ext4: don't show usrquota/grpquota twice in /proc/mounts
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 bdev = sbi->journal_bdev;
715 if (bdev) {
716 ext4_blkdev_put(bdev);
717 sbi->journal_bdev = NULL;
718 }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728 struct list_head *l;
729
730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731 le32_to_cpu(sbi->s_es->s_last_orphan));
732
733 printk(KERN_ERR "sb_info orphan list:\n");
734 list_for_each(l, &sbi->s_orphan) {
735 struct inode *inode = orphan_list_entry(l);
736 printk(KERN_ERR " "
737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738 inode->i_sb->s_id, inode->i_ino, inode,
739 inode->i_mode, inode->i_nlink,
740 NEXT_ORPHAN(inode));
741 }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746 struct ext4_sb_info *sbi = EXT4_SB(sb);
747 struct ext4_super_block *es = sbi->s_es;
748 int i, err;
749
750 ext4_unregister_li_request(sb);
751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753 flush_workqueue(sbi->dio_unwritten_wq);
754 destroy_workqueue(sbi->dio_unwritten_wq);
755
756 if (sbi->s_journal) {
757 err = jbd2_journal_destroy(sbi->s_journal);
758 sbi->s_journal = NULL;
759 if (err < 0)
760 ext4_abort(sb, "Couldn't clean up the journal");
761 }
762
763 ext4_es_unregister_shrinker(sb);
764 del_timer(&sbi->s_err_report);
765 ext4_release_system_zone(sb);
766 ext4_mb_release(sb);
767 ext4_ext_release(sb);
768 ext4_xattr_put_super(sb);
769
770 if (!(sb->s_flags & MS_RDONLY)) {
771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772 es->s_state = cpu_to_le16(sbi->s_mount_state);
773 }
774 if (!(sb->s_flags & MS_RDONLY))
775 ext4_commit_super(sb, 1);
776
777 if (sbi->s_proc) {
778 remove_proc_entry("options", sbi->s_proc);
779 remove_proc_entry(sb->s_id, ext4_proc_root);
780 }
781 kobject_del(&sbi->s_kobj);
782
783 for (i = 0; i < sbi->s_gdb_count; i++)
784 brelse(sbi->s_group_desc[i]);
785 ext4_kvfree(sbi->s_group_desc);
786 ext4_kvfree(sbi->s_flex_groups);
787 percpu_counter_destroy(&sbi->s_freeclusters_counter);
788 percpu_counter_destroy(&sbi->s_freeinodes_counter);
789 percpu_counter_destroy(&sbi->s_dirs_counter);
790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792 brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794 for (i = 0; i < MAXQUOTAS; i++)
795 kfree(sbi->s_qf_names[i]);
796 #endif
797
798 /* Debugging code just in case the in-memory inode orphan list
799 * isn't empty. The on-disk one can be non-empty if we've
800 * detected an error and taken the fs readonly, but the
801 * in-memory list had better be clean by this point. */
802 if (!list_empty(&sbi->s_orphan))
803 dump_orphan_list(sb, sbi);
804 J_ASSERT(list_empty(&sbi->s_orphan));
805
806 invalidate_bdev(sb->s_bdev);
807 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
808 /*
809 * Invalidate the journal device's buffers. We don't want them
810 * floating about in memory - the physical journal device may
811 * hotswapped, and it breaks the `ro-after' testing code.
812 */
813 sync_blockdev(sbi->journal_bdev);
814 invalidate_bdev(sbi->journal_bdev);
815 ext4_blkdev_remove(sbi);
816 }
817 if (sbi->s_mmp_tsk)
818 kthread_stop(sbi->s_mmp_tsk);
819 sb->s_fs_info = NULL;
820 /*
821 * Now that we are completely done shutting down the
822 * superblock, we need to actually destroy the kobject.
823 */
824 kobject_put(&sbi->s_kobj);
825 wait_for_completion(&sbi->s_kobj_unregister);
826 if (sbi->s_chksum_driver)
827 crypto_free_shash(sbi->s_chksum_driver);
828 kfree(sbi->s_blockgroup_lock);
829 kfree(sbi);
830 }
831
832 static struct kmem_cache *ext4_inode_cachep;
833
834 /*
835 * Called inside transaction, so use GFP_NOFS
836 */
837 static struct inode *ext4_alloc_inode(struct super_block *sb)
838 {
839 struct ext4_inode_info *ei;
840
841 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
842 if (!ei)
843 return NULL;
844
845 ei->vfs_inode.i_version = 1;
846 INIT_LIST_HEAD(&ei->i_prealloc_list);
847 spin_lock_init(&ei->i_prealloc_lock);
848 ext4_es_init_tree(&ei->i_es_tree);
849 rwlock_init(&ei->i_es_lock);
850 INIT_LIST_HEAD(&ei->i_es_lru);
851 ei->i_es_lru_nr = 0;
852 ei->i_reserved_data_blocks = 0;
853 ei->i_reserved_meta_blocks = 0;
854 ei->i_allocated_meta_blocks = 0;
855 ei->i_da_metadata_calc_len = 0;
856 ei->i_da_metadata_calc_last_lblock = 0;
857 spin_lock_init(&(ei->i_block_reservation_lock));
858 #ifdef CONFIG_QUOTA
859 ei->i_reserved_quota = 0;
860 #endif
861 ei->jinode = NULL;
862 INIT_LIST_HEAD(&ei->i_completed_io_list);
863 spin_lock_init(&ei->i_completed_io_lock);
864 ei->i_sync_tid = 0;
865 ei->i_datasync_tid = 0;
866 atomic_set(&ei->i_ioend_count, 0);
867 atomic_set(&ei->i_unwritten, 0);
868 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
869
870 return &ei->vfs_inode;
871 }
872
873 static int ext4_drop_inode(struct inode *inode)
874 {
875 int drop = generic_drop_inode(inode);
876
877 trace_ext4_drop_inode(inode, drop);
878 return drop;
879 }
880
881 static void ext4_i_callback(struct rcu_head *head)
882 {
883 struct inode *inode = container_of(head, struct inode, i_rcu);
884 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
885 }
886
887 static void ext4_destroy_inode(struct inode *inode)
888 {
889 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
890 ext4_msg(inode->i_sb, KERN_ERR,
891 "Inode %lu (%p): orphan list check failed!",
892 inode->i_ino, EXT4_I(inode));
893 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
894 EXT4_I(inode), sizeof(struct ext4_inode_info),
895 true);
896 dump_stack();
897 }
898 call_rcu(&inode->i_rcu, ext4_i_callback);
899 }
900
901 static void init_once(void *foo)
902 {
903 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
904
905 INIT_LIST_HEAD(&ei->i_orphan);
906 init_rwsem(&ei->xattr_sem);
907 init_rwsem(&ei->i_data_sem);
908 inode_init_once(&ei->vfs_inode);
909 }
910
911 static int init_inodecache(void)
912 {
913 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
914 sizeof(struct ext4_inode_info),
915 0, (SLAB_RECLAIM_ACCOUNT|
916 SLAB_MEM_SPREAD),
917 init_once);
918 if (ext4_inode_cachep == NULL)
919 return -ENOMEM;
920 return 0;
921 }
922
923 static void destroy_inodecache(void)
924 {
925 /*
926 * Make sure all delayed rcu free inodes are flushed before we
927 * destroy cache.
928 */
929 rcu_barrier();
930 kmem_cache_destroy(ext4_inode_cachep);
931 }
932
933 void ext4_clear_inode(struct inode *inode)
934 {
935 invalidate_inode_buffers(inode);
936 clear_inode(inode);
937 dquot_drop(inode);
938 ext4_discard_preallocations(inode);
939 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
940 ext4_es_lru_del(inode);
941 if (EXT4_I(inode)->jinode) {
942 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
943 EXT4_I(inode)->jinode);
944 jbd2_free_inode(EXT4_I(inode)->jinode);
945 EXT4_I(inode)->jinode = NULL;
946 }
947 }
948
949 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
950 u64 ino, u32 generation)
951 {
952 struct inode *inode;
953
954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
955 return ERR_PTR(-ESTALE);
956 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
957 return ERR_PTR(-ESTALE);
958
959 /* iget isn't really right if the inode is currently unallocated!!
960 *
961 * ext4_read_inode will return a bad_inode if the inode had been
962 * deleted, so we should be safe.
963 *
964 * Currently we don't know the generation for parent directory, so
965 * a generation of 0 means "accept any"
966 */
967 inode = ext4_iget(sb, ino);
968 if (IS_ERR(inode))
969 return ERR_CAST(inode);
970 if (generation && inode->i_generation != generation) {
971 iput(inode);
972 return ERR_PTR(-ESTALE);
973 }
974
975 return inode;
976 }
977
978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
979 int fh_len, int fh_type)
980 {
981 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
982 ext4_nfs_get_inode);
983 }
984
985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
986 int fh_len, int fh_type)
987 {
988 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
989 ext4_nfs_get_inode);
990 }
991
992 /*
993 * Try to release metadata pages (indirect blocks, directories) which are
994 * mapped via the block device. Since these pages could have journal heads
995 * which would prevent try_to_free_buffers() from freeing them, we must use
996 * jbd2 layer's try_to_free_buffers() function to release them.
997 */
998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
999 gfp_t wait)
1000 {
1001 journal_t *journal = EXT4_SB(sb)->s_journal;
1002
1003 WARN_ON(PageChecked(page));
1004 if (!page_has_buffers(page))
1005 return 0;
1006 if (journal)
1007 return jbd2_journal_try_to_free_buffers(journal, page,
1008 wait & ~__GFP_WAIT);
1009 return try_to_free_buffers(page);
1010 }
1011
1012 #ifdef CONFIG_QUOTA
1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1015
1016 static int ext4_write_dquot(struct dquot *dquot);
1017 static int ext4_acquire_dquot(struct dquot *dquot);
1018 static int ext4_release_dquot(struct dquot *dquot);
1019 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1020 static int ext4_write_info(struct super_block *sb, int type);
1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1022 struct path *path);
1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1024 int format_id);
1025 static int ext4_quota_off(struct super_block *sb, int type);
1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1027 static int ext4_quota_on_mount(struct super_block *sb, int type);
1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1029 size_t len, loff_t off);
1030 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1031 const char *data, size_t len, loff_t off);
1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1033 unsigned int flags);
1034 static int ext4_enable_quotas(struct super_block *sb);
1035
1036 static const struct dquot_operations ext4_quota_operations = {
1037 .get_reserved_space = ext4_get_reserved_space,
1038 .write_dquot = ext4_write_dquot,
1039 .acquire_dquot = ext4_acquire_dquot,
1040 .release_dquot = ext4_release_dquot,
1041 .mark_dirty = ext4_mark_dquot_dirty,
1042 .write_info = ext4_write_info,
1043 .alloc_dquot = dquot_alloc,
1044 .destroy_dquot = dquot_destroy,
1045 };
1046
1047 static const struct quotactl_ops ext4_qctl_operations = {
1048 .quota_on = ext4_quota_on,
1049 .quota_off = ext4_quota_off,
1050 .quota_sync = dquot_quota_sync,
1051 .get_info = dquot_get_dqinfo,
1052 .set_info = dquot_set_dqinfo,
1053 .get_dqblk = dquot_get_dqblk,
1054 .set_dqblk = dquot_set_dqblk
1055 };
1056
1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1058 .quota_on_meta = ext4_quota_on_sysfile,
1059 .quota_off = ext4_quota_off_sysfile,
1060 .quota_sync = dquot_quota_sync,
1061 .get_info = dquot_get_dqinfo,
1062 .set_info = dquot_set_dqinfo,
1063 .get_dqblk = dquot_get_dqblk,
1064 .set_dqblk = dquot_set_dqblk
1065 };
1066 #endif
1067
1068 static const struct super_operations ext4_sops = {
1069 .alloc_inode = ext4_alloc_inode,
1070 .destroy_inode = ext4_destroy_inode,
1071 .write_inode = ext4_write_inode,
1072 .dirty_inode = ext4_dirty_inode,
1073 .drop_inode = ext4_drop_inode,
1074 .evict_inode = ext4_evict_inode,
1075 .put_super = ext4_put_super,
1076 .sync_fs = ext4_sync_fs,
1077 .freeze_fs = ext4_freeze,
1078 .unfreeze_fs = ext4_unfreeze,
1079 .statfs = ext4_statfs,
1080 .remount_fs = ext4_remount,
1081 .show_options = ext4_show_options,
1082 #ifdef CONFIG_QUOTA
1083 .quota_read = ext4_quota_read,
1084 .quota_write = ext4_quota_write,
1085 #endif
1086 .bdev_try_to_free_page = bdev_try_to_free_page,
1087 };
1088
1089 static const struct super_operations ext4_nojournal_sops = {
1090 .alloc_inode = ext4_alloc_inode,
1091 .destroy_inode = ext4_destroy_inode,
1092 .write_inode = ext4_write_inode,
1093 .dirty_inode = ext4_dirty_inode,
1094 .drop_inode = ext4_drop_inode,
1095 .evict_inode = ext4_evict_inode,
1096 .put_super = ext4_put_super,
1097 .statfs = ext4_statfs,
1098 .remount_fs = ext4_remount,
1099 .show_options = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101 .quota_read = ext4_quota_read,
1102 .quota_write = ext4_quota_write,
1103 #endif
1104 .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108 .fh_to_dentry = ext4_fh_to_dentry,
1109 .fh_to_parent = ext4_fh_to_parent,
1110 .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116 Opt_nouid32, Opt_debug, Opt_removed,
1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1120 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122 Opt_data_err_abort, Opt_data_err_ignore,
1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126 Opt_usrquota, Opt_grpquota, Opt_i_version,
1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1129 Opt_inode_readahead_blks, Opt_journal_ioprio,
1130 Opt_dioread_nolock, Opt_dioread_lock,
1131 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1132 Opt_max_dir_size_kb,
1133 };
1134
1135 static const match_table_t tokens = {
1136 {Opt_bsd_df, "bsddf"},
1137 {Opt_minix_df, "minixdf"},
1138 {Opt_grpid, "grpid"},
1139 {Opt_grpid, "bsdgroups"},
1140 {Opt_nogrpid, "nogrpid"},
1141 {Opt_nogrpid, "sysvgroups"},
1142 {Opt_resgid, "resgid=%u"},
1143 {Opt_resuid, "resuid=%u"},
1144 {Opt_sb, "sb=%u"},
1145 {Opt_err_cont, "errors=continue"},
1146 {Opt_err_panic, "errors=panic"},
1147 {Opt_err_ro, "errors=remount-ro"},
1148 {Opt_nouid32, "nouid32"},
1149 {Opt_debug, "debug"},
1150 {Opt_removed, "oldalloc"},
1151 {Opt_removed, "orlov"},
1152 {Opt_user_xattr, "user_xattr"},
1153 {Opt_nouser_xattr, "nouser_xattr"},
1154 {Opt_acl, "acl"},
1155 {Opt_noacl, "noacl"},
1156 {Opt_noload, "norecovery"},
1157 {Opt_noload, "noload"},
1158 {Opt_removed, "nobh"},
1159 {Opt_removed, "bh"},
1160 {Opt_commit, "commit=%u"},
1161 {Opt_min_batch_time, "min_batch_time=%u"},
1162 {Opt_max_batch_time, "max_batch_time=%u"},
1163 {Opt_journal_dev, "journal_dev=%u"},
1164 {Opt_journal_checksum, "journal_checksum"},
1165 {Opt_journal_async_commit, "journal_async_commit"},
1166 {Opt_abort, "abort"},
1167 {Opt_data_journal, "data=journal"},
1168 {Opt_data_ordered, "data=ordered"},
1169 {Opt_data_writeback, "data=writeback"},
1170 {Opt_data_err_abort, "data_err=abort"},
1171 {Opt_data_err_ignore, "data_err=ignore"},
1172 {Opt_offusrjquota, "usrjquota="},
1173 {Opt_usrjquota, "usrjquota=%s"},
1174 {Opt_offgrpjquota, "grpjquota="},
1175 {Opt_grpjquota, "grpjquota=%s"},
1176 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1177 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1178 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1179 {Opt_grpquota, "grpquota"},
1180 {Opt_noquota, "noquota"},
1181 {Opt_quota, "quota"},
1182 {Opt_usrquota, "usrquota"},
1183 {Opt_barrier, "barrier=%u"},
1184 {Opt_barrier, "barrier"},
1185 {Opt_nobarrier, "nobarrier"},
1186 {Opt_i_version, "i_version"},
1187 {Opt_stripe, "stripe=%u"},
1188 {Opt_delalloc, "delalloc"},
1189 {Opt_nodelalloc, "nodelalloc"},
1190 {Opt_removed, "mblk_io_submit"},
1191 {Opt_removed, "nomblk_io_submit"},
1192 {Opt_block_validity, "block_validity"},
1193 {Opt_noblock_validity, "noblock_validity"},
1194 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1195 {Opt_journal_ioprio, "journal_ioprio=%u"},
1196 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1197 {Opt_auto_da_alloc, "auto_da_alloc"},
1198 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1199 {Opt_dioread_nolock, "dioread_nolock"},
1200 {Opt_dioread_lock, "dioread_lock"},
1201 {Opt_discard, "discard"},
1202 {Opt_nodiscard, "nodiscard"},
1203 {Opt_init_itable, "init_itable=%u"},
1204 {Opt_init_itable, "init_itable"},
1205 {Opt_noinit_itable, "noinit_itable"},
1206 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1207 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1208 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1209 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1210 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1211 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1212 {Opt_err, NULL},
1213 };
1214
1215 static ext4_fsblk_t get_sb_block(void **data)
1216 {
1217 ext4_fsblk_t sb_block;
1218 char *options = (char *) *data;
1219
1220 if (!options || strncmp(options, "sb=", 3) != 0)
1221 return 1; /* Default location */
1222
1223 options += 3;
1224 /* TODO: use simple_strtoll with >32bit ext4 */
1225 sb_block = simple_strtoul(options, &options, 0);
1226 if (*options && *options != ',') {
1227 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1228 (char *) *data);
1229 return 1;
1230 }
1231 if (*options == ',')
1232 options++;
1233 *data = (void *) options;
1234
1235 return sb_block;
1236 }
1237
1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1240 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1241
1242 #ifdef CONFIG_QUOTA
1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1244 {
1245 struct ext4_sb_info *sbi = EXT4_SB(sb);
1246 char *qname;
1247 int ret = -1;
1248
1249 if (sb_any_quota_loaded(sb) &&
1250 !sbi->s_qf_names[qtype]) {
1251 ext4_msg(sb, KERN_ERR,
1252 "Cannot change journaled "
1253 "quota options when quota turned on");
1254 return -1;
1255 }
1256 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1257 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1258 "when QUOTA feature is enabled");
1259 return -1;
1260 }
1261 qname = match_strdup(args);
1262 if (!qname) {
1263 ext4_msg(sb, KERN_ERR,
1264 "Not enough memory for storing quotafile name");
1265 return -1;
1266 }
1267 if (sbi->s_qf_names[qtype]) {
1268 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1269 ret = 1;
1270 else
1271 ext4_msg(sb, KERN_ERR,
1272 "%s quota file already specified",
1273 QTYPE2NAME(qtype));
1274 goto errout;
1275 }
1276 if (strchr(qname, '/')) {
