863
4864 static int ext4_write_dquot(struct dquot *dquot)
4865 {
4866 int ret, err;
4867 handle_t *handle;
4868 struct inode *inode;
4869
4870 inode = dquot_to_inode(dquot);
4871 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4872 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4873 if (IS_ERR(handle))
4874 return PTR_ERR(handle);
4875 ret = dquot_commit(dquot);
4876 err = ext4_journal_stop(handle);
4877 if (!ret)
4878 ret = err;
4879 return ret;
4880 }
4881
4882 static int ext4_acquire_dquot(struct dquot *dquot)
4883 {
4884 int ret, err;
4885 handle_t *handle;
4886
4887 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4888 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4889 if (IS_ERR(handle))
4890 return PTR_ERR(handle);
4891 ret = dquot_acquire(dquot);
4892 err = ext4_journal_stop(handle);
4893 if (!ret)
4894 ret = err;
4895 return ret;
4896 }
4897
4898 static int ext4_release_dquot(struct dquot *dquot)
4899 {
4900 int ret, err;
4901 handle_t *handle;
4902
4903 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4904 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4905 if (IS_ERR(handle)) {
4906 /* Release dquot anyway to avoid endless cycle in dqput() */
4907 dquot_release(dquot);
4908 return PTR_ERR(handle);
4909 }
4910 ret = dquot_release(dquot);
4911 err = ext4_journal_stop(handle);
4912 if (!ret)
4913 ret = err;
4914 return ret;
4915 }
4916
4917 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4918 {
4919 struct super_block *sb = dquot->dq_sb;
4920 struct ext4_sb_info *sbi = EXT4_SB(sb);
4921
4922 /* Are we journaling quotas? */
4923 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4924 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4925 dquot_mark_dquot_dirty(dquot);
4926 return ext4_write_dquot(dquot);
4927 } else {
4928 return dquot_mark_dquot_dirty(dquot);
4929 }
4930 }
4931
4932 static int ext4_write_info(struct super_block *sb, int type)
4933 {
4934 int ret, err;
4935 handle_t *handle;
4936
4937 /* Data block + inode block */
4938 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4939 if (IS_ERR(handle))
4940 return PTR_ERR(handle);
4941 ret = dquot_commit_info(sb, type);
4942 err = ext4_journal_stop(handle);
4943 if (!ret)
4944 ret = err;
4945 return ret;
4946 }
4947
4948 /*
4949 * Turn on quotas during mount time - we need to find
4950 * the quota file and such...
4951 */
4952 static int ext4_quota_on_mount(struct super_block *sb, int type)
4953 {
4954 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4955 EXT4_SB(sb)->s_jquota_fmt, type);
4956 }
4957
4958 /*
4959 * Standard function to be called on quota_on
4960 */
4961 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4962 struct path *path)
4963 {
4964 int err;
4965
4966 if (!test_opt(sb, QUOTA))
4967 return -EINVAL;
4968
4969 /* Quotafile not on the same filesystem? */
4970 if (path->dentry->d_sb != sb)
4971 return -EXDEV;
4972 /* Journaling quota? */
4973 if (EXT4_SB(sb)->s_qf_names[type]) {
4974 /* Quotafile not in fs root? */
4975 if (path->dentry->d_parent != sb->s_root)
4976 ext4_msg(sb, KERN_WARNING,
4977 "Quota file not on filesystem root. "
4978 "Journaled quota will not work");
4979 }
4980
4981 /*
4982 * When we journal data on quota file, we have to flush journal to see
4983 * all updates to the file when we bypass pagecache...
4984 */
4985 if (EXT4_SB(sb)->s_journal &&
4986 ext4_should_journal_data(path->dentry->d_inode)) {
4987 /*
4988 * We don't need to lock updates but journal_flush() could
4989 * otherwise be livelocked...
