Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 bdev = sbi->journal_bdev;
715 if (bdev) {
716 ext4_blkdev_put(bdev);
717 sbi->journal_bdev = NULL;
718 }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728 struct list_head *l;
729
730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731 le32_to_cpu(sbi->s_es->s_last_orphan));
732
733 printk(KERN_ERR "sb_info orphan list:\n");
734 list_for_each(l, &sbi->s_orphan) {
735 struct inode *inode = orphan_list_entry(l);
736 printk(KERN_ERR " "
737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738 inode->i_sb->s_id, inode->i_ino, inode,
739 inode->i_mode, inode->i_nlink,
740 NEXT_ORPHAN(inode));
741 }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746 struct ext4_sb_info *sbi = EXT4_SB(sb);
747 struct ext4_super_block *es = sbi->s_es;
748 int i, err;
749
750 ext4_unregister_li_request(sb);
751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753 flush_workqueue(sbi->dio_unwritten_wq);
754 destroy_workqueue(sbi->dio_unwritten_wq);
755
756 if (sbi->s_journal) {
757 err = jbd2_journal_destroy(sbi->s_journal);
758 sbi->s_journal = NULL;
759 if (err < 0)
760 ext4_abort(sb, "Couldn't clean up the journal");
761 }
762
763 ext4_es_unregister_shrinker(sb);
764 del_timer(&sbi->s_err_report);
765 ext4_release_system_zone(sb);
766 ext4_mb_release(sb);
767 ext4_ext_release(sb);
768 ext4_xattr_put_super(sb);
769
770 if (!(sb->s_flags & MS_RDONLY)) {
771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772 es->s_state = cpu_to_le16(sbi->s_mount_state);
773 }
774 if (!(sb->s_flags & MS_RDONLY))
775 ext4_commit_super(sb, 1);
776
777 if (sbi->s_proc) {
778 remove_proc_entry("options", sbi->s_proc);
779 remove_proc_entry(sb->s_id, ext4_proc_root);
780 }
781 kobject_del(&sbi->s_kobj);
782
783 for (i = 0; i < sbi->s_gdb_count; i++)
784 brelse(sbi->s_group_desc[i]);
785 ext4_kvfree(sbi->s_group_desc);
786 ext4_kvfree(sbi->s_flex_groups);
787 percpu_counter_destroy(&sbi->s_freeclusters_counter);
788 percpu_counter_destroy(&sbi->s_freeinodes_counter);
789 percpu_counter_destroy(&sbi->s_dirs_counter);
790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792 brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794 for (i = 0; i < MAXQUOTAS; i++)
795 kfree(sbi->s_qf_names[i]);
796 #endif
797
798 /* Debugging code just in case the in-memory inode orphan list
799 * isn't empty. The on-disk one can be non-empty if we've
800 * detected an error and taken the fs readonly, but the
801 * in-memory list had better be clean by this point. */
802 if (!list_empty(&sbi->s_orphan))
803 dump_orphan_list(sb, sbi);
804 J_ASSERT(list_empty(&sbi->s_orphan));
805
806 invalidate_bdev(sb->s_bdev);
807 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
808 /*
809 * Invalidate the journal device's buffers. We don't want them
810 * floating about in memory - the physical journal device may
811 * hotswapped, and it breaks the `ro-after' testing code.
812 */
813 sync_blockdev(sbi->journal_bdev);
814 invalidate_bdev(sbi->journal_bdev);
815 ext4_blkdev_remove(sbi);
816 }
817 if (sbi->s_mmp_tsk)
818 kthread_stop(sbi->s_mmp_tsk);
819 sb->s_fs_info = NULL;
820 /*
821 * Now that we are completely done shutting down the
822 * superblock, we need to actually destroy the kobject.
823 */
824 kobject_put(&sbi->s_kobj);
825 wait_for_completion(&sbi->s_kobj_unregister);
826 if (sbi->s_chksum_driver)
827 crypto_free_shash(sbi->s_chksum_driver);
828 kfree(sbi->s_blockgroup_lock);
829 kfree(sbi);
830 }
831
832 static struct kmem_cache *ext4_inode_cachep;
833
834 /*
835 * Called inside transaction, so use GFP_NOFS
836 */
837 static struct inode *ext4_alloc_inode(struct super_block *sb)
838 {
839 struct ext4_inode_info *ei;
840
841 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
842 if (!ei)
843 return NULL;
844
845 ei->vfs_inode.i_version = 1;
846 INIT_LIST_HEAD(&ei->i_prealloc_list);
847 spin_lock_init(&ei->i_prealloc_lock);
848 ext4_es_init_tree(&ei->i_es_tree);
849 rwlock_init(&ei->i_es_lock);
850 INIT_LIST_HEAD(&ei->i_es_lru);
851 ei->i_es_lru_nr = 0;
852 ei->i_reserved_data_blocks = 0;
853 ei->i_reserved_meta_blocks = 0;
854 ei->i_allocated_meta_blocks = 0;
855 ei->i_da_metadata_calc_len = 0;
856 ei->i_da_metadata_calc_last_lblock = 0;
857 spin_lock_init(&(ei->i_block_reservation_lock));
858 #ifdef CONFIG_QUOTA
859 ei->i_reserved_quota = 0;
860 #endif
861 ei->jinode = NULL;
862 INIT_LIST_HEAD(&ei->i_completed_io_list);
863 spin_lock_init(&ei->i_completed_io_lock);
864 ei->i_sync_tid = 0;
865 ei->i_datasync_tid = 0;
866 atomic_set(&ei->i_ioend_count, 0);
867 atomic_set(&ei->i_unwritten, 0);
868 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
869
870 return &ei->vfs_inode;
871 }
872
873 static int ext4_drop_inode(struct inode *inode)
874 {
875 int drop = generic_drop_inode(inode);
876
877 trace_ext4_drop_inode(inode, drop);
878 return drop;
879 }
880
881 static void ext4_i_callback(struct rcu_head *head)
882 {
883 struct inode *inode = container_of(head, struct inode, i_rcu);
884 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
885 }
886
887 static void ext4_destroy_inode(struct inode *inode)
888 {
889 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
890 ext4_msg(inode->i_sb, KERN_ERR,
891 "Inode %lu (%p): orphan list check failed!",
892 inode->i_ino, EXT4_I(inode));
893 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
894 EXT4_I(inode), sizeof(struct ext4_inode_info),
895 true);
896 dump_stack();
897 }
898 call_rcu(&inode->i_rcu, ext4_i_callback);
899 }
900
901 static void init_once(void *foo)
902 {
903 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
904
905 INIT_LIST_HEAD(&ei->i_orphan);
906 init_rwsem(&ei->xattr_sem);
907 init_rwsem(&ei->i_data_sem);
908 inode_init_once(&ei->vfs_inode);
909 }
910
911 static int init_inodecache(void)
912 {
913 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
914 sizeof(struct ext4_inode_info),
915 0, (SLAB_RECLAIM_ACCOUNT|
916 SLAB_MEM_SPREAD),
917 init_once);
918 if (ext4_inode_cachep == NULL)
919 return -ENOMEM;
920 return 0;
921 }
922
923 static void destroy_inodecache(void)
924 {
925 /*
926 * Make sure all delayed rcu free inodes are flushed before we
927 * destroy cache.
928 */
929 rcu_barrier();
930 kmem_cache_destroy(ext4_inode_cachep);
931 }
932
933 void ext4_clear_inode(struct inode *inode)
934 {
935 invalidate_inode_buffers(inode);
936 clear_inode(inode);
937 dquot_drop(inode);
938 ext4_discard_preallocations(inode);
939 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
940 ext4_es_lru_del(inode);
941 if (EXT4_I(inode)->jinode) {
942 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
943 EXT4_I(inode)->jinode);
944 jbd2_free_inode(EXT4_I(inode)->jinode);
945 EXT4_I(inode)->jinode = NULL;
946 }
947 }
948
949 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
950 u64 ino, u32 generation)
951 {
952 struct inode *inode;
953
954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
955 return ERR_PTR(-ESTALE);
956 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
957 return ERR_PTR(-ESTALE);
958
959 /* iget isn't really right if the inode is currently unallocated!!
960 *
961 * ext4_read_inode will return a bad_inode if the inode had been
962 * deleted, so we should be safe.
963 *
964 * Currently we don't know the generation for parent directory, so
965 * a generation of 0 means "accept any"
966 */
967 inode = ext4_iget(sb, ino);
968 if (IS_ERR(inode))
969 return ERR_CAST(inode);
970 if (generation && inode->i_generation != generation) {
971 iput(inode);
972 return ERR_PTR(-ESTALE);
973 }
974
975 return inode;
976 }
977
978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
979 int fh_len, int fh_type)
980 {
981 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
982 ext4_nfs_get_inode);
983 }
984
985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
986 int fh_len, int fh_type)
987 {
988 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
989 ext4_nfs_get_inode);
990 }
991
992 /*
993 * Try to release metadata pages (indirect blocks, directories) which are
994 * mapped via the block device. Since these pages could have journal heads
995 * which would prevent try_to_free_buffers() from freeing them, we must use
996 * jbd2 layer's try_to_free_buffers() function to release them.
997 */
998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
999 gfp_t wait)
1000 {
1001 journal_t *journal = EXT4_SB(sb)->s_journal;
1002
1003 WARN_ON(PageChecked(page));
1004 if (!page_has_buffers(page))
1005 return 0;
1006 if (journal)
1007 return jbd2_journal_try_to_free_buffers(journal, page,
1008 wait & ~__GFP_WAIT);
1009 return try_to_free_buffers(page);
1010 }
1011
1012 #ifdef CONFIG_QUOTA
1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1015
1016 static int ext4_write_dquot(struct dquot *dquot);
1017 static int ext4_acquire_dquot(struct dquot *dquot);
1018 static int ext4_release_dquot(struct dquot *dquot);
1019 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1020 static int ext4_write_info(struct super_block *sb, int type);
1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1022 struct path *path);
1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1024 int format_id);
1025 static int ext4_quota_off(struct super_block *sb, int type);
1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1027 static int ext4_quota_on_mount(struct super_block *sb, int type);
1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1029 size_t len, loff_t off);
1030 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1031 const char *data, size_t len, loff_t off);
1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1033 unsigned int flags);
1034 static int ext4_enable_quotas(struct super_block *sb);
1035
1036 static const struct dquot_operations ext4_quota_operations = {
1037 .get_reserved_space = ext4_get_reserved_space,
1038 .write_dquot = ext4_write_dquot,
1039 .acquire_dquot = ext4_acquire_dquot,
1040 .release_dquot = ext4_release_dquot,
1041 .mark_dirty = ext4_mark_dquot_dirty,
1042 .write_info = ext4_write_info,
1043 .alloc_dquot = dquot_alloc,
1044 .destroy_dquot = dquot_destroy,
1045 };
1046
1047 static const struct quotactl_ops ext4_qctl_operations = {
1048 .quota_on = ext4_quota_on,
1049 .quota_off = ext4_quota_off,
1050 .quota_sync = dquot_quota_sync,
1051 .get_info = dquot_get_dqinfo,
1052 .set_info = dquot_set_dqinfo,
1053 .get_dqblk = dquot_get_dqblk,
1054 .set_dqblk = dquot_set_dqblk
1055 };
1056
1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1058 .quota_on_meta = ext4_quota_on_sysfile,
1059 .quota_off = ext4_quota_off_sysfile,
1060 .quota_sync = dquot_quota_sync,
1061 .get_info = dquot_get_dqinfo,
1062 .set_info = dquot_set_dqinfo,
1063 .get_dqblk = dquot_get_dqblk,
1064 .set_dqblk = dquot_set_dqblk
1065 };
1066 #endif
1067
1068 static const struct super_operations ext4_sops = {
1069 .alloc_inode = ext4_alloc_inode,
1070 .destroy_inode = ext4_destroy_inode,
1071 .write_inode = ext4_write_inode,
1072 .dirty_inode = ext4_dirty_inode,
1073 .drop_inode = ext4_drop_inode,
1074 .evict_inode = ext4_evict_inode,
1075 .put_super = ext4_put_super,
1076 .sync_fs = ext4_sync_fs,
1077 .freeze_fs = ext4_freeze,
1078 .unfreeze_fs = ext4_unfreeze,
1079 .statfs = ext4_statfs,
1080 .remount_fs = ext4_remount,
1081 .show_options = ext4_show_options,
1082 #ifdef CONFIG_QUOTA
1083 .quota_read = ext4_quota_read,
1084 .quota_write = ext4_quota_write,
1085 #endif
1086 .bdev_try_to_free_page = bdev_try_to_free_page,
1087 };
1088
1089 static const struct super_operations ext4_nojournal_sops = {
1090 .alloc_inode = ext4_alloc_inode,
1091 .destroy_inode = ext4_destroy_inode,
1092 .write_inode = ext4_write_inode,
1093 .dirty_inode = ext4_dirty_inode,
1094 .drop_inode = ext4_drop_inode,
1095 .evict_inode = ext4_evict_inode,
1096 .put_super = ext4_put_super,
1097 .statfs = ext4_statfs,
1098 .remount_fs = ext4_remount,
1099 .show_options = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101 .quota_read = ext4_quota_read,
1102 .quota_write = ext4_quota_write,
1103 #endif
1104 .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108 .fh_to_dentry = ext4_fh_to_dentry,
1109 .fh_to_parent = ext4_fh_to_parent,
1110 .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116 Opt_nouid32, Opt_debug, Opt_removed,
1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1120 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122 Opt_data_err_abort, Opt_data_err_ignore,
1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126 Opt_usrquota, Opt_grpquota, Opt_i_version,
1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1129 Opt_inode_readahead_blks, Opt_journal_ioprio,
1130 Opt_dioread_nolock, Opt_dioread_lock,
1131 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1132 Opt_max_dir_size_kb,
1133 };
1134
1135 static const match_table_t tokens = {
1136 {Opt_bsd_df, "bsddf"},
1137 {Opt_minix_df, "minixdf"},
1138 {Opt_grpid, "grpid"},
1139 {Opt_grpid, "bsdgroups"},
1140 {Opt_nogrpid, "nogrpid"},
1141 {Opt_nogrpid, "sysvgroups"},
1142 {Opt_resgid, "resgid=%u"},
1143 {Opt_resuid, "resuid=%u"},
1144 {Opt_sb, "sb=%u"},
1145 {Opt_err_cont, "errors=continue"},
1146 {Opt_err_panic, "errors=panic"},
1147 {Opt_err_ro, "errors=remount-ro"},
1148 {Opt_nouid32, "nouid32"},
1149 {Opt_debug, "debug"},
1150 {Opt_removed, "oldalloc"},
1151 {Opt_removed, "orlov"},
1152 {Opt_user_xattr, "user_xattr"},
1153 {Opt_nouser_xattr, "nouser_xattr"},
1154 {Opt_acl, "acl"},
1155 {Opt_noacl, "noacl"},
1156 {Opt_noload, "norecovery"},
1157 {Opt_noload, "noload"},
1158 {Opt_removed, "nobh"},
1159 {Opt_removed, "bh"},
1160 {Opt_commit, "commit=%u"},
1161 {Opt_min_batch_time, "min_batch_time=%u"},
1162 {Opt_max_batch_time, "max_batch_time=%u"},
1163 {Opt_journal_dev, "journal_dev=%u"},
1164 {Opt_journal_checksum, "journal_checksum"},
1165 {Opt_journal_async_commit, "journal_async_commit"},
1166 {Opt_abort, "abort"},
1167 {Opt_data_journal, "data=journal"},
1168 {Opt_data_ordered, "data=ordered"},
1169 {Opt_data_writeback, "data=writeback"},
1170 {Opt_data_err_abort, "data_err=abort"},
1171 {Opt_data_err_ignore, "data_err=ignore"},
1172 {Opt_offusrjquota, "usrjquota="},
1173 {Opt_usrjquota, "usrjquota=%s"},
1174 {Opt_offgrpjquota, "grpjquota="},
1175 {Opt_grpjquota, "grpjquota=%s"},
1176 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1177 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1178 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1179 {Opt_grpquota, "grpquota"},
1180 {Opt_noquota, "noquota"},
1181 {Opt_quota, "quota"},
1182 {Opt_usrquota, "usrquota"},
1183 {Opt_barrier, "barrier=%u"},
1184 {Opt_barrier, "barrier"},
1185 {Opt_nobarrier, "nobarrier"},
1186 {Opt_i_version, "i_version"},
1187 {Opt_stripe, "stripe=%u"},
1188 {Opt_delalloc, "delalloc"},
1189 {Opt_nodelalloc, "nodelalloc"},
1190 {Opt_removed, "mblk_io_submit"},
1191 {Opt_removed, "nomblk_io_submit"},
1192 {Opt_block_validity, "block_validity"},
1193 {Opt_noblock_validity, "noblock_validity"},
1194 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1195 {Opt_journal_ioprio, "journal_ioprio=%u"},
1196 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1197 {Opt_auto_da_alloc, "auto_da_alloc"},
1198 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1199 {Opt_dioread_nolock, "dioread_nolock"},
1200 {Opt_dioread_lock, "dioread_lock"},
1201 {Opt_discard, "discard"},
1202 {Opt_nodiscard, "nodiscard"},
1203 {Opt_init_itable, "init_itable=%u"},
1204 {Opt_init_itable, "init_itable"},
1205 {Opt_noinit_itable, "noinit_itable"},
1206 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1207 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1208 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1209 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1210 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1211 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1212 {Opt_err, NULL},
1213 };
1214
1215 static ext4_fsblk_t get_sb_block(void **data)
1216 {
1217 ext4_fsblk_t sb_block;
1218 char *options = (char *) *data;
1219
1220 if (!options || strncmp(options, "sb=", 3) != 0)
1221 return 1; /* Default location */
1222
1223 options += 3;
1224 /* TODO: use simple_strtoll with >32bit ext4 */
1225 sb_block = simple_strtoul(options, &options, 0);
1226 if (*options && *options != ',') {
1227 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1228 (char *) *data);
1229 return 1;
1230 }
1231 if (*options == ',')
1232 options++;
1233 *data = (void *) options;
1234
1235 return sb_block;
1236 }
1237
1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1240 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1241
1242 #ifdef CONFIG_QUOTA
1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1244 {
1245 struct ext4_sb_info *sbi = EXT4_SB(sb);
1246 char *qname;
1247 int ret = -1;
1248
1249 if (sb_any_quota_loaded(sb) &&
1250 !sbi->s_qf_names[qtype]) {
1251 ext4_msg(sb, KERN_ERR,
1252 "Cannot change journaled "
1253 "quota options when quota turned on");
1254 return -1;
1255 }
1256 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1257 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1258 "when QUOTA feature is enabled");
1259 return -1;
1260 }
1261 qname = match_strdup(args);
1262 if (!qname) {
1263 ext4_msg(sb, KERN_ERR,
1264 "Not enough memory for storing quotafile name");
1265 return -1;
1266 }
1267 if (sbi->s_qf_names[qtype]) {
1268 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1269 ret = 1;
1270 else
1271 ext4_msg(sb, KERN_ERR,
1272 "%s quota file already specified",
1273 QTYPE2NAME(qtype));
1274 goto errout;
1275 }
1276 if (strchr(qname, '/')) {
1277 ext4_msg(sb, KERN_ERR,