1277 ext4_msg(sb, KERN_ERR,
1278 "quotafile must be on filesystem root");
1279 goto errout;
1280 }
1281 sbi->s_qf_names[qtype] = qname;
1282 set_opt(sb, QUOTA);
1283 return 1;
1284 errout:
1285 kfree(qname);
1286 return ret;
1287 }
1288
1289 static int clear_qf_name(struct super_block *sb, int qtype)
1290 {
1291
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293
1294 if (sb_any_quota_loaded(sb) &&
1295 sbi->s_qf_names[qtype]) {
1296 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1297 " when quota turned on");
1298 return -1;
1299 }
1300 kfree(sbi->s_qf_names[qtype]);
1301 sbi->s_qf_names[qtype] = NULL;
1302 return 1;
1303 }
1304 #endif
1305
1306 #define MOPT_SET 0x0001
1307 #define MOPT_CLEAR 0x0002
1308 #define MOPT_NOSUPPORT 0x0004
1309 #define MOPT_EXPLICIT 0x0008
1310 #define MOPT_CLEAR_ERR 0x0010
1311 #define MOPT_GTE0 0x0020
1312 #ifdef CONFIG_QUOTA
1313 #define MOPT_Q 0
1314 #define MOPT_QFMT 0x0040
1315 #else
1316 #define MOPT_Q MOPT_NOSUPPORT
1317 #define MOPT_QFMT MOPT_NOSUPPORT
1318 #endif
1319 #define MOPT_DATAJ 0x0080
1320 #define MOPT_NO_EXT2 0x0100
1321 #define MOPT_NO_EXT3 0x0200
1322 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1323
1324 static const struct mount_opts {
1325 int token;
1326 int mount_opt;
1327 int flags;
1328 } ext4_mount_opts[] = {
1329 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1330 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1331 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1332 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1333 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1334 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1335 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1336 MOPT_EXT4_ONLY | MOPT_SET},
1337 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338 MOPT_EXT4_ONLY | MOPT_CLEAR},
1339 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1340 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1341 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1342 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1343 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1344 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1345 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1346 MOPT_EXT4_ONLY | MOPT_SET},
1347 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1348 EXT4_MOUNT_JOURNAL_CHECKSUM),
1349 MOPT_EXT4_ONLY | MOPT_SET},
1350 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1351 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1355 MOPT_NO_EXT2 | MOPT_SET},
1356 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1357 MOPT_NO_EXT2 | MOPT_CLEAR},
1358 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1359 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1360 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1361 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1362 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1363 {Opt_commit, 0, MOPT_GTE0},
1364 {Opt_max_batch_time, 0, MOPT_GTE0},
1365 {Opt_min_batch_time, 0, MOPT_GTE0},
1366 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1367 {Opt_init_itable, 0, MOPT_GTE0},
1368 {Opt_stripe, 0, MOPT_GTE0},
1369 {Opt_resuid, 0, MOPT_GTE0},
1370 {Opt_resgid, 0, MOPT_GTE0},
1371 {Opt_journal_dev, 0, MOPT_GTE0},
1372 {Opt_journal_ioprio, 0, MOPT_GTE0},
1373 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1376 MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1378 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1380 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1381 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1382 #else
1383 {Opt_acl, 0, MOPT_NOSUPPORT},
1384 {Opt_noacl, 0, MOPT_NOSUPPORT},
1385 #endif
1386 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1387 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1388 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1389 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1390 MOPT_SET | MOPT_Q},
1391 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1392 MOPT_SET | MOPT_Q},
1393 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1394 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1395 {Opt_usrjquota, 0, MOPT_Q},
1396 {Opt_grpjquota, 0, MOPT_Q},
1397 {Opt_offusrjquota, 0, MOPT_Q},
1398 {Opt_offgrpjquota, 0, MOPT_Q},
1399 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1400 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1402 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1403 {Opt_err, 0, 0}
1404 };
1405
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407 substring_t *args, unsigned long *journal_devnum,
1408 unsigned int *journal_ioprio, int is_remount)
1409 {
1410 struct ext4_sb_info *sbi = EXT4_SB(sb);
1411 const struct mount_opts *m;
1412 kuid_t uid;
1413 kgid_t gid;
1414 int arg = 0;
1415
1416 #ifdef CONFIG_QUOTA
1417 if (token == Opt_usrjquota)
1418 return set_qf_name(sb, USRQUOTA, &args[0]);
1419 else if (token == Opt_grpjquota)
1420 return set_qf_name(sb, GRPQUOTA, &args[0]);
1421 else if (token == Opt_offusrjquota)
1422 return clear_qf_name(sb, USRQUOTA);
1423 else if (token == Opt_offgrpjquota)
1424 return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426 switch (token) {
1427 case Opt_noacl:
1428 case Opt_nouser_xattr:
1429 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430 break;
1431 case Opt_sb:
1432 return 1; /* handled by get_sb_block() */
1433 case Opt_removed:
1434 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435 return 1;
1436 case Opt_abort:
1437 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438 return 1;
1439 case Opt_i_version:
1440 sb->s_flags |= MS_I_VERSION;
1441 return 1;
1442 }
1443
1444 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1445 if (token == m->token)
1446 break;
1447
1448 if (m->token == Opt_err) {
1449 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1450 "or missing value", opt);
1451 return -1;
1452 }
1453
1454 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1455 ext4_msg(sb, KERN_ERR,
1456 "Mount option \"%s\" incompatible with ext2", opt);
1457 return -1;
1458 }
1459 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1460 ext4_msg(sb, KERN_ERR,
1461 "Mount option \"%s\" incompatible with ext3", opt);
1462 return -1;
1463 }
1464
1465 if (args->from && match_int(args, &arg))
1466 return -1;
1467 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1468 return -1;
1469 if (m->flags & MOPT_EXPLICIT)
1470 set_opt2(sb, EXPLICIT_DELALLOC);
1471 if (m->flags & MOPT_CLEAR_ERR)
1472 clear_opt(sb, ERRORS_MASK);
1473 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1474 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1475 "options when quota turned on");
1476 return -1;
1477 }
1478
1479 if (m->flags & MOPT_NOSUPPORT) {
1480 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1481 } else if (token == Opt_commit) {
1482 if (arg == 0)
1483 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1484 sbi->s_commit_interval = HZ * arg;
1485 } else if (token == Opt_max_batch_time) {
1486 if (arg == 0)
1487 arg = EXT4_DEF_MAX_BATCH_TIME;
1488 sbi->s_max_batch_time = arg;
1489 } else if (token == Opt_min_batch_time) {
1490 sbi->s_min_batch_time = arg;
1491 } else if (token == Opt_inode_readahead_blks) {
1492 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1493 ext4_msg(sb, KERN_ERR,
1494 "EXT4-fs: inode_readahead_blks must be "
1495 "0 or a power of 2 smaller than 2^31");
1496 return -1;
1497 }
1498 sbi->s_inode_readahead_blks = arg;
1499 } else if (token == Opt_init_itable) {
1500 set_opt(sb, INIT_INODE_TABLE);
1501 if (!args->from)
1502 arg = EXT4_DEF_LI_WAIT_MULT;
1503 sbi->s_li_wait_mult = arg;
1504 } else if (token == Opt_max_dir_size_kb) {
1505 sbi->s_max_dir_size_kb = arg;
1506 } else if (token == Opt_stripe) {
1507 sbi->s_stripe = arg;
1508 } else if (token == Opt_resuid) {
1509 uid = make_kuid(current_user_ns(), arg);
1510 if (!uid_valid(uid)) {
1511 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1512 return -1;
1513 }
1514 sbi->s_resuid = uid;
1515 } else if (token == Opt_resgid) {
1516 gid = make_kgid(current_user_ns(), arg);
1517 if (!gid_valid(gid)) {
1518 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1519 return -1;
1520 }
1521 sbi->s_resgid = gid;
1522 } else if (token == Opt_journal_dev) {
1523 if (is_remount) {
1524 ext4_msg(sb, KERN_ERR,
1525 "Cannot specify journal on remount");
1526 return -1;
1527 }
1528 *journal_devnum = arg;
1529 } else if (token == Opt_journal_ioprio) {
1530 if (arg > 7) {
1531 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1532 " (must be 0-7)");
1533 return -1;
1534 }
1535 *journal_ioprio =
1536 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1537 } else if (m->flags & MOPT_DATAJ) {
1538 if (is_remount) {
1539 if (!sbi->s_journal)
1540 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1541 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Cannot change data mode on remount");
1544 return -1;
1545 }
1546 } else {
1547 clear_opt(sb, DATA_FLAGS);
1548 sbi->s_mount_opt |= m->mount_opt;
1549 }
1550 #ifdef CONFIG_QUOTA
1551 } else if (m->flags & MOPT_QFMT) {
1552 if (sb_any_quota_loaded(sb) &&
1553 sbi->s_jquota_fmt != m->mount_opt) {
1554 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1555 "quota options when quota turned on");
1556 return -1;
1557 }
1558 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1559 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1560 ext4_msg(sb, KERN_ERR,
1561 "Cannot set journaled quota options "
1562 "when QUOTA feature is enabled");
1563 return -1;
1564 }
1565 sbi->s_jquota_fmt = m->mount_opt;
1566 #endif
1567 } else {
1568 if (!args->from)
1569 arg = 1;
1570 if (m->flags & MOPT_CLEAR)
1571 arg = !arg;
1572 else if (unlikely(!(m->flags & MOPT_SET))) {
1573 ext4_msg(sb, KERN_WARNING,
1574 "buggy handling of option %s", opt);
1575 WARN_ON(1);
1576 return -1;
1577 }
1578 if (arg != 0)
1579 sbi->s_mount_opt |= m->mount_opt;
1580 else
1581 sbi->s_mount_opt &= ~m->mount_opt;
1582 }
1583 return 1;
1584 }
1585
1586 static int parse_options(char *options, struct super_block *sb,
1587 unsigned long *journal_devnum,
1588 unsigned int *journal_ioprio,
1589 int is_remount)
1590 {
1591 struct ext4_sb_info *sbi = EXT4_SB(sb);
1592 char *p;
1593 substring_t args[MAX_OPT_ARGS];
1594 int token;
1595
1596 if (!options)
1597 return 1;
1598
1599 while ((p = strsep(&options, ",")) != NULL) {
1600 if (!*p)
1601 continue;
1602 /*
1603 * Initialize args struct so we know whether arg was
1604 * found; some options take optional arguments.
1605 */
1606 args[0].to = args[0].from = NULL;
1607 token = match_token(p, tokens, args);
1608 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1609 journal_ioprio, is_remount) < 0)
1610 return 0;
1611 }
1612 #ifdef CONFIG_QUOTA
1613 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1614 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1615 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1616 "feature is enabled");
1617 return 0;
1618 }
1619 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1620 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1621 clear_opt(sb, USRQUOTA);
1622
1623 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1624 clear_opt(sb, GRPQUOTA);
1625
1626 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1627 ext4_msg(sb, KERN_ERR, "old and new quota "
1628 "format mixing");
1629 return 0;
1630 }
1631
1632 if (!sbi->s_jquota_fmt) {
1633 ext4_msg(sb, KERN_ERR, "journaled quota format "
1634 "not specified");
1635 return 0;
1636 }
1637 } else {
1638 if (sbi->s_jquota_fmt) {
1639 ext4_msg(sb, KERN_ERR, "journaled quota format "
1640 "specified with no journaling "
1641 "enabled");
1642 return 0;
1643 }
1644 }
1645 #endif
1646 if (test_opt(sb, DIOREAD_NOLOCK)) {
1647 int blocksize =
1648 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1649
1650 if (blocksize < PAGE_CACHE_SIZE) {
1651 ext4_msg(sb, KERN_ERR, "can't mount with "
1652 "dioread_nolock if block size != PAGE_SIZE");
1653 return 0;
1654 }
1655 }
1656 return 1;
1657 }
1658
1659 static inline void ext4_show_quota_options(struct seq_file *seq,
1660 struct super_block *sb)
1661 {
1662 #if defined(CONFIG_QUOTA)
1663 struct ext4_sb_info *sbi = EXT4_SB(sb);
1664
1665 if (sbi->s_jquota_fmt) {
1666 char *fmtname = "";
1667
1668 switch (sbi->s_jquota_fmt) {
1669 case QFMT_VFS_OLD:
1670 fmtname = "vfsold";
1671 break;
1672 case QFMT_VFS_V0:
1673 fmtname = "vfsv0";
1674 break;
1675 case QFMT_VFS_V1:
1676 fmtname = "vfsv1";
1677 break;
1678 }
1679 seq_printf(seq, ",jqfmt=%s", fmtname);
1680 }
1681
1682 if (sbi->s_qf_names[USRQUOTA])
1683 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1684
1685 if (sbi->s_qf_names[GRPQUOTA])
1686 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1687 #endif
1688 }
1689
1690 static const char *token2str(int token)
1691 {
1692 const struct match_token *t;
1693
1694 for (t = tokens; t->token != Opt_err; t++)
1695 if (t->token == token && !strchr(t->pattern, '='))
1696 break;
1697 return t->pattern;
1698 }
1699
1700 /*
1701 * Show an option if
1702 * - it's set to a non-default value OR
1703 * - if the per-sb default is different from the global default
1704 */
1705 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1706 int nodefs)
1707 {
1708 struct ext4_sb_info *sbi = EXT4_SB(sb);
1709 struct ext4_super_block *es = sbi->s_es;
1710 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1711 const struct mount_opts *m;
1712 char sep = nodefs ? '\n' : ',';
1713
1714 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1715 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1716
1717 if (sbi->s_sb_block != 1)
1718 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1719
1720 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1721 int want_set = m->flags & MOPT_SET;
1722 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1723 (m->flags & MOPT_CLEAR_ERR))
1724 continue;
1725 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1726 continue; /* skip if same as the default */
1727 if ((want_set &&
1728 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1729 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1730 continue; /* select Opt_noFoo vs Opt_Foo */
1731 SEQ_OPTS_PRINT("%s", token2str(m->token));
1732 }
1733
1734 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1735 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1736 SEQ_OPTS_PRINT("resuid=%u",
1737 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1738 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1739 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1740 SEQ_OPTS_PRINT("resgid=%u",
1741 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1742 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1743 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1744 SEQ_OPTS_PUTS("errors=remount-ro");
1745 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1746 SEQ_OPTS_PUTS("errors=continue");
1747 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1748 SEQ_OPTS_PUTS("errors=panic");
1749 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1750 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1751 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1752 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1753 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1754 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1755 if (sb->s_flags & MS_I_VERSION)
1756 SEQ_OPTS_PUTS("i_version");
1757 if (nodefs || sbi->s_stripe)
1758 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1759 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1760 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1761 SEQ_OPTS_PUTS("data=journal");
1762 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1763 SEQ_OPTS_PUTS("data=ordered");
1764 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1765 SEQ_OPTS_PUTS("data=writeback");
1766 }
1767 if (nodefs ||
1768 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1769 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1770 sbi->s_inode_readahead_blks);
1771
1772 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1773 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1774 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1775 if (nodefs || sbi->s_max_dir_size_kb)
1776 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1777
1778 ext4_show_quota_options(seq, sb);
1779 return 0;
1780 }
1781
1782 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1783 {
1784 return _ext4_show_options(seq, root->d_sb, 0);
1785 }
1786
1787 static int options_seq_show(struct seq_file *seq, void *offset)
1788 {
1789 struct super_block *sb = seq->private;
1790 int rc;
1791
1792 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1793 rc = _ext4_show_options(seq, sb, 1);
1794 seq_puts(seq, "\n");
1795 return rc;
1796 }
1797
1798 static int options_open_fs(struct inode *inode, struct file *file)
1799 {
1800 return single_open(file, options_seq_show, PDE_DATA(inode));
1801 }
1802
1803 static const struct file_operations ext4_seq_options_fops = {
1804 .owner = THIS_MODULE,
1805 .open = options_open_fs,
1806 .read = seq_read,
1807 .llseek = seq_lseek,
1808 .release = single_release,
1809 };
1810
1811 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1812 int read_only)
1813 {
1814 struct ext4_sb_info *sbi = EXT4_SB(sb);
1815 int res = 0;
1816
1817 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1818 ext4_msg(sb, KERN_ERR, "revision level too high, "
1819 "forcing read-only mode");
1820 res = MS_RDONLY;
1821 }
1822 if (read_only)
1823 goto done;
