ext4: introduce ext4_kvmalloc(), ext4_kzalloc(), and ext4_kvfree()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
95 #else
96 #define IS_EXT2_SB(sb) (0)
97 #endif
98
99
100 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
101 static struct file_system_type ext3_fs_type = {
102 .owner = THIS_MODULE,
103 .name = "ext3",
104 .mount = ext4_mount,
105 .kill_sb = kill_block_super,
106 .fs_flags = FS_REQUIRES_DEV,
107 };
108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
109 #else
110 #define IS_EXT3_SB(sb) (0)
111 #endif
112
113 void *ext4_kvmalloc(size_t size, gfp_t flags)
114 {
115 void *ret;
116
117 ret = kmalloc(size, flags);
118 if (!ret)
119 ret = __vmalloc(size, flags, PAGE_KERNEL);
120 return ret;
121 }
122
123 void *ext4_kvzalloc(size_t size, gfp_t flags)
124 {
125 void *ret;
126
127 ret = kmalloc(size, flags);
128 if (!ret)
129 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
130 return ret;
131 }
132
133 void ext4_kvfree(void *ptr)
134 {
135 if (is_vmalloc_addr(ptr))
136 vfree(ptr);
137 else
138 kfree(ptr);
139
140 }
141
142 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le32_to_cpu(bg->bg_block_bitmap_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
148 }
149
150 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
151 struct ext4_group_desc *bg)
152 {
153 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
154 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
155 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
156 }
157
158 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
159 struct ext4_group_desc *bg)
160 {
161 return le32_to_cpu(bg->bg_inode_table_lo) |
162 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
163 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
164 }
165
166 __u32 ext4_free_blks_count(struct super_block *sb,
167 struct ext4_group_desc *bg)
168 {
169 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
170 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
171 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
172 }
173
174 __u32 ext4_free_inodes_count(struct super_block *sb,
175 struct ext4_group_desc *bg)
176 {
177 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
178 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
179 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
180 }
181
182 __u32 ext4_used_dirs_count(struct super_block *sb,
183 struct ext4_group_desc *bg)
184 {
185 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
186 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
187 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
188 }
189
190 __u32 ext4_itable_unused_count(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le16_to_cpu(bg->bg_itable_unused_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
196 }
197
198 void ext4_block_bitmap_set(struct super_block *sb,
199 struct ext4_group_desc *bg, ext4_fsblk_t blk)
200 {
201 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
204 }
205
206 void ext4_inode_bitmap_set(struct super_block *sb,
207 struct ext4_group_desc *bg, ext4_fsblk_t blk)
208 {
209 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
210 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
211 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
212 }
213
214 void ext4_inode_table_set(struct super_block *sb,
215 struct ext4_group_desc *bg, ext4_fsblk_t blk)
216 {
217 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
218 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
219 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
220 }
221
222 void ext4_free_blks_set(struct super_block *sb,
223 struct ext4_group_desc *bg, __u32 count)
224 {
225 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
226 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
227 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
228 }
229
230 void ext4_free_inodes_set(struct super_block *sb,
231 struct ext4_group_desc *bg, __u32 count)
232 {
233 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
234 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
235 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
236 }
237
238 void ext4_used_dirs_set(struct super_block *sb,
239 struct ext4_group_desc *bg, __u32 count)
240 {
241 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
242 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
243 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
244 }
245
246 void ext4_itable_unused_set(struct super_block *sb,
247 struct ext4_group_desc *bg, __u32 count)
248 {
249 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
252 }
253
254
255 /* Just increment the non-pointer handle value */
256 static handle_t *ext4_get_nojournal(void)
257 {
258 handle_t *handle = current->journal_info;
259 unsigned long ref_cnt = (unsigned long)handle;
260
261 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
262
263 ref_cnt++;
264 handle = (handle_t *)ref_cnt;
265
266 current->journal_info = handle;
267 return handle;
268 }
269
270
271 /* Decrement the non-pointer handle value */
272 static void ext4_put_nojournal(handle_t *handle)
273 {
274 unsigned long ref_cnt = (unsigned long)handle;
275
276 BUG_ON(ref_cnt == 0);
277
278 ref_cnt--;
279 handle = (handle_t *)ref_cnt;
280
281 current->journal_info = handle;
282 }
283
284 /*
285 * Wrappers for jbd2_journal_start/end.