1278 "quotafile must be on filesystem root");
1279 goto errout;
1280 }
1281 sbi->s_qf_names[qtype] = qname;
1282 set_opt(sb, QUOTA);
1283 return 1;
1284 errout:
1285 kfree(qname);
1286 return ret;
1287 }
1288
1289 static int clear_qf_name(struct super_block *sb, int qtype)
1290 {
1291
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293
1294 if (sb_any_quota_loaded(sb) &&
1295 sbi->s_qf_names[qtype]) {
1296 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1297 " when quota turned on");
1298 return -1;
1299 }
1300 kfree(sbi->s_qf_names[qtype]);
1301 sbi->s_qf_names[qtype] = NULL;
1302 return 1;
1303 }
1304 #endif
1305
1306 #define MOPT_SET 0x0001
1307 #define MOPT_CLEAR 0x0002
1308 #define MOPT_NOSUPPORT 0x0004
1309 #define MOPT_EXPLICIT 0x0008
1310 #define MOPT_CLEAR_ERR 0x0010
1311 #define MOPT_GTE0 0x0020
1312 #ifdef CONFIG_QUOTA
1313 #define MOPT_Q 0
1314 #define MOPT_QFMT 0x0040
1315 #else
1316 #define MOPT_Q MOPT_NOSUPPORT
1317 #define MOPT_QFMT MOPT_NOSUPPORT
1318 #endif
1319 #define MOPT_DATAJ 0x0080
1320 #define MOPT_NO_EXT2 0x0100
1321 #define MOPT_NO_EXT3 0x0200
1322 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1323
1324 static const struct mount_opts {
1325 int token;
1326 int mount_opt;
1327 int flags;
1328 } ext4_mount_opts[] = {
1329 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1330 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1331 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1332 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1333 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1334 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1335 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1336 MOPT_EXT4_ONLY | MOPT_SET},
1337 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338 MOPT_EXT4_ONLY | MOPT_CLEAR},
1339 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1340 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1341 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1342 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1343 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1344 MOPT_EXT4_ONLY | MOPT_CLEAR},
1345 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1346 MOPT_EXT4_ONLY | MOPT_SET},
1347 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1348 EXT4_MOUNT_JOURNAL_CHECKSUM),
1349 MOPT_EXT4_ONLY | MOPT_SET},
1350 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1351 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1355 MOPT_NO_EXT2 | MOPT_SET},
1356 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1357 MOPT_NO_EXT2 | MOPT_CLEAR},
1358 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1359 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1360 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1361 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1362 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1363 {Opt_commit, 0, MOPT_GTE0},
1364 {Opt_max_batch_time, 0, MOPT_GTE0},
1365 {Opt_min_batch_time, 0, MOPT_GTE0},
1366 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1367 {Opt_init_itable, 0, MOPT_GTE0},
1368 {Opt_stripe, 0, MOPT_GTE0},
1369 {Opt_resuid, 0, MOPT_GTE0},
1370 {Opt_resgid, 0, MOPT_GTE0},
1371 {Opt_journal_dev, 0, MOPT_GTE0},
1372 {Opt_journal_ioprio, 0, MOPT_GTE0},
1373 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1376 MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1378 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1380 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1381 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1382 #else
1383 {Opt_acl, 0, MOPT_NOSUPPORT},
1384 {Opt_noacl, 0, MOPT_NOSUPPORT},
1385 #endif
1386 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1387 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1388 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1389 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1390 MOPT_SET | MOPT_Q},
1391 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1392 MOPT_SET | MOPT_Q},
1393 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1394 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1395 {Opt_usrjquota, 0, MOPT_Q},
1396 {Opt_grpjquota, 0, MOPT_Q},
1397 {Opt_offusrjquota, 0, MOPT_Q},
1398 {Opt_offgrpjquota, 0, MOPT_Q},
1399 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1400 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1402 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1403 {Opt_err, 0, 0}
1404 };
1405
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407 substring_t *args, unsigned long *journal_devnum,
1408 unsigned int *journal_ioprio, int is_remount)
1409 {
1410 struct ext4_sb_info *sbi = EXT4_SB(sb);
1411 const struct mount_opts *m;
1412 kuid_t uid;
1413 kgid_t gid;
1414 int arg = 0;
1415
1416 #ifdef CONFIG_QUOTA
1417 if (token == Opt_usrjquota)
1418 return set_qf_name(sb, USRQUOTA, &args[0]);
1419 else if (token == Opt_grpjquota)
1420 return set_qf_name(sb, GRPQUOTA, &args[0]);
1421 else if (token == Opt_offusrjquota)
1422 return clear_qf_name(sb, USRQUOTA);
1423 else if (token == Opt_offgrpjquota)
1424 return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426 switch (token) {
1427 case Opt_noacl:
1428 case Opt_nouser_xattr:
1429 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430 break;
1431 case Opt_sb:
1432 return 1; /* handled by get_sb_block() */
1433 case Opt_removed:
1434 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435 return 1;
1436 case Opt_abort:
1437 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438 return 1;
1439 case Opt_i_version:
1440 sb->s_flags |= MS_I_VERSION;
1441 return 1;
1442 }
1443
1444 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1445 if (token == m->token)
1446 break;
1447
1448 if (m->token == Opt_err) {
1449 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1450 "or missing value", opt);
1451 return -1;
1452 }
1453
1454 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1455 ext4_msg(sb, KERN_ERR,
1456 "Mount option \"%s\" incompatible with ext2", opt);
1457 return -1;
1458 }
1459 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1460 ext4_msg(sb, KERN_ERR,
1461 "Mount option \"%s\" incompatible with ext3", opt);
1462 return -1;
1463 }
1464
1465 if (args->from && match_int(args, &arg))
1466 return -1;
1467 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1468 return -1;
1469 if (m->flags & MOPT_EXPLICIT)
1470 set_opt2(sb, EXPLICIT_DELALLOC);
1471 if (m->flags & MOPT_CLEAR_ERR)
1472 clear_opt(sb, ERRORS_MASK);
1473 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1474 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1475 "options when quota turned on");
1476 return -1;
1477 }
1478
1479 if (m->flags & MOPT_NOSUPPORT) {
1480 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1481 } else if (token == Opt_commit) {
1482 if (arg == 0)
1483 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1484 sbi->s_commit_interval = HZ * arg;
1485 } else if (token == Opt_max_batch_time) {
1486 sbi->s_max_batch_time = arg;
1487 } else if (token == Opt_min_batch_time) {
1488 sbi->s_min_batch_time = arg;
1489 } else if (token == Opt_inode_readahead_blks) {
1490 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1491 ext4_msg(sb, KERN_ERR,
1492 "EXT4-fs: inode_readahead_blks must be "
1493 "0 or a power of 2 smaller than 2^31");
1494 return -1;
1495 }
1496 sbi->s_inode_readahead_blks = arg;
1497 } else if (token == Opt_init_itable) {
1498 set_opt(sb, INIT_INODE_TABLE);
1499 if (!args->from)
1500 arg = EXT4_DEF_LI_WAIT_MULT;
1501 sbi->s_li_wait_mult = arg;
1502 } else if (token == Opt_max_dir_size_kb) {
1503 sbi->s_max_dir_size_kb = arg;
1504 } else if (token == Opt_stripe) {
1505 sbi->s_stripe = arg;
1506 } else if (token == Opt_resuid) {
1507 uid = make_kuid(current_user_ns(), arg);
1508 if (!uid_valid(uid)) {
1509 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1510 return -1;
1511 }
1512 sbi->s_resuid = uid;
1513 } else if (token == Opt_resgid) {
1514 gid = make_kgid(current_user_ns(), arg);
1515 if (!gid_valid(gid)) {
1516 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1517 return -1;
1518 }
1519 sbi->s_resgid = gid;
1520 } else if (token == Opt_journal_dev) {
1521 if (is_remount) {
1522 ext4_msg(sb, KERN_ERR,
1523 "Cannot specify journal on remount");
1524 return -1;
1525 }
1526 *journal_devnum = arg;
1527 } else if (token == Opt_journal_ioprio) {
1528 if (arg > 7) {
1529 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1530 " (must be 0-7)");
1531 return -1;
1532 }
1533 *journal_ioprio =
1534 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1535 } else if (m->flags & MOPT_DATAJ) {
1536 if (is_remount) {
1537 if (!sbi->s_journal)
1538 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1539 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1540 ext4_msg(sb, KERN_ERR,
1541 "Cannot change data mode on remount");
1542 return -1;
1543 }
1544 } else {
1545 clear_opt(sb, DATA_FLAGS);
1546 sbi->s_mount_opt |= m->mount_opt;
1547 }
1548 #ifdef CONFIG_QUOTA
1549 } else if (m->flags & MOPT_QFMT) {
1550 if (sb_any_quota_loaded(sb) &&
1551 sbi->s_jquota_fmt != m->mount_opt) {
1552 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1553 "quota options when quota turned on");
1554 return -1;
1555 }
1556 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1557 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1558 ext4_msg(sb, KERN_ERR,
1559 "Cannot set journaled quota options "
1560 "when QUOTA feature is enabled");
1561 return -1;
1562 }
1563 sbi->s_jquota_fmt = m->mount_opt;
1564 #endif
1565 } else {
1566 if (!args->from)
1567 arg = 1;
1568 if (m->flags & MOPT_CLEAR)
1569 arg = !arg;
1570 else if (unlikely(!(m->flags & MOPT_SET))) {
1571 ext4_msg(sb, KERN_WARNING,
1572 "buggy handling of option %s", opt);
1573 WARN_ON(1);
1574 return -1;
1575 }
1576 if (arg != 0)
1577 sbi->s_mount_opt |= m->mount_opt;
1578 else
1579 sbi->s_mount_opt &= ~m->mount_opt;
1580 }
1581 return 1;
1582 }
1583
1584 static int parse_options(char *options, struct super_block *sb,
1585 unsigned long *journal_devnum,
1586 unsigned int *journal_ioprio,
1587 int is_remount)
1588 {
1589 struct ext4_sb_info *sbi = EXT4_SB(sb);
1590 char *p;
1591 substring_t args[MAX_OPT_ARGS];
1592 int token;
1593
1594 if (!options)
1595 return 1;
1596
1597 while ((p = strsep(&options, ",")) != NULL) {
1598 if (!*p)
1599 continue;
1600 /*
1601 * Initialize args struct so we know whether arg was
1602 * found; some options take optional arguments.
1603 */
1604 args[0].to = args[0].from = NULL;
1605 token = match_token(p, tokens, args);
1606 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1607 journal_ioprio, is_remount) < 0)
1608 return 0;
1609 }
1610 #ifdef CONFIG_QUOTA
1611 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1612 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1613 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1614 "feature is enabled");
1615 return 0;
1616 }
1617 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1618 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1619 clear_opt(sb, USRQUOTA);
1620
1621 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1622 clear_opt(sb, GRPQUOTA);
1623
1624 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1625 ext4_msg(sb, KERN_ERR, "old and new quota "
1626 "format mixing");
1627 return 0;
1628 }
1629
1630 if (!sbi->s_jquota_fmt) {
1631 ext4_msg(sb, KERN_ERR, "journaled quota format "
1632 "not specified");
1633 return 0;
1634 }
1635 } else {
1636 if (sbi->s_jquota_fmt) {
1637 ext4_msg(sb, KERN_ERR, "journaled quota format "
1638 "specified with no journaling "
1639 "enabled");
1640 return 0;
1641 }
1642 }
1643 #endif
1644 if (test_opt(sb, DIOREAD_NOLOCK)) {
1645 int blocksize =
1646 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1647
1648 if (blocksize < PAGE_CACHE_SIZE) {
1649 ext4_msg(sb, KERN_ERR, "can't mount with "
1650 "dioread_nolock if block size != PAGE_SIZE");
1651 return 0;
1652 }
1653 }
1654 return 1;
1655 }
1656
1657 static inline void ext4_show_quota_options(struct seq_file *seq,
1658 struct super_block *sb)
1659 {
1660 #if defined(CONFIG_QUOTA)
1661 struct ext4_sb_info *sbi = EXT4_SB(sb);
1662
1663 if (sbi->s_jquota_fmt) {
1664 char *fmtname = "";
1665
1666 switch (sbi->s_jquota_fmt) {
1667 case QFMT_VFS_OLD:
1668 fmtname = "vfsold";
1669 break;
1670 case QFMT_VFS_V0:
1671 fmtname = "vfsv0";
1672 break;
1673 case QFMT_VFS_V1:
1674 fmtname = "vfsv1";
1675 break;
1676 }
1677 seq_printf(seq, ",jqfmt=%s", fmtname);
1678 }
1679
1680 if (sbi->s_qf_names[USRQUOTA])
1681 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1682
1683 if (sbi->s_qf_names[GRPQUOTA])
1684 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1685 #endif
1686 }
1687
1688 static const char *token2str(int token)
1689 {
1690 const struct match_token *t;
1691
1692 for (t = tokens; t->token != Opt_err; t++)
1693 if (t->token == token && !strchr(t->pattern, '='))
1694 break;
1695 return t->pattern;
1696 }
1697
1698 /*
1699 * Show an option if
1700 * - it's set to a non-default value OR
1701 * - if the per-sb default is different from the global default
1702 */
1703 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1704 int nodefs)
1705 {
1706 struct ext4_sb_info *sbi = EXT4_SB(sb);
1707 struct ext4_super_block *es = sbi->s_es;
1708 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1709 const struct mount_opts *m;
1710 char sep = nodefs ? '\n' : ',';
1711
1712 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1713 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1714
1715 if (sbi->s_sb_block != 1)
1716 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1717
1718 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1719 int want_set = m->flags & MOPT_SET;
1720 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1721 (m->flags & MOPT_CLEAR_ERR))
1722 continue;
1723 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1724 continue; /* skip if same as the default */
1725 if ((want_set &&
1726 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1727 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1728 continue; /* select Opt_noFoo vs Opt_Foo */
1729 SEQ_OPTS_PRINT("%s", token2str(m->token));
1730 }
1731
1732 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1733 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1734 SEQ_OPTS_PRINT("resuid=%u",
1735 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1736 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1737 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1738 SEQ_OPTS_PRINT("resgid=%u",
1739 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1740 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1741 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1742 SEQ_OPTS_PUTS("errors=remount-ro");
1743 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1744 SEQ_OPTS_PUTS("errors=continue");
1745 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1746 SEQ_OPTS_PUTS("errors=panic");
1747 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1748 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1749 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1750 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1751 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1752 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1753 if (sb->s_flags & MS_I_VERSION)
1754 SEQ_OPTS_PUTS("i_version");
1755 if (nodefs || sbi->s_stripe)
1756 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1757 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1758 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1759 SEQ_OPTS_PUTS("data=journal");
1760 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1761 SEQ_OPTS_PUTS("data=ordered");
1762 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1763 SEQ_OPTS_PUTS("data=writeback");
1764 }
1765 if (nodefs ||
1766 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1767 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1768 sbi->s_inode_readahead_blks);
1769
1770 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1771 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1772 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1773 if (nodefs || sbi->s_max_dir_size_kb)
1774 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1775
1776 ext4_show_quota_options(seq, sb);
1777 return 0;
1778 }
1779
1780 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1781 {
1782 return _ext4_show_options(seq, root->d_sb, 0);
1783 }
1784
1785 static int options_seq_show(struct seq_file *seq, void *offset)
1786 {
1787 struct super_block *sb = seq->private;
1788 int rc;
1789
1790 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1791 rc = _ext4_show_options(seq, sb, 1);
1792 seq_puts(seq, "\n");
1793 return rc;
1794 }
1795
1796 static int options_open_fs(struct inode *inode, struct file *file)
1797 {
1798 return single_open(file, options_seq_show, PDE_DATA(inode));
1799 }
1800
1801 static const struct file_operations ext4_seq_options_fops = {
1802 .owner = THIS_MODULE,
1803 .open = options_open_fs,
1804 .read = seq_read,
1805 .llseek = seq_lseek,
1806 .release = single_release,
1807 };
1808
1809 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1810 int read_only)
1811 {
1812 struct ext4_sb_info *sbi = EXT4_SB(sb);
1813 int res = 0;
1814
1815 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1816 ext4_msg(sb, KERN_ERR, "revision level too high, "
1817 "forcing read-only mode");
1818 res = MS_RDONLY;
1819 }
1820 if (read_only)
1821 goto done;
1822 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1823 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1824 "running e2fsck is recommended");