1824 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1825 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1826 "running e2fsck is recommended");
1827 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1828 ext4_msg(sb, KERN_WARNING,
1829 "warning: mounting fs with errors, "
1830 "running e2fsck is recommended");
1831 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1832 le16_to_cpu(es->s_mnt_count) >=
1833 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1834 ext4_msg(sb, KERN_WARNING,
1835 "warning: maximal mount count reached, "
1836 "running e2fsck is recommended");
1837 else if (le32_to_cpu(es->s_checkinterval) &&
1838 (le32_to_cpu(es->s_lastcheck) +
1839 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1840 ext4_msg(sb, KERN_WARNING,
1841 "warning: checktime reached, "
1842 "running e2fsck is recommended");
1843 if (!sbi->s_journal)
1844 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1845 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1846 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1847 le16_add_cpu(&es->s_mnt_count, 1);
1848 es->s_mtime = cpu_to_le32(get_seconds());
1849 ext4_update_dynamic_rev(sb);
1850 if (sbi->s_journal)
1851 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1852
1853 ext4_commit_super(sb, 1);
1854 done:
1855 if (test_opt(sb, DEBUG))
1856 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1857 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1858 sb->s_blocksize,
1859 sbi->s_groups_count,
1860 EXT4_BLOCKS_PER_GROUP(sb),
1861 EXT4_INODES_PER_GROUP(sb),
1862 sbi->s_mount_opt, sbi->s_mount_opt2);
1863
1864 cleancache_init_fs(sb);
1865 return res;
1866 }
1867
1868 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1869 {
1870 struct ext4_sb_info *sbi = EXT4_SB(sb);
1871 struct flex_groups *new_groups;
1872 int size;
1873
1874 if (!sbi->s_log_groups_per_flex)
1875 return 0;
1876
1877 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1878 if (size <= sbi->s_flex_groups_allocated)
1879 return 0;
1880
1881 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1882 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1883 if (!new_groups) {
1884 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1885 size / (int) sizeof(struct flex_groups));
1886 return -ENOMEM;
1887 }
1888
1889 if (sbi->s_flex_groups) {
1890 memcpy(new_groups, sbi->s_flex_groups,
1891 (sbi->s_flex_groups_allocated *
1892 sizeof(struct flex_groups)));
1893 ext4_kvfree(sbi->s_flex_groups);
1894 }
1895 sbi->s_flex_groups = new_groups;
1896 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1897 return 0;
1898 }
1899
1900 static int ext4_fill_flex_info(struct super_block *sb)
1901 {
1902 struct ext4_sb_info *sbi = EXT4_SB(sb);
1903 struct ext4_group_desc *gdp = NULL;
1904 ext4_group_t flex_group;
1905 unsigned int groups_per_flex = 0;
1906 int i, err;
1907
1908 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1909 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1910 sbi->s_log_groups_per_flex = 0;
1911 return 1;
1912 }
1913 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1914
1915 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1916 if (err)
1917 goto failed;
1918
1919 for (i = 0; i < sbi->s_groups_count; i++) {
1920 gdp = ext4_get_group_desc(sb, i, NULL);
1921
1922 flex_group = ext4_flex_group(sbi, i);
1923 atomic_add(ext4_free_inodes_count(sb, gdp),
1924 &sbi->s_flex_groups[flex_group].free_inodes);
1925 atomic64_add(ext4_free_group_clusters(sb, gdp),
1926 &sbi->s_flex_groups[flex_group].free_clusters);
1927 atomic_add(ext4_used_dirs_count(sb, gdp),
1928 &sbi->s_flex_groups[flex_group].used_dirs);
1929 }
1930
1931 return 1;
1932 failed:
1933 return 0;
1934 }
1935
1936 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1937 struct ext4_group_desc *gdp)
1938 {
1939 int offset;
1940 __u16 crc = 0;
1941 __le32 le_group = cpu_to_le32(block_group);
1942
1943 if ((sbi->s_es->s_feature_ro_compat &
1944 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1945 /* Use new metadata_csum algorithm */
1946 __le16 save_csum;
1947 __u32 csum32;
1948
1949 save_csum = gdp->bg_checksum;
1950 gdp->bg_checksum = 0;
1951 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1952 sizeof(le_group));
1953 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1954 sbi->s_desc_size);
1955 gdp->bg_checksum = save_csum;
1956
1957 crc = csum32 & 0xFFFF;
1958 goto out;
1959 }
1960
1961 /* old crc16 code */
1962 offset = offsetof(struct ext4_group_desc, bg_checksum);
1963
1964 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1965 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1966 crc = crc16(crc, (__u8 *)gdp, offset);
1967 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1968 /* for checksum of struct ext4_group_desc do the rest...*/
1969 if ((sbi->s_es->s_feature_incompat &
1970 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1971 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1972 crc = crc16(crc, (__u8 *)gdp + offset,
1973 le16_to_cpu(sbi->s_es->s_desc_size) -
1974 offset);
1975
1976 out:
1977 return cpu_to_le16(crc);
1978 }
1979
1980 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1981 struct ext4_group_desc *gdp)
1982 {
1983 if (ext4_has_group_desc_csum(sb) &&
1984 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1985 block_group, gdp)))
1986 return 0;
1987
1988 return 1;
1989 }
1990
1991 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1992 struct ext4_group_desc *gdp)
1993 {
1994 if (!ext4_has_group_desc_csum(sb))
1995 return;
1996 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1997 }
1998
1999 /* Called at mount-time, super-block is locked */
2000 static int ext4_check_descriptors(struct super_block *sb,
2001 ext4_group_t *first_not_zeroed)
2002 {
2003 struct ext4_sb_info *sbi = EXT4_SB(sb);
2004 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2005 ext4_fsblk_t last_block;
2006 ext4_fsblk_t block_bitmap;
2007 ext4_fsblk_t inode_bitmap;
2008 ext4_fsblk_t inode_table;
2009 int flexbg_flag = 0;
2010 ext4_group_t i, grp = sbi->s_groups_count;
2011
2012 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2013 flexbg_flag = 1;
2014
2015 ext4_debug("Checking group descriptors");
2016
2017 for (i = 0; i < sbi->s_groups_count; i++) {
2018 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2019
2020 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2021 last_block = ext4_blocks_count(sbi->s_es) - 1;
2022 else
2023 last_block = first_block +
2024 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2025
2026 if ((grp == sbi->s_groups_count) &&
2027 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2028 grp = i;
2029
2030 block_bitmap = ext4_block_bitmap(sb, gdp);
2031 if (block_bitmap < first_block || block_bitmap > last_block) {
2032 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2033 "Block bitmap for group %u not in group "
2034 "(block %llu)!", i, block_bitmap);
2035 return 0;
2036 }
2037 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2038 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2039 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2040 "Inode bitmap for group %u not in group "
2041 "(block %llu)!", i, inode_bitmap);
2042 return 0;
2043 }
2044 inode_table = ext4_inode_table(sb, gdp);
2045 if (inode_table < first_block ||
2046 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2047 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2048 "Inode table for group %u not in group "
2049 "(block %llu)!", i, inode_table);
2050 return 0;
2051 }
2052 ext4_lock_group(sb, i);
2053 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2054 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2055 "Checksum for group %u failed (%u!=%u)",
2056 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2057 gdp)), le16_to_cpu(gdp->bg_checksum));
2058 if (!(sb->s_flags & MS_RDONLY)) {
2059 ext4_unlock_group(sb, i);
2060 return 0;
2061 }
2062 }
2063 ext4_unlock_group(sb, i);
2064 if (!flexbg_flag)
2065 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2066 }
2067 if (NULL != first_not_zeroed)
2068 *first_not_zeroed = grp;
2069
2070 ext4_free_blocks_count_set(sbi->s_es,
2071 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2072 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2073 return 1;
2074 }
2075
2076 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2077 * the superblock) which were deleted from all directories, but held open by
2078 * a process at the time of a crash. We walk the list and try to delete these
2079 * inodes at recovery time (only with a read-write filesystem).
2080 *
2081 * In order to keep the orphan inode chain consistent during traversal (in
2082 * case of crash during recovery), we link each inode into the superblock
2083 * orphan list_head and handle it the same way as an inode deletion during
2084 * normal operation (which journals the operations for us).
2085 *
2086 * We only do an iget() and an iput() on each inode, which is very safe if we
2087 * accidentally point at an in-use or already deleted inode. The worst that
2088 * can happen in this case is that we get a "bit already cleared" message from
2089 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2090 * e2fsck was run on this filesystem, and it must have already done the orphan
2091 * inode cleanup for us, so we can safely abort without any further action.
2092 */
2093 static void ext4_orphan_cleanup(struct super_block *sb,
2094 struct ext4_super_block *es)
2095 {
2096 unsigned int s_flags = sb->s_flags;
2097 int nr_orphans = 0, nr_truncates = 0;
2098 #ifdef CONFIG_QUOTA
2099 int i;
2100 #endif
2101 if (!es->s_last_orphan) {
2102 jbd_debug(4, "no orphan inodes to clean up\n");
2103 return;
2104 }
2105
2106 if (bdev_read_only(sb->s_bdev)) {
2107 ext4_msg(sb, KERN_ERR, "write access "
2108 "unavailable, skipping orphan cleanup");
2109 return;
2110 }
2111
2112 /* Check if feature set would not allow a r/w mount */
2113 if (!ext4_feature_set_ok(sb, 0)) {
2114 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2115 "unknown ROCOMPAT features");
2116 return;
2117 }
2118
2119 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2120 /* don't clear list on RO mount w/ errors */
2121 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2122 jbd_debug(1, "Errors on filesystem, "
2123 "clearing orphan list.\n");
2124 es->s_last_orphan = 0;
2125 }
2126 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2127 return;
2128 }
2129
2130 if (s_flags & MS_RDONLY) {
2131 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2132 sb->s_flags &= ~MS_RDONLY;
2133 }
2134 #ifdef CONFIG_QUOTA
2135 /* Needed for iput() to work correctly and not trash data */
2136 sb->s_flags |= MS_ACTIVE;
2137 /* Turn on quotas so that they are updated correctly */
2138 for (i = 0; i < MAXQUOTAS; i++) {
2139 if (EXT4_SB(sb)->s_qf_names[i]) {
2140 int ret = ext4_quota_on_mount(sb, i);
2141 if (ret < 0)
2142 ext4_msg(sb, KERN_ERR,
2143 "Cannot turn on journaled "
2144 "quota: error %d", ret);
2145 }
2146 }
2147 #endif
2148
2149 while (es->s_last_orphan) {
2150 struct inode *inode;
2151
2152 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2153 if (IS_ERR(inode)) {
2154 es->s_last_orphan = 0;
2155 break;
2156 }
2157
2158 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2159 dquot_initialize(inode);
2160 if (inode->i_nlink) {
2161 ext4_msg(sb, KERN_DEBUG,
2162 "%s: truncating inode %lu to %lld bytes",
2163 __func__, inode->i_ino, inode->i_size);
2164 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2165 inode->i_ino, inode->i_size);
2166 mutex_lock(&inode->i_mutex);
2167 ext4_truncate(inode);
2168 mutex_unlock(&inode->i_mutex);
2169 nr_truncates++;
2170 } else {
2171 ext4_msg(sb, KERN_DEBUG,
2172 "%s: deleting unreferenced inode %lu",
2173 __func__, inode->i_ino);
2174 jbd_debug(2, "deleting unreferenced inode %lu\n",
2175 inode->i_ino);
2176 nr_orphans++;
2177 }
2178 iput(inode); /* The delete magic happens here! */
2179 }
2180
2181 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2182
2183 if (nr_orphans)
2184 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2185 PLURAL(nr_orphans));
2186 if (nr_truncates)
2187 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2188 PLURAL(nr_truncates));
2189 #ifdef CONFIG_QUOTA
2190 /* Turn quotas off */
2191 for (i = 0; i < MAXQUOTAS; i++) {
2192 if (sb_dqopt(sb)->files[i])
2193 dquot_quota_off(sb, i);
2194 }
2195 #endif
2196 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2197 }
2198
2199 /*
2200 * Maximal extent format file size.
2201 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2202 * extent format containers, within a sector_t, and within i_blocks
2203 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2204 * so that won't be a limiting factor.
2205 *
2206 * However there is other limiting factor. We do store extents in the form
2207 * of starting block and length, hence the resulting length of the extent
2208 * covering maximum file size must fit into on-disk format containers as
2209 * well. Given that length is always by 1 unit bigger than max unit (because
2210 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2211 *
2212 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2213 */
2214 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2215 {
2216 loff_t res;
2217 loff_t upper_limit = MAX_LFS_FILESIZE;
2218
2219 /* small i_blocks in vfs inode? */
2220 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2221 /*
2222 * CONFIG_LBDAF is not enabled implies the inode
2223 * i_block represent total blocks in 512 bytes
2224 * 32 == size of vfs inode i_blocks * 8
2225 */
2226 upper_limit = (1LL << 32) - 1;
2227
2228 /* total blocks in file system block size */
2229 upper_limit >>= (blkbits - 9);
2230 upper_limit <<= blkbits;
2231 }
2232
2233 /*
2234 * 32-bit extent-start container, ee_block. We lower the maxbytes
2235 * by one fs block, so ee_len can cover the extent of maximum file
2236 * size
2237 */
2238 res = (1LL << 32) - 1;
2239 res <<= blkbits;
2240
2241 /* Sanity check against vm- & vfs- imposed limits */
2242 if (res > upper_limit)
2243 res = upper_limit;
2244
2245 return res;
2246 }
2247
2248 /*
2249 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2250 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2251 * We need to be 1 filesystem block less than the 2^48 sector limit.
2252 */
2253 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2254 {
2255 loff_t res = EXT4_NDIR_BLOCKS;
2256 int meta_blocks;
2257 loff_t upper_limit;
2258 /* This is calculated to be the largest file size for a dense, block
2259 * mapped file such that the file's total number of 512-byte sectors,
2260 * including data and all indirect blocks, does not exceed (2^48 - 1).
2261 *
2262 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2263 * number of 512-byte sectors of the file.
2264 */
2265
2266 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2267 /*
2268 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2269 * the inode i_block field represents total file blocks in
2270 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2271 */
2272 upper_limit = (1LL << 32) - 1;
2273
2274 /* total blocks in file system block size */
2275 upper_limit >>= (bits - 9);
2276
2277 } else {
2278 /*
2279 * We use 48 bit ext4_inode i_blocks
2280 * With EXT4_HUGE_FILE_FL set the i_blocks
2281 * represent total number of blocks in
2282 * file system block size
2283 */
2284 upper_limit = (1LL << 48) - 1;
2285
2286 }
2287
2288 /* indirect blocks */
2289 meta_blocks = 1;
2290 /* double indirect blocks */
2291 meta_blocks += 1 + (1LL << (bits-2));
2292 /* tripple indirect blocks */
2293 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2294
2295 upper_limit -= meta_blocks;
2296 upper_limit <<= bits;
2297
2298 res += 1LL << (bits-2);
2299 res += 1LL << (2*(bits-2));
2300 res += 1LL << (3*(bits-2));
2301 res <<= bits;
2302 if (res > upper_limit)
2303 res = upper_limit;
2304
2305 if (res > MAX_LFS_FILESIZE)
2306 res = MAX_LFS_FILESIZE;
2307
2308 return res;
2309 }
2310
2311 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2312 ext4_fsblk_t logical_sb_block, int nr)
2313 {
2314 struct ext4_sb_info *sbi = EXT4_SB(sb);
2315 ext4_group_t bg, first_meta_bg;
2316 int has_super = 0;
2317
2318 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2319
2320 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2321 nr < first_meta_bg)
2322 return logical_sb_block + nr + 1;
2323 bg = sbi->s_desc_per_block * nr;
2324 if (ext4_bg_has_super(sb, bg))
2325 has_super = 1;
2326
2327 return (has_super + ext4_group_first_block_no(sb, bg));
2328 }
2329
2330 /**
2331 * ext4_get_stripe_size: Get the stripe size.
2332 * @sbi: In memory super block info
2333 *
2334 * If we have specified it via mount option, then
2335 * use the mount option value. If the value specified at mount time is
2336 * greater than the blocks per group use the super block value.
2337 * If the super block value is greater than blocks per group return 0.
2338 * Allocator needs it be less than blocks per group.
2339 *
2340 */
2341 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2342 {
2343 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2344 unsigned long stripe_width =
2345 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2346 int ret;
2347
2348 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2349 ret = sbi->s_stripe;
2350 else if (stripe_width <= sbi->s_blocks_per_group)
2351 ret = stripe_width;
2352 else if (stride <= sbi->s_blocks_per_group)
2353 ret = stride;
2354 else
2355 ret = 0;
2356
2357 /*
2358 * If the stripe width is 1, this makes no sense and
2359 * we set it to 0 to turn off stripe handling code.