4990 */
4991 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4992 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4993 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4994 if (err)
4995 return err;
4996 }
4997
4998 return dquot_quota_on(sb, type, format_id, path);
4999 }
5000
5001 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5002 unsigned int flags)
5003 {
5004 int err;
5005 struct inode *qf_inode;
5006 unsigned long qf_inums[MAXQUOTAS] = {
5007 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5008 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5009 };
5010
5011 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5012
5013 if (!qf_inums[type])
5014 return -EPERM;
5015
5016 qf_inode = ext4_iget(sb, qf_inums[type]);
5017 if (IS_ERR(qf_inode)) {
5018 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5019 return PTR_ERR(qf_inode);
5020 }
5021
5022 /* Don't account quota for quota files to avoid recursion */
5023 qf_inode->i_flags |= S_NOQUOTA;
5024 err = dquot_enable(qf_inode, type, format_id, flags);
5025 iput(qf_inode);
5026
5027 return err;
5028 }
5029
5030 /* Enable usage tracking for all quota types. */
5031 static int ext4_enable_quotas(struct super_block *sb)
5032 {
5033 int type, err = 0;
5034 unsigned long qf_inums[MAXQUOTAS] = {
5035 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5036 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5037 };
5038
5039 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5040 for (type = 0; type < MAXQUOTAS; type++) {
5041 if (qf_inums[type]) {
5042 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5043 DQUOT_USAGE_ENABLED);
5044 if (err) {
5045 ext4_warning(sb,
5046 "Failed to enable quota tracking "
5047 "(type=%d, err=%d). Please run "
5048 "e2fsck to fix.", type, err);
5049 return err;
5050 }
5051 }
5052 }
5053 return 0;
5054 }
5055
5056 /*
5057 * quota_on function that is used when QUOTA feature is set.
5058 */
5059 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5060 int format_id)
5061 {
5062 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5063 return -EINVAL;
5064
5065 /*
5066 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5067 */
5068 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5069 }
5070
5071 static int ext4_quota_off(struct super_block *sb, int type)
5072 {
5073 struct inode *inode = sb_dqopt(sb)->files[type];
5074 handle_t *handle;
5075
5076 /* Force all delayed allocation blocks to be allocated.
5077 * Caller already holds s_umount sem */
5078 if (test_opt(sb, DELALLOC))
5079 sync_filesystem(sb);
5080
5081 if (!inode)
5082 goto out;
5083
5084 /* Update modification times of quota files when userspace can
5085 * start looking at them */
5086 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5087 if (IS_ERR(handle))
5088 goto out;
5089 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5090 ext4_mark_inode_dirty(handle, inode);
5091 ext4_journal_stop(handle);
5092
5093 out:
5094 return dquot_quota_off(sb, type);
5095 }
5096
5097 /*
5098 * quota_off function that is used when QUOTA feature is set.
5099 */
5100 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5101 {
5102 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5103 return -EINVAL;
5104
5105 /* Disable only the limits. */
5106 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5107 }
5108
5109 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5110 * acquiring the locks... As quota files are never truncated and quota code
5111 * itself serializes the operations (and no one else should touch the files)
5112 * we don't have to be afraid of races */
5113 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5114 size_t len, loff_t off)
5115 {
5116 struct inode *inode = sb_dqopt(sb)->files[type];
5117 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5118 int err = 0;
5119 int offset = off & (sb->s_blocksize - 1);
5120 int tocopy;
5121 size_t toread;
5122 struct buffer_head *bh;
5123 loff_t i_size = i_size_read(inode);
5124
5125 if (off > i_size)
5126 return 0;
5127 if (off+len > i_size)
5128 len = i_size-off;
5129 toread = len;
5130 while (toread > 0) {
5131 tocopy = sb->s_blocksize - offset < toread ?