1825 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1826 ext4_msg(sb, KERN_WARNING,
1827 "warning: mounting fs with errors, "
1828 "running e2fsck is recommended");
1829 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1830 le16_to_cpu(es->s_mnt_count) >=
1831 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1832 ext4_msg(sb, KERN_WARNING,
1833 "warning: maximal mount count reached, "
1834 "running e2fsck is recommended");
1835 else if (le32_to_cpu(es->s_checkinterval) &&
1836 (le32_to_cpu(es->s_lastcheck) +
1837 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1838 ext4_msg(sb, KERN_WARNING,
1839 "warning: checktime reached, "
1840 "running e2fsck is recommended");
1841 if (!sbi->s_journal)
1842 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1843 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1844 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1845 le16_add_cpu(&es->s_mnt_count, 1);
1846 es->s_mtime = cpu_to_le32(get_seconds());
1847 ext4_update_dynamic_rev(sb);
1848 if (sbi->s_journal)
1849 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1850
1851 ext4_commit_super(sb, 1);
1852 done:
1853 if (test_opt(sb, DEBUG))
1854 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1855 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1856 sb->s_blocksize,
1857 sbi->s_groups_count,
1858 EXT4_BLOCKS_PER_GROUP(sb),
1859 EXT4_INODES_PER_GROUP(sb),
1860 sbi->s_mount_opt, sbi->s_mount_opt2);
1861
1862 cleancache_init_fs(sb);
1863 return res;
1864 }
1865
1866 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1867 {
1868 struct ext4_sb_info *sbi = EXT4_SB(sb);
1869 struct flex_groups *new_groups;
1870 int size;
1871
1872 if (!sbi->s_log_groups_per_flex)
1873 return 0;
1874
1875 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1876 if (size <= sbi->s_flex_groups_allocated)
1877 return 0;
1878
1879 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1880 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1881 if (!new_groups) {
1882 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1883 size / (int) sizeof(struct flex_groups));
1884 return -ENOMEM;
1885 }
1886
1887 if (sbi->s_flex_groups) {
1888 memcpy(new_groups, sbi->s_flex_groups,
1889 (sbi->s_flex_groups_allocated *
1890 sizeof(struct flex_groups)));
1891 ext4_kvfree(sbi->s_flex_groups);
1892 }
1893 sbi->s_flex_groups = new_groups;
1894 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1895 return 0;
1896 }
1897
1898 static int ext4_fill_flex_info(struct super_block *sb)
1899 {
1900 struct ext4_sb_info *sbi = EXT4_SB(sb);
1901 struct ext4_group_desc *gdp = NULL;
1902 ext4_group_t flex_group;
1903 unsigned int groups_per_flex = 0;
1904 int i, err;
1905
1906 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1907 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1908 sbi->s_log_groups_per_flex = 0;
1909 return 1;
1910 }
1911 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1912
1913 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1914 if (err)
1915 goto failed;
1916
1917 for (i = 0; i < sbi->s_groups_count; i++) {
1918 gdp = ext4_get_group_desc(sb, i, NULL);
1919
1920 flex_group = ext4_flex_group(sbi, i);
1921 atomic_add(ext4_free_inodes_count(sb, gdp),
1922 &sbi->s_flex_groups[flex_group].free_inodes);
1923 atomic64_add(ext4_free_group_clusters(sb, gdp),
1924 &sbi->s_flex_groups[flex_group].free_clusters);
1925 atomic_add(ext4_used_dirs_count(sb, gdp),
1926 &sbi->s_flex_groups[flex_group].used_dirs);
1927 }
1928
1929 return 1;
1930 failed:
1931 return 0;
1932 }
1933
1934 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1935 struct ext4_group_desc *gdp)
1936 {
1937 int offset;
1938 __u16 crc = 0;
1939 __le32 le_group = cpu_to_le32(block_group);
1940
1941 if ((sbi->s_es->s_feature_ro_compat &
1942 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1943 /* Use new metadata_csum algorithm */
1944 __le16 save_csum;
1945 __u32 csum32;
1946
1947 save_csum = gdp->bg_checksum;
1948 gdp->bg_checksum = 0;
1949 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1950 sizeof(le_group));
1951 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1952 sbi->s_desc_size);
1953 gdp->bg_checksum = save_csum;
1954
1955 crc = csum32 & 0xFFFF;
1956 goto out;
1957 }
1958
1959 /* old crc16 code */
1960 offset = offsetof(struct ext4_group_desc, bg_checksum);
1961
1962 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1963 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1964 crc = crc16(crc, (__u8 *)gdp, offset);
1965 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1966 /* for checksum of struct ext4_group_desc do the rest...*/
1967 if ((sbi->s_es->s_feature_incompat &
1968 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1969 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1970 crc = crc16(crc, (__u8 *)gdp + offset,
1971 le16_to_cpu(sbi->s_es->s_desc_size) -
1972 offset);
1973
1974 out:
1975 return cpu_to_le16(crc);
1976 }
1977
1978 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1979 struct ext4_group_desc *gdp)
1980 {
1981 if (ext4_has_group_desc_csum(sb) &&
1982 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1983 block_group, gdp)))
1984 return 0;
1985
1986 return 1;
1987 }
1988
1989 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1990 struct ext4_group_desc *gdp)
1991 {
1992 if (!ext4_has_group_desc_csum(sb))
1993 return;
1994 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1995 }
1996
1997 /* Called at mount-time, super-block is locked */
1998 static int ext4_check_descriptors(struct super_block *sb,
1999 ext4_group_t *first_not_zeroed)
2000 {
2001 struct ext4_sb_info *sbi = EXT4_SB(sb);
2002 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2003 ext4_fsblk_t last_block;
2004 ext4_fsblk_t block_bitmap;
2005 ext4_fsblk_t inode_bitmap;
2006 ext4_fsblk_t inode_table;
2007 int flexbg_flag = 0;
2008 ext4_group_t i, grp = sbi->s_groups_count;
2009
2010 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2011 flexbg_flag = 1;
2012
2013 ext4_debug("Checking group descriptors");
2014
2015 for (i = 0; i < sbi->s_groups_count; i++) {
2016 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2017
2018 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2019 last_block = ext4_blocks_count(sbi->s_es) - 1;
2020 else
2021 last_block = first_block +
2022 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2023
2024 if ((grp == sbi->s_groups_count) &&
2025 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2026 grp = i;
2027
2028 block_bitmap = ext4_block_bitmap(sb, gdp);
2029 if (block_bitmap < first_block || block_bitmap > last_block) {
2030 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2031 "Block bitmap for group %u not in group "
2032 "(block %llu)!", i, block_bitmap);
2033 return 0;
2034 }
2035 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2036 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2037 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2038 "Inode bitmap for group %u not in group "
2039 "(block %llu)!", i, inode_bitmap);
2040 return 0;
2041 }
2042 inode_table = ext4_inode_table(sb, gdp);
2043 if (inode_table < first_block ||
2044 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2045 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2046 "Inode table for group %u not in group "
2047 "(block %llu)!", i, inode_table);
2048 return 0;
2049 }
2050 ext4_lock_group(sb, i);
2051 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2052 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2053 "Checksum for group %u failed (%u!=%u)",
2054 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2055 gdp)), le16_to_cpu(gdp->bg_checksum));
2056 if (!(sb->s_flags & MS_RDONLY)) {
2057 ext4_unlock_group(sb, i);
2058 return 0;
2059 }
2060 }
2061 ext4_unlock_group(sb, i);
2062 if (!flexbg_flag)
2063 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2064 }
2065 if (NULL != first_not_zeroed)
2066 *first_not_zeroed = grp;
2067
2068 ext4_free_blocks_count_set(sbi->s_es,
2069 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2070 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2071 return 1;
2072 }
2073
2074 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2075 * the superblock) which were deleted from all directories, but held open by
2076 * a process at the time of a crash. We walk the list and try to delete these
2077 * inodes at recovery time (only with a read-write filesystem).
2078 *
2079 * In order to keep the orphan inode chain consistent during traversal (in
2080 * case of crash during recovery), we link each inode into the superblock
2081 * orphan list_head and handle it the same way as an inode deletion during
2082 * normal operation (which journals the operations for us).
2083 *
2084 * We only do an iget() and an iput() on each inode, which is very safe if we
2085 * accidentally point at an in-use or already deleted inode. The worst that
2086 * can happen in this case is that we get a "bit already cleared" message from
2087 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2088 * e2fsck was run on this filesystem, and it must have already done the orphan
2089 * inode cleanup for us, so we can safely abort without any further action.
2090 */
2091 static void ext4_orphan_cleanup(struct super_block *sb,
2092 struct ext4_super_block *es)
2093 {
2094 unsigned int s_flags = sb->s_flags;
2095 int nr_orphans = 0, nr_truncates = 0;
2096 #ifdef CONFIG_QUOTA
2097 int i;
2098 #endif
2099 if (!es->s_last_orphan) {
2100 jbd_debug(4, "no orphan inodes to clean up\n");
2101 return;
2102 }
2103
2104 if (bdev_read_only(sb->s_bdev)) {
2105 ext4_msg(sb, KERN_ERR, "write access "
2106 "unavailable, skipping orphan cleanup");
2107 return;
2108 }
2109
2110 /* Check if feature set would not allow a r/w mount */
2111 if (!ext4_feature_set_ok(sb, 0)) {
2112 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2113 "unknown ROCOMPAT features");
2114 return;
2115 }
2116
2117 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2118 /* don't clear list on RO mount w/ errors */
2119 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2120 jbd_debug(1, "Errors on filesystem, "
2121 "clearing orphan list.\n");
2122 es->s_last_orphan = 0;
2123 }
2124 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2125 return;
2126 }
2127
2128 if (s_flags & MS_RDONLY) {
2129 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2130 sb->s_flags &= ~MS_RDONLY;
2131 }
2132 #ifdef CONFIG_QUOTA
2133 /* Needed for iput() to work correctly and not trash data */
2134 sb->s_flags |= MS_ACTIVE;
2135 /* Turn on quotas so that they are updated correctly */
2136 for (i = 0; i < MAXQUOTAS; i++) {
2137 if (EXT4_SB(sb)->s_qf_names[i]) {
2138 int ret = ext4_quota_on_mount(sb, i);
2139 if (ret < 0)
2140 ext4_msg(sb, KERN_ERR,
2141 "Cannot turn on journaled "
2142 "quota: error %d", ret);
2143 }
2144 }
2145 #endif
2146
2147 while (es->s_last_orphan) {
2148 struct inode *inode;
2149
2150 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2151 if (IS_ERR(inode)) {
2152 es->s_last_orphan = 0;
2153 break;
2154 }
2155
2156 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2157 dquot_initialize(inode);
2158 if (inode->i_nlink) {
2159 ext4_msg(sb, KERN_DEBUG,
2160 "%s: truncating inode %lu to %lld bytes",
2161 __func__, inode->i_ino, inode->i_size);
2162 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2163 inode->i_ino, inode->i_size);
2164 mutex_lock(&inode->i_mutex);
2165 ext4_truncate(inode);
2166 mutex_unlock(&inode->i_mutex);
2167 nr_truncates++;
2168 } else {
2169 ext4_msg(sb, KERN_DEBUG,
2170 "%s: deleting unreferenced inode %lu",
2171 __func__, inode->i_ino);
2172 jbd_debug(2, "deleting unreferenced inode %lu\n",
2173 inode->i_ino);
2174 nr_orphans++;
2175 }
2176 iput(inode); /* The delete magic happens here! */
2177 }
2178
2179 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2180
2181 if (nr_orphans)
2182 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2183 PLURAL(nr_orphans));
2184 if (nr_truncates)
2185 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2186 PLURAL(nr_truncates));
2187 #ifdef CONFIG_QUOTA
2188 /* Turn quotas off */
2189 for (i = 0; i < MAXQUOTAS; i++) {
2190 if (sb_dqopt(sb)->files[i])
2191 dquot_quota_off(sb, i);
2192 }
2193 #endif
2194 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2195 }
2196
2197 /*
2198 * Maximal extent format file size.
2199 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2200 * extent format containers, within a sector_t, and within i_blocks
2201 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2202 * so that won't be a limiting factor.
2203 *
2204 * However there is other limiting factor. We do store extents in the form
2205 * of starting block and length, hence the resulting length of the extent
2206 * covering maximum file size must fit into on-disk format containers as
2207 * well. Given that length is always by 1 unit bigger than max unit (because
2208 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2209 *
2210 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2211 */
2212 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2213 {
2214 loff_t res;
2215 loff_t upper_limit = MAX_LFS_FILESIZE;
2216
2217 /* small i_blocks in vfs inode? */
2218 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2219 /*
2220 * CONFIG_LBDAF is not enabled implies the inode
2221 * i_block represent total blocks in 512 bytes
2222 * 32 == size of vfs inode i_blocks * 8
2223 */
2224 upper_limit = (1LL << 32) - 1;
2225
2226 /* total blocks in file system block size */
2227 upper_limit >>= (blkbits - 9);
2228 upper_limit <<= blkbits;
2229 }
2230
2231 /*
2232 * 32-bit extent-start container, ee_block. We lower the maxbytes
2233 * by one fs block, so ee_len can cover the extent of maximum file
2234 * size
2235 */
2236 res = (1LL << 32) - 1;
2237 res <<= blkbits;
2238
2239 /* Sanity check against vm- & vfs- imposed limits */
2240 if (res > upper_limit)
2241 res = upper_limit;
2242
2243 return res;
2244 }
2245
2246 /*
2247 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2248 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2249 * We need to be 1 filesystem block less than the 2^48 sector limit.
2250 */
2251 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2252 {
2253 loff_t res = EXT4_NDIR_BLOCKS;
2254 int meta_blocks;
2255 loff_t upper_limit;
2256 /* This is calculated to be the largest file size for a dense, block
2257 * mapped file such that the file's total number of 512-byte sectors,
2258 * including data and all indirect blocks, does not exceed (2^48 - 1).
2259 *
2260 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2261 * number of 512-byte sectors of the file.
2262 */
2263
2264 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2265 /*
2266 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2267 * the inode i_block field represents total file blocks in
2268 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2269 */
2270 upper_limit = (1LL << 32) - 1;
2271
2272 /* total blocks in file system block size */
2273 upper_limit >>= (bits - 9);
2274
2275 } else {
2276 /*
2277 * We use 48 bit ext4_inode i_blocks
2278 * With EXT4_HUGE_FILE_FL set the i_blocks
2279 * represent total number of blocks in
2280 * file system block size
2281 */
2282 upper_limit = (1LL << 48) - 1;
2283
2284 }
2285
2286 /* indirect blocks */
2287 meta_blocks = 1;
2288 /* double indirect blocks */
2289 meta_blocks += 1 + (1LL << (bits-2));
2290 /* tripple indirect blocks */
2291 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2292
2293 upper_limit -= meta_blocks;
2294 upper_limit <<= bits;
2295
2296 res += 1LL << (bits-2);
2297 res += 1LL << (2*(bits-2));
2298 res += 1LL << (3*(bits-2));
2299 res <<= bits;
2300 if (res > upper_limit)
2301 res = upper_limit;
2302
2303 if (res > MAX_LFS_FILESIZE)
2304 res = MAX_LFS_FILESIZE;
2305
2306 return res;
2307 }
2308
2309 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2310 ext4_fsblk_t logical_sb_block, int nr)
2311 {
2312 struct ext4_sb_info *sbi = EXT4_SB(sb);
2313 ext4_group_t bg, first_meta_bg;
2314 int has_super = 0;
2315
2316 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2317
2318 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2319 nr < first_meta_bg)
2320 return logical_sb_block + nr + 1;
2321 bg = sbi->s_desc_per_block * nr;
2322 if (ext4_bg_has_super(sb, bg))
2323 has_super = 1;
2324
2325 return (has_super + ext4_group_first_block_no(sb, bg));
2326 }
2327
2328 /**
2329 * ext4_get_stripe_size: Get the stripe size.
2330 * @sbi: In memory super block info
2331 *
2332 * If we have specified it via mount option, then
2333 * use the mount option value. If the value specified at mount time is
2334 * greater than the blocks per group use the super block value.
2335 * If the super block value is greater than blocks per group return 0.
2336 * Allocator needs it be less than blocks per group.
2337 *
2338 */
2339 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2340 {
2341 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2342 unsigned long stripe_width =
2343 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2344 int ret;
2345
2346 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2347 ret = sbi->s_stripe;
2348 else if (stripe_width <= sbi->s_blocks_per_group)
2349 ret = stripe_width;
2350 else if (stride <= sbi->s_blocks_per_group)
2351 ret = stride;
2352 else
2353 ret = 0;
2354
2355 /*
2356 * If the stripe width is 1, this makes no sense and
2357 * we set it to 0 to turn off stripe handling code.