2360 */
2361 if (ret <= 1)
2362 ret = 0;
2363
2364 return ret;
2365 }
2366
2367 /* sysfs supprt */
2368
2369 struct ext4_attr {
2370 struct attribute attr;
2371 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2372 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2373 const char *, size_t);
2374 int offset;
2375 };
2376
2377 static int parse_strtoull(const char *buf,
2378 unsigned long long max, unsigned long long *value)
2379 {
2380 int ret;
2381
2382 ret = kstrtoull(skip_spaces(buf), 0, value);
2383 if (!ret && *value > max)
2384 ret = -EINVAL;
2385 return ret;
2386 }
2387
2388 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2389 struct ext4_sb_info *sbi,
2390 char *buf)
2391 {
2392 return snprintf(buf, PAGE_SIZE, "%llu\n",
2393 (s64) EXT4_C2B(sbi,
2394 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2395 }
2396
2397 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2398 struct ext4_sb_info *sbi, char *buf)
2399 {
2400 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2401
2402 if (!sb->s_bdev->bd_part)
2403 return snprintf(buf, PAGE_SIZE, "0\n");
2404 return snprintf(buf, PAGE_SIZE, "%lu\n",
2405 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2406 sbi->s_sectors_written_start) >> 1);
2407 }
2408
2409 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2410 struct ext4_sb_info *sbi, char *buf)
2411 {
2412 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2413
2414 if (!sb->s_bdev->bd_part)
2415 return snprintf(buf, PAGE_SIZE, "0\n");
2416 return snprintf(buf, PAGE_SIZE, "%llu\n",
2417 (unsigned long long)(sbi->s_kbytes_written +
2418 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2419 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2420 }
2421
2422 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2423 struct ext4_sb_info *sbi,
2424 const char *buf, size_t count)
2425 {
2426 unsigned long t;
2427 int ret;
2428
2429 ret = kstrtoul(skip_spaces(buf), 0, &t);
2430 if (ret)
2431 return ret;
2432
2433 if (t && (!is_power_of_2(t) || t > 0x40000000))
2434 return -EINVAL;
2435
2436 sbi->s_inode_readahead_blks = t;
2437 return count;
2438 }
2439
2440 static ssize_t sbi_ui_show(struct ext4_attr *a,
2441 struct ext4_sb_info *sbi, char *buf)
2442 {
2443 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2444
2445 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2446 }
2447
2448 static ssize_t sbi_ui_store(struct ext4_attr *a,
2449 struct ext4_sb_info *sbi,
2450 const char *buf, size_t count)
2451 {
2452 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2453 unsigned long t;
2454 int ret;
2455
2456 ret = kstrtoul(skip_spaces(buf), 0, &t);
2457 if (ret)
2458 return ret;
2459 *ui = t;
2460 return count;
2461 }
2462
2463 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2464 struct ext4_sb_info *sbi, char *buf)
2465 {
2466 return snprintf(buf, PAGE_SIZE, "%llu\n",
2467 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2468 }
2469
2470 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2471 struct ext4_sb_info *sbi,
2472 const char *buf, size_t count)
2473 {
2474 unsigned long long val;
2475 int ret;
2476
2477 if (parse_strtoull(buf, -1ULL, &val))
2478 return -EINVAL;
2479 ret = ext4_reserve_clusters(sbi, val);
2480
2481 return ret ? ret : count;
2482 }
2483
2484 static ssize_t trigger_test_error(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi,
2486 const char *buf, size_t count)
2487 {
2488 int len = count;
2489
2490 if (!capable(CAP_SYS_ADMIN))
2491 return -EPERM;
2492
2493 if (len && buf[len-1] == '\n')
2494 len--;
2495
2496 if (len)
2497 ext4_error(sbi->s_sb, "%.*s", len, buf);
2498 return count;
2499 }
2500
2501 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2502 static struct ext4_attr ext4_attr_##_name = { \
2503 .attr = {.name = __stringify(_name), .mode = _mode }, \
2504 .show = _show, \
2505 .store = _store, \
2506 .offset = offsetof(struct ext4_sb_info, _elname), \
2507 }
2508 #define EXT4_ATTR(name, mode, show, store) \
2509 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2510
2511 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2512 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2513 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2514 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2515 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2516 #define ATTR_LIST(name) &ext4_attr_##name.attr
2517
2518 EXT4_RO_ATTR(delayed_allocation_blocks);
2519 EXT4_RO_ATTR(session_write_kbytes);
2520 EXT4_RO_ATTR(lifetime_write_kbytes);
2521 EXT4_RW_ATTR(reserved_clusters);
2522 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2523 inode_readahead_blks_store, s_inode_readahead_blks);
2524 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2525 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2526 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2527 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2528 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2529 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2530 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2531 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2532 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2533 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2534
2535 static struct attribute *ext4_attrs[] = {
2536 ATTR_LIST(delayed_allocation_blocks),
2537 ATTR_LIST(session_write_kbytes),
2538 ATTR_LIST(lifetime_write_kbytes),
2539 ATTR_LIST(reserved_clusters),
2540 ATTR_LIST(inode_readahead_blks),
2541 ATTR_LIST(inode_goal),
2542 ATTR_LIST(mb_stats),
2543 ATTR_LIST(mb_max_to_scan),
2544 ATTR_LIST(mb_min_to_scan),
2545 ATTR_LIST(mb_order2_req),
2546 ATTR_LIST(mb_stream_req),
2547 ATTR_LIST(mb_group_prealloc),
2548 ATTR_LIST(max_writeback_mb_bump),
2549 ATTR_LIST(extent_max_zeroout_kb),
2550 ATTR_LIST(trigger_fs_error),
2551 NULL,
2552 };
2553
2554 /* Features this copy of ext4 supports */
2555 EXT4_INFO_ATTR(lazy_itable_init);
2556 EXT4_INFO_ATTR(batched_discard);
2557 EXT4_INFO_ATTR(meta_bg_resize);
2558
2559 static struct attribute *ext4_feat_attrs[] = {
2560 ATTR_LIST(lazy_itable_init),
2561 ATTR_LIST(batched_discard),
2562 ATTR_LIST(meta_bg_resize),
2563 NULL,
2564 };
2565
2566 static ssize_t ext4_attr_show(struct kobject *kobj,
2567 struct attribute *attr, char *buf)
2568 {
2569 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2570 s_kobj);
2571 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2572
2573 return a->show ? a->show(a, sbi, buf) : 0;
2574 }
2575
2576 static ssize_t ext4_attr_store(struct kobject *kobj,
2577 struct attribute *attr,
2578 const char *buf, size_t len)
2579 {
2580 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2581 s_kobj);
2582 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2583
2584 return a->store ? a->store(a, sbi, buf, len) : 0;
2585 }
2586
2587 static void ext4_sb_release(struct kobject *kobj)
2588 {
2589 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2590 s_kobj);
2591 complete(&sbi->s_kobj_unregister);
2592 }
2593
2594 static const struct sysfs_ops ext4_attr_ops = {
2595 .show = ext4_attr_show,
2596 .store = ext4_attr_store,
2597 };
2598
2599 static struct kobj_type ext4_ktype = {
2600 .default_attrs = ext4_attrs,
2601 .sysfs_ops = &ext4_attr_ops,
2602 .release = ext4_sb_release,
2603 };
2604
2605 static void ext4_feat_release(struct kobject *kobj)
2606 {
2607 complete(&ext4_feat->f_kobj_unregister);
2608 }
2609
2610 static struct kobj_type ext4_feat_ktype = {
2611 .default_attrs = ext4_feat_attrs,
2612 .sysfs_ops = &ext4_attr_ops,
2613 .release = ext4_feat_release,
2614 };
2615
2616 /*
2617 * Check whether this filesystem can be mounted based on
2618 * the features present and the RDONLY/RDWR mount requested.
2619 * Returns 1 if this filesystem can be mounted as requested,
2620 * 0 if it cannot be.
2621 */
2622 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2623 {
2624 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2625 ext4_msg(sb, KERN_ERR,
2626 "Couldn't mount because of "
2627 "unsupported optional features (%x)",
2628 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2629 ~EXT4_FEATURE_INCOMPAT_SUPP));
2630 return 0;
2631 }
2632
2633 if (readonly)
2634 return 1;
2635
2636 /* Check that feature set is OK for a read-write mount */
2637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2638 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2639 "unsupported optional features (%x)",
2640 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2641 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2642 return 0;
2643 }
2644 /*
2645 * Large file size enabled file system can only be mounted
2646 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2647 */
2648 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2649 if (sizeof(blkcnt_t) < sizeof(u64)) {
2650 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2651 "cannot be mounted RDWR without "
2652 "CONFIG_LBDAF");
2653 return 0;
2654 }
2655 }
2656 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2657 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2658 ext4_msg(sb, KERN_ERR,
2659 "Can't support bigalloc feature without "
2660 "extents feature\n");
2661 return 0;
2662 }
2663
2664 #ifndef CONFIG_QUOTA
2665 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2666 !readonly) {
2667 ext4_msg(sb, KERN_ERR,
2668 "Filesystem with quota feature cannot be mounted RDWR "
2669 "without CONFIG_QUOTA");
2670 return 0;
2671 }
2672 #endif /* CONFIG_QUOTA */
2673 return 1;
2674 }
2675
2676 /*
2677 * This function is called once a day if we have errors logged
2678 * on the file system
2679 */
2680 static void print_daily_error_info(unsigned long arg)
2681 {
2682 struct super_block *sb = (struct super_block *) arg;
2683 struct ext4_sb_info *sbi;
2684 struct ext4_super_block *es;
2685
2686 sbi = EXT4_SB(sb);
2687 es = sbi->s_es;
2688
2689 if (es->s_error_count)
2690 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2691 le32_to_cpu(es->s_error_count));
2692 if (es->s_first_error_time) {
2693 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2694 sb->s_id, le32_to_cpu(es->s_first_error_time),
2695 (int) sizeof(es->s_first_error_func),
2696 es->s_first_error_func,
2697 le32_to_cpu(es->s_first_error_line));
2698 if (es->s_first_error_ino)
2699 printk(": inode %u",
2700 le32_to_cpu(es->s_first_error_ino));
2701 if (es->s_first_error_block)
2702 printk(": block %llu", (unsigned long long)
2703 le64_to_cpu(es->s_first_error_block));
2704 printk("\n");
2705 }
2706 if (es->s_last_error_time) {
2707 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2708 sb->s_id, le32_to_cpu(es->s_last_error_time),
2709 (int) sizeof(es->s_last_error_func),
2710 es->s_last_error_func,
2711 le32_to_cpu(es->s_last_error_line));
2712 if (es->s_last_error_ino)
2713 printk(": inode %u",
2714 le32_to_cpu(es->s_last_error_ino));
2715 if (es->s_last_error_block)
2716 printk(": block %llu", (unsigned long long)
2717 le64_to_cpu(es->s_last_error_block));
2718 printk("\n");
2719 }
2720 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2721 }
2722
2723 /* Find next suitable group and run ext4_init_inode_table */
2724 static int ext4_run_li_request(struct ext4_li_request *elr)
2725 {
2726 struct ext4_group_desc *gdp = NULL;
2727 ext4_group_t group, ngroups;
2728 struct super_block *sb;
2729 unsigned long timeout = 0;
2730 int ret = 0;
2731
2732 sb = elr->lr_super;
2733 ngroups = EXT4_SB(sb)->s_groups_count;
2734
2735 sb_start_write(sb);
2736 for (group = elr->lr_next_group; group < ngroups; group++) {
2737 gdp = ext4_get_group_desc(sb, group, NULL);
2738 if (!gdp) {
2739 ret = 1;
2740 break;
2741 }
2742
2743 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2744 break;
2745 }
2746
2747 if (group >= ngroups)
2748 ret = 1;
2749
2750 if (!ret) {
2751 timeout = jiffies;
2752 ret = ext4_init_inode_table(sb, group,
2753 elr->lr_timeout ? 0 : 1);
2754 if (elr->lr_timeout == 0) {
2755 timeout = (jiffies - timeout) *
2756 elr->lr_sbi->s_li_wait_mult;
2757 elr->lr_timeout = timeout;
2758 }
2759 elr->lr_next_sched = jiffies + elr->lr_timeout;
2760 elr->lr_next_group = group + 1;
2761 }
2762 sb_end_write(sb);
2763
2764 return ret;
2765 }
2766
2767 /*
2768 * Remove lr_request from the list_request and free the
2769 * request structure. Should be called with li_list_mtx held
2770 */
2771 static void ext4_remove_li_request(struct ext4_li_request *elr)
2772 {
2773 struct ext4_sb_info *sbi;
2774
2775 if (!elr)
2776 return;
2777
2778 sbi = elr->lr_sbi;
2779
2780 list_del(&elr->lr_request);
2781 sbi->s_li_request = NULL;
2782 kfree(elr);
2783 }
2784
2785 static void ext4_unregister_li_request(struct super_block *sb)
2786 {
2787 mutex_lock(&ext4_li_mtx);
2788 if (!ext4_li_info) {
2789 mutex_unlock(&ext4_li_mtx);
2790 return;
2791 }
2792
2793 mutex_lock(&ext4_li_info->li_list_mtx);
2794 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2795 mutex_unlock(&ext4_li_info->li_list_mtx);
2796 mutex_unlock(&ext4_li_mtx);
2797 }
2798
2799 static struct task_struct *ext4_lazyinit_task;
2800
2801 /*
2802 * This is the function where ext4lazyinit thread lives. It walks
2803 * through the request list searching for next scheduled filesystem.
2804 * When such a fs is found, run the lazy initialization request
2805 * (ext4_rn_li_request) and keep track of the time spend in this
2806 * function. Based on that time we compute next schedule time of
2807 * the request. When walking through the list is complete, compute
2808 * next waking time and put itself into sleep.
2809 */
2810 static int ext4_lazyinit_thread(void *arg)
2811 {
2812 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2813 struct list_head *pos, *n;
2814 struct ext4_li_request *elr;
2815 unsigned long next_wakeup, cur;
2816
2817 BUG_ON(NULL == eli);
2818
2819 cont_thread:
2820 while (true) {
2821 next_wakeup = MAX_JIFFY_OFFSET;
2822
2823 mutex_lock(&eli->li_list_mtx);
2824 if (list_empty(&eli->li_request_list)) {
2825 mutex_unlock(&eli->li_list_mtx);
2826 goto exit_thread;
2827 }
2828
2829 list_for_each_safe(pos, n, &eli->li_request_list) {
2830 elr = list_entry(pos, struct ext4_li_request,
2831 lr_request);
2832
2833 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2834 if (ext4_run_li_request(elr) != 0) {
2835 /* error, remove the lazy_init job */
2836 ext4_remove_li_request(elr);
2837 continue;
2838 }
2839 }
2840
2841 if (time_before(elr->lr_next_sched, next_wakeup))
2842 next_wakeup = elr->lr_next_sched;
2843 }
2844 mutex_unlock(&eli->li_list_mtx);
2845
2846 try_to_freeze();
2847
2848 cur = jiffies;
2849 if ((time_after_eq(cur, next_wakeup)) ||
2850 (MAX_JIFFY_OFFSET == next_wakeup)) {
2851 cond_resched();
2852 continue;
2853 }
2854
2855 schedule_timeout_interruptible(next_wakeup - cur);
2856
2857 if (kthread_should_stop()) {
2858 ext4_clear_request_list();
2859 goto exit_thread;
2860 }
2861 }
2862
2863 exit_thread:
2864 /*
2865 * It looks like the request list is empty, but we need
2866 * to check it under the li_list_mtx lock, to prevent any
2867 * additions into it, and of course we should lock ext4_li_mtx
2868 * to atomically free the list and ext4_li_info, because at
2869 * this point another ext4 filesystem could be registering
2870 * new one.
2871 */
2872 mutex_lock(&ext4_li_mtx);
2873 mutex_lock(&eli->li_list_mtx);
2874 if (!list_empty(&eli->li_request_list)) {
2875 mutex_unlock(&eli->li_list_mtx);
2876 mutex_unlock(&ext4_li_mtx);
2877 goto cont_thread;
2878 }
2879 mutex_unlock(&eli->li_list_mtx);
2880 kfree(ext4_li_info);
2881 ext4_li_info = NULL;
2882 mutex_unlock(&ext4_li_mtx);
2883
2884 return 0;
2885 }
2886
2887 static void ext4_clear_request_list(void)
2888 {
2889 struct list_head *pos, *n;
2890 struct ext4_li_request *elr;
2891
2892 mutex_lock(&ext4_li_info->li_list_mtx);
2893 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2894 elr = list_entry(pos, struct ext4_li_request,
2895 lr_request);
2896 ext4_remove_li_request(elr);
2897 }
2898 mutex_unlock(&ext4_li_info->li_list_mtx);
2899 }
2900
2901 static int ext4_run_lazyinit_thread(void)
2902 {
2903 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2904 ext4_li_info, "ext4lazyinit");
2905 if (IS_ERR(ext4_lazyinit_task)) {
2906 int err = PTR_ERR(ext4_lazyinit_task);
2907 ext4_clear_request_list();
2908 kfree(ext4_li_info);
2909 ext4_li_info = NULL;
2910 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2911 "initialization thread\n",
2912 err);
2913 return err;
2914 }
2915 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2916 return 0;
2917 }
2918
2919 /*
2920 * Check whether it make sense to run itable init. thread or not.
2921 * If there is at least one uninitialized inode table, return
2922 * corresponding group number, else the loop goes through all
2923 * groups and return total number of groups.
2924 */
2925 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2926 {
2927 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2928 struct ext4_group_desc *gdp = NULL;
2929
2930 for (group = 0; group < ngroups; group++) {
2931 gdp = ext4_get_group_desc(sb, group, NULL);
2932 if (!gdp)
2933 continue;
2934
2935 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2936 break;
2937 }
2938
2939 return group;
2940 }
2941
2942 static int ext4_li_info_new(void)
2943 {
2944 struct ext4_lazy_init *eli = NULL;
2945
2946 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2947 if (!eli)
2948 return -ENOMEM;
2949
2950 INIT_LIST_HEAD(&eli->li_request_list);
2951 mutex_init(&eli->li_list_mtx);
2952
2953 eli->li_state |= EXT4_LAZYINIT_QUIT;
2954
2955 ext4_li_info = eli;
2956
2957 return 0;
2958 }
2959
2960 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2961 ext4_group_t start)
2962 {
2963 struct ext4_sb_info *sbi = EXT4_SB(sb);
2964 struct ext4_li_request *elr;
2965 unsigned long rnd;
2966
2967 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2968 if (!elr)
2969 return NULL;
2970
2971 elr->lr_super = sb;
2972 elr->lr_sbi = sbi;
2973 elr->lr_next_group = start;
2974
2975 /*
2976 * Randomize first schedule time of the request to
2977 * spread the inode table initialization requests
2978 * better.
2979 */
2980 get_random_bytes(&rnd, sizeof(rnd));
2981 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2982 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2983
2984 return elr;
2985 }
2986
2987 int ext4_register_li_request(struct super_block *sb,
2988 ext4_group_t first_not_zeroed)
2989 {
2990 struct ext4_sb_info *sbi = EXT4_SB(sb);
2991 struct ext4_li_request *elr = NULL;
2992 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2993 int ret = 0;
2994
2995 mutex_lock(&ext4_li_mtx);
2996 if (sbi->s_li_request != NULL) {
2997 /*
2998 * Reset timeout so it can be computed again, because
2999 * s_li_wait_mult might have changed.