286 *
287 * The only special thing we need to do here is to make sure that all
288 * journal_end calls result in the superblock being marked dirty, so
289 * that sync() will call the filesystem's write_super callback if
290 * appropriate.
291 *
292 * To avoid j_barrier hold in userspace when a user calls freeze(),
293 * ext4 prevents a new handle from being started by s_frozen, which
294 * is in an upper layer.
295 */
296 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
297 {
298 journal_t *journal;
299 handle_t *handle;
300
301 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
302 if (sb->s_flags & MS_RDONLY)
303 return ERR_PTR(-EROFS);
304
305 journal = EXT4_SB(sb)->s_journal;
306 handle = ext4_journal_current_handle();
307
308 /*
309 * If a handle has been started, it should be allowed to
310 * finish, otherwise deadlock could happen between freeze
311 * and others(e.g. truncate) due to the restart of the
312 * journal handle if the filesystem is forzen and active
313 * handles are not stopped.
314 */
315 if (!handle)
316 vfs_check_frozen(sb, SB_FREEZE_TRANS);
317
318 if (!journal)
319 return ext4_get_nojournal();
320 /*
321 * Special case here: if the journal has aborted behind our
322 * backs (eg. EIO in the commit thread), then we still need to
323 * take the FS itself readonly cleanly.
324 */
325 if (is_journal_aborted(journal)) {
326 ext4_abort(sb, "Detected aborted journal");
327 return ERR_PTR(-EROFS);
328 }
329 return jbd2_journal_start(journal, nblocks);
330 }
331
332 /*
333 * The only special thing we need to do here is to make sure that all
334 * jbd2_journal_stop calls result in the superblock being marked dirty, so
335 * that sync() will call the filesystem's write_super callback if
336 * appropriate.
337 */
338 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
339 {
340 struct super_block *sb;
341 int err;
342 int rc;
343
344 if (!ext4_handle_valid(handle)) {
345 ext4_put_nojournal(handle);
346 return 0;
347 }
348 sb = handle->h_transaction->t_journal->j_private;
349 err = handle->h_err;
350 rc = jbd2_journal_stop(handle);
351
352 if (!err)
353 err = rc;
354 if (err)
355 __ext4_std_error(sb, where, line, err);
356 return err;
357 }
358
359 void ext4_journal_abort_handle(const char *caller, unsigned int line,
360 const char *err_fn, struct buffer_head *bh,
361 handle_t *handle, int err)
362 {
363 char nbuf[16];
364 const char *errstr = ext4_decode_error(NULL, err, nbuf);
365
366 BUG_ON(!ext4_handle_valid(handle));
367
368 if (bh)
369 BUFFER_TRACE(bh, "abort");
370
371 if (!handle->h_err)
372 handle->h_err = err;
373
374 if (is_handle_aborted(handle))
375 return;
376
377 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
378 caller, line, errstr, err_fn);
379
380 jbd2_journal_abort_handle(handle);
381 }
382
383 static void __save_error_info(struct super_block *sb, const char *func,
384 unsigned int line)
385 {
386 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
387
388 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
389 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
390 es->s_last_error_time = cpu_to_le32(get_seconds());
391 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
392 es->s_last_error_line = cpu_to_le32(line);
393 if (!es->s_first_error_time) {
394 es->s_first_error_time = es->s_last_error_time;
395 strncpy(es->s_first_error_func, func,
396 sizeof(es->s_first_error_func));
397 es->s_first_error_line = cpu_to_le32(line);
398 es->s_first_error_ino = es->s_last_error_ino;
399 es->s_first_error_block = es->s_last_error_block;
400 }
401 /*
402 * Start the daily error reporting function if it hasn't been
403 * started already
404 */
405 if (!es->s_error_count)
406 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
407 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
408 }
409
410 static void save_error_info(struct super_block *sb, const char *func,
411 unsigned int line)
412 {
413 __save_error_info(sb, func, line);
414 ext4_commit_super(sb, 1);
415 }
416
417
418 /* Deal with the reporting of failure conditions on a filesystem such as
419 * inconsistencies detected or read IO failures.