2358 */
2359 if (ret <= 1)
2360 ret = 0;
2361
2362 return ret;
2363 }
2364
2365 /* sysfs supprt */
2366
2367 struct ext4_attr {
2368 struct attribute attr;
2369 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2370 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2371 const char *, size_t);
2372 int offset;
2373 };
2374
2375 static int parse_strtoull(const char *buf,
2376 unsigned long long max, unsigned long long *value)
2377 {
2378 int ret;
2379
2380 ret = kstrtoull(skip_spaces(buf), 0, value);
2381 if (!ret && *value > max)
2382 ret = -EINVAL;
2383 return ret;
2384 }
2385
2386 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2387 struct ext4_sb_info *sbi,
2388 char *buf)
2389 {
2390 return snprintf(buf, PAGE_SIZE, "%llu\n",
2391 (s64) EXT4_C2B(sbi,
2392 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2393 }
2394
2395 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2396 struct ext4_sb_info *sbi, char *buf)
2397 {
2398 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2399
2400 if (!sb->s_bdev->bd_part)
2401 return snprintf(buf, PAGE_SIZE, "0\n");
2402 return snprintf(buf, PAGE_SIZE, "%lu\n",
2403 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2404 sbi->s_sectors_written_start) >> 1);
2405 }
2406
2407 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2408 struct ext4_sb_info *sbi, char *buf)
2409 {
2410 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2411
2412 if (!sb->s_bdev->bd_part)
2413 return snprintf(buf, PAGE_SIZE, "0\n");
2414 return snprintf(buf, PAGE_SIZE, "%llu\n",
2415 (unsigned long long)(sbi->s_kbytes_written +
2416 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2417 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2418 }
2419
2420 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2421 struct ext4_sb_info *sbi,
2422 const char *buf, size_t count)
2423 {
2424 unsigned long t;
2425 int ret;
2426
2427 ret = kstrtoul(skip_spaces(buf), 0, &t);
2428 if (ret)
2429 return ret;
2430
2431 if (t && (!is_power_of_2(t) || t > 0x40000000))
2432 return -EINVAL;
2433
2434 sbi->s_inode_readahead_blks = t;
2435 return count;
2436 }
2437
2438 static ssize_t sbi_ui_show(struct ext4_attr *a,
2439 struct ext4_sb_info *sbi, char *buf)
2440 {
2441 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2442
2443 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2444 }
2445
2446 static ssize_t sbi_ui_store(struct ext4_attr *a,
2447 struct ext4_sb_info *sbi,
2448 const char *buf, size_t count)
2449 {
2450 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2451 unsigned long t;
2452 int ret;
2453
2454 ret = kstrtoul(skip_spaces(buf), 0, &t);
2455 if (ret)
2456 return ret;
2457 *ui = t;
2458 return count;
2459 }
2460
2461 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2462 struct ext4_sb_info *sbi, char *buf)
2463 {
2464 return snprintf(buf, PAGE_SIZE, "%llu\n",
2465 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2466 }
2467
2468 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2469 struct ext4_sb_info *sbi,
2470 const char *buf, size_t count)
2471 {
2472 unsigned long long val;
2473 int ret;
2474
2475 if (parse_strtoull(buf, -1ULL, &val))
2476 return -EINVAL;
2477 ret = ext4_reserve_clusters(sbi, val);
2478
2479 return ret ? ret : count;
2480 }
2481
2482 static ssize_t trigger_test_error(struct ext4_attr *a,
2483 struct ext4_sb_info *sbi,
2484 const char *buf, size_t count)
2485 {
2486 int len = count;
2487
2488 if (!capable(CAP_SYS_ADMIN))
2489 return -EPERM;
2490
2491 if (len && buf[len-1] == '\n')
2492 len--;
2493
2494 if (len)
2495 ext4_error(sbi->s_sb, "%.*s", len, buf);
2496 return count;
2497 }
2498
2499 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2500 static struct ext4_attr ext4_attr_##_name = { \
2501 .attr = {.name = __stringify(_name), .mode = _mode }, \
2502 .show = _show, \
2503 .store = _store, \
2504 .offset = offsetof(struct ext4_sb_info, _elname), \
2505 }
2506 #define EXT4_ATTR(name, mode, show, store) \
2507 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2508
2509 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2510 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2511 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2512 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2513 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2514 #define ATTR_LIST(name) &ext4_attr_##name.attr
2515
2516 EXT4_RO_ATTR(delayed_allocation_blocks);
2517 EXT4_RO_ATTR(session_write_kbytes);
2518 EXT4_RO_ATTR(lifetime_write_kbytes);
2519 EXT4_RW_ATTR(reserved_clusters);
2520 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2521 inode_readahead_blks_store, s_inode_readahead_blks);
2522 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2523 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2524 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2525 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2526 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2527 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2528 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2529 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2530 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2531 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2532
2533 static struct attribute *ext4_attrs[] = {
2534 ATTR_LIST(delayed_allocation_blocks),
2535 ATTR_LIST(session_write_kbytes),
2536 ATTR_LIST(lifetime_write_kbytes),
2537 ATTR_LIST(reserved_clusters),
2538 ATTR_LIST(inode_readahead_blks),
2539 ATTR_LIST(inode_goal),
2540 ATTR_LIST(mb_stats),
2541 ATTR_LIST(mb_max_to_scan),
2542 ATTR_LIST(mb_min_to_scan),
2543 ATTR_LIST(mb_order2_req),
2544 ATTR_LIST(mb_stream_req),
2545 ATTR_LIST(mb_group_prealloc),
2546 ATTR_LIST(max_writeback_mb_bump),
2547 ATTR_LIST(extent_max_zeroout_kb),
2548 ATTR_LIST(trigger_fs_error),
2549 NULL,
2550 };
2551
2552 /* Features this copy of ext4 supports */
2553 EXT4_INFO_ATTR(lazy_itable_init);
2554 EXT4_INFO_ATTR(batched_discard);
2555 EXT4_INFO_ATTR(meta_bg_resize);
2556
2557 static struct attribute *ext4_feat_attrs[] = {
2558 ATTR_LIST(lazy_itable_init),
2559 ATTR_LIST(batched_discard),
2560 ATTR_LIST(meta_bg_resize),
2561 NULL,
2562 };
2563
2564 static ssize_t ext4_attr_show(struct kobject *kobj,
2565 struct attribute *attr, char *buf)
2566 {
2567 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2568 s_kobj);
2569 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2570
2571 return a->show ? a->show(a, sbi, buf) : 0;
2572 }
2573
2574 static ssize_t ext4_attr_store(struct kobject *kobj,
2575 struct attribute *attr,
2576 const char *buf, size_t len)
2577 {
2578 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2579 s_kobj);
2580 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2581
2582 return a->store ? a->store(a, sbi, buf, len) : 0;
2583 }
2584
2585 static void ext4_sb_release(struct kobject *kobj)
2586 {
2587 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2588 s_kobj);
2589 complete(&sbi->s_kobj_unregister);
2590 }
2591
2592 static const struct sysfs_ops ext4_attr_ops = {
2593 .show = ext4_attr_show,
2594 .store = ext4_attr_store,
2595 };
2596
2597 static struct kobj_type ext4_ktype = {
2598 .default_attrs = ext4_attrs,
2599 .sysfs_ops = &ext4_attr_ops,
2600 .release = ext4_sb_release,
2601 };
2602
2603 static void ext4_feat_release(struct kobject *kobj)
2604 {
2605 complete(&ext4_feat->f_kobj_unregister);
2606 }
2607
2608 static struct kobj_type ext4_feat_ktype = {
2609 .default_attrs = ext4_feat_attrs,
2610 .sysfs_ops = &ext4_attr_ops,
2611 .release = ext4_feat_release,
2612 };
2613
2614 /*
2615 * Check whether this filesystem can be mounted based on
2616 * the features present and the RDONLY/RDWR mount requested.
2617 * Returns 1 if this filesystem can be mounted as requested,
2618 * 0 if it cannot be.
2619 */
2620 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2621 {
2622 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2623 ext4_msg(sb, KERN_ERR,
2624 "Couldn't mount because of "
2625 "unsupported optional features (%x)",
2626 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2627 ~EXT4_FEATURE_INCOMPAT_SUPP));
2628 return 0;
2629 }
2630
2631 if (readonly)
2632 return 1;
2633
2634 /* Check that feature set is OK for a read-write mount */
2635 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2636 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2637 "unsupported optional features (%x)",
2638 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2639 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2640 return 0;
2641 }
2642 /*
2643 * Large file size enabled file system can only be mounted
2644 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2645 */
2646 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2647 if (sizeof(blkcnt_t) < sizeof(u64)) {
2648 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2649 "cannot be mounted RDWR without "
2650 "CONFIG_LBDAF");
2651 return 0;
2652 }
2653 }
2654 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2655 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2656 ext4_msg(sb, KERN_ERR,
2657 "Can't support bigalloc feature without "
2658 "extents feature\n");
2659 return 0;
2660 }
2661
2662 #ifndef CONFIG_QUOTA
2663 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2664 !readonly) {
2665 ext4_msg(sb, KERN_ERR,
2666 "Filesystem with quota feature cannot be mounted RDWR "
2667 "without CONFIG_QUOTA");
2668 return 0;
2669 }
2670 #endif /* CONFIG_QUOTA */
2671 return 1;
2672 }
2673
2674 /*
2675 * This function is called once a day if we have errors logged
2676 * on the file system
2677 */
2678 static void print_daily_error_info(unsigned long arg)
2679 {
2680 struct super_block *sb = (struct super_block *) arg;
2681 struct ext4_sb_info *sbi;
2682 struct ext4_super_block *es;
2683
2684 sbi = EXT4_SB(sb);
2685 es = sbi->s_es;
2686
2687 if (es->s_error_count)
2688 /* fsck newer than v1.41.13 is needed to clean this condition. */
2689 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2690 le32_to_cpu(es->s_error_count));
2691 if (es->s_first_error_time) {
2692 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2693 sb->s_id, le32_to_cpu(es->s_first_error_time),
2694 (int) sizeof(es->s_first_error_func),
2695 es->s_first_error_func,
2696 le32_to_cpu(es->s_first_error_line));
2697 if (es->s_first_error_ino)
2698 printk(": inode %u",
2699 le32_to_cpu(es->s_first_error_ino));
2700 if (es->s_first_error_block)
2701 printk(": block %llu", (unsigned long long)
2702 le64_to_cpu(es->s_first_error_block));
2703 printk("\n");
2704 }
2705 if (es->s_last_error_time) {
2706 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2707 sb->s_id, le32_to_cpu(es->s_last_error_time),
2708 (int) sizeof(es->s_last_error_func),
2709 es->s_last_error_func,
2710 le32_to_cpu(es->s_last_error_line));
2711 if (es->s_last_error_ino)
2712 printk(": inode %u",
2713 le32_to_cpu(es->s_last_error_ino));
2714 if (es->s_last_error_block)
2715 printk(": block %llu", (unsigned long long)
2716 le64_to_cpu(es->s_last_error_block));
2717 printk("\n");
2718 }
2719 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2720 }
2721
2722 /* Find next suitable group and run ext4_init_inode_table */
2723 static int ext4_run_li_request(struct ext4_li_request *elr)
2724 {
2725 struct ext4_group_desc *gdp = NULL;
2726 ext4_group_t group, ngroups;
2727 struct super_block *sb;
2728 unsigned long timeout = 0;
2729 int ret = 0;
2730
2731 sb = elr->lr_super;
2732 ngroups = EXT4_SB(sb)->s_groups_count;
2733
2734 sb_start_write(sb);
2735 for (group = elr->lr_next_group; group < ngroups; group++) {
2736 gdp = ext4_get_group_desc(sb, group, NULL);
2737 if (!gdp) {
2738 ret = 1;
2739 break;
2740 }
2741
2742 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2743 break;
2744 }
2745
2746 if (group >= ngroups)
2747 ret = 1;
2748
2749 if (!ret) {
2750 timeout = jiffies;
2751 ret = ext4_init_inode_table(sb, group,
2752 elr->lr_timeout ? 0 : 1);
2753 if (elr->lr_timeout == 0) {
2754 timeout = (jiffies - timeout) *
2755 elr->lr_sbi->s_li_wait_mult;
2756 elr->lr_timeout = timeout;
2757 }
2758 elr->lr_next_sched = jiffies + elr->lr_timeout;
2759 elr->lr_next_group = group + 1;
2760 }
2761 sb_end_write(sb);
2762
2763 return ret;
2764 }
2765
2766 /*
2767 * Remove lr_request from the list_request and free the
2768 * request structure. Should be called with li_list_mtx held
2769 */
2770 static void ext4_remove_li_request(struct ext4_li_request *elr)
2771 {
2772 struct ext4_sb_info *sbi;
2773
2774 if (!elr)
2775 return;
2776
2777 sbi = elr->lr_sbi;
2778
2779 list_del(&elr->lr_request);
2780 sbi->s_li_request = NULL;
2781 kfree(elr);
2782 }
2783
2784 static void ext4_unregister_li_request(struct super_block *sb)
2785 {
2786 mutex_lock(&ext4_li_mtx);
2787 if (!ext4_li_info) {
2788 mutex_unlock(&ext4_li_mtx);
2789 return;
2790 }
2791
2792 mutex_lock(&ext4_li_info->li_list_mtx);
2793 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2794 mutex_unlock(&ext4_li_info->li_list_mtx);
2795 mutex_unlock(&ext4_li_mtx);
2796 }
2797
2798 static struct task_struct *ext4_lazyinit_task;
2799
2800 /*
2801 * This is the function where ext4lazyinit thread lives. It walks
2802 * through the request list searching for next scheduled filesystem.
2803 * When such a fs is found, run the lazy initialization request
2804 * (ext4_rn_li_request) and keep track of the time spend in this
2805 * function. Based on that time we compute next schedule time of
2806 * the request. When walking through the list is complete, compute
2807 * next waking time and put itself into sleep.
2808 */
2809 static int ext4_lazyinit_thread(void *arg)
2810 {
2811 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2812 struct list_head *pos, *n;
2813 struct ext4_li_request *elr;
2814 unsigned long next_wakeup, cur;
2815
2816 BUG_ON(NULL == eli);
2817 set_freezable();
2818
2819 cont_thread:
2820 while (true) {
2821 next_wakeup = MAX_JIFFY_OFFSET;
2822
2823 mutex_lock(&eli->li_list_mtx);
2824 if (list_empty(&eli->li_request_list)) {
2825 mutex_unlock(&eli->li_list_mtx);
2826 goto exit_thread;
2827 }
2828
2829 list_for_each_safe(pos, n, &eli->li_request_list) {
2830 elr = list_entry(pos, struct ext4_li_request,
2831 lr_request);
2832
2833 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2834 if (ext4_run_li_request(elr) != 0) {
2835 /* error, remove the lazy_init job */
2836 ext4_remove_li_request(elr);
2837 continue;
2838 }
2839 }
2840
2841 if (time_before(elr->lr_next_sched, next_wakeup))
2842 next_wakeup = elr->lr_next_sched;
2843 }
2844 mutex_unlock(&eli->li_list_mtx);
2845
2846 try_to_freeze();
2847
2848 cur = jiffies;
2849 if ((time_after_eq(cur, next_wakeup)) ||
2850 (MAX_JIFFY_OFFSET == next_wakeup)) {
2851 cond_resched();
2852 continue;
2853 }
2854
2855 schedule_timeout_interruptible(next_wakeup - cur);
2856
2857 if (kthread_freezable_should_stop(NULL)) {
2858 ext4_clear_request_list();
2859 goto exit_thread;
2860 }
2861 }
2862
2863 exit_thread:
2864 /*
2865 * It looks like the request list is empty, but we need
2866 * to check it under the li_list_mtx lock, to prevent any
2867 * additions into it, and of course we should lock ext4_li_mtx
2868 * to atomically free the list and ext4_li_info, because at
2869 * this point another ext4 filesystem could be registering
2870 * new one.
2871 */
2872 mutex_lock(&ext4_li_mtx);
2873 mutex_lock(&eli->li_list_mtx);
2874 if (!list_empty(&eli->li_request_list)) {
2875 mutex_unlock(&eli->li_list_mtx);
2876 mutex_unlock(&ext4_li_mtx);
2877 goto cont_thread;
2878 }
2879 mutex_unlock(&eli->li_list_mtx);
2880 kfree(ext4_li_info);
2881 ext4_li_info = NULL;
2882 mutex_unlock(&ext4_li_mtx);
2883
2884 return 0;
2885 }
2886
2887 static void ext4_clear_request_list(void)
2888 {
2889 struct list_head *pos, *n;
2890 struct ext4_li_request *elr;
2891
2892 mutex_lock(&ext4_li_info->li_list_mtx);
2893 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2894 elr = list_entry(pos, struct ext4_li_request,
2895 lr_request);
2896 ext4_remove_li_request(elr);
2897 }
2898 mutex_unlock(&ext4_li_info->li_list_mtx);
2899 }
2900
2901 static int ext4_run_lazyinit_thread(void)
2902 {
2903 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2904 ext4_li_info, "ext4lazyinit");
2905 if (IS_ERR(ext4_lazyinit_task)) {
2906 int err = PTR_ERR(ext4_lazyinit_task);
2907 ext4_clear_request_list();
2908 kfree(ext4_li_info);
2909 ext4_li_info = NULL;
2910 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2911 "initialization thread\n",
2912 err);
2913 return err;
2914 }
2915 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2916 return 0;
2917 }
2918
2919 /*
2920 * Check whether it make sense to run itable init. thread or not.
2921 * If there is at least one uninitialized inode table, return
2922 * corresponding group number, else the loop goes through all
2923 * groups and return total number of groups.
2924 */
2925 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2926 {
2927 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2928 struct ext4_group_desc *gdp = NULL;
2929
2930 for (group = 0; group < ngroups; group++) {
2931 gdp = ext4_get_group_desc(sb, group, NULL);
2932 if (!gdp)
2933 continue;
2934
2935 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2936 break;
2937 }
2938
2939 return group;
2940 }
2941
2942 static int ext4_li_info_new(void)
2943 {
2944 struct ext4_lazy_init *eli = NULL;
2945
2946 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2947 if (!eli)
2948 return -ENOMEM;
2949
2950 INIT_LIST_HEAD(&eli->li_request_list);
2951 mutex_init(&eli->li_list_mtx);
2952
2953 eli->li_state |= EXT4_LAZYINIT_QUIT;
2954
2955 ext4_li_info = eli;
2956
2957 return 0;
2958 }
2959
2960 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2961 ext4_group_t start)
2962 {
2963 struct ext4_sb_info *sbi = EXT4_SB(sb);
2964 struct ext4_li_request *elr;
2965 unsigned long rnd;
2966
2967 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2968 if (!elr)
2969 return NULL;
2970
2971 elr->lr_super = sb;
2972 elr->lr_sbi = sbi;
2973 elr->lr_next_group = start;
2974
2975 /*
2976 * Randomize first schedule time of the request to
2977 * spread the inode table initialization requests
2978 * better.
2979 */
2980 get_random_bytes(&rnd, sizeof(rnd));
2981 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2982 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2983
2984 return elr;
2985 }
2986
2987 int ext4_register_li_request(struct super_block *sb,
2988 ext4_group_t first_not_zeroed)
2989 {
2990 struct ext4_sb_info *sbi = EXT4_SB(sb);
2991 struct ext4_li_request *elr = NULL;
2992 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2993 int ret = 0;
2994
2995 mutex_lock(&ext4_li_mtx);
2996 if (sbi->s_li_request != NULL) {
2997 /*
2998 * Reset timeout so it can be computed again, because
2999 * s_li_wait_mult might have changed.