3000 */
3001 sbi->s_li_request->lr_timeout = 0;
3002 goto out;
3003 }
3004
3005 if (first_not_zeroed == ngroups ||
3006 (sb->s_flags & MS_RDONLY) ||
3007 !test_opt(sb, INIT_INODE_TABLE))
3008 goto out;
3009
3010 elr = ext4_li_request_new(sb, first_not_zeroed);
3011 if (!elr) {
3012 ret = -ENOMEM;
3013 goto out;
3014 }
3015
3016 if (NULL == ext4_li_info) {
3017 ret = ext4_li_info_new();
3018 if (ret)
3019 goto out;
3020 }
3021
3022 mutex_lock(&ext4_li_info->li_list_mtx);
3023 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3024 mutex_unlock(&ext4_li_info->li_list_mtx);
3025
3026 sbi->s_li_request = elr;
3027 /*
3028 * set elr to NULL here since it has been inserted to
3029 * the request_list and the removal and free of it is
3030 * handled by ext4_clear_request_list from now on.
3031 */
3032 elr = NULL;
3033
3034 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3035 ret = ext4_run_lazyinit_thread();
3036 if (ret)
3037 goto out;
3038 }
3039 out:
3040 mutex_unlock(&ext4_li_mtx);
3041 if (ret)
3042 kfree(elr);
3043 return ret;
3044 }
3045
3046 /*
3047 * We do not need to lock anything since this is called on
3048 * module unload.
3049 */
3050 static void ext4_destroy_lazyinit_thread(void)
3051 {
3052 /*
3053 * If thread exited earlier
3054 * there's nothing to be done.
3055 */
3056 if (!ext4_li_info || !ext4_lazyinit_task)
3057 return;
3058
3059 kthread_stop(ext4_lazyinit_task);
3060 }
3061
3062 static int set_journal_csum_feature_set(struct super_block *sb)
3063 {
3064 int ret = 1;
3065 int compat, incompat;
3066 struct ext4_sb_info *sbi = EXT4_SB(sb);
3067
3068 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3069 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3070 /* journal checksum v2 */
3071 compat = 0;
3072 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3073 } else {
3074 /* journal checksum v1 */
3075 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3076 incompat = 0;
3077 }
3078
3079 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3080 ret = jbd2_journal_set_features(sbi->s_journal,
3081 compat, 0,
3082 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3083 incompat);
3084 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3085 ret = jbd2_journal_set_features(sbi->s_journal,
3086 compat, 0,
3087 incompat);
3088 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3089 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3090 } else {
3091 jbd2_journal_clear_features(sbi->s_journal,
3092 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3093 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3094 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3095 }
3096
3097 return ret;
3098 }
3099
3100 /*
3101 * Note: calculating the overhead so we can be compatible with
3102 * historical BSD practice is quite difficult in the face of
3103 * clusters/bigalloc. This is because multiple metadata blocks from
3104 * different block group can end up in the same allocation cluster.
3105 * Calculating the exact overhead in the face of clustered allocation
3106 * requires either O(all block bitmaps) in memory or O(number of block
3107 * groups**2) in time. We will still calculate the superblock for
3108 * older file systems --- and if we come across with a bigalloc file
3109 * system with zero in s_overhead_clusters the estimate will be close to
3110 * correct especially for very large cluster sizes --- but for newer
3111 * file systems, it's better to calculate this figure once at mkfs
3112 * time, and store it in the superblock. If the superblock value is
3113 * present (even for non-bigalloc file systems), we will use it.
3114 */
3115 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3116 char *buf)
3117 {
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119 struct ext4_group_desc *gdp;
3120 ext4_fsblk_t first_block, last_block, b;
3121 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3122 int s, j, count = 0;
3123
3124 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3125 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3126 sbi->s_itb_per_group + 2);
3127
3128 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3129 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3130 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3131 for (i = 0; i < ngroups; i++) {
3132 gdp = ext4_get_group_desc(sb, i, NULL);
3133 b = ext4_block_bitmap(sb, gdp);
3134 if (b >= first_block && b <= last_block) {
3135 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3136 count++;
3137 }
3138 b = ext4_inode_bitmap(sb, gdp);
3139 if (b >= first_block && b <= last_block) {
3140 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3141 count++;
3142 }
3143 b = ext4_inode_table(sb, gdp);
3144 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3145 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3146 int c = EXT4_B2C(sbi, b - first_block);
3147 ext4_set_bit(c, buf);
3148 count++;
3149 }
3150 if (i != grp)
3151 continue;
3152 s = 0;
3153 if (ext4_bg_has_super(sb, grp)) {
3154 ext4_set_bit(s++, buf);
3155 count++;
3156 }
3157 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3158 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3159 count++;
3160 }
3161 }
3162 if (!count)
3163 return 0;
3164 return EXT4_CLUSTERS_PER_GROUP(sb) -
3165 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3166 }
3167
3168 /*
3169 * Compute the overhead and stash it in sbi->s_overhead
3170 */
3171 int ext4_calculate_overhead(struct super_block *sb)
3172 {
3173 struct ext4_sb_info *sbi = EXT4_SB(sb);
3174 struct ext4_super_block *es = sbi->s_es;
3175 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3176 ext4_fsblk_t overhead = 0;
3177 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3178
3179 if (!buf)
3180 return -ENOMEM;
3181
3182 /*
3183 * Compute the overhead (FS structures). This is constant
3184 * for a given filesystem unless the number of block groups
3185 * changes so we cache the previous value until it does.
3186 */
3187
3188 /*
3189 * All of the blocks before first_data_block are overhead
3190 */
3191 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3192
3193 /*
3194 * Add the overhead found in each block group
3195 */
3196 for (i = 0; i < ngroups; i++) {
3197 int blks;
3198
3199 blks = count_overhead(sb, i, buf);
3200 overhead += blks;
3201 if (blks)
3202 memset(buf, 0, PAGE_SIZE);
3203 cond_resched();
3204 }
3205 /* Add the journal blocks as well */
3206 if (sbi->s_journal)
3207 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3208
3209 sbi->s_overhead = overhead;
3210 smp_wmb();
3211 free_page((unsigned long) buf);
3212 return 0;
3213 }
3214
3215
3216 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi)
3217 {
3218 ext4_fsblk_t resv_clusters;
3219
3220 /*
3221 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3222 * This should cover the situations where we can not afford to run
3223 * out of space like for example punch hole, or converting
3224 * uninitialized extents in delalloc path. In most cases such
3225 * allocation would require 1, or 2 blocks, higher numbers are
3226 * very rare.
3227 */
3228 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits;
3229
3230 do_div(resv_clusters, 50);
3231 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3232
3233 return resv_clusters;
3234 }
3235
3236
3237 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3238 {
3239 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3240 sbi->s_cluster_bits;
3241
3242 if (count >= clusters)
3243 return -EINVAL;
3244
3245 atomic64_set(&sbi->s_resv_clusters, count);
3246 return 0;
3247 }
3248
3249 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3250 {
3251 char *orig_data = kstrdup(data, GFP_KERNEL);
3252 struct buffer_head *bh;
3253 struct ext4_super_block *es = NULL;
3254 struct ext4_sb_info *sbi;
3255 ext4_fsblk_t block;
3256 ext4_fsblk_t sb_block = get_sb_block(&data);
3257 ext4_fsblk_t logical_sb_block;
3258 unsigned long offset = 0;
3259 unsigned long journal_devnum = 0;
3260 unsigned long def_mount_opts;
3261 struct inode *root;
3262 char *cp;
3263 const char *descr;
3264 int ret = -ENOMEM;
3265 int blocksize, clustersize;
3266 unsigned int db_count;
3267 unsigned int i;
3268 int needs_recovery, has_huge_files, has_bigalloc;
3269 __u64 blocks_count;
3270 int err = 0;
3271 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3272 ext4_group_t first_not_zeroed;
3273
3274 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3275 if (!sbi)
3276 goto out_free_orig;
3277
3278 sbi->s_blockgroup_lock =
3279 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3280 if (!sbi->s_blockgroup_lock) {
3281 kfree(sbi);
3282 goto out_free_orig;
3283 }
3284 sb->s_fs_info = sbi;
3285 sbi->s_sb = sb;
3286 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3287 sbi->s_sb_block = sb_block;
3288 if (sb->s_bdev->bd_part)
3289 sbi->s_sectors_written_start =
3290 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3291
3292 /* Cleanup superblock name */
3293 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3294 *cp = '!';
3295
3296 /* -EINVAL is default */
3297 ret = -EINVAL;
3298 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3299 if (!blocksize) {
3300 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3301 goto out_fail;
3302 }
3303
3304 /*
3305 * The ext4 superblock will not be buffer aligned for other than 1kB
3306 * block sizes. We need to calculate the offset from buffer start.
3307 */
3308 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3309 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3310 offset = do_div(logical_sb_block, blocksize);
3311 } else {
3312 logical_sb_block = sb_block;
3313 }
3314
3315 if (!(bh = sb_bread(sb, logical_sb_block))) {
3316 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3317 goto out_fail;
3318 }
3319 /*
3320 * Note: s_es must be initialized as soon as possible because
3321 * some ext4 macro-instructions depend on its value
3322 */
3323 es = (struct ext4_super_block *) (bh->b_data + offset);
3324 sbi->s_es = es;
3325 sb->s_magic = le16_to_cpu(es->s_magic);
3326 if (sb->s_magic != EXT4_SUPER_MAGIC)
3327 goto cantfind_ext4;
3328 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3329
3330 /* Warn if metadata_csum and gdt_csum are both set. */
3331 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3332 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3333 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3334 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3335 "redundant flags; please run fsck.");
3336
3337 /* Check for a known checksum algorithm */
3338 if (!ext4_verify_csum_type(sb, es)) {
3339 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3340 "unknown checksum algorithm.");
3341 silent = 1;
3342 goto cantfind_ext4;
3343 }
3344
3345 /* Load the checksum driver */
3346 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3347 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3348 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3349 if (IS_ERR(sbi->s_chksum_driver)) {
3350 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3351 ret = PTR_ERR(sbi->s_chksum_driver);
3352 sbi->s_chksum_driver = NULL;
3353 goto failed_mount;
3354 }
3355 }
3356
3357 /* Check superblock checksum */
3358 if (!ext4_superblock_csum_verify(sb, es)) {
3359 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3360 "invalid superblock checksum. Run e2fsck?");
3361 silent = 1;
3362 goto cantfind_ext4;
3363 }
3364
3365 /* Precompute checksum seed for all metadata */
3366 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3367 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3368 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3369 sizeof(es->s_uuid));
3370
3371 /* Set defaults before we parse the mount options */
3372 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3373 set_opt(sb, INIT_INODE_TABLE);
3374 if (def_mount_opts & EXT4_DEFM_DEBUG)
3375 set_opt(sb, DEBUG);
3376 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3377 set_opt(sb, GRPID);
3378 if (def_mount_opts & EXT4_DEFM_UID16)
3379 set_opt(sb, NO_UID32);
3380 /* xattr user namespace & acls are now defaulted on */
3381 set_opt(sb, XATTR_USER);
3382 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3383 set_opt(sb, POSIX_ACL);
3384 #endif
3385 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3386 set_opt(sb, JOURNAL_DATA);
3387 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3388 set_opt(sb, ORDERED_DATA);
3389 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3390 set_opt(sb, WRITEBACK_DATA);
3391
3392 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3393 set_opt(sb, ERRORS_PANIC);
3394 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3395 set_opt(sb, ERRORS_CONT);
3396 else
3397 set_opt(sb, ERRORS_RO);
3398 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3399 set_opt(sb, BLOCK_VALIDITY);
3400 if (def_mount_opts & EXT4_DEFM_DISCARD)
3401 set_opt(sb, DISCARD);
3402
3403 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3404 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3405 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3406 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3407 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3408
3409 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3410 set_opt(sb, BARRIER);
3411
3412 /*
3413 * enable delayed allocation by default
3414 * Use -o nodelalloc to turn it off
3415 */
3416 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3417 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3418 set_opt(sb, DELALLOC);
3419
3420 /*
3421 * set default s_li_wait_mult for lazyinit, for the case there is
3422 * no mount option specified.
3423 */
3424 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3425
3426 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3427 &journal_devnum, &journal_ioprio, 0)) {
3428 ext4_msg(sb, KERN_WARNING,
3429 "failed to parse options in superblock: %s",
3430 sbi->s_es->s_mount_opts);
3431 }
3432 sbi->s_def_mount_opt = sbi->s_mount_opt;
3433 if (!parse_options((char *) data, sb, &journal_devnum,
3434 &journal_ioprio, 0))
3435 goto failed_mount;
3436
3437 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3438 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3439 "with data=journal disables delayed "
3440 "allocation and O_DIRECT support!\n");
3441 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3442 ext4_msg(sb, KERN_ERR, "can't mount with "
3443 "both data=journal and delalloc");
3444 goto failed_mount;
3445 }
3446 if (test_opt(sb, DIOREAD_NOLOCK)) {
3447 ext4_msg(sb, KERN_ERR, "can't mount with "
3448 "both data=journal and delalloc");
3449 goto failed_mount;
3450 }
3451 if (test_opt(sb, DELALLOC))
3452 clear_opt(sb, DELALLOC);
3453 }
3454
3455 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3456 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3457
3458 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3459 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3460 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3461 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3462 ext4_msg(sb, KERN_WARNING,
3463 "feature flags set on rev 0 fs, "
3464 "running e2fsck is recommended");
3465
3466 if (IS_EXT2_SB(sb)) {
3467 if (ext2_feature_set_ok(sb))
3468 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3469 "using the ext4 subsystem");
3470 else {
3471 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3472 "to feature incompatibilities");
3473 goto failed_mount;
3474 }
3475 }
3476
3477 if (IS_EXT3_SB(sb)) {
3478 if (ext3_feature_set_ok(sb))
3479 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3480 "using the ext4 subsystem");
3481 else {
3482 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3483 "to feature incompatibilities");
3484 goto failed_mount;
3485 }
3486 }
3487
3488 /*
3489 * Check feature flags regardless of the revision level, since we
3490 * previously didn't change the revision level when setting the flags,
3491 * so there is a chance incompat flags are set on a rev 0 filesystem.
3492 */
3493 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3494 goto failed_mount;
3495
3496 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3497 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3498 blocksize > EXT4_MAX_BLOCK_SIZE) {
3499 ext4_msg(sb, KERN_ERR,
3500 "Unsupported filesystem blocksize %d", blocksize);
3501 goto failed_mount;
3502 }
3503
3504 if (sb->s_blocksize != blocksize) {
3505 /* Validate the filesystem blocksize */
3506 if (!sb_set_blocksize(sb, blocksize)) {
3507 ext4_msg(sb, KERN_ERR, "bad block size %d",
3508 blocksize);
3509 goto failed_mount;
3510 }
3511
3512 brelse(bh);
3513 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3514 offset = do_div(logical_sb_block, blocksize);
3515 bh = sb_bread(sb, logical_sb_block);
3516 if (!bh) {
3517 ext4_msg(sb, KERN_ERR,
3518 "Can't read superblock on 2nd try");
3519 goto failed_mount;
3520 }
3521 es = (struct ext4_super_block *)(bh->b_data + offset);
3522 sbi->s_es = es;
3523 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3524 ext4_msg(sb, KERN_ERR,
3525 "Magic mismatch, very weird!");
3526 goto failed_mount;
3527 }
3528 }
3529
3530 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3531 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3532 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3533 has_huge_files);
3534 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3535
3536 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3537 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3538 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3539 } else {
3540 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3541 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3542 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3543 (!is_power_of_2(sbi->s_inode_size)) ||
3544 (sbi->s_inode_size > blocksize)) {
3545 ext4_msg(sb, KERN_ERR,
3546 "unsupported inode size: %d",
3547 sbi->s_inode_size);
3548 goto failed_mount;
3549 }
3550 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3551 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3552 }
3553
3554 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3555 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3556 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3557 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3558 !is_power_of_2(sbi->s_desc_size)) {
3559 ext4_msg(sb, KERN_ERR,
3560 "unsupported descriptor size %lu",
3561 sbi->s_desc_size);
3562 goto failed_mount;
3563 }
3564 } else
3565 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3566
3567 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3568 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3569 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3570 goto cantfind_ext4;
3571
3572 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3573 if (sbi->s_inodes_per_block == 0)
3574 goto cantfind_ext4;
3575 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3576 sbi->s_inodes_per_block;
3577 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3578 sbi->s_sbh = bh;
3579 sbi->s_mount_state = le16_to_cpu(es->s_state);
3580 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3581 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3582
3583 for (i = 0; i < 4; i++)
3584 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3585 sbi->s_def_hash_version = es->s_def_hash_version;
3586 i = le32_to_cpu(es->s_flags);
3587 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3588 sbi->s_hash_unsigned = 3;
3589 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3590 #ifdef __CHAR_UNSIGNED__
3591 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3592 sbi->s_hash_unsigned = 3;
3593 #else
3594 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3595 #endif
3596 }
3597
3598 /* Handle clustersize */
3599 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3600 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3601 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3602 if (has_bigalloc) {
3603 if (clustersize < blocksize) {
3604 ext4_msg(sb, KERN_ERR,
3605 "cluster size (%d) smaller than "
3606 "block size (%d)", clustersize, blocksize);
3607 goto failed_mount;
3608 }
3609 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3610 le32_to_cpu(es->s_log_block_size);
3611 sbi->s_clusters_per_group =
3612 le32_to_cpu(es->s_clusters_per_group);
3613 if (sbi->s_clusters_per_group > blocksize * 8) {
3614 ext4_msg(sb, KERN_ERR,
3615 "#clusters per group too big: %lu",
3616 sbi->s_clusters_per_group);
3617 goto failed_mount;
3618 }
3619 if (sbi->s_blocks_per_group !=
3620 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3621 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3622 "clusters per group (%lu) inconsistent",
3623 sbi->s_blocks_per_group,
3624 sbi->s_clusters_per_group);
3625 goto failed_mount;
3626 }
3627 } else {
3628 if (clustersize != blocksize) {
3629 ext4_warning(sb, "fragment/cluster size (%d) != "
3630 "block size (%d)", clustersize,
3631 blocksize);
3632 clustersize = blocksize;
3633 }
3634 if (sbi->s_blocks_per_group > blocksize * 8) {
3635 ext4_msg(sb, KERN_ERR,
3636 "#blocks per group too big: %lu",
3637 sbi->s_blocks_per_group);
3638 goto failed_mount;
3639 }
3640 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3641 sbi->s_cluster_bits = 0;
3642 }
3643 sbi->s_cluster_ratio = clustersize / blocksize;
3644
3645 if (sbi->s_inodes_per_group > blocksize * 8) {
3646 ext4_msg(sb, KERN_ERR,
3647 "#inodes per group too big: %lu",
3648 sbi->s_inodes_per_group);
3649 goto failed_mount;
3650 }
3651
3652 /* Do we have standard group size of clustersize * 8 blocks ? */
3653 if (sbi->s_blocks_per_group == clustersize << 3)
3654 set_opt2(sb, STD_GROUP_SIZE);
3655
3656 /*
3657 * Test whether we have more sectors than will fit in sector_t,
3658 * and whether the max offset is addressable by the page cache.