5132 sb->s_blocksize - offset : toread;
5133 bh = ext4_bread(NULL, inode, blk, 0, &err);
5134 if (err)
5135 return err;
5136 if (!bh) /* A hole? */
5137 memset(data, 0, tocopy);
5138 else
5139 memcpy(data, bh->b_data+offset, tocopy);
5140 brelse(bh);
5141 offset = 0;
5142 toread -= tocopy;
5143 data += tocopy;
5144 blk++;
5145 }
5146 return len;
5147 }
5148
5149 /* Write to quotafile (we know the transaction is already started and has
5150 * enough credits) */
5151 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5152 const char *data, size_t len, loff_t off)
5153 {
5154 struct inode *inode = sb_dqopt(sb)->files[type];
5155 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5156 int err = 0;
5157 int offset = off & (sb->s_blocksize - 1);
5158 struct buffer_head *bh;
5159 handle_t *handle = journal_current_handle();
5160
5161 if (EXT4_SB(sb)->s_journal && !handle) {
5162 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5163 " cancelled because transaction is not started",
5164 (unsigned long long)off, (unsigned long long)len);
5165 return -EIO;
5166 }
5167 /*
5168 * Since we account only one data block in transaction credits,
5169 * then it is impossible to cross a block boundary.
5170 */
5171 if (sb->s_blocksize - offset < len) {
5172 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5173 " cancelled because not block aligned",
5174 (unsigned long long)off, (unsigned long long)len);
5175 return -EIO;
5176 }
5177
5178 bh = ext4_bread(handle, inode, blk, 1, &err);
5179 if (!bh)
5180 goto out;
5181 err = ext4_journal_get_write_access(handle, bh);
5182 if (err) {
5183 brelse(bh);
5184 goto out;
5185 }
5186 lock_buffer(bh);
5187 memcpy(bh->b_data+offset, data, len);
5188 flush_dcache_page(bh->b_page);
5189 unlock_buffer(bh);
5190 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5191 brelse(bh);
5192 out:
5193 if (err)
5194 return err;
5195 if (inode->i_size < off + len) {
5196 i_size_write(inode, off + len);
5197 EXT4_I(inode)->i_disksize = inode->i_size;
5198 ext4_mark_inode_dirty(handle, inode);
5199 }
5200 return len;
5201 }
5202
5203 #endif
5204
5205 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5206 const char *dev_name, void *data)
5207 {
5208 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5209 }
5210
5211 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5212 static inline void register_as_ext2(void)
5213 {
5214 int err = register_filesystem(&ext2_fs_type);
5215 if (err)
5216 printk(KERN_WARNING
5217 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5218 }
5219
5220 static inline void unregister_as_ext2(void)
5221 {
5222 unregister_filesystem(&ext2_fs_type);
5223 }
5224
5225 static inline int ext2_feature_set_ok(struct super_block *sb)
5226 {
5227 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5228 return 0;
5229 if (sb->s_flags & MS_RDONLY)
5230 return 1;
5231 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5232 return 0;
5233 return 1;
5234 }
5235 #else
5236 static inline void register_as_ext2(void) { }
5237 static inline void unregister_as_ext2(void) { }
5238 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5239 #endif
5240
5241 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5242 static inline void register_as_ext3(void)
5243 {
5244 int err = register_filesystem(&ext3_fs_type);
5245 if (err)
5246 printk(KERN_WARNING
5247 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5248 }
5249
5250 static inline void unregister_as_ext3(void)
5251 {
5252 unregister_filesystem(&ext3_fs_type);
5253 }
5254
5255 static inline int ext3_feature_set_ok(struct super_block *sb)
5256 {
5257 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5258 return 0;
5259 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5260 return 0;