3000 */
3001 sbi->s_li_request->lr_timeout = 0;
3002 goto out;
3003 }
3004
3005 if (first_not_zeroed == ngroups ||
3006 (sb->s_flags & MS_RDONLY) ||
3007 !test_opt(sb, INIT_INODE_TABLE))
3008 goto out;
3009
3010 elr = ext4_li_request_new(sb, first_not_zeroed);
3011 if (!elr) {
3012 ret = -ENOMEM;
3013 goto out;
3014 }
3015
3016 if (NULL == ext4_li_info) {
3017 ret = ext4_li_info_new();
3018 if (ret)
3019 goto out;
3020 }
3021
3022 mutex_lock(&ext4_li_info->li_list_mtx);
3023 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3024 mutex_unlock(&ext4_li_info->li_list_mtx);
3025
3026 sbi->s_li_request = elr;
3027 /*
3028 * set elr to NULL here since it has been inserted to
3029 * the request_list and the removal and free of it is
3030 * handled by ext4_clear_request_list from now on.
3031 */
3032 elr = NULL;
3033
3034 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3035 ret = ext4_run_lazyinit_thread();
3036 if (ret)
3037 goto out;
3038 }
3039 out:
3040 mutex_unlock(&ext4_li_mtx);
3041 if (ret)
3042 kfree(elr);
3043 return ret;
3044 }
3045
3046 /*
3047 * We do not need to lock anything since this is called on
3048 * module unload.
3049 */
3050 static void ext4_destroy_lazyinit_thread(void)
3051 {
3052 /*
3053 * If thread exited earlier
3054 * there's nothing to be done.
3055 */
3056 if (!ext4_li_info || !ext4_lazyinit_task)
3057 return;
3058
3059 kthread_stop(ext4_lazyinit_task);
3060 }
3061
3062 static int set_journal_csum_feature_set(struct super_block *sb)
3063 {
3064 int ret = 1;
3065 int compat, incompat;
3066 struct ext4_sb_info *sbi = EXT4_SB(sb);
3067
3068 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3069 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3070 /* journal checksum v2 */
3071 compat = 0;
3072 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3073 } else {
3074 /* journal checksum v1 */
3075 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3076 incompat = 0;
3077 }
3078
3079 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3080 ret = jbd2_journal_set_features(sbi->s_journal,
3081 compat, 0,
3082 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3083 incompat);
3084 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3085 ret = jbd2_journal_set_features(sbi->s_journal,
3086 compat, 0,
3087 incompat);
3088 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3089 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3090 } else {
3091 jbd2_journal_clear_features(sbi->s_journal,
3092 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3093 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3094 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3095 }
3096
3097 return ret;
3098 }
3099
3100 /*
3101 * Note: calculating the overhead so we can be compatible with
3102 * historical BSD practice is quite difficult in the face of
3103 * clusters/bigalloc. This is because multiple metadata blocks from
3104 * different block group can end up in the same allocation cluster.
3105 * Calculating the exact overhead in the face of clustered allocation
3106 * requires either O(all block bitmaps) in memory or O(number of block
3107 * groups**2) in time. We will still calculate the superblock for
3108 * older file systems --- and if we come across with a bigalloc file
3109 * system with zero in s_overhead_clusters the estimate will be close to
3110 * correct especially for very large cluster sizes --- but for newer
3111 * file systems, it's better to calculate this figure once at mkfs
3112 * time, and store it in the superblock. If the superblock value is
3113 * present (even for non-bigalloc file systems), we will use it.
3114 */
3115 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3116 char *buf)
3117 {
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119 struct ext4_group_desc *gdp;
3120 ext4_fsblk_t first_block, last_block, b;
3121 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3122 int s, j, count = 0;
3123
3124 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3125 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3126 sbi->s_itb_per_group + 2);
3127
3128 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3129 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3130 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3131 for (i = 0; i < ngroups; i++) {
3132 gdp = ext4_get_group_desc(sb, i, NULL);
3133 b = ext4_block_bitmap(sb, gdp);
3134 if (b >= first_block && b <= last_block) {
3135 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3136 count++;
3137 }
3138 b = ext4_inode_bitmap(sb, gdp);
3139 if (b >= first_block && b <= last_block) {
3140 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3141 count++;
3142 }
3143 b = ext4_inode_table(sb, gdp);
3144 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3145 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3146 int c = EXT4_B2C(sbi, b - first_block);
3147 ext4_set_bit(c, buf);
3148 count++;
3149 }
3150 if (i != grp)
3151 continue;
3152 s = 0;
3153 if (ext4_bg_has_super(sb, grp)) {
3154 ext4_set_bit(s++, buf);
3155 count++;
3156 }
3157 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3158 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3159 count++;
3160 }
3161 }
3162 if (!count)
3163 return 0;
3164 return EXT4_CLUSTERS_PER_GROUP(sb) -
3165 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3166 }
3167
3168 /*
3169 * Compute the overhead and stash it in sbi->s_overhead
3170 */
3171 int ext4_calculate_overhead(struct super_block *sb)
3172 {
3173 struct ext4_sb_info *sbi = EXT4_SB(sb);
3174 struct ext4_super_block *es = sbi->s_es;
3175 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3176 ext4_fsblk_t overhead = 0;
3177 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3178
3179 if (!buf)
3180 return -ENOMEM;
3181
3182 /*
3183 * Compute the overhead (FS structures). This is constant
3184 * for a given filesystem unless the number of block groups
3185 * changes so we cache the previous value until it does.
3186 */
3187
3188 /*
3189 * All of the blocks before first_data_block are overhead
3190 */
3191 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3192
3193 /*
3194 * Add the overhead found in each block group
3195 */
3196 for (i = 0; i < ngroups; i++) {
3197 int blks;
3198
3199 blks = count_overhead(sb, i, buf);
3200 overhead += blks;
3201 if (blks)
3202 memset(buf, 0, PAGE_SIZE);
3203 cond_resched();
3204 }
3205 /* Add the journal blocks as well */
3206 if (sbi->s_journal)
3207 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3208
3209 sbi->s_overhead = overhead;
3210 smp_wmb();
3211 free_page((unsigned long) buf);
3212 return 0;
3213 }
3214
3215
3216 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3217 {
3218 ext4_fsblk_t resv_clusters;
3219
3220 /*
3221 * There's no need to reserve anything when we aren't using extents.
3222 * The space estimates are exact, there are no unwritten extents,
3223 * hole punching doesn't need new metadata... This is needed especially
3224 * to keep ext2/3 backward compatibility.
3225 */
3226 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3227 return 0;
3228 /*
3229 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3230 * This should cover the situations where we can not afford to run
3231 * out of space like for example punch hole, or converting
3232 * uninitialized extents in delalloc path. In most cases such
3233 * allocation would require 1, or 2 blocks, higher numbers are
3234 * very rare.
3235 */
3236 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3237 EXT4_SB(sb)->s_cluster_bits;
3238
3239 do_div(resv_clusters, 50);
3240 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3241
3242 return resv_clusters;
3243 }
3244
3245
3246 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3247 {
3248 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3249 sbi->s_cluster_bits;
3250
3251 if (count >= clusters)
3252 return -EINVAL;
3253
3254 atomic64_set(&sbi->s_resv_clusters, count);
3255 return 0;
3256 }
3257
3258 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3259 {
3260 char *orig_data = kstrdup(data, GFP_KERNEL);
3261 struct buffer_head *bh;
3262 struct ext4_super_block *es = NULL;
3263 struct ext4_sb_info *sbi;
3264 ext4_fsblk_t block;
3265 ext4_fsblk_t sb_block = get_sb_block(&data);
3266 ext4_fsblk_t logical_sb_block;
3267 unsigned long offset = 0;
3268 unsigned long journal_devnum = 0;
3269 unsigned long def_mount_opts;
3270 struct inode *root;
3271 char *cp;
3272 const char *descr;
3273 int ret = -ENOMEM;
3274 int blocksize, clustersize;
3275 unsigned int db_count;
3276 unsigned int i;
3277 int needs_recovery, has_huge_files, has_bigalloc;
3278 __u64 blocks_count;
3279 int err = 0;
3280 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3281 ext4_group_t first_not_zeroed;
3282
3283 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3284 if (!sbi)
3285 goto out_free_orig;
3286
3287 sbi->s_blockgroup_lock =
3288 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3289 if (!sbi->s_blockgroup_lock) {
3290 kfree(sbi);
3291 goto out_free_orig;
3292 }
3293 sb->s_fs_info = sbi;
3294 sbi->s_sb = sb;
3295 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3296 sbi->s_sb_block = sb_block;
3297 if (sb->s_bdev->bd_part)
3298 sbi->s_sectors_written_start =
3299 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3300
3301 /* Cleanup superblock name */
3302 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3303 *cp = '!';
3304
3305 /* -EINVAL is default */
3306 ret = -EINVAL;
3307 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3308 if (!blocksize) {
3309 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3310 goto out_fail;
3311 }
3312
3313 /*
3314 * The ext4 superblock will not be buffer aligned for other than 1kB
3315 * block sizes. We need to calculate the offset from buffer start.
3316 */
3317 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3318 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3319 offset = do_div(logical_sb_block, blocksize);
3320 } else {
3321 logical_sb_block = sb_block;
3322 }
3323
3324 if (!(bh = sb_bread(sb, logical_sb_block))) {
3325 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3326 goto out_fail;
3327 }
3328 /*
3329 * Note: s_es must be initialized as soon as possible because
3330 * some ext4 macro-instructions depend on its value
3331 */
3332 es = (struct ext4_super_block *) (bh->b_data + offset);
3333 sbi->s_es = es;
3334 sb->s_magic = le16_to_cpu(es->s_magic);
3335 if (sb->s_magic != EXT4_SUPER_MAGIC)
3336 goto cantfind_ext4;
3337 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3338
3339 /* Warn if metadata_csum and gdt_csum are both set. */
3340 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3341 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3342 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3343 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3344 "redundant flags; please run fsck.");
3345
3346 /* Check for a known checksum algorithm */
3347 if (!ext4_verify_csum_type(sb, es)) {
3348 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3349 "unknown checksum algorithm.");
3350 silent = 1;
3351 goto cantfind_ext4;
3352 }
3353
3354 /* Load the checksum driver */
3355 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3356 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3357 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3358 if (IS_ERR(sbi->s_chksum_driver)) {
3359 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3360 ret = PTR_ERR(sbi->s_chksum_driver);
3361 sbi->s_chksum_driver = NULL;
3362 goto failed_mount;
3363 }
3364 }
3365
3366 /* Check superblock checksum */
3367 if (!ext4_superblock_csum_verify(sb, es)) {
3368 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3369 "invalid superblock checksum. Run e2fsck?");
3370 silent = 1;
3371 goto cantfind_ext4;
3372 }
3373
3374 /* Precompute checksum seed for all metadata */
3375 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3376 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3377 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3378 sizeof(es->s_uuid));
3379
3380 /* Set defaults before we parse the mount options */
3381 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3382 set_opt(sb, INIT_INODE_TABLE);
3383 if (def_mount_opts & EXT4_DEFM_DEBUG)
3384 set_opt(sb, DEBUG);
3385 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3386 set_opt(sb, GRPID);
3387 if (def_mount_opts & EXT4_DEFM_UID16)
3388 set_opt(sb, NO_UID32);
3389 /* xattr user namespace & acls are now defaulted on */
3390 set_opt(sb, XATTR_USER);
3391 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3392 set_opt(sb, POSIX_ACL);
3393 #endif
3394 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3395 set_opt(sb, JOURNAL_DATA);
3396 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3397 set_opt(sb, ORDERED_DATA);
3398 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3399 set_opt(sb, WRITEBACK_DATA);
3400
3401 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3402 set_opt(sb, ERRORS_PANIC);
3403 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3404 set_opt(sb, ERRORS_CONT);
3405 else
3406 set_opt(sb, ERRORS_RO);
3407 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3408 set_opt(sb, BLOCK_VALIDITY);
3409 if (def_mount_opts & EXT4_DEFM_DISCARD)
3410 set_opt(sb, DISCARD);
3411
3412 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3413 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3414 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3415 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3416 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3417
3418 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3419 set_opt(sb, BARRIER);
3420
3421 /*
3422 * enable delayed allocation by default
3423 * Use -o nodelalloc to turn it off
3424 */
3425 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3426 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3427 set_opt(sb, DELALLOC);
3428
3429 /*
3430 * set default s_li_wait_mult for lazyinit, for the case there is
3431 * no mount option specified.
3432 */
3433 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3434
3435 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3436 &journal_devnum, &journal_ioprio, 0)) {
3437 ext4_msg(sb, KERN_WARNING,
3438 "failed to parse options in superblock: %s",
3439 sbi->s_es->s_mount_opts);
3440 }
3441 sbi->s_def_mount_opt = sbi->s_mount_opt;
3442 if (!parse_options((char *) data, sb, &journal_devnum,
3443 &journal_ioprio, 0))
3444 goto failed_mount;
3445
3446 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3447 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3448 "with data=journal disables delayed "
3449 "allocation and O_DIRECT support!\n");
3450 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3451 ext4_msg(sb, KERN_ERR, "can't mount with "
3452 "both data=journal and delalloc");
3453 goto failed_mount;
3454 }
3455 if (test_opt(sb, DIOREAD_NOLOCK)) {
3456 ext4_msg(sb, KERN_ERR, "can't mount with "
3457 "both data=journal and dioread_nolock");
3458 goto failed_mount;
3459 }
3460 if (test_opt(sb, DELALLOC))
3461 clear_opt(sb, DELALLOC);
3462 }
3463
3464 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3465 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3466
3467 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3468 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3469 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3470 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3471 ext4_msg(sb, KERN_WARNING,
3472 "feature flags set on rev 0 fs, "
3473 "running e2fsck is recommended");
3474
3475 if (IS_EXT2_SB(sb)) {
3476 if (ext2_feature_set_ok(sb))
3477 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3478 "using the ext4 subsystem");
3479 else {
3480 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3481 "to feature incompatibilities");
3482 goto failed_mount;
3483 }
3484 }
3485
3486 if (IS_EXT3_SB(sb)) {
3487 if (ext3_feature_set_ok(sb))
3488 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3489 "using the ext4 subsystem");
3490 else {
3491 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3492 "to feature incompatibilities");
3493 goto failed_mount;
3494 }
3495 }
3496
3497 /*
3498 * Check feature flags regardless of the revision level, since we
3499 * previously didn't change the revision level when setting the flags,
3500 * so there is a chance incompat flags are set on a rev 0 filesystem.
3501 */
3502 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3503 goto failed_mount;
3504
3505 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3506 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3507 blocksize > EXT4_MAX_BLOCK_SIZE) {
3508 ext4_msg(sb, KERN_ERR,
3509 "Unsupported filesystem blocksize %d", blocksize);
3510 goto failed_mount;
3511 }
3512
3513 if (sb->s_blocksize != blocksize) {
3514 /* Validate the filesystem blocksize */
3515 if (!sb_set_blocksize(sb, blocksize)) {
3516 ext4_msg(sb, KERN_ERR, "bad block size %d",
3517 blocksize);
3518 goto failed_mount;
3519 }
3520
3521 brelse(bh);
3522 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3523 offset = do_div(logical_sb_block, blocksize);
3524 bh = sb_bread(sb, logical_sb_block);
3525 if (!bh) {
3526 ext4_msg(sb, KERN_ERR,
3527 "Can't read superblock on 2nd try");
3528 goto failed_mount;
3529 }
3530 es = (struct ext4_super_block *)(bh->b_data + offset);
3531 sbi->s_es = es;
3532 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3533 ext4_msg(sb, KERN_ERR,
3534 "Magic mismatch, very weird!");
3535 goto failed_mount;
3536 }
3537 }
3538
3539 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3540 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3541 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3542 has_huge_files);
3543 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3544
3545 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3546 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3547 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3548 } else {
3549 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3550 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3551 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3552 (!is_power_of_2(sbi->s_inode_size)) ||
3553 (sbi->s_inode_size > blocksize)) {
3554 ext4_msg(sb, KERN_ERR,
3555 "unsupported inode size: %d",
3556 sbi->s_inode_size);
3557 goto failed_mount;
3558 }
3559 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3560 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3561 }
3562
3563 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3564 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3565 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3566 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3567 !is_power_of_2(sbi->s_desc_size)) {
3568 ext4_msg(sb, KERN_ERR,
3569 "unsupported descriptor size %lu",
3570 sbi->s_desc_size);
3571 goto failed_mount;
3572 }
3573 } else
3574 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3575
3576 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3577 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3578 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3579 goto cantfind_ext4;
3580
3581 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3582 if (sbi->s_inodes_per_block == 0)
3583 goto cantfind_ext4;
3584 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3585 sbi->s_inodes_per_block;
3586 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3587 sbi->s_sbh = bh;
3588 sbi->s_mount_state = le16_to_cpu(es->s_state);
3589 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3590 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3591
3592 for (i = 0; i < 4; i++)
3593 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3594 sbi->s_def_hash_version = es->s_def_hash_version;
3595 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3596 i = le32_to_cpu(es->s_flags);
3597 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3598 sbi->s_hash_unsigned = 3;
3599 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3600 #ifdef __CHAR_UNSIGNED__
3601 if (!(sb->s_flags & MS_RDONLY))
3602 es->s_flags |=
3603 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3604 sbi->s_hash_unsigned = 3;
3605 #else
3606 if (!(sb->s_flags & MS_RDONLY))
3607 es->s_flags |=
3608 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3609 #endif
3610 }
3611 }
3612
3613 /* Handle clustersize */
3614 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3615 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3616 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3617 if (has_bigalloc) {
3618 if (clustersize < blocksize) {
3619 ext4_msg(sb, KERN_ERR,
3620 "cluster size (%d) smaller than "
3621 "block size (%d)", clustersize, blocksize);
3622 goto failed_mount;
3623 }
3624 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3625 le32_to_cpu(es->s_log_block_size);
3626 sbi->s_clusters_per_group =
3627 le32_to_cpu(es->s_clusters_per_group);
3628 if (sbi->s_clusters_per_group > blocksize * 8) {
3629 ext4_msg(sb, KERN_ERR,
3630 "#clusters per group too big: %lu",
3631 sbi->s_clusters_per_group);
3632 goto failed_mount;
3633 }
3634 if (sbi->s_blocks_per_group !=
3635 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3636 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3637 "clusters per group (%lu) inconsistent",
3638 sbi->s_blocks_per_group,
3639 sbi->s_clusters_per_group);
3640 goto failed_mount;
3641 }
3642 } else {
3643 if (clustersize != blocksize) {
3644 ext4_warning(sb, "fragment/cluster size (%d) != "
3645 "block size (%d)", clustersize,
3646 blocksize);
3647 clustersize = blocksize;
3648 }
3649 if (sbi->s_blocks_per_group > blocksize * 8) {
3650 ext4_msg(sb, KERN_ERR,
3651 "#blocks per group too big: %lu",
3652 sbi->s_blocks_per_group);
3653 goto failed_mount;
3654 }
3655 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3656 sbi->s_cluster_bits = 0;
3657 }
3658 sbi->s_cluster_ratio = clustersize / blocksize;
3659
3660 if (sbi->s_inodes_per_group > blocksize * 8) {
3661 ext4_msg(sb, KERN_ERR,
3662 "#inodes per group too big: %lu",
3663 sbi->s_inodes_per_group);
3664 goto failed_mount;
3665 }
3666
3667 /* Do we have standard group size of clustersize * 8 blocks ? */
3668 if (sbi->s_blocks_per_group == clustersize << 3)
3669 set_opt2(sb, STD_GROUP_SIZE);
3670
3671 /*
3672 * Test whether we have more sectors than will fit in sector_t,
3673 * and whether the max offset is addressable by the page cache.