420 *
421 * On ext2, we can store the error state of the filesystem in the
422 * superblock. That is not possible on ext4, because we may have other
423 * write ordering constraints on the superblock which prevent us from
424 * writing it out straight away; and given that the journal is about to
425 * be aborted, we can't rely on the current, or future, transactions to
426 * write out the superblock safely.
427 *
428 * We'll just use the jbd2_journal_abort() error code to record an error in
429 * the journal instead. On recovery, the journal will complain about
430 * that error until we've noted it down and cleared it.
431 */
432
433 static void ext4_handle_error(struct super_block *sb)
434 {
435 if (sb->s_flags & MS_RDONLY)
436 return;
437
438 if (!test_opt(sb, ERRORS_CONT)) {
439 journal_t *journal = EXT4_SB(sb)->s_journal;
440
441 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
442 if (journal)
443 jbd2_journal_abort(journal, -EIO);
444 }
445 if (test_opt(sb, ERRORS_RO)) {
446 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
447 sb->s_flags |= MS_RDONLY;
448 }
449 if (test_opt(sb, ERRORS_PANIC))
450 panic("EXT4-fs (device %s): panic forced after error\n",
451 sb->s_id);
452 }
453
454 void __ext4_error(struct super_block *sb, const char *function,
455 unsigned int line, const char *fmt, ...)
456 {
457 struct va_format vaf;
458 va_list args;
459
460 va_start(args, fmt);
461 vaf.fmt = fmt;
462 vaf.va = &args;
463 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
464 sb->s_id, function, line, current->comm, &vaf);
465 va_end(args);
466
467 ext4_handle_error(sb);
468 }
469
470 void ext4_error_inode(struct inode *inode, const char *function,
471 unsigned int line, ext4_fsblk_t block,
472 const char *fmt, ...)
473 {
474 va_list args;
475 struct va_format vaf;
476 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
477
478 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
479 es->s_last_error_block = cpu_to_le64(block);
480 save_error_info(inode->i_sb, function, line);
481 va_start(args, fmt);
482 vaf.fmt = fmt;
483 vaf.va = &args;
484 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
485 inode->i_sb->s_id, function, line, inode->i_ino);
486 if (block)
487 printk(KERN_CONT "block %llu: ", block);
488 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
489 va_end(args);
490
491 ext4_handle_error(inode->i_sb);
492 }
493
494 void ext4_error_file(struct file *file, const char *function,
495 unsigned int line, ext4_fsblk_t block,
496 const char *fmt, ...)
497 {
498 va_list args;
499 struct va_format vaf;
500 struct ext4_super_block *es;
501 struct inode *inode = file->f_dentry->d_inode;
502 char pathname[80], *path;
503
504 es = EXT4_SB(inode->i_sb)->s_es;
505 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
506 save_error_info(inode->i_sb, function, line);
507 path = d_path(&(file->f_path), pathname, sizeof(pathname));
508 if (IS_ERR(path))
509 path = "(unknown)";
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
512 inode->i_sb->s_id, function, line, inode->i_ino);
513 if (block)
514 printk(KERN_CONT "block %llu: ", block);
515 va_start(args, fmt);
516 vaf.fmt = fmt;
517 vaf.va = &args;
518 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
519 va_end(args);
520
521 ext4_handle_error(inode->i_sb);
522 }
523
524 static const char *ext4_decode_error(struct super_block *sb, int errno,
525 char nbuf[16])
526 {
527 char *errstr = NULL;
528
529 switch (errno) {
530 case -EIO:
531 errstr = "IO failure";
532 break;
533 case -ENOMEM:
534 errstr = "Out of memory";
535 break;
536 case -EROFS:
537 if (!sb || (EXT4_SB(sb)->s_journal &&
538 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
539 errstr = "Journal has aborted";
540 else
541 errstr = "Readonly filesystem";
542 break;
543 default:
544 /* If the caller passed in an extra buffer for unknown
545 * errors, textualise them now. Else we just return
546 * NULL. */
547 if (nbuf) {
548 /* Check for truncated error codes... */
549 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
550 errstr = nbuf;
551 }
552 break;
553 }
554
555 return errstr;
556 }
557
558 /* __ext4_std_error decodes expected errors from journaling functions
559 * automatically and invokes the appropriate error response. */
560
561 void __ext4_std_error(struct super_block *sb, const char *function,
562 unsigned int line, int errno)
563 {
564 char nbuf[16];
565 const char *errstr;
566
567 /* Special case: if the error is EROFS, and we're not already
568 * inside a transaction, then there's really no point in logging
569 * an error. */
570 if (errno == -EROFS && journal_current_handle() == NULL &&
571 (sb->s_flags & MS_RDONLY))
572 return;
573
574 errstr = ext4_decode_error(sb, errno, nbuf);
575 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
576 sb->s_id, function, line, errstr);
577 save_error_info(sb, function, line);
578
579 ext4_handle_error(sb);
580 }
581
582 /*
583 * ext4_abort is a much stronger failure handler than ext4_error. The
584 * abort function may be used to deal with unrecoverable failures such
585 * as journal IO errors or ENOMEM at a critical moment in log management.