3659 */
3660 err = generic_check_addressable(sb->s_blocksize_bits,
3661 ext4_blocks_count(es));
3662 if (err) {
3663 ext4_msg(sb, KERN_ERR, "filesystem"
3664 " too large to mount safely on this system");
3665 if (sizeof(sector_t) < 8)
3666 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3667 goto failed_mount;
3668 }
3669
3670 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3671 goto cantfind_ext4;
3672
3673 /* check blocks count against device size */
3674 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3675 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3676 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3677 "exceeds size of device (%llu blocks)",
3678 ext4_blocks_count(es), blocks_count);
3679 goto failed_mount;
3680 }
3681
3682 /*
3683 * It makes no sense for the first data block to be beyond the end
3684 * of the filesystem.
3685 */
3686 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3687 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3688 "block %u is beyond end of filesystem (%llu)",
3689 le32_to_cpu(es->s_first_data_block),
3690 ext4_blocks_count(es));
3691 goto failed_mount;
3692 }
3693 blocks_count = (ext4_blocks_count(es) -
3694 le32_to_cpu(es->s_first_data_block) +
3695 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3696 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3697 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3698 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3699 "(block count %llu, first data block %u, "
3700 "blocks per group %lu)", sbi->s_groups_count,
3701 ext4_blocks_count(es),
3702 le32_to_cpu(es->s_first_data_block),
3703 EXT4_BLOCKS_PER_GROUP(sb));
3704 goto failed_mount;
3705 }
3706 sbi->s_groups_count = blocks_count;
3707 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3708 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3709 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3710 EXT4_DESC_PER_BLOCK(sb);
3711 sbi->s_group_desc = ext4_kvmalloc(db_count *
3712 sizeof(struct buffer_head *),
3713 GFP_KERNEL);
3714 if (sbi->s_group_desc == NULL) {
3715 ext4_msg(sb, KERN_ERR, "not enough memory");
3716 ret = -ENOMEM;
3717 goto failed_mount;
3718 }
3719
3720 if (ext4_proc_root)
3721 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3722
3723 if (sbi->s_proc)
3724 proc_create_data("options", S_IRUGO, sbi->s_proc,
3725 &ext4_seq_options_fops, sb);
3726
3727 bgl_lock_init(sbi->s_blockgroup_lock);
3728
3729 for (i = 0; i < db_count; i++) {
3730 block = descriptor_loc(sb, logical_sb_block, i);
3731 sbi->s_group_desc[i] = sb_bread(sb, block);
3732 if (!sbi->s_group_desc[i]) {
3733 ext4_msg(sb, KERN_ERR,
3734 "can't read group descriptor %d", i);
3735 db_count = i;
3736 goto failed_mount2;
3737 }
3738 }
3739 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3740 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3741 goto failed_mount2;
3742 }
3743 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3744 if (!ext4_fill_flex_info(sb)) {
3745 ext4_msg(sb, KERN_ERR,
3746 "unable to initialize "
3747 "flex_bg meta info!");
3748 goto failed_mount2;
3749 }
3750
3751 sbi->s_gdb_count = db_count;
3752 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3753 spin_lock_init(&sbi->s_next_gen_lock);
3754
3755 init_timer(&sbi->s_err_report);
3756 sbi->s_err_report.function = print_daily_error_info;
3757 sbi->s_err_report.data = (unsigned long) sb;
3758
3759 /* Register extent status tree shrinker */
3760 ext4_es_register_shrinker(sb);
3761
3762 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3763 ext4_count_free_clusters(sb));
3764 if (!err) {
3765 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3766 ext4_count_free_inodes(sb));
3767 }
3768 if (!err) {
3769 err = percpu_counter_init(&sbi->s_dirs_counter,
3770 ext4_count_dirs(sb));
3771 }
3772 if (!err) {
3773 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3774 }
3775 if (!err) {
3776 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3777 }
3778 if (err) {
3779 ext4_msg(sb, KERN_ERR, "insufficient memory");
3780 goto failed_mount3;
3781 }
3782
3783 sbi->s_stripe = ext4_get_stripe_size(sbi);
3784 sbi->s_max_writeback_mb_bump = 128;
3785 sbi->s_extent_max_zeroout_kb = 32;
3786
3787 /*
3788 * set up enough so that it can read an inode
3789 */
3790 if (!test_opt(sb, NOLOAD) &&
3791 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3792 sb->s_op = &ext4_sops;
3793 else
3794 sb->s_op = &ext4_nojournal_sops;
3795 sb->s_export_op = &ext4_export_ops;
3796 sb->s_xattr = ext4_xattr_handlers;
3797 #ifdef CONFIG_QUOTA
3798 sb->dq_op = &ext4_quota_operations;
3799 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3800 sb->s_qcop = &ext4_qctl_sysfile_operations;
3801 else
3802 sb->s_qcop = &ext4_qctl_operations;
3803 #endif
3804 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3805
3806 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3807 mutex_init(&sbi->s_orphan_lock);
3808
3809 sb->s_root = NULL;
3810
3811 needs_recovery = (es->s_last_orphan != 0 ||
3812 EXT4_HAS_INCOMPAT_FEATURE(sb,
3813 EXT4_FEATURE_INCOMPAT_RECOVER));
3814
3815 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3816 !(sb->s_flags & MS_RDONLY))
3817 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3818 goto failed_mount3;
3819
3820 /*
3821 * The first inode we look at is the journal inode. Don't try
3822 * root first: it may be modified in the journal!
3823 */
3824 if (!test_opt(sb, NOLOAD) &&
3825 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3826 if (ext4_load_journal(sb, es, journal_devnum))
3827 goto failed_mount3;
3828 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3829 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3830 ext4_msg(sb, KERN_ERR, "required journal recovery "
3831 "suppressed and not mounted read-only");
3832 goto failed_mount_wq;
3833 } else {
3834 clear_opt(sb, DATA_FLAGS);
3835 sbi->s_journal = NULL;
3836 needs_recovery = 0;
3837 goto no_journal;
3838 }
3839
3840 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3841 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3842 JBD2_FEATURE_INCOMPAT_64BIT)) {
3843 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3844 goto failed_mount_wq;
3845 }
3846
3847 if (!set_journal_csum_feature_set(sb)) {
3848 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3849 "feature set");
3850 goto failed_mount_wq;
3851 }
3852
3853 /* We have now updated the journal if required, so we can
3854 * validate the data journaling mode. */
3855 switch (test_opt(sb, DATA_FLAGS)) {
3856 case 0:
3857 /* No mode set, assume a default based on the journal
3858 * capabilities: ORDERED_DATA if the journal can
3859 * cope, else JOURNAL_DATA
3860 */
3861 if (jbd2_journal_check_available_features
3862 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3863 set_opt(sb, ORDERED_DATA);
3864 else
3865 set_opt(sb, JOURNAL_DATA);
3866 break;
3867
3868 case EXT4_MOUNT_ORDERED_DATA:
3869 case EXT4_MOUNT_WRITEBACK_DATA:
3870 if (!jbd2_journal_check_available_features
3871 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3872 ext4_msg(sb, KERN_ERR, "Journal does not support "
3873 "requested data journaling mode");
3874 goto failed_mount_wq;
3875 }
3876 default:
3877 break;
3878 }
3879 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3880
3881 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3882
3883 /*
3884 * The journal may have updated the bg summary counts, so we
3885 * need to update the global counters.
3886 */
3887 percpu_counter_set(&sbi->s_freeclusters_counter,
3888 ext4_count_free_clusters(sb));
3889 percpu_counter_set(&sbi->s_freeinodes_counter,
3890 ext4_count_free_inodes(sb));
3891 percpu_counter_set(&sbi->s_dirs_counter,
3892 ext4_count_dirs(sb));
3893 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3894
3895 no_journal:
3896 /*
3897 * Get the # of file system overhead blocks from the
3898 * superblock if present.
3899 */
3900 if (es->s_overhead_clusters)
3901 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3902 else {
3903 err = ext4_calculate_overhead(sb);
3904 if (err)
3905 goto failed_mount_wq;
3906 }
3907
3908 /*
3909 * The maximum number of concurrent works can be high and
3910 * concurrency isn't really necessary. Limit it to 1.
3911 */
3912 EXT4_SB(sb)->dio_unwritten_wq =
3913 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3914 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3915 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3916 ret = -ENOMEM;
3917 goto failed_mount_wq;
3918 }
3919
3920 /*
3921 * The jbd2_journal_load will have done any necessary log recovery,
3922 * so we can safely mount the rest of the filesystem now.
3923 */
3924
3925 root = ext4_iget(sb, EXT4_ROOT_INO);
3926 if (IS_ERR(root)) {
3927 ext4_msg(sb, KERN_ERR, "get root inode failed");
3928 ret = PTR_ERR(root);
3929 root = NULL;
3930 goto failed_mount4;
3931 }
3932 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3933 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3934 iput(root);
3935 goto failed_mount4;
3936 }
3937 sb->s_root = d_make_root(root);
3938 if (!sb->s_root) {
3939 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3940 ret = -ENOMEM;
3941 goto failed_mount4;
3942 }
3943
3944 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3945 sb->s_flags |= MS_RDONLY;
3946
3947 /* determine the minimum size of new large inodes, if present */
3948 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3949 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3950 EXT4_GOOD_OLD_INODE_SIZE;
3951 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3952 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3953 if (sbi->s_want_extra_isize <
3954 le16_to_cpu(es->s_want_extra_isize))
3955 sbi->s_want_extra_isize =
3956 le16_to_cpu(es->s_want_extra_isize);
3957 if (sbi->s_want_extra_isize <
3958 le16_to_cpu(es->s_min_extra_isize))
3959 sbi->s_want_extra_isize =
3960 le16_to_cpu(es->s_min_extra_isize);
3961 }
3962 }
3963 /* Check if enough inode space is available */
3964 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3965 sbi->s_inode_size) {
3966 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3967 EXT4_GOOD_OLD_INODE_SIZE;
3968 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3969 "available");
3970 }
3971
3972 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi));
3973 if (err) {
3974 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3975 "reserved pool", ext4_calculate_resv_clusters(sbi));
3976 goto failed_mount4a;
3977 }
3978
3979 err = ext4_setup_system_zone(sb);
3980 if (err) {
3981 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3982 "zone (%d)", err);
3983 goto failed_mount4a;
3984 }
3985
3986 ext4_ext_init(sb);
3987 err = ext4_mb_init(sb);
3988 if (err) {
3989 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3990 err);
3991 goto failed_mount5;
3992 }
3993
3994 err = ext4_register_li_request(sb, first_not_zeroed);
3995 if (err)
3996 goto failed_mount6;
3997
3998 sbi->s_kobj.kset = ext4_kset;
3999 init_completion(&sbi->s_kobj_unregister);
4000 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4001 "%s", sb->s_id);
4002 if (err)
4003 goto failed_mount7;
4004
4005 #ifdef CONFIG_QUOTA
4006 /* Enable quota usage during mount. */
4007 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4008 !(sb->s_flags & MS_RDONLY)) {
4009 err = ext4_enable_quotas(sb);
4010 if (err)
4011 goto failed_mount8;
4012 }
4013 #endif /* CONFIG_QUOTA */
4014
4015 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4016 ext4_orphan_cleanup(sb, es);
4017 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4018 if (needs_recovery) {
4019 ext4_msg(sb, KERN_INFO, "recovery complete");
4020 ext4_mark_recovery_complete(sb, es);
4021 }
4022 if (EXT4_SB(sb)->s_journal) {
4023 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4024 descr = " journalled data mode";
4025 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4026 descr = " ordered data mode";
4027 else
4028 descr = " writeback data mode";
4029 } else
4030 descr = "out journal";
4031
4032 if (test_opt(sb, DISCARD)) {
4033 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4034 if (!blk_queue_discard(q))
4035 ext4_msg(sb, KERN_WARNING,
4036 "mounting with \"discard\" option, but "
4037 "the device does not support discard");
4038 }
4039
4040 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4041 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4042 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4043
4044 if (es->s_error_count)
4045 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4046
4047 kfree(orig_data);
4048 return 0;
4049
4050 cantfind_ext4:
4051 if (!silent)
4052 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4053 goto failed_mount;
4054
4055 #ifdef CONFIG_QUOTA
4056 failed_mount8:
4057 kobject_del(&sbi->s_kobj);
4058 #endif
4059 failed_mount7:
4060 ext4_unregister_li_request(sb);
4061 failed_mount6:
4062 ext4_mb_release(sb);
4063 failed_mount5:
4064 ext4_ext_release(sb);
4065 ext4_release_system_zone(sb);
4066 failed_mount4a:
4067 dput(sb->s_root);
4068 sb->s_root = NULL;
4069 failed_mount4:
4070 ext4_msg(sb, KERN_ERR, "mount failed");
4071 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4072 failed_mount_wq:
4073 if (sbi->s_journal) {
4074 jbd2_journal_destroy(sbi->s_journal);
4075 sbi->s_journal = NULL;
4076 }
4077 failed_mount3:
4078 ext4_es_unregister_shrinker(sb);
4079 del_timer(&sbi->s_err_report);
4080 if (sbi->s_flex_groups)
4081 ext4_kvfree(sbi->s_flex_groups);
4082 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4083 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4084 percpu_counter_destroy(&sbi->s_dirs_counter);
4085 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4086 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4087 if (sbi->s_mmp_tsk)
4088 kthread_stop(sbi->s_mmp_tsk);
4089 failed_mount2:
4090 for (i = 0; i < db_count; i++)
4091 brelse(sbi->s_group_desc[i]);
4092 ext4_kvfree(sbi->s_group_desc);
4093 failed_mount:
4094 if (sbi->s_chksum_driver)
4095 crypto_free_shash(sbi->s_chksum_driver);
4096 if (sbi->s_proc) {
4097 remove_proc_entry("options", sbi->s_proc);
4098 remove_proc_entry(sb->s_id, ext4_proc_root);
4099 }
4100 #ifdef CONFIG_QUOTA
4101 for (i = 0; i < MAXQUOTAS; i++)
4102 kfree(sbi->s_qf_names[i]);
4103 #endif
4104 ext4_blkdev_remove(sbi);
4105 brelse(bh);
4106 out_fail:
4107 sb->s_fs_info = NULL;
4108 kfree(sbi->s_blockgroup_lock);
4109 kfree(sbi);
4110 out_free_orig:
4111 kfree(orig_data);
4112 return err ? err : ret;
4113 }
4114
4115 /*
4116 * Setup any per-fs journal parameters now. We'll do this both on
4117 * initial mount, once the journal has been initialised but before we've
4118 * done any recovery; and again on any subsequent remount.