3674 */
3675 err = generic_check_addressable(sb->s_blocksize_bits,
3676 ext4_blocks_count(es));
3677 if (err) {
3678 ext4_msg(sb, KERN_ERR, "filesystem"
3679 " too large to mount safely on this system");
3680 if (sizeof(sector_t) < 8)
3681 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3682 goto failed_mount;
3683 }
3684
3685 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3686 goto cantfind_ext4;
3687
3688 /* check blocks count against device size */
3689 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3690 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3691 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3692 "exceeds size of device (%llu blocks)",
3693 ext4_blocks_count(es), blocks_count);
3694 goto failed_mount;
3695 }
3696
3697 /*
3698 * It makes no sense for the first data block to be beyond the end
3699 * of the filesystem.
3700 */
3701 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3702 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3703 "block %u is beyond end of filesystem (%llu)",
3704 le32_to_cpu(es->s_first_data_block),
3705 ext4_blocks_count(es));
3706 goto failed_mount;
3707 }
3708 blocks_count = (ext4_blocks_count(es) -
3709 le32_to_cpu(es->s_first_data_block) +
3710 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3711 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3712 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3713 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3714 "(block count %llu, first data block %u, "
3715 "blocks per group %lu)", sbi->s_groups_count,
3716 ext4_blocks_count(es),
3717 le32_to_cpu(es->s_first_data_block),
3718 EXT4_BLOCKS_PER_GROUP(sb));
3719 goto failed_mount;
3720 }
3721 sbi->s_groups_count = blocks_count;
3722 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3723 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3724 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3725 EXT4_DESC_PER_BLOCK(sb);
3726 sbi->s_group_desc = ext4_kvmalloc(db_count *
3727 sizeof(struct buffer_head *),
3728 GFP_KERNEL);
3729 if (sbi->s_group_desc == NULL) {
3730 ext4_msg(sb, KERN_ERR, "not enough memory");
3731 ret = -ENOMEM;
3732 goto failed_mount;
3733 }
3734
3735 if (ext4_proc_root)
3736 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3737
3738 if (sbi->s_proc)
3739 proc_create_data("options", S_IRUGO, sbi->s_proc,
3740 &ext4_seq_options_fops, sb);
3741
3742 bgl_lock_init(sbi->s_blockgroup_lock);
3743
3744 for (i = 0; i < db_count; i++) {
3745 block = descriptor_loc(sb, logical_sb_block, i);
3746 sbi->s_group_desc[i] = sb_bread(sb, block);
3747 if (!sbi->s_group_desc[i]) {
3748 ext4_msg(sb, KERN_ERR,
3749 "can't read group descriptor %d", i);
3750 db_count = i;
3751 goto failed_mount2;
3752 }
3753 }
3754 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3755 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3756 goto failed_mount2;
3757 }
3758 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3759 if (!ext4_fill_flex_info(sb)) {
3760 ext4_msg(sb, KERN_ERR,
3761 "unable to initialize "
3762 "flex_bg meta info!");
3763 goto failed_mount2;
3764 }
3765
3766 sbi->s_gdb_count = db_count;
3767 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3768 spin_lock_init(&sbi->s_next_gen_lock);
3769
3770 init_timer(&sbi->s_err_report);
3771 sbi->s_err_report.function = print_daily_error_info;
3772 sbi->s_err_report.data = (unsigned long) sb;
3773
3774 /* Register extent status tree shrinker */
3775 ext4_es_register_shrinker(sb);
3776
3777 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3778 ext4_count_free_clusters(sb));
3779 if (!err) {
3780 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3781 ext4_count_free_inodes(sb));
3782 }
3783 if (!err) {
3784 err = percpu_counter_init(&sbi->s_dirs_counter,
3785 ext4_count_dirs(sb));
3786 }
3787 if (!err) {
3788 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3789 }
3790 if (!err) {
3791 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3792 }
3793 if (err) {
3794 ext4_msg(sb, KERN_ERR, "insufficient memory");
3795 goto failed_mount3;
3796 }
3797
3798 sbi->s_stripe = ext4_get_stripe_size(sbi);
3799 sbi->s_max_writeback_mb_bump = 128;
3800 sbi->s_extent_max_zeroout_kb = 32;
3801
3802 /*
3803 * set up enough so that it can read an inode
3804 */
3805 if (!test_opt(sb, NOLOAD) &&
3806 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3807 sb->s_op = &ext4_sops;
3808 else
3809 sb->s_op = &ext4_nojournal_sops;
3810 sb->s_export_op = &ext4_export_ops;
3811 sb->s_xattr = ext4_xattr_handlers;
3812 #ifdef CONFIG_QUOTA
3813 sb->dq_op = &ext4_quota_operations;
3814 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3815 sb->s_qcop = &ext4_qctl_sysfile_operations;
3816 else
3817 sb->s_qcop = &ext4_qctl_operations;
3818 #endif
3819 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3820
3821 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3822 mutex_init(&sbi->s_orphan_lock);
3823
3824 sb->s_root = NULL;
3825
3826 needs_recovery = (es->s_last_orphan != 0 ||
3827 EXT4_HAS_INCOMPAT_FEATURE(sb,
3828 EXT4_FEATURE_INCOMPAT_RECOVER));
3829
3830 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3831 !(sb->s_flags & MS_RDONLY))
3832 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3833 goto failed_mount3;
3834
3835 /*
3836 * The first inode we look at is the journal inode. Don't try
3837 * root first: it may be modified in the journal!
3838 */
3839 if (!test_opt(sb, NOLOAD) &&
3840 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3841 if (ext4_load_journal(sb, es, journal_devnum))
3842 goto failed_mount3;
3843 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3844 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3845 ext4_msg(sb, KERN_ERR, "required journal recovery "
3846 "suppressed and not mounted read-only");
3847 goto failed_mount_wq;
3848 } else {
3849 clear_opt(sb, DATA_FLAGS);
3850 sbi->s_journal = NULL;
3851 needs_recovery = 0;
3852 goto no_journal;
3853 }
3854
3855 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3856 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3857 JBD2_FEATURE_INCOMPAT_64BIT)) {
3858 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3859 goto failed_mount_wq;
3860 }
3861
3862 if (!set_journal_csum_feature_set(sb)) {
3863 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3864 "feature set");
3865 goto failed_mount_wq;
3866 }
3867
3868 /* We have now updated the journal if required, so we can
3869 * validate the data journaling mode. */
3870 switch (test_opt(sb, DATA_FLAGS)) {
3871 case 0:
3872 /* No mode set, assume a default based on the journal
3873 * capabilities: ORDERED_DATA if the journal can
3874 * cope, else JOURNAL_DATA
3875 */
3876 if (jbd2_journal_check_available_features
3877 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3878 set_opt(sb, ORDERED_DATA);
3879 else
3880 set_opt(sb, JOURNAL_DATA);
3881 break;
3882
3883 case EXT4_MOUNT_ORDERED_DATA:
3884 case EXT4_MOUNT_WRITEBACK_DATA:
3885 if (!jbd2_journal_check_available_features
3886 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3887 ext4_msg(sb, KERN_ERR, "Journal does not support "
3888 "requested data journaling mode");
3889 goto failed_mount_wq;
3890 }
3891 default:
3892 break;
3893 }
3894 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3895
3896 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3897
3898 /*
3899 * The journal may have updated the bg summary counts, so we
3900 * need to update the global counters.
3901 */
3902 percpu_counter_set(&sbi->s_freeclusters_counter,
3903 ext4_count_free_clusters(sb));
3904 percpu_counter_set(&sbi->s_freeinodes_counter,
3905 ext4_count_free_inodes(sb));
3906 percpu_counter_set(&sbi->s_dirs_counter,
3907 ext4_count_dirs(sb));
3908 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3909
3910 no_journal:
3911 /*
3912 * Get the # of file system overhead blocks from the
3913 * superblock if present.
3914 */
3915 if (es->s_overhead_clusters)
3916 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3917 else {
3918 err = ext4_calculate_overhead(sb);
3919 if (err)
3920 goto failed_mount_wq;
3921 }
3922
3923 /*
3924 * The maximum number of concurrent works can be high and
3925 * concurrency isn't really necessary. Limit it to 1.
3926 */
3927 EXT4_SB(sb)->dio_unwritten_wq =
3928 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3929 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3930 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3931 ret = -ENOMEM;
3932 goto failed_mount_wq;
3933 }
3934
3935 /*
3936 * The jbd2_journal_load will have done any necessary log recovery,
3937 * so we can safely mount the rest of the filesystem now.
3938 */
3939
3940 root = ext4_iget(sb, EXT4_ROOT_INO);
3941 if (IS_ERR(root)) {
3942 ext4_msg(sb, KERN_ERR, "get root inode failed");
3943 ret = PTR_ERR(root);
3944 root = NULL;
3945 goto failed_mount4;
3946 }
3947 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3948 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3949 iput(root);
3950 goto failed_mount4;
3951 }
3952 sb->s_root = d_make_root(root);
3953 if (!sb->s_root) {
3954 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3955 ret = -ENOMEM;
3956 goto failed_mount4;
3957 }
3958
3959 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3960 sb->s_flags |= MS_RDONLY;
3961
3962 /* determine the minimum size of new large inodes, if present */
3963 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3964 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3965 EXT4_GOOD_OLD_INODE_SIZE;
3966 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3967 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3968 if (sbi->s_want_extra_isize <
3969 le16_to_cpu(es->s_want_extra_isize))
3970 sbi->s_want_extra_isize =
3971 le16_to_cpu(es->s_want_extra_isize);
3972 if (sbi->s_want_extra_isize <
3973 le16_to_cpu(es->s_min_extra_isize))
3974 sbi->s_want_extra_isize =
3975 le16_to_cpu(es->s_min_extra_isize);
3976 }
3977 }
3978 /* Check if enough inode space is available */
3979 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3980 sbi->s_inode_size) {
3981 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3982 EXT4_GOOD_OLD_INODE_SIZE;
3983 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3984 "available");
3985 }
3986
3987 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
3988 if (err) {
3989 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3990 "reserved pool", ext4_calculate_resv_clusters(sb));
3991 goto failed_mount4a;
3992 }
3993
3994 err = ext4_setup_system_zone(sb);
3995 if (err) {
3996 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3997 "zone (%d)", err);
3998 goto failed_mount4a;
3999 }
4000
4001 ext4_ext_init(sb);
4002 err = ext4_mb_init(sb);
4003 if (err) {
4004 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4005 err);
4006 goto failed_mount5;
4007 }
4008
4009 err = ext4_register_li_request(sb, first_not_zeroed);
4010 if (err)
4011 goto failed_mount6;
4012
4013 sbi->s_kobj.kset = ext4_kset;
4014 init_completion(&sbi->s_kobj_unregister);
4015 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4016 "%s", sb->s_id);
4017 if (err)
4018 goto failed_mount7;
4019
4020 #ifdef CONFIG_QUOTA
4021 /* Enable quota usage during mount. */
4022 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4023 !(sb->s_flags & MS_RDONLY)) {
4024 err = ext4_enable_quotas(sb);
4025 if (err)
4026 goto failed_mount8;
4027 }
4028 #endif /* CONFIG_QUOTA */
4029
4030 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4031 ext4_orphan_cleanup(sb, es);
4032 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4033 if (needs_recovery) {
4034 ext4_msg(sb, KERN_INFO, "recovery complete");
4035 ext4_mark_recovery_complete(sb, es);
4036 }
4037 if (EXT4_SB(sb)->s_journal) {
4038 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4039 descr = " journalled data mode";
4040 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4041 descr = " ordered data mode";
4042 else
4043 descr = " writeback data mode";
4044 } else
4045 descr = "out journal";
4046
4047 if (test_opt(sb, DISCARD)) {
4048 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4049 if (!blk_queue_discard(q))
4050 ext4_msg(sb, KERN_WARNING,
4051 "mounting with \"discard\" option, but "
4052 "the device does not support discard");
4053 }
4054
4055 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4056 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4057 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4058
4059 if (es->s_error_count)
4060 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4061
4062 kfree(orig_data);
4063 return 0;
4064
4065 cantfind_ext4:
4066 if (!silent)
4067 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4068 goto failed_mount;
4069
4070 #ifdef CONFIG_QUOTA
4071 failed_mount8:
4072 kobject_del(&sbi->s_kobj);
4073 #endif
4074 failed_mount7:
4075 ext4_unregister_li_request(sb);
4076 failed_mount6:
4077 ext4_mb_release(sb);
4078 failed_mount5:
4079 ext4_ext_release(sb);
4080 ext4_release_system_zone(sb);
4081 failed_mount4a:
4082 dput(sb->s_root);
4083 sb->s_root = NULL;
4084 failed_mount4:
4085 ext4_msg(sb, KERN_ERR, "mount failed");
4086 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4087 failed_mount_wq:
4088 if (sbi->s_journal) {
4089 jbd2_journal_destroy(sbi->s_journal);
4090 sbi->s_journal = NULL;
4091 }
4092 failed_mount3:
4093 ext4_es_unregister_shrinker(sb);
4094 del_timer(&sbi->s_err_report);
4095 if (sbi->s_flex_groups)
4096 ext4_kvfree(sbi->s_flex_groups);
4097 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4098 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4099 percpu_counter_destroy(&sbi->s_dirs_counter);
4100 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4101 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4102 if (sbi->s_mmp_tsk)
4103 kthread_stop(sbi->s_mmp_tsk);
4104 failed_mount2:
4105 for (i = 0; i < db_count; i++)
4106 brelse(sbi->s_group_desc[i]);
4107 ext4_kvfree(sbi->s_group_desc);
4108 failed_mount:
4109 if (sbi->s_chksum_driver)
4110 crypto_free_shash(sbi->s_chksum_driver);
4111 if (sbi->s_proc) {
4112 remove_proc_entry("options", sbi->s_proc);
4113 remove_proc_entry(sb->s_id, ext4_proc_root);
4114 }
4115 #ifdef CONFIG_QUOTA
4116 for (i = 0; i < MAXQUOTAS; i++)
4117 kfree(sbi->s_qf_names[i]);
4118 #endif
4119 ext4_blkdev_remove(sbi);
4120 brelse(bh);
4121 out_fail:
4122 sb->s_fs_info = NULL;
4123 kfree(sbi->s_blockgroup_lock);
4124 kfree(sbi);
4125 out_free_orig:
4126 kfree(orig_data);
4127 return err ? err : ret;
4128 }
4129
4130 /*
4131 * Setup any per-fs journal parameters now. We'll do this both on
4132 * initial mount, once the journal has been initialised but before we've
4133 * done any recovery; and again on any subsequent remount.