5261 if (sb->s_flags & MS_RDONLY)
5262 return 1;
5263 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5264 return 0;
5265 return 1;
5266 }
5267 #else
5268 static inline void register_as_ext3(void) { }
5269 static inline void unregister_as_ext3(void) { }
5270 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5271 #endif
5272
5273 static struct file_system_type ext4_fs_type = {
5274 .owner = THIS_MODULE,
5275 .name = "ext4",
5276 .mount = ext4_mount,
5277 .kill_sb = kill_block_super,
5278 .fs_flags = FS_REQUIRES_DEV,
5279 };
5280 MODULE_ALIAS_FS("ext4");
5281
5282 static int __init ext4_init_feat_adverts(void)
5283 {
5284 struct ext4_features *ef;
5285 int ret = -ENOMEM;
5286
5287 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5288 if (!ef)
5289 goto out;
5290
5291 ef->f_kobj.kset = ext4_kset;
5292 init_completion(&ef->f_kobj_unregister);
5293 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5294 "features");
5295 if (ret) {
5296 kfree(ef);
5297 goto out;
5298 }
5299
5300 ext4_feat = ef;
5301 ret = 0;
5302 out:
5303 return ret;
5304 }
5305
5306 static void ext4_exit_feat_adverts(void)
5307 {
5308 kobject_put(&ext4_feat->f_kobj);
5309 wait_for_completion(&ext4_feat->f_kobj_unregister);
5310 kfree(ext4_feat);
5311 }
5312
5313 /* Shared across all ext4 file systems */
5314 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5315 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5316
5317 static int __init ext4_init_fs(void)
5318 {
5319 int i, err;
5320
5321 ext4_li_info = NULL;
5322 mutex_init(&ext4_li_mtx);
5323
5324 /* Build-time check for flags consistency */
5325 ext4_check_flag_values();
5326
5327 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5328 mutex_init(&ext4__aio_mutex[i]);
5329 init_waitqueue_head(&ext4__ioend_wq[i]);
5330 }
5331
5332 err = ext4_init_es();
5333 if (err)
5334 return err;
5335
5336 err = ext4_init_pageio();
5337 if (err)
5338 goto out7;
5339
5340 err = ext4_init_system_zone();
5341 if (err)
5342 goto out6;
5343 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5344 if (!ext4_kset) {
5345 err = -ENOMEM;
5346 goto out5;
5347 }
5348 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5349
5350 err = ext4_init_feat_adverts();
5351 if (err)
5352 goto out4;
5353
5354 err = ext4_init_mballoc();
5355 if (err)
5356 goto out3;
5357
5358 err = ext4_init_xattr();
5359 if (err)
5360 goto out2;
5361 err = init_inodecache();
5362 if (err)
5363 goto out1;
5364 register_as_ext3();
5365 register_as_ext2();
5366 err = register_filesystem(&ext4_fs_type);
5367 if (err)
5368 goto out;
5369
5370 return 0;
5371 out:
5372 unregister_as_ext2();
5373 unregister_as_ext3();
5374 destroy_inodecache();
5375 out1:
5376 ext4_exit_xattr();
5377 out2:
5378 ext4_exit_mballoc();
5379 out3:
5380 ext4_exit_feat_adverts();
5381 out4:
5382 if (ext4_proc_root)
5383 remove_proc_entry("fs/ext4", NULL);
5384 kset_unregister(ext4_kset);
5385 out5:
5386 ext4_exit_system_zone();
5387 out6:
5388 ext4_exit_pageio();
5389 out7:
5390 ext4_exit_es();
5391
5392 return err;
5393 }
5394
5395 static void __exit ext4_exit_fs(void)
5396 {
5397 ext4_destroy_lazyinit_thread();
5398 unregister_as_ext2();
5399 unregister_as_ext3();
5400 unregister_filesystem(&ext4_fs_type);
5401 destroy_inodecache();
5402 ext4_exit_xattr();
5403 ext4_exit_mballoc();
5404 ext4_exit_feat_adverts();
5405 remove_proc_entry("fs/ext4", NULL);
5406 kset_unregister(ext4_kset);
5407 ext4_exit_system_zone();
5408 ext4_exit_pageio();
5409 }
5410
5411 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5412 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5413 MODULE_LICENSE("GPL");
5414 module_init(ext4_init_fs)
5415 module_exit(ext4_exit_fs)