4119 */
4120 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4121 {
4122 struct ext4_sb_info *sbi = EXT4_SB(sb);
4123
4124 journal->j_commit_interval = sbi->s_commit_interval;
4125 journal->j_min_batch_time = sbi->s_min_batch_time;
4126 journal->j_max_batch_time = sbi->s_max_batch_time;
4127
4128 write_lock(&journal->j_state_lock);
4129 if (test_opt(sb, BARRIER))
4130 journal->j_flags |= JBD2_BARRIER;
4131 else
4132 journal->j_flags &= ~JBD2_BARRIER;
4133 if (test_opt(sb, DATA_ERR_ABORT))
4134 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4135 else
4136 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4137 write_unlock(&journal->j_state_lock);
4138 }
4139
4140 static journal_t *ext4_get_journal(struct super_block *sb,
4141 unsigned int journal_inum)
4142 {
4143 struct inode *journal_inode;
4144 journal_t *journal;
4145
4146 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4147
4148 /* First, test for the existence of a valid inode on disk. Bad
4149 * things happen if we iget() an unused inode, as the subsequent
4150 * iput() will try to delete it. */
4151
4152 journal_inode = ext4_iget(sb, journal_inum);
4153 if (IS_ERR(journal_inode)) {
4154 ext4_msg(sb, KERN_ERR, "no journal found");
4155 return NULL;
4156 }
4157 if (!journal_inode->i_nlink) {
4158 make_bad_inode(journal_inode);
4159 iput(journal_inode);
4160 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4161 return NULL;
4162 }
4163
4164 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4165 journal_inode, journal_inode->i_size);
4166 if (!S_ISREG(journal_inode->i_mode)) {
4167 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4168 iput(journal_inode);
4169 return NULL;
4170 }
4171
4172 journal = jbd2_journal_init_inode(journal_inode);
4173 if (!journal) {
4174 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4175 iput(journal_inode);
4176 return NULL;
4177 }
4178 journal->j_private = sb;
4179 ext4_init_journal_params(sb, journal);
4180 return journal;
4181 }
4182
4183 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4184 dev_t j_dev)
4185 {
4186 struct buffer_head *bh;
4187 journal_t *journal;
4188 ext4_fsblk_t start;
4189 ext4_fsblk_t len;
4190 int hblock, blocksize;
4191 ext4_fsblk_t sb_block;
4192 unsigned long offset;
4193 struct ext4_super_block *es;
4194 struct block_device *bdev;
4195
4196 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4197
4198 bdev = ext4_blkdev_get(j_dev, sb);
4199 if (bdev == NULL)
4200 return NULL;
4201
4202 blocksize = sb->s_blocksize;
4203 hblock = bdev_logical_block_size(bdev);
4204 if (blocksize < hblock) {
4205 ext4_msg(sb, KERN_ERR,
4206 "blocksize too small for journal device");
4207 goto out_bdev;
4208 }
4209
4210 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4211 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4212 set_blocksize(bdev, blocksize);
4213 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4214 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4215 "external journal");
4216 goto out_bdev;
4217 }
4218
4219 es = (struct ext4_super_block *) (bh->b_data + offset);
4220 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4221 !(le32_to_cpu(es->s_feature_incompat) &
4222 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4223 ext4_msg(sb, KERN_ERR, "external journal has "
4224 "bad superblock");
4225 brelse(bh);
4226 goto out_bdev;
4227 }
4228
4229 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4230 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4231 brelse(bh);
4232 goto out_bdev;
4233 }
4234
4235 len = ext4_blocks_count(es);
4236 start = sb_block + 1;
4237 brelse(bh); /* we're done with the superblock */
4238
4239 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4240 start, len, blocksize);
4241 if (!journal) {
4242 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4243 goto out_bdev;
4244 }
4245 journal->j_private = sb;
4246 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4247 wait_on_buffer(journal->j_sb_buffer);
4248 if (!buffer_uptodate(journal->j_sb_buffer)) {
4249 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4250 goto out_journal;
4251 }
4252 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4253 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4254 "user (unsupported) - %d",
4255 be32_to_cpu(journal->j_superblock->s_nr_users));
4256 goto out_journal;
4257 }
4258 EXT4_SB(sb)->journal_bdev = bdev;
4259 ext4_init_journal_params(sb, journal);
4260 return journal;
4261
4262 out_journal:
4263 jbd2_journal_destroy(journal);
4264 out_bdev:
4265 ext4_blkdev_put(bdev);
4266 return NULL;
4267 }
4268
4269 static int ext4_load_journal(struct super_block *sb,
4270 struct ext4_super_block *es,
4271 unsigned long journal_devnum)
4272 {
4273 journal_t *journal;
4274 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4275 dev_t journal_dev;
4276 int err = 0;
4277 int really_read_only;
4278
4279 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4280
4281 if (journal_devnum &&
4282 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4283 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4284 "numbers have changed");
4285 journal_dev = new_decode_dev(journal_devnum);
4286 } else
4287 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4288
4289 really_read_only = bdev_read_only(sb->s_bdev);
4290
4291 /*
4292 * Are we loading a blank journal or performing recovery after a
4293 * crash? For recovery, we need to check in advance whether we
4294 * can get read-write access to the device.
4295 */
4296 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4297 if (sb->s_flags & MS_RDONLY) {
4298 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4299 "required on readonly filesystem");
4300 if (really_read_only) {
4301 ext4_msg(sb, KERN_ERR, "write access "
4302 "unavailable, cannot proceed");
4303 return -EROFS;
4304 }
4305 ext4_msg(sb, KERN_INFO, "write access will "
4306 "be enabled during recovery");
4307 }
4308 }
4309
4310 if (journal_inum && journal_dev) {
4311 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4312 "and inode journals!");
4313 return -EINVAL;
4314 }
4315
4316 if (journal_inum) {
4317 if (!(journal = ext4_get_journal(sb, journal_inum)))
4318 return -EINVAL;
4319 } else {
4320 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4321 return -EINVAL;
4322 }
4323
4324 if (!(journal->j_flags & JBD2_BARRIER))
4325 ext4_msg(sb, KERN_INFO, "barriers disabled");
4326
4327 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4328 err = jbd2_journal_wipe(journal, !really_read_only);
4329 if (!err) {
4330 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4331 if (save)
4332 memcpy(save, ((char *) es) +
4333 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4334 err = jbd2_journal_load(journal);
4335 if (save)
4336 memcpy(((char *) es) + EXT4_S_ERR_START,
4337 save, EXT4_S_ERR_LEN);
4338 kfree(save);
4339 }
4340
4341 if (err) {
4342 ext4_msg(sb, KERN_ERR, "error loading journal");
4343 jbd2_journal_destroy(journal);
4344 return err;
4345 }
4346
4347 EXT4_SB(sb)->s_journal = journal;
4348 ext4_clear_journal_err(sb, es);
4349
4350 if (!really_read_only && journal_devnum &&
4351 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4352 es->s_journal_dev = cpu_to_le32(journal_devnum);
4353
4354 /* Make sure we flush the recovery flag to disk. */
4355 ext4_commit_super(sb, 1);
4356 }
4357
4358 return 0;
4359 }
4360
4361 static int ext4_commit_super(struct super_block *sb, int sync)
4362 {
4363 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4364 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4365 int error = 0;
4366
4367 if (!sbh || block_device_ejected(sb))
4368 return error;
4369 if (buffer_write_io_error(sbh)) {
4370 /*
4371 * Oh, dear. A previous attempt to write the
4372 * superblock failed. This could happen because the
4373 * USB device was yanked out. Or it could happen to
4374 * be a transient write error and maybe the block will
4375 * be remapped. Nothing we can do but to retry the
4376 * write and hope for the best.
4377 */
4378 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4379 "superblock detected");
4380 clear_buffer_write_io_error(sbh);
4381 set_buffer_uptodate(sbh);
4382 }
4383 /*
4384 * If the file system is mounted read-only, don't update the
4385 * superblock write time. This avoids updating the superblock
4386 * write time when we are mounting the root file system
4387 * read/only but we need to replay the journal; at that point,
4388 * for people who are east of GMT and who make their clock
4389 * tick in localtime for Windows bug-for-bug compatibility,
4390 * the clock is set in the future, and this will cause e2fsck
4391 * to complain and force a full file system check.
4392 */
4393 if (!(sb->s_flags & MS_RDONLY))
4394 es->s_wtime = cpu_to_le32(get_seconds());
4395 if (sb->s_bdev->bd_part)
4396 es->s_kbytes_written =
4397 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4398 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4399 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4400 else
4401 es->s_kbytes_written =
4402 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4403 ext4_free_blocks_count_set(es,
4404 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4405 &EXT4_SB(sb)->s_freeclusters_counter)));
4406 es->s_free_inodes_count =
4407 cpu_to_le32(percpu_counter_sum_positive(
4408 &EXT4_SB(sb)->s_freeinodes_counter));
4409 BUFFER_TRACE(sbh, "marking dirty");
4410 ext4_superblock_csum_set(sb);
4411 mark_buffer_dirty(sbh);
4412 if (sync) {
4413 error = sync_dirty_buffer(sbh);
4414 if (error)
4415 return error;
4416
4417 error = buffer_write_io_error(sbh);
4418 if (error) {
4419 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4420 "superblock");
4421 clear_buffer_write_io_error(sbh);
4422 set_buffer_uptodate(sbh);
4423 }
4424 }
4425 return error;
4426 }
4427
4428 /*
4429 * Have we just finished recovery? If so, and if we are mounting (or
4430 * remounting) the filesystem readonly, then we will end up with a
4431 * consistent fs on disk. Record that fact.
4432 */
4433 static void ext4_mark_recovery_complete(struct super_block *sb,
4434 struct ext4_super_block *es)
4435 {
4436 journal_t *journal = EXT4_SB(sb)->s_journal;
4437
4438 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4439 BUG_ON(journal != NULL);
4440 return;
4441 }
4442 jbd2_journal_lock_updates(journal);
4443 if (jbd2_journal_flush(journal) < 0)
4444 goto out;
4445
4446 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4447 sb->s_flags & MS_RDONLY) {
4448 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4449 ext4_commit_super(sb, 1);
4450 }
4451
4452 out:
4453 jbd2_journal_unlock_updates(journal);
4454 }
4455
4456 /*
4457 * If we are mounting (or read-write remounting) a filesystem whose journal
4458 * has recorded an error from a previous lifetime, move that error to the
4459 * main filesystem now.
4460 */
4461 static void ext4_clear_journal_err(struct super_block *sb,
4462 struct ext4_super_block *es)
4463 {
4464 journal_t *journal;
4465 int j_errno;
4466 const char *errstr;
4467
4468 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4469
4470 journal = EXT4_SB(sb)->s_journal;
4471
4472 /*
4473 * Now check for any error status which may have been recorded in the
4474 * journal by a prior ext4_error() or ext4_abort()
4475 */
4476
4477 j_errno = jbd2_journal_errno(journal);
4478 if (j_errno) {
4479 char nbuf[16];
4480
4481 errstr = ext4_decode_error(sb, j_errno, nbuf);
4482 ext4_warning(sb, "Filesystem error recorded "
4483 "from previous mount: %s", errstr);
4484 ext4_warning(sb, "Marking fs in need of filesystem check.");
4485
4486 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4487 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4488 ext4_commit_super(sb, 1);
4489
4490 jbd2_journal_clear_err(journal);
4491 jbd2_journal_update_sb_errno(journal);
4492 }
4493 }
4494
4495 /*
4496 * Force the running and committing transactions to commit,
4497 * and wait on the commit.
4498 */
4499 int ext4_force_commit(struct super_block *sb)
4500 {
4501 journal_t *journal;
4502
4503 if (sb->s_flags & MS_RDONLY)
4504 return 0;
4505
4506 journal = EXT4_SB(sb)->s_journal;
4507 return ext4_journal_force_commit(journal);
4508 }
4509
4510 static int ext4_sync_fs(struct super_block *sb, int wait)
4511 {
4512 int ret = 0;
4513 tid_t target;
4514 struct ext4_sb_info *sbi = EXT4_SB(sb);
4515
4516 trace_ext4_sync_fs(sb, wait);
4517 flush_workqueue(sbi->dio_unwritten_wq);
4518 /*
4519 * Writeback quota in non-journalled quota case - journalled quota has
4520 * no dirty dquots
4521 */
4522 dquot_writeback_dquots(sb, -1);
4523 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4524 if (wait)
4525 jbd2_log_wait_commit(sbi->s_journal, target);
4526 }
4527 return ret;
4528 }
4529
4530 /*
4531 * LVM calls this function before a (read-only) snapshot is created. This
4532 * gives us a chance to flush the journal completely and mark the fs clean.
4533 *
4534 * Note that only this function cannot bring a filesystem to be in a clean
4535 * state independently. It relies on upper layer to stop all data & metadata
4536 * modifications.
4537 */
4538 static int ext4_freeze(struct super_block *sb)
4539 {
4540 int error = 0;
4541 journal_t *journal;
4542
4543 if (sb->s_flags & MS_RDONLY)
4544 return 0;
4545
4546 journal = EXT4_SB(sb)->s_journal;
4547
4548 /* Now we set up the journal barrier. */
4549 jbd2_journal_lock_updates(journal);
4550
4551 /*
4552 * Don't clear the needs_recovery flag if we failed to flush
4553 * the journal.
4554 */
4555 error = jbd2_journal_flush(journal);
4556 if (error < 0)
4557 goto out;
4558
4559 /* Journal blocked and flushed, clear needs_recovery flag. */
4560 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4561 error = ext4_commit_super(sb, 1);
4562 out:
4563 /* we rely on upper layer to stop further updates */
4564 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4565 return error;
4566 }
4567
4568 /*
4569 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4570 * flag here, even though the filesystem is not technically dirty yet.
4571 */
4572 static int ext4_unfreeze(struct super_block *sb)
4573 {
4574 if (sb->s_flags & MS_RDONLY)
4575 return 0;
4576
4577 /* Reset the needs_recovery flag before the fs is unlocked. */
4578 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4579 ext4_commit_super(sb, 1);
4580 return 0;
4581 }
4582
4583 /*
4584 * Structure to save mount options for ext4_remount's benefit
4585 */
4586 struct ext4_mount_options {
4587 unsigned long s_mount_opt;
4588 unsigned long s_mount_opt2;
4589 kuid_t s_resuid;
4590 kgid_t s_resgid;
4591 unsigned long s_commit_interval;
4592 u32 s_min_batch_time, s_max_batch_time;
4593 #ifdef CONFIG_QUOTA
4594 int s_jquota_fmt;
4595 char *s_qf_names[MAXQUOTAS];
4596 #endif
4597 };
4598
4599 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4600 {
4601 struct ext4_super_block *es;
4602 struct ext4_sb_info *sbi = EXT4_SB(sb);
4603 unsigned long old_sb_flags;
4604 struct ext4_mount_options old_opts;
4605 int enable_quota = 0;
4606 ext4_group_t g;
4607 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4608 int err = 0;
4609 #ifdef CONFIG_QUOTA
4610 int i, j;
4611 #endif
4612 char *orig_data = kstrdup(data, GFP_KERNEL);
4613
4614 /* Store the original options */
4615 old_sb_flags = sb->s_flags;
4616 old_opts.s_mount_opt = sbi->s_mount_opt;
4617 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4618 old_opts.s_resuid = sbi->s_resuid;
4619 old_opts.s_resgid = sbi->s_resgid;
4620 old_opts.s_commit_interval = sbi->s_commit_interval;
4621 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4622 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4623 #ifdef CONFIG_QUOTA
4624 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4625 for (i = 0; i < MAXQUOTAS; i++)
4626 if (sbi->s_qf_names[i]) {
4627 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4628 GFP_KERNEL);
4629 if (!old_opts.s_qf_names[i]) {
4630 for (j = 0; j < i; j++)
4631 kfree(old_opts.s_qf_names[j]);
4632 kfree(orig_data);
4633 return -ENOMEM;
4634 }
4635 } else
4636 old_opts.s_qf_names[i] = NULL;
4637 #endif
4638 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4639 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4640
4641 /*
4642 * Allow the "check" option to be passed as a remount option.
4643 */
4644 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4645 err = -EINVAL;
4646 goto restore_opts;
4647 }
4648
4649 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4650 ext4_abort(sb, "Abort forced by user");
4651
4652 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4653 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4654
4655 es = sbi->s_es;
4656
4657 if (sbi->s_journal) {
4658 ext4_init_journal_params(sb, sbi->s_journal);
4659 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4660 }
4661
4662 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4663 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4664 err = -EROFS;
4665 goto restore_opts;
4666 }
4667
4668 if (*flags & MS_RDONLY) {
4669 err = dquot_suspend(sb, -1);
4670 if (err < 0)
4671 goto restore_opts;
4672
4673 /*
4674 * First of all, the unconditional stuff we have to do
4675 * to disable replay of the journal when we next remount
4676 */
4677 sb->s_flags |= MS_RDONLY;
4678
4679 /*
4680 * OK, test if we are remounting a valid rw partition
4681 * readonly, and if so set the rdonly flag and then
4682 * mark the partition as valid again.
4683 */
4684 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4685 (sbi->s_mount_state & EXT4_VALID_FS))
4686 es->s_state = cpu_to_le16(sbi->s_mount_state);
4687
4688 if (sbi->s_journal)
4689 ext4_mark_recovery_complete(sb, es);
4690 } else {
4691 /* Make sure we can mount this feature set readwrite */
4692 if (!ext4_feature_set_ok(sb, 0)) {
4693 err = -EROFS;
4694 goto restore_opts;
4695 }
4696 /*
4697 * Make sure the group descriptor checksums
4698 * are sane. If they aren't, refuse to remount r/w.
4699 */
4700 for (g = 0; g < sbi->s_groups_count; g++) {
4701 struct ext4_group_desc *gdp =
4702 ext4_get_group_desc(sb, g, NULL);
4703
4704 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4705 ext4_msg(sb, KERN_ERR,
4706 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4707 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4708 le16_to_cpu(gdp->bg_checksum));
4709 err = -EINVAL;
4710 goto restore_opts;
4711 }
4712 }
4713
4714 /*
4715 * If we have an unprocessed orphan list hanging
4716 * around from a previously readonly bdev mount,
4717 * require a full umount/remount for now.
4718 */
4719 if (es->s_last_orphan) {
4720 ext4_msg(sb, KERN_WARNING, "Couldn't "
4721 "remount RDWR because of unprocessed "
4722 "orphan inode list. Please "
4723 "umount/remount instead");
4724 err = -EINVAL;
4725 goto restore_opts;
4726 }
4727
4728 /*
4729 * Mounting a RDONLY partition read-write, so reread
4730 * and store the current valid flag. (It may have
4731 * been changed by e2fsck since we originally mounted
4732 * the partition.)