4134 */
4135 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4136 {
4137 struct ext4_sb_info *sbi = EXT4_SB(sb);
4138
4139 journal->j_commit_interval = sbi->s_commit_interval;
4140 journal->j_min_batch_time = sbi->s_min_batch_time;
4141 journal->j_max_batch_time = sbi->s_max_batch_time;
4142
4143 write_lock(&journal->j_state_lock);
4144 if (test_opt(sb, BARRIER))
4145 journal->j_flags |= JBD2_BARRIER;
4146 else
4147 journal->j_flags &= ~JBD2_BARRIER;
4148 if (test_opt(sb, DATA_ERR_ABORT))
4149 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4150 else
4151 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4152 write_unlock(&journal->j_state_lock);
4153 }
4154
4155 static journal_t *ext4_get_journal(struct super_block *sb,
4156 unsigned int journal_inum)
4157 {
4158 struct inode *journal_inode;
4159 journal_t *journal;
4160
4161 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4162
4163 /* First, test for the existence of a valid inode on disk. Bad
4164 * things happen if we iget() an unused inode, as the subsequent
4165 * iput() will try to delete it. */
4166
4167 journal_inode = ext4_iget(sb, journal_inum);
4168 if (IS_ERR(journal_inode)) {
4169 ext4_msg(sb, KERN_ERR, "no journal found");
4170 return NULL;
4171 }
4172 if (!journal_inode->i_nlink) {
4173 make_bad_inode(journal_inode);
4174 iput(journal_inode);
4175 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4176 return NULL;
4177 }
4178
4179 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4180 journal_inode, journal_inode->i_size);
4181 if (!S_ISREG(journal_inode->i_mode)) {
4182 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4183 iput(journal_inode);
4184 return NULL;
4185 }
4186
4187 journal = jbd2_journal_init_inode(journal_inode);
4188 if (!journal) {
4189 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4190 iput(journal_inode);
4191 return NULL;
4192 }
4193 journal->j_private = sb;
4194 ext4_init_journal_params(sb, journal);
4195 return journal;
4196 }
4197
4198 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4199 dev_t j_dev)
4200 {
4201 struct buffer_head *bh;
4202 journal_t *journal;
4203 ext4_fsblk_t start;
4204 ext4_fsblk_t len;
4205 int hblock, blocksize;
4206 ext4_fsblk_t sb_block;
4207 unsigned long offset;
4208 struct ext4_super_block *es;
4209 struct block_device *bdev;
4210
4211 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4212
4213 bdev = ext4_blkdev_get(j_dev, sb);
4214 if (bdev == NULL)
4215 return NULL;
4216
4217 blocksize = sb->s_blocksize;
4218 hblock = bdev_logical_block_size(bdev);
4219 if (blocksize < hblock) {
4220 ext4_msg(sb, KERN_ERR,
4221 "blocksize too small for journal device");
4222 goto out_bdev;
4223 }
4224
4225 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4226 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4227 set_blocksize(bdev, blocksize);
4228 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4229 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4230 "external journal");
4231 goto out_bdev;
4232 }
4233
4234 es = (struct ext4_super_block *) (bh->b_data + offset);
4235 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4236 !(le32_to_cpu(es->s_feature_incompat) &
4237 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4238 ext4_msg(sb, KERN_ERR, "external journal has "
4239 "bad superblock");
4240 brelse(bh);
4241 goto out_bdev;
4242 }
4243
4244 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4245 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4246 brelse(bh);
4247 goto out_bdev;
4248 }
4249
4250 len = ext4_blocks_count(es);
4251 start = sb_block + 1;
4252 brelse(bh); /* we're done with the superblock */
4253
4254 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4255 start, len, blocksize);
4256 if (!journal) {
4257 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4258 goto out_bdev;
4259 }
4260 journal->j_private = sb;
4261 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4262 wait_on_buffer(journal->j_sb_buffer);
4263 if (!buffer_uptodate(journal->j_sb_buffer)) {
4264 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4265 goto out_journal;
4266 }
4267 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4268 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4269 "user (unsupported) - %d",
4270 be32_to_cpu(journal->j_superblock->s_nr_users));
4271 goto out_journal;
4272 }
4273 EXT4_SB(sb)->journal_bdev = bdev;
4274 ext4_init_journal_params(sb, journal);
4275 return journal;
4276
4277 out_journal:
4278 jbd2_journal_destroy(journal);
4279 out_bdev:
4280 ext4_blkdev_put(bdev);
4281 return NULL;
4282 }
4283
4284 static int ext4_load_journal(struct super_block *sb,
4285 struct ext4_super_block *es,
4286 unsigned long journal_devnum)
4287 {
4288 journal_t *journal;
4289 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4290 dev_t journal_dev;
4291 int err = 0;
4292 int really_read_only;
4293
4294 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4295
4296 if (journal_devnum &&
4297 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4298 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4299 "numbers have changed");
4300 journal_dev = new_decode_dev(journal_devnum);
4301 } else
4302 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4303
4304 really_read_only = bdev_read_only(sb->s_bdev);
4305
4306 /*
4307 * Are we loading a blank journal or performing recovery after a
4308 * crash? For recovery, we need to check in advance whether we
4309 * can get read-write access to the device.
4310 */
4311 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4312 if (sb->s_flags & MS_RDONLY) {
4313 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4314 "required on readonly filesystem");
4315 if (really_read_only) {
4316 ext4_msg(sb, KERN_ERR, "write access "
4317 "unavailable, cannot proceed");
4318 return -EROFS;
4319 }
4320 ext4_msg(sb, KERN_INFO, "write access will "
4321 "be enabled during recovery");
4322 }
4323 }
4324
4325 if (journal_inum && journal_dev) {
4326 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4327 "and inode journals!");
4328 return -EINVAL;
4329 }
4330
4331 if (journal_inum) {
4332 if (!(journal = ext4_get_journal(sb, journal_inum)))
4333 return -EINVAL;
4334 } else {
4335 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4336 return -EINVAL;
4337 }
4338
4339 if (!(journal->j_flags & JBD2_BARRIER))
4340 ext4_msg(sb, KERN_INFO, "barriers disabled");
4341
4342 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4343 err = jbd2_journal_wipe(journal, !really_read_only);
4344 if (!err) {
4345 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4346 if (save)
4347 memcpy(save, ((char *) es) +
4348 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4349 err = jbd2_journal_load(journal);
4350 if (save)
4351 memcpy(((char *) es) + EXT4_S_ERR_START,
4352 save, EXT4_S_ERR_LEN);
4353 kfree(save);
4354 }
4355
4356 if (err) {
4357 ext4_msg(sb, KERN_ERR, "error loading journal");
4358 jbd2_journal_destroy(journal);
4359 return err;
4360 }
4361
4362 EXT4_SB(sb)->s_journal = journal;
4363 ext4_clear_journal_err(sb, es);
4364
4365 if (!really_read_only && journal_devnum &&
4366 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4367 es->s_journal_dev = cpu_to_le32(journal_devnum);
4368
4369 /* Make sure we flush the recovery flag to disk. */
4370 ext4_commit_super(sb, 1);
4371 }
4372
4373 return 0;
4374 }
4375
4376 static int ext4_commit_super(struct super_block *sb, int sync)
4377 {
4378 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4379 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4380 int error = 0;
4381
4382 if (!sbh || block_device_ejected(sb))
4383 return error;
4384 if (buffer_write_io_error(sbh)) {
4385 /*
4386 * Oh, dear. A previous attempt to write the
4387 * superblock failed. This could happen because the
4388 * USB device was yanked out. Or it could happen to
4389 * be a transient write error and maybe the block will
4390 * be remapped. Nothing we can do but to retry the
4391 * write and hope for the best.
4392 */
4393 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4394 "superblock detected");
4395 clear_buffer_write_io_error(sbh);
4396 set_buffer_uptodate(sbh);
4397 }
4398 /*
4399 * If the file system is mounted read-only, don't update the
4400 * superblock write time. This avoids updating the superblock
4401 * write time when we are mounting the root file system
4402 * read/only but we need to replay the journal; at that point,
4403 * for people who are east of GMT and who make their clock
4404 * tick in localtime for Windows bug-for-bug compatibility,
4405 * the clock is set in the future, and this will cause e2fsck
4406 * to complain and force a full file system check.
4407 */
4408 if (!(sb->s_flags & MS_RDONLY))
4409 es->s_wtime = cpu_to_le32(get_seconds());
4410 if (sb->s_bdev->bd_part)
4411 es->s_kbytes_written =
4412 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4413 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4414 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4415 else
4416 es->s_kbytes_written =
4417 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4418 ext4_free_blocks_count_set(es,
4419 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4420 &EXT4_SB(sb)->s_freeclusters_counter)));
4421 es->s_free_inodes_count =
4422 cpu_to_le32(percpu_counter_sum_positive(
4423 &EXT4_SB(sb)->s_freeinodes_counter));
4424 BUFFER_TRACE(sbh, "marking dirty");
4425 ext4_superblock_csum_set(sb);
4426 mark_buffer_dirty(sbh);
4427 if (sync) {
4428 error = sync_dirty_buffer(sbh);
4429 if (error)
4430 return error;
4431
4432 error = buffer_write_io_error(sbh);
4433 if (error) {
4434 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4435 "superblock");
4436 clear_buffer_write_io_error(sbh);
4437 set_buffer_uptodate(sbh);
4438 }
4439 }
4440 return error;
4441 }
4442
4443 /*
4444 * Have we just finished recovery? If so, and if we are mounting (or
4445 * remounting) the filesystem readonly, then we will end up with a
4446 * consistent fs on disk. Record that fact.
4447 */
4448 static void ext4_mark_recovery_complete(struct super_block *sb,
4449 struct ext4_super_block *es)
4450 {
4451 journal_t *journal = EXT4_SB(sb)->s_journal;
4452
4453 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4454 BUG_ON(journal != NULL);
4455 return;
4456 }
4457 jbd2_journal_lock_updates(journal);
4458 if (jbd2_journal_flush(journal) < 0)
4459 goto out;
4460
4461 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4462 sb->s_flags & MS_RDONLY) {
4463 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4464 ext4_commit_super(sb, 1);
4465 }
4466
4467 out:
4468 jbd2_journal_unlock_updates(journal);
4469 }
4470
4471 /*
4472 * If we are mounting (or read-write remounting) a filesystem whose journal
4473 * has recorded an error from a previous lifetime, move that error to the
4474 * main filesystem now.
4475 */
4476 static void ext4_clear_journal_err(struct super_block *sb,
4477 struct ext4_super_block *es)
4478 {
4479 journal_t *journal;
4480 int j_errno;
4481 const char *errstr;
4482
4483 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4484
4485 journal = EXT4_SB(sb)->s_journal;
4486
4487 /*
4488 * Now check for any error status which may have been recorded in the
4489 * journal by a prior ext4_error() or ext4_abort()
4490 */
4491
4492 j_errno = jbd2_journal_errno(journal);
4493 if (j_errno) {
4494 char nbuf[16];
4495
4496 errstr = ext4_decode_error(sb, j_errno, nbuf);
4497 ext4_warning(sb, "Filesystem error recorded "
4498 "from previous mount: %s", errstr);
4499 ext4_warning(sb, "Marking fs in need of filesystem check.");
4500
4501 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4502 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4503 ext4_commit_super(sb, 1);
4504
4505 jbd2_journal_clear_err(journal);
4506 jbd2_journal_update_sb_errno(journal);
4507 }
4508 }
4509
4510 /*
4511 * Force the running and committing transactions to commit,
4512 * and wait on the commit.
4513 */
4514 int ext4_force_commit(struct super_block *sb)
4515 {
4516 journal_t *journal;
4517
4518 if (sb->s_flags & MS_RDONLY)
4519 return 0;
4520
4521 journal = EXT4_SB(sb)->s_journal;
4522 return ext4_journal_force_commit(journal);
4523 }
4524
4525 static int ext4_sync_fs(struct super_block *sb, int wait)
4526 {
4527 int ret = 0;
4528 tid_t target;
4529 struct ext4_sb_info *sbi = EXT4_SB(sb);
4530
4531 trace_ext4_sync_fs(sb, wait);
4532 flush_workqueue(sbi->dio_unwritten_wq);
4533 /*
4534 * Writeback quota in non-journalled quota case - journalled quota has
4535 * no dirty dquots
4536 */
4537 dquot_writeback_dquots(sb, -1);
4538 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4539 if (wait)
4540 jbd2_log_wait_commit(sbi->s_journal, target);
4541 }
4542 return ret;
4543 }
4544
4545 /*
4546 * LVM calls this function before a (read-only) snapshot is created. This
4547 * gives us a chance to flush the journal completely and mark the fs clean.
4548 *
4549 * Note that only this function cannot bring a filesystem to be in a clean
4550 * state independently. It relies on upper layer to stop all data & metadata
4551 * modifications.
4552 */
4553 static int ext4_freeze(struct super_block *sb)
4554 {
4555 int error = 0;
4556 journal_t *journal;
4557
4558 if (sb->s_flags & MS_RDONLY)
4559 return 0;
4560
4561 journal = EXT4_SB(sb)->s_journal;
4562
4563 /* Now we set up the journal barrier. */
4564 jbd2_journal_lock_updates(journal);
4565
4566 /*
4567 * Don't clear the needs_recovery flag if we failed to flush
4568 * the journal.
4569 */
4570 error = jbd2_journal_flush(journal);
4571 if (error < 0)
4572 goto out;
4573
4574 /* Journal blocked and flushed, clear needs_recovery flag. */
4575 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4576 error = ext4_commit_super(sb, 1);
4577 out:
4578 /* we rely on upper layer to stop further updates */
4579 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4580 return error;
4581 }
4582
4583 /*
4584 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4585 * flag here, even though the filesystem is not technically dirty yet.
4586 */
4587 static int ext4_unfreeze(struct super_block *sb)
4588 {
4589 if (sb->s_flags & MS_RDONLY)
4590 return 0;
4591
4592 /* Reset the needs_recovery flag before the fs is unlocked. */
4593 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4594 ext4_commit_super(sb, 1);
4595 return 0;
4596 }
4597
4598 /*
4599 * Structure to save mount options for ext4_remount's benefit
4600 */
4601 struct ext4_mount_options {
4602 unsigned long s_mount_opt;
4603 unsigned long s_mount_opt2;
4604 kuid_t s_resuid;
4605 kgid_t s_resgid;
4606 unsigned long s_commit_interval;
4607 u32 s_min_batch_time, s_max_batch_time;
4608 #ifdef CONFIG_QUOTA
4609 int s_jquota_fmt;
4610 char *s_qf_names[MAXQUOTAS];
4611 #endif
4612 };
4613
4614 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4615 {
4616 struct ext4_super_block *es;
4617 struct ext4_sb_info *sbi = EXT4_SB(sb);
4618 unsigned long old_sb_flags;
4619 struct ext4_mount_options old_opts;
4620 int enable_quota = 0;
4621 ext4_group_t g;
4622 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4623 int err = 0;
4624 #ifdef CONFIG_QUOTA
4625 int i, j;
4626 #endif
4627 char *orig_data = kstrdup(data, GFP_KERNEL);
4628
4629 /* Store the original options */
4630 old_sb_flags = sb->s_flags;
4631 old_opts.s_mount_opt = sbi->s_mount_opt;
4632 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4633 old_opts.s_resuid = sbi->s_resuid;
4634 old_opts.s_resgid = sbi->s_resgid;
4635 old_opts.s_commit_interval = sbi->s_commit_interval;
4636 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4637 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4638 #ifdef CONFIG_QUOTA
4639 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4640 for (i = 0; i < MAXQUOTAS; i++)
4641 if (sbi->s_qf_names[i]) {
4642 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4643 GFP_KERNEL);
4644 if (!old_opts.s_qf_names[i]) {
4645 for (j = 0; j < i; j++)
4646 kfree(old_opts.s_qf_names[j]);
4647 kfree(orig_data);
4648 return -ENOMEM;
4649 }
4650 } else
4651 old_opts.s_qf_names[i] = NULL;
4652 #endif
4653 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4654 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4655
4656 /*
4657 * Allow the "check" option to be passed as a remount option.
4658 */
4659 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4660 err = -EINVAL;
4661 goto restore_opts;
4662 }
4663
4664 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4665 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4666 ext4_msg(sb, KERN_ERR, "can't mount with "
4667 "both data=journal and delalloc");
4668 err = -EINVAL;
4669 goto restore_opts;
4670 }
4671 if (test_opt(sb, DIOREAD_NOLOCK)) {
4672 ext4_msg(sb, KERN_ERR, "can't mount with "
4673 "both data=journal and dioread_nolock");
4674 err = -EINVAL;
4675 goto restore_opts;
4676 }
4677 }
4678
4679 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4680 ext4_abort(sb, "Abort forced by user");
4681
4682 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4683 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4684
4685 es = sbi->s_es;
4686
4687 if (sbi->s_journal) {
4688 ext4_init_journal_params(sb, sbi->s_journal);
4689 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4690 }
4691
4692 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4693 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4694 err = -EROFS;
4695 goto restore_opts;
4696 }
4697
4698 if (*flags & MS_RDONLY) {
4699 err = dquot_suspend(sb, -1);
4700 if (err < 0)
4701 goto restore_opts;
4702
4703 /*
4704 * First of all, the unconditional stuff we have to do
4705 * to disable replay of the journal when we next remount
4706 */
4707 sb->s_flags |= MS_RDONLY;
4708
4709 /*
4710 * OK, test if we are remounting a valid rw partition
4711 * readonly, and if so set the rdonly flag and then
4712 * mark the partition as valid again.
4713 */
4714 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4715 (sbi->s_mount_state & EXT4_VALID_FS))
4716 es->s_state = cpu_to_le16(sbi->s_mount_state);
4717
4718 if (sbi->s_journal)
4719 ext4_mark_recovery_complete(sb, es);
4720 } else {
4721 /* Make sure we can mount this feature set readwrite */
4722 if (!ext4_feature_set_ok(sb, 0)) {
4723 err = -EROFS;
4724 goto restore_opts;
4725 }
4726 /*
4727 * Make sure the group descriptor checksums
4728 * are sane. If they aren't, refuse to remount r/w.
4729 */
4730 for (g = 0; g < sbi->s_groups_count; g++) {
4731 struct ext4_group_desc *gdp =
4732 ext4_get_group_desc(sb, g, NULL);
4733
4734 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4735 ext4_msg(sb, KERN_ERR,
4736 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4737 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4738 le16_to_cpu(gdp->bg_checksum));
4739 err = -EINVAL;
4740 goto restore_opts;
4741 }
4742 }
4743
4744 /*
4745 * If we have an unprocessed orphan list hanging
4746 * around from a previously readonly bdev mount,
4747 * require a full umount/remount for now.
4748 */
4749 if (es->s_last_orphan) {
4750 ext4_msg(sb, KERN_WARNING, "Couldn't "
4751 "remount RDWR because of unprocessed "
4752 "orphan inode list. Please "
4753 "umount/remount instead");
4754 err = -EINVAL;
4755 goto restore_opts;
4756 }
4757
4758 /*
4759 * Mounting a RDONLY partition read-write, so reread
4760 * and store the current valid flag. (It may have
4761 * been changed by e2fsck since we originally mounted
4762 * the partition.)
4763 */
4764 if (sbi->s_journal)
4765 ext4_clear_journal_err(sb, es);
4766 sbi->s_mount_state = le16_to_cpu(es->s_state);
4767 if (!ext4_setup_super(sb, es, 0))
4768 sb->s_flags &= ~MS_RDONLY;
4769 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4770 EXT4_FEATURE_INCOMPAT_MMP))
4771 if (ext4_multi_mount_protect(sb,
4772 le64_to_cpu(es->s_mmp_block))) {
4773 err = -EROFS;
4774 goto restore_opts;
4775 }
4776 enable_quota = 1;
4777 }
4778 }
4779
4780 /*
4781 * Reinitialize lazy itable initialization thread based on
4782 * current settings
4783 */
4784 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4785 ext4_unregister_li_request(sb);
4786 else {
4787 ext4_group_t first_not_zeroed;
4788 first_not_zeroed = ext4_has_uninit_itable(sb);
4789 ext4_register_li_request(sb, first_not_zeroed);
4790 }
4791
4792 ext4_setup_system_zone(sb);
4793 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4794 ext4_commit_super(sb, 1);
4795
4796 #ifdef CONFIG_QUOTA
4797 /* Release old quota file names */
4798 for (i = 0; i < MAXQUOTAS; i++)
4799 kfree(old_opts.s_qf_names[i]);
4800 if (enable_quota) {
4801 if (sb_any_quota_suspended(sb))
4802 dquot_resume(sb, -1);
4803 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4804 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4805 err = ext4_enable_quotas(sb);
4806 if (err)
4807 goto restore_opts;
4808 }
4809 }
4810 #endif
4811
4812 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4813 kfree(orig_data);
4814 return 0;
4815
4816 restore_opts:
4817 sb->s_flags = old_sb_flags;
4818 sbi->s_mount_opt = old_opts.s_mount_opt;
4819 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4820 sbi->s_resuid = old_opts.s_resuid;
4821 sbi->s_resgid = old_opts.s_resgid;
4822 sbi->s_commit_interval = old_opts.s_commit_interval;
4823 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4824 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4825 #ifdef CONFIG_QUOTA
4826 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4827 for (i = 0; i < MAXQUOTAS; i++) {
4828 kfree(sbi->s_qf_names[i]);
4829 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4830 }
4831 #endif
4832 kfree(orig_data);
4833 return err;
4834 }
4835
4836 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4837 {
4838 struct super_block *sb = dentry->d_sb;
4839 struct ext4_sb_info *sbi = EXT4_SB(sb);
4840 struct ext4_super_block *es = sbi->s_es;
4841 ext4_fsblk_t overhead = 0, resv_blocks;
4842 u64 fsid;
4843 s64 bfree;
4844 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4845
4846 if (!test_opt(sb, MINIX_DF))
4847 overhead = sbi->s_overhead;
4848
4849 buf->f_type = EXT4_SUPER_MAGIC;
4850 buf->f_bsize = sb->s_blocksize;
4851 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4852 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4853 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4854 /* prevent underflow in case that few free space is available */
4855 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4856 buf->f_bavail = buf->f_bfree -
4857 (ext4_r_blocks_count(es) + resv_blocks);
4858 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4859 buf->f_bavail = 0;
4860 buf->f_files = le32_to_cpu(es->s_inodes_count);
4861 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4862 buf->f_namelen = EXT4_NAME_LEN;
4863 fsid = le64_to_cpup((void *)es->s_uuid) ^
4864 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4865 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4866 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4867
4868 return 0;
4869 }
4870
4871 /* Helper function for writing quotas on sync - we need to start transaction
4872 * before quota file is locked for write. Otherwise the are possible deadlocks:
4873 * Process 1 Process 2
4874 * ext4_create() quota_sync()
4875 * jbd2_journal_start() write_dquot()
4876 * dquot_initialize() down(dqio_mutex)
4877 * down(dqio_mutex) jbd2_journal_start()
4878 *
4879 */
4880
4881 #ifdef CONFIG_QUOTA
4882
4883 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4884 {
4885 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4886 }
4887
4888 static int ext4_write_dquot(struct dquot *dquot)
4889 {
4890 int ret, err;
4891 handle_t *handle;
4892 struct inode *inode;
4893
4894 inode = dquot_to_inode(dquot);
4895 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4896 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4897 if (IS_ERR(handle))
4898 return PTR_ERR(handle);
4899 ret = dquot_commit(dquot);
4900 err = ext4_journal_stop(handle);
4901 if (!ret)
4902 ret = err;
4903 return ret;
4904 }
4905
4906 static int ext4_acquire_dquot(struct dquot *dquot)
4907 {
4908 int ret, err;
4909 handle_t *handle;
4910
4911 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4912 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4913 if (IS_ERR(handle))
4914 return PTR_ERR(handle);
4915 ret = dquot_acquire(dquot);
4916 err = ext4_journal_stop(handle);
4917 if (!ret)
4918 ret = err;
4919 return ret;
4920 }
4921
4922 static int ext4_release_dquot(struct dquot *dquot)
4923 {
4924 int ret, err;
4925 handle_t *handle;
4926
4927 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4928 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4929 if (IS_ERR(handle)) {
4930 /* Release dquot anyway to avoid endless cycle in dqput() */
4931 dquot_release(dquot);
4932 return PTR_ERR(handle);
4933 }
4934 ret = dquot_release(dquot);
4935 err = ext4_journal_stop(handle);
4936 if (!ret)
4937 ret = err;
4938 return ret;
4939 }
4940
4941 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4942 {
4943 struct super_block *sb = dquot->dq_sb;
4944 struct ext4_sb_info *sbi = EXT4_SB(sb);
4945
4946 /* Are we journaling quotas? */
4947 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4948 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4949 dquot_mark_dquot_dirty(dquot);
4950 return ext4_write_dquot(dquot);
4951 } else {
4952 return dquot_mark_dquot_dirty(dquot);
4953 }
4954 }
4955
4956 static int ext4_write_info(struct super_block *sb, int type)
4957 {
4958 int ret, err;
4959 handle_t *handle;
4960
4961 /* Data block + inode block */
4962 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965 ret = dquot_commit_info(sb, type);
4966 err = ext4_journal_stop(handle);
4967 if (!ret)
4968 ret = err;
4969 return ret;
4970 }
4971
4972 /*
4973 * Turn on quotas during mount time - we need to find
4974 * the quota file and such...
4975 */
4976 static int ext4_quota_on_mount(struct super_block *sb, int type)
4977 {
4978 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4979 EXT4_SB(sb)->s_jquota_fmt, type);
4980 }
4981
4982 /*
4983 * Standard function to be called on quota_on
4984 */
4985 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4986 struct path *path)
4987 {
4988 int err;
4989
4990 if (!test_opt(sb, QUOTA))
4991 return -EINVAL;
4992
4993 /* Quotafile not on the same filesystem? */
4994 if (path->dentry->d_sb != sb)
4995 return -EXDEV;
4996 /* Journaling quota? */
4997 if (EXT4_SB(sb)->s_qf_names[type]) {
4998 /* Quotafile not in fs root? */
4999 if (path->dentry->d_parent != sb->s_root)
5000 ext4_msg(sb, KERN_WARNING,
5001 "Quota file not on filesystem root. "
5002 "Journaled quota will not work");
5003 }
5004
5005 /*
5006 * When we journal data on quota file, we have to flush journal to see
5007 * all updates to the file when we bypass pagecache...
5008 */
5009 if (EXT4_SB(sb)->s_journal &&
5010 ext4_should_journal_data(path->dentry->d_inode)) {
5011 /*
5012 * We don't need to lock updates but journal_flush() could
5013 * otherwise be livelocked...
5014 */
5015 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5016 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5017 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5018 if (err)
5019 return err;
5020 }
5021
5022 return dquot_quota_on(sb, type, format_id, path);
5023 }
5024
5025 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5026 unsigned int flags)
5027 {
5028 int err;
5029 struct inode *qf_inode;
5030 unsigned long qf_inums[MAXQUOTAS] = {
5031 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5032 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5033 };
5034
5035 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5036
5037 if (!qf_inums[type])
5038 return -EPERM;
5039
5040 qf_inode = ext4_iget(sb, qf_inums[type]);
5041 if (IS_ERR(qf_inode)) {
5042 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5043 return PTR_ERR(qf_inode);
5044 }
5045
5046 /* Don't account quota for quota files to avoid recursion */
5047 qf_inode->i_flags |= S_NOQUOTA;
5048 err = dquot_enable(qf_inode, type, format_id, flags);
5049 iput(qf_inode);
5050
5051 return err;
5052 }
5053
5054 /* Enable usage tracking for all quota types. */
5055 static int ext4_enable_quotas(struct super_block *sb)
5056 {
5057 int type, err = 0;
5058 unsigned long qf_inums[MAXQUOTAS] = {
5059 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5060 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5061 };
5062
5063 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5064 for (type = 0; type < MAXQUOTAS; type++) {
5065 if (qf_inums[type]) {
5066 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5067 DQUOT_USAGE_ENABLED);
5068 if (err) {
5069 ext4_warning(sb,
5070 "Failed to enable quota tracking "
5071 "(type=%d, err=%d). Please run "
5072 "e2fsck to fix.", type, err);
5073 return err;
5074 }
5075 }
5076 }
5077 return 0;
5078 }
5079
5080 /*
5081 * quota_on function that is used when QUOTA feature is set.
5082 */
5083 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5084 int format_id)
5085 {
5086 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5087 return -EINVAL;
5088
5089 /*
5090 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5091 */
5092 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5093 }
5094
5095 static int ext4_quota_off(struct super_block *sb, int type)
5096 {
5097 struct inode *inode = sb_dqopt(sb)->files[type];
5098 handle_t *handle;
5099
5100 /* Force all delayed allocation blocks to be allocated.
5101 * Caller already holds s_umount sem */
5102 if (test_opt(sb, DELALLOC))
5103 sync_filesystem(sb);
5104
5105 if (!inode)
5106 goto out;
5107
5108 /* Update modification times of quota files when userspace can
5109 * start looking at them */
5110 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5111 if (IS_ERR(handle))
5112 goto out;
5113 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5114 ext4_mark_inode_dirty(handle, inode);
5115 ext4_journal_stop(handle);
5116
5117 out:
5118 return dquot_quota_off(sb, type);
5119 }
5120
5121 /*
5122 * quota_off function that is used when QUOTA feature is set.
5123 */
5124 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5125 {
5126 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5127 return -EINVAL;
5128
5129 /* Disable only the limits. */
5130 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5131 }
5132
5133 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5134 * acquiring the locks... As quota files are never truncated and quota code
5135 * itself serializes the operations (and no one else should touch the files)
5136 * we don't have to be afraid of races */
5137 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5138 size_t len, loff_t off)
5139 {
5140 struct inode *inode = sb_dqopt(sb)->files[type];
5141 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5142 int err = 0;
5143 int offset = off & (sb->s_blocksize - 1);
5144 int tocopy;
5145 size_t toread;
5146 struct buffer_head *bh;
5147 loff_t i_size = i_size_read(inode);
5148
5149 if (off > i_size)
5150 return 0;
5151 if (off+len > i_size)
5152 len = i_size-off;
5153 toread = len;
5154 while (toread > 0) {
5155 tocopy = sb->s_blocksize - offset < toread ?
5156 sb->s_blocksize - offset : toread;
5157 bh = ext4_bread(NULL, inode, blk, 0, &err);
5158 if (err)
5159 return err;
5160 if (!bh) /* A hole? */
5161 memset(data, 0, tocopy);
5162 else
5163 memcpy(data, bh->b_data+offset, tocopy);
5164 brelse(bh);
5165 offset = 0;
5166 toread -= tocopy;
5167 data += tocopy;
5168 blk++;
5169 }
5170 return len;
5171 }
5172
5173 /* Write to quotafile (we know the transaction is already started and has
5174 * enough credits) */
5175 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5176 const char *data, size_t len, loff_t off)
5177 {
5178 struct inode *inode = sb_dqopt(sb)->files[type];
5179 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5180 int err = 0;
5181 int offset = off & (sb->s_blocksize - 1);
5182 struct buffer_head *bh;
5183 handle_t *handle = journal_current_handle();
5184
5185 if (EXT4_SB(sb)->s_journal && !handle) {
5186 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5187 " cancelled because transaction is not started",
5188 (unsigned long long)off, (unsigned long long)len);
5189 return -EIO;
5190 }
5191 /*
5192 * Since we account only one data block in transaction credits,
5193 * then it is impossible to cross a block boundary.
5194 */
5195 if (sb->s_blocksize - offset < len) {
5196 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5197 " cancelled because not block aligned",
5198 (unsigned long long)off, (unsigned long long)len);
5199 return -EIO;
5200 }
5201
5202 bh = ext4_bread(handle, inode, blk, 1, &err);
5203 if (!bh)
5204 goto out;
5205 err = ext4_journal_get_write_access(handle, bh);
5206 if (err) {
5207 brelse(bh);
5208 goto out;
5209 }
5210 lock_buffer(bh);
5211 memcpy(bh->b_data+offset, data, len);
5212 flush_dcache_page(bh->b_page);
5213 unlock_buffer(bh);
5214 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5215 brelse(bh);
5216 out:
5217 if (err)
5218 return err;
5219 if (inode->i_size < off + len) {
5220 i_size_write(inode, off + len);
5221 EXT4_I(inode)->i_disksize = inode->i_size;
5222 ext4_mark_inode_dirty(handle, inode);
5223 }
5224 return len;
5225 }
5226
5227 #endif
5228
5229 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5230 const char *dev_name, void *data)
5231 {
5232 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5233 }
5234
5235 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5236 static inline void register_as_ext2(void)
5237 {
5238 int err = register_filesystem(&ext2_fs_type);
5239 if (err)
5240 printk(KERN_WARNING
5241 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5242 }
5243
5244 static inline void unregister_as_ext2(void)
5245 {
5246 unregister_filesystem(&ext2_fs_type);
5247 }
5248
5249 static inline int ext2_feature_set_ok(struct super_block *sb)
5250 {
5251 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5252 return 0;
5253 if (sb->s_flags & MS_RDONLY)
5254 return 1;
5255 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5256 return 0;
5257 return 1;
5258 }
5259 #else
5260 static inline void register_as_ext2(void) { }
5261 static inline void unregister_as_ext2(void) { }
5262 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5263 #endif
5264
5265 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5266 static inline void register_as_ext3(void)
5267 {
5268 int err = register_filesystem(&ext3_fs_type);
5269 if (err)
5270 printk(KERN_WARNING
5271 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5272 }
5273
5274 static inline void unregister_as_ext3(void)
5275 {
5276 unregister_filesystem(&ext3_fs_type);
5277 }
5278
5279 static inline int ext3_feature_set_ok(struct super_block *sb)
5280 {
5281 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5282 return 0;
5283 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5284 return 0;
5285 if (sb->s_flags & MS_RDONLY)
5286 return 1;
5287 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5288 return 0;
5289 return 1;
5290 }
5291 #else
5292 static inline void register_as_ext3(void) { }
5293 static inline void unregister_as_ext3(void) { }
5294 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5295 #endif
5296
5297 static struct file_system_type ext4_fs_type = {
5298 .owner = THIS_MODULE,
5299 .name = "ext4",
5300 .mount = ext4_mount,
5301 .kill_sb = kill_block_super,
5302 .fs_flags = FS_REQUIRES_DEV,
5303 };
5304 MODULE_ALIAS_FS("ext4");
5305
5306 static int __init ext4_init_feat_adverts(void)
5307 {
5308 struct ext4_features *ef;
5309 int ret = -ENOMEM;
5310
5311 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5312 if (!ef)
5313 goto out;
5314
5315 ef->f_kobj.kset = ext4_kset;
5316 init_completion(&ef->f_kobj_unregister);
5317 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5318 "features");
5319 if (ret) {
5320 kfree(ef);
5321 goto out;
5322 }
5323
5324 ext4_feat = ef;
5325 ret = 0;
5326 out:
5327 return ret;
5328 }
5329
5330 static void ext4_exit_feat_adverts(void)
5331 {
5332 kobject_put(&ext4_feat->f_kobj);
5333 wait_for_completion(&ext4_feat->f_kobj_unregister);
5334 kfree(ext4_feat);
5335 }
5336
5337 /* Shared across all ext4 file systems */
5338 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5339 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5340
5341 static int __init ext4_init_fs(void)
5342 {
5343 int i, err;
5344
5345 ext4_li_info = NULL;
5346 mutex_init(&ext4_li_mtx);
5347
5348 /* Build-time check for flags consistency */
5349 ext4_check_flag_values();
5350
5351 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5352 mutex_init(&ext4__aio_mutex[i]);
5353 init_waitqueue_head(&ext4__ioend_wq[i]);
5354 }
5355
5356 err = ext4_init_es();
5357 if (err)
5358 return err;
5359
5360 err = ext4_init_pageio();
5361 if (err)
5362 goto out7;
5363
5364 err = ext4_init_system_zone();
5365 if (err)
5366 goto out6;
5367 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5368 if (!ext4_kset) {
5369 err = -ENOMEM;
5370 goto out5;
5371 }
5372 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5373
5374 err = ext4_init_feat_adverts();
5375 if (err)
5376 goto out4;
5377
5378 err = ext4_init_mballoc();
5379 if (err)
5380 goto out3;
5381
5382 err = ext4_init_xattr();
5383 if (err)
5384 goto out2;
5385 err = init_inodecache();
5386 if (err)
5387 goto out1;
5388 register_as_ext3();
5389 register_as_ext2();
5390 err = register_filesystem(&ext4_fs_type);
5391 if (err)
5392 goto out;
5393
5394 return 0;
5395 out:
5396 unregister_as_ext2();
5397 unregister_as_ext3();
5398 destroy_inodecache();
5399 out1:
5400 ext4_exit_xattr();
5401 out2:
5402 ext4_exit_mballoc();
5403 out3:
5404 ext4_exit_feat_adverts();
5405 out4:
5406 if (ext4_proc_root)
5407 remove_proc_entry("fs/ext4", NULL);
5408 kset_unregister(ext4_kset);
5409 out5:
5410 ext4_exit_system_zone();
5411 out6:
5412 ext4_exit_pageio();
5413 out7:
5414 ext4_exit_es();
5415
5416 return err;
5417 }
5418
5419 static void __exit ext4_exit_fs(void)
5420 {
5421 ext4_destroy_lazyinit_thread();
5422 unregister_as_ext2();
5423 unregister_as_ext3();
5424 unregister_filesystem(&ext4_fs_type);
5425 destroy_inodecache();
5426 ext4_exit_xattr();
5427 ext4_exit_mballoc();
5428 ext4_exit_feat_adverts();
5429 remove_proc_entry("fs/ext4", NULL);
5430 kset_unregister(ext4_kset);
5431 ext4_exit_system_zone();
5432 ext4_exit_pageio();
5433 ext4_exit_es();
5434 }
5435
5436 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5437 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5438 MODULE_LICENSE("GPL");
5439 module_init(ext4_init_fs)
5440 module_exit(ext4_exit_fs)