4733 */
4734 if (sbi->s_journal)
4735 ext4_clear_journal_err(sb, es);
4736 sbi->s_mount_state = le16_to_cpu(es->s_state);
4737 if (!ext4_setup_super(sb, es, 0))
4738 sb->s_flags &= ~MS_RDONLY;
4739 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4740 EXT4_FEATURE_INCOMPAT_MMP))
4741 if (ext4_multi_mount_protect(sb,
4742 le64_to_cpu(es->s_mmp_block))) {
4743 err = -EROFS;
4744 goto restore_opts;
4745 }
4746 enable_quota = 1;
4747 }
4748 }
4749
4750 /*
4751 * Reinitialize lazy itable initialization thread based on
4752 * current settings
4753 */
4754 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4755 ext4_unregister_li_request(sb);
4756 else {
4757 ext4_group_t first_not_zeroed;
4758 first_not_zeroed = ext4_has_uninit_itable(sb);
4759 ext4_register_li_request(sb, first_not_zeroed);
4760 }
4761
4762 ext4_setup_system_zone(sb);
4763 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4764 ext4_commit_super(sb, 1);
4765
4766 #ifdef CONFIG_QUOTA
4767 /* Release old quota file names */
4768 for (i = 0; i < MAXQUOTAS; i++)
4769 kfree(old_opts.s_qf_names[i]);
4770 if (enable_quota) {
4771 if (sb_any_quota_suspended(sb))
4772 dquot_resume(sb, -1);
4773 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4774 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4775 err = ext4_enable_quotas(sb);
4776 if (err)
4777 goto restore_opts;
4778 }
4779 }
4780 #endif
4781
4782 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4783 kfree(orig_data);
4784 return 0;
4785
4786 restore_opts:
4787 sb->s_flags = old_sb_flags;
4788 sbi->s_mount_opt = old_opts.s_mount_opt;
4789 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4790 sbi->s_resuid = old_opts.s_resuid;
4791 sbi->s_resgid = old_opts.s_resgid;
4792 sbi->s_commit_interval = old_opts.s_commit_interval;
4793 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4794 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4795 #ifdef CONFIG_QUOTA
4796 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4797 for (i = 0; i < MAXQUOTAS; i++) {
4798 kfree(sbi->s_qf_names[i]);
4799 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4800 }
4801 #endif
4802 kfree(orig_data);
4803 return err;
4804 }
4805
4806 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4807 {
4808 struct super_block *sb = dentry->d_sb;
4809 struct ext4_sb_info *sbi = EXT4_SB(sb);
4810 struct ext4_super_block *es = sbi->s_es;
4811 ext4_fsblk_t overhead = 0, resv_blocks;
4812 u64 fsid;
4813 s64 bfree;
4814 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4815
4816 if (!test_opt(sb, MINIX_DF))
4817 overhead = sbi->s_overhead;
4818
4819 buf->f_type = EXT4_SUPER_MAGIC;
4820 buf->f_bsize = sb->s_blocksize;
4821 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4822 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4823 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4824 /* prevent underflow in case that few free space is available */
4825 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4826 buf->f_bavail = buf->f_bfree -
4827 (ext4_r_blocks_count(es) + resv_blocks);
4828 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4829 buf->f_bavail = 0;
4830 buf->f_files = le32_to_cpu(es->s_inodes_count);
4831 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4832 buf->f_namelen = EXT4_NAME_LEN;
4833 fsid = le64_to_cpup((void *)es->s_uuid) ^
4834 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4835 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4836 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4837
4838 return 0;
4839 }
4840
4841 /* Helper function for writing quotas on sync - we need to start transaction
4842 * before quota file is locked for write. Otherwise the are possible deadlocks:
4843 * Process 1 Process 2
4844 * ext4_create() quota_sync()
4845 * jbd2_journal_start() write_dquot()
4846 * dquot_initialize() down(dqio_mutex)
4847 * down(dqio_mutex) jbd2_journal_start()
4848 *
4849 */
4850
4851 #ifdef CONFIG_QUOTA
4852
4853 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4854 {
4855 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4856 }
4857
4858 static int ext4_write_dquot(struct dquot *dquot)
4859 {
4860 int ret, err;
4861 handle_t *handle;
4862 struct inode *inode;
4863
4864 inode = dquot_to_inode(dquot);
4865 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4866 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4867 if (IS_ERR(handle))
4868 return PTR_ERR(handle);
4869 ret = dquot_commit(dquot);
4870 err = ext4_journal_stop(handle);
4871 if (!ret)
4872 ret = err;
4873 return ret;
4874 }
4875
4876 static int ext4_acquire_dquot(struct dquot *dquot)
4877 {
4878 int ret, err;
4879 handle_t *handle;
4880
4881 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4882 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4883 if (IS_ERR(handle))
4884 return PTR_ERR(handle);
4885 ret = dquot_acquire(dquot);
4886 err = ext4_journal_stop(handle);
4887 if (!ret)
4888 ret = err;
4889 return ret;
4890 }
4891
4892 static int ext4_release_dquot(struct dquot *dquot)
4893 {
4894 int ret, err;
4895 handle_t *handle;
4896
4897 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4898 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4899 if (IS_ERR(handle)) {
4900 /* Release dquot anyway to avoid endless cycle in dqput() */
4901 dquot_release(dquot);
4902 return PTR_ERR(handle);
4903 }
4904 ret = dquot_release(dquot);
4905 err = ext4_journal_stop(handle);
4906 if (!ret)
4907 ret = err;
4908 return ret;
4909 }
4910
4911 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4912 {
4913 struct super_block *sb = dquot->dq_sb;
4914 struct ext4_sb_info *sbi = EXT4_SB(sb);
4915
4916 /* Are we journaling quotas? */
4917 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4918 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4919 dquot_mark_dquot_dirty(dquot);
4920 return ext4_write_dquot(dquot);
4921 } else {
4922 return dquot_mark_dquot_dirty(dquot);
4923 }
4924 }
4925
4926 static int ext4_write_info(struct super_block *sb, int type)
4927 {
4928 int ret, err;
4929 handle_t *handle;
4930
4931 /* Data block + inode block */
4932 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4933 if (IS_ERR(handle))
4934 return PTR_ERR(handle);
4935 ret = dquot_commit_info(sb, type);
4936 err = ext4_journal_stop(handle);
4937 if (!ret)
4938 ret = err;
4939 return ret;
4940 }
4941
4942 /*
4943 * Turn on quotas during mount time - we need to find
4944 * the quota file and such...
4945 */
4946 static int ext4_quota_on_mount(struct super_block *sb, int type)
4947 {
4948 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4949 EXT4_SB(sb)->s_jquota_fmt, type);
4950 }
4951
4952 /*
4953 * Standard function to be called on quota_on
4954 */
4955 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4956 struct path *path)
4957 {
4958 int err;
4959
4960 if (!test_opt(sb, QUOTA))
4961 return -EINVAL;
4962
4963 /* Quotafile not on the same filesystem? */
4964 if (path->dentry->d_sb != sb)
4965 return -EXDEV;
4966 /* Journaling quota? */
4967 if (EXT4_SB(sb)->s_qf_names[type]) {
4968 /* Quotafile not in fs root? */
4969 if (path->dentry->d_parent != sb->s_root)
4970 ext4_msg(sb, KERN_WARNING,
4971 "Quota file not on filesystem root. "
4972 "Journaled quota will not work");
4973 }
4974
4975 /*
4976 * When we journal data on quota file, we have to flush journal to see
4977 * all updates to the file when we bypass pagecache...
4978 */
4979 if (EXT4_SB(sb)->s_journal &&
4980 ext4_should_journal_data(path->dentry->d_inode)) {
4981 /*
4982 * We don't need to lock updates but journal_flush() could
4983 * otherwise be livelocked...
4984 */
4985 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4986 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4987 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4988 if (err)
4989 return err;
4990 }
4991
4992 return dquot_quota_on(sb, type, format_id, path);
4993 }
4994
4995 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4996 unsigned int flags)
4997 {
4998 int err;
4999 struct inode *qf_inode;
5000 unsigned long qf_inums[MAXQUOTAS] = {
5001 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5002 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5003 };
5004
5005 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5006
5007 if (!qf_inums[type])
5008 return -EPERM;
5009
5010 qf_inode = ext4_iget(sb, qf_inums[type]);
5011 if (IS_ERR(qf_inode)) {
5012 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5013 return PTR_ERR(qf_inode);
5014 }
5015
5016 /* Don't account quota for quota files to avoid recursion */
5017 qf_inode->i_flags |= S_NOQUOTA;
5018 err = dquot_enable(qf_inode, type, format_id, flags);
5019 iput(qf_inode);
5020
5021 return err;
5022 }
5023
5024 /* Enable usage tracking for all quota types. */
5025 static int ext4_enable_quotas(struct super_block *sb)
5026 {
5027 int type, err = 0;
5028 unsigned long qf_inums[MAXQUOTAS] = {
5029 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5030 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5031 };
5032
5033 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5034 for (type = 0; type < MAXQUOTAS; type++) {
5035 if (qf_inums[type]) {
5036 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5037 DQUOT_USAGE_ENABLED);
5038 if (err) {
5039 ext4_warning(sb,
5040 "Failed to enable quota tracking "
5041 "(type=%d, err=%d). Please run "
5042 "e2fsck to fix.", type, err);
5043 return err;
5044 }
5045 }
5046 }
5047 return 0;
5048 }
5049
5050 /*
5051 * quota_on function that is used when QUOTA feature is set.
5052 */
5053 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5054 int format_id)
5055 {
5056 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5057 return -EINVAL;
5058
5059 /*
5060 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5061 */
5062 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5063 }
5064
5065 static int ext4_quota_off(struct super_block *sb, int type)
5066 {
5067 struct inode *inode = sb_dqopt(sb)->files[type];
5068 handle_t *handle;
5069
5070 /* Force all delayed allocation blocks to be allocated.
5071 * Caller already holds s_umount sem */
5072 if (test_opt(sb, DELALLOC))
5073 sync_filesystem(sb);
5074
5075 if (!inode)
5076 goto out;
5077
5078 /* Update modification times of quota files when userspace can
5079 * start looking at them */
5080 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5081 if (IS_ERR(handle))
5082 goto out;
5083 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5084 ext4_mark_inode_dirty(handle, inode);
5085 ext4_journal_stop(handle);
5086
5087 out:
5088 return dquot_quota_off(sb, type);
5089 }
5090
5091 /*
5092 * quota_off function that is used when QUOTA feature is set.
5093 */
5094 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5095 {
5096 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5097 return -EINVAL;
5098
5099 /* Disable only the limits. */
5100 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5101 }
5102
5103 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5104 * acquiring the locks... As quota files are never truncated and quota code
5105 * itself serializes the operations (and no one else should touch the files)
5106 * we don't have to be afraid of races */
5107 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5108 size_t len, loff_t off)
5109 {
5110 struct inode *inode = sb_dqopt(sb)->files[type];
5111 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5112 int err = 0;
5113 int offset = off & (sb->s_blocksize - 1);
5114 int tocopy;
5115 size_t toread;
5116 struct buffer_head *bh;
5117 loff_t i_size = i_size_read(inode);
5118
5119 if (off > i_size)
5120 return 0;
5121 if (off+len > i_size)
5122 len = i_size-off;
5123 toread = len;
5124 while (toread > 0) {
5125 tocopy = sb->s_blocksize - offset < toread ?
5126 sb->s_blocksize - offset : toread;
5127 bh = ext4_bread(NULL, inode, blk, 0, &err);
5128 if (err)
5129 return err;
5130 if (!bh) /* A hole? */
5131 memset(data, 0, tocopy);
5132 else
5133 memcpy(data, bh->b_data+offset, tocopy);
5134 brelse(bh);
5135 offset = 0;
5136 toread -= tocopy;
5137 data += tocopy;
5138 blk++;
5139 }
5140 return len;
5141 }
5142
5143 /* Write to quotafile (we know the transaction is already started and has
5144 * enough credits) */
5145 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5146 const char *data, size_t len, loff_t off)
5147 {
5148 struct inode *inode = sb_dqopt(sb)->files[type];
5149 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5150 int err = 0;
5151 int offset = off & (sb->s_blocksize - 1);
5152 struct buffer_head *bh;
5153 handle_t *handle = journal_current_handle();
5154
5155 if (EXT4_SB(sb)->s_journal && !handle) {
5156 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5157 " cancelled because transaction is not started",
5158 (unsigned long long)off, (unsigned long long)len);
5159 return -EIO;
5160 }
5161 /*
5162 * Since we account only one data block in transaction credits,
5163 * then it is impossible to cross a block boundary.
5164 */
5165 if (sb->s_blocksize - offset < len) {
5166 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5167 " cancelled because not block aligned",
5168 (unsigned long long)off, (unsigned long long)len);
5169 return -EIO;
5170 }
5171
5172 bh = ext4_bread(handle, inode, blk, 1, &err);
5173 if (!bh)
5174 goto out;
5175 err = ext4_journal_get_write_access(handle, bh);
5176 if (err) {
5177 brelse(bh);
5178 goto out;
5179 }
5180 lock_buffer(bh);
5181 memcpy(bh->b_data+offset, data, len);
5182 flush_dcache_page(bh->b_page);
5183 unlock_buffer(bh);
5184 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5185 brelse(bh);
5186 out:
5187 if (err)
5188 return err;
5189 if (inode->i_size < off + len) {
5190 i_size_write(inode, off + len);
5191 EXT4_I(inode)->i_disksize = inode->i_size;
5192 ext4_mark_inode_dirty(handle, inode);
5193 }
5194 return len;
5195 }
5196
5197 #endif
5198
5199 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5200 const char *dev_name, void *data)
5201 {
5202 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5203 }
5204
5205 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5206 static inline void register_as_ext2(void)
5207 {
5208 int err = register_filesystem(&ext2_fs_type);
5209 if (err)
5210 printk(KERN_WARNING
5211 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5212 }
5213
5214 static inline void unregister_as_ext2(void)
5215 {
5216 unregister_filesystem(&ext2_fs_type);
5217 }
5218
5219 static inline int ext2_feature_set_ok(struct super_block *sb)
5220 {
5221 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5222 return 0;
5223 if (sb->s_flags & MS_RDONLY)
5224 return 1;
5225 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5226 return 0;
5227 return 1;
5228 }
5229 #else
5230 static inline void register_as_ext2(void) { }
5231 static inline void unregister_as_ext2(void) { }
5232 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5233 #endif
5234
5235 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5236 static inline void register_as_ext3(void)
5237 {
5238 int err = register_filesystem(&ext3_fs_type);
5239 if (err)
5240 printk(KERN_WARNING
5241 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5242 }
5243
5244 static inline void unregister_as_ext3(void)
5245 {
5246 unregister_filesystem(&ext3_fs_type);
5247 }
5248
5249 static inline int ext3_feature_set_ok(struct super_block *sb)
5250 {
5251 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5252 return 0;
5253 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5254 return 0;
5255 if (sb->s_flags & MS_RDONLY)
5256 return 1;
5257 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5258 return 0;
5259 return 1;
5260 }
5261 #else
5262 static inline void register_as_ext3(void) { }
5263 static inline void unregister_as_ext3(void) { }
5264 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5265 #endif
5266
5267 static struct file_system_type ext4_fs_type = {
5268 .owner = THIS_MODULE,
5269 .name = "ext4",
5270 .mount = ext4_mount,
5271 .kill_sb = kill_block_super,
5272 .fs_flags = FS_REQUIRES_DEV,
5273 };
5274 MODULE_ALIAS_FS("ext4");
5275
5276 static int __init ext4_init_feat_adverts(void)
5277 {
5278 struct ext4_features *ef;
5279 int ret = -ENOMEM;
5280
5281 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5282 if (!ef)
5283 goto out;
5284
5285 ef->f_kobj.kset = ext4_kset;
5286 init_completion(&ef->f_kobj_unregister);
5287 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5288 "features");
5289 if (ret) {
5290 kfree(ef);
5291 goto out;
5292 }
5293
5294 ext4_feat = ef;
5295 ret = 0;
5296 out:
5297 return ret;
5298 }
5299
5300 static void ext4_exit_feat_adverts(void)
5301 {
5302 kobject_put(&ext4_feat->f_kobj);
5303 wait_for_completion(&ext4_feat->f_kobj_unregister);
5304 kfree(ext4_feat);
5305 }
5306
5307 /* Shared across all ext4 file systems */
5308 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5309 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5310
5311 static int __init ext4_init_fs(void)
5312 {
5313 int i, err;
5314
5315 ext4_li_info = NULL;
5316 mutex_init(&ext4_li_mtx);
5317
5318 /* Build-time check for flags consistency */
5319 ext4_check_flag_values();
5320
5321 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5322 mutex_init(&ext4__aio_mutex[i]);
5323 init_waitqueue_head(&ext4__ioend_wq[i]);
5324 }
5325
5326 err = ext4_init_es();
5327 if (err)
5328 return err;
5329
5330 err = ext4_init_pageio();
5331 if (err)
5332 goto out7;
5333
5334 err = ext4_init_system_zone();
5335 if (err)
5336 goto out6;
5337 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5338 if (!ext4_kset) {
5339 err = -ENOMEM;
5340 goto out5;
5341 }
5342 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5343
5344 err = ext4_init_feat_adverts();
5345 if (err)
5346 goto out4;
5347
5348 err = ext4_init_mballoc();
5349 if (err)
5350 goto out3;
5351
5352 err = ext4_init_xattr();
5353 if (err)
5354 goto out2;
5355 err = init_inodecache();
5356 if (err)
5357 goto out1;
5358 register_as_ext3();
5359 register_as_ext2();
5360 err = register_filesystem(&ext4_fs_type);
5361 if (err)
5362 goto out;
5363
5364 return 0;
5365 out:
5366 unregister_as_ext2();
5367 unregister_as_ext3();
5368 destroy_inodecache();
5369 out1:
5370 ext4_exit_xattr();
5371 out2:
5372 ext4_exit_mballoc();
5373 out3:
5374 ext4_exit_feat_adverts();
5375 out4:
5376 if (ext4_proc_root)
5377 remove_proc_entry("fs/ext4", NULL);
5378 kset_unregister(ext4_kset);
5379 out5:
5380 ext4_exit_system_zone();
5381 out6:
5382 ext4_exit_pageio();
5383 out7:
5384 ext4_exit_es();
5385
5386 return err;
5387 }
5388
5389 static void __exit ext4_exit_fs(void)
5390 {
5391 ext4_destroy_lazyinit_thread();
5392 unregister_as_ext2();
5393 unregister_as_ext3();
5394 unregister_filesystem(&ext4_fs_type);
5395 destroy_inodecache();
5396 ext4_exit_xattr();
5397 ext4_exit_mballoc();
5398 ext4_exit_feat_adverts();
5399 remove_proc_entry("fs/ext4", NULL);
5400 kset_unregister(ext4_kset);
5401 ext4_exit_system_zone();
5402 ext4_exit_pageio();
5403 }
5404
5405 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5406 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5407 MODULE_LICENSE("GPL");
5408 module_init(ext4_init_fs)
5409 module_exit(ext4_exit_fs)