586 *
587 * We unconditionally force the filesystem into an ABORT|READONLY state,
588 * unless the error response on the fs has been set to panic in which
589 * case we take the easy way out and panic immediately.
590 */
591
592 void __ext4_abort(struct super_block *sb, const char *function,
593 unsigned int line, const char *fmt, ...)
594 {
595 va_list args;
596
597 save_error_info(sb, function, line);
598 va_start(args, fmt);
599 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
600 function, line);
601 vprintk(fmt, args);
602 printk("\n");
603 va_end(args);
604
605 if ((sb->s_flags & MS_RDONLY) == 0) {
606 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
607 sb->s_flags |= MS_RDONLY;
608 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
609 if (EXT4_SB(sb)->s_journal)
610 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
611 save_error_info(sb, function, line);
612 }
613 if (test_opt(sb, ERRORS_PANIC))
614 panic("EXT4-fs panic from previous error\n");
615 }
616
617 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
618 {
619 struct va_format vaf;
620 va_list args;
621
622 va_start(args, fmt);
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
626 va_end(args);
627 }
628
629 void __ext4_warning(struct super_block *sb, const char *function,
630 unsigned int line, const char *fmt, ...)
631 {
632 struct va_format vaf;
633 va_list args;
634
635 va_start(args, fmt);
636 vaf.fmt = fmt;
637 vaf.va = &args;
638 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
639 sb->s_id, function, line, &vaf);
640 va_end(args);
641 }
642
643 void __ext4_grp_locked_error(const char *function, unsigned int line,
644 struct super_block *sb, ext4_group_t grp,
645 unsigned long ino, ext4_fsblk_t block,
646 const char *fmt, ...)
647 __releases(bitlock)
648 __acquires(bitlock)
649 {
650 struct va_format vaf;
651 va_list args;
652 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
653
654 es->s_last_error_ino = cpu_to_le32(ino);
655 es->s_last_error_block = cpu_to_le64(block);
656 __save_error_info(sb, function, line);
657
658 va_start(args, fmt);
659
660 vaf.fmt = fmt;
661 vaf.va = &args;
662 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
663 sb->s_id, function, line, grp);
664 if (ino)
665 printk(KERN_CONT "inode %lu: ", ino);
666 if (block)
667 printk(KERN_CONT "block %llu:", (unsigned long long) block);
668 printk(KERN_CONT "%pV\n", &vaf);
669 va_end(args);
670
671 if (test_opt(sb, ERRORS_CONT)) {
672 ext4_commit_super(sb, 0);
673 return;
674 }
675
676 ext4_unlock_group(sb, grp);
677 ext4_handle_error(sb);
678 /*
679 * We only get here in the ERRORS_RO case; relocking the group
680 * may be dangerous, but nothing bad will happen since the
681 * filesystem will have already been marked read/only and the
682 * journal has been aborted. We return 1 as a hint to callers
683 * who might what to use the return value from
684 * ext4_grp_locked_error() to distinguish between the
685 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
686 * aggressively from the ext4 function in question, with a
687 * more appropriate error code.
688 */
689 ext4_lock_group(sb, grp);
690 return;
691 }
692
693 void ext4_update_dynamic_rev(struct super_block *sb)
694 {
695 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
696
697 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
698 return;
699
700 ext4_warning(sb,
701 "updating to rev %d because of new feature flag, "
702 "running e2fsck is recommended",
703 EXT4_DYNAMIC_REV);
704
705 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
706 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
707 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
708 /* leave es->s_feature_*compat flags alone */
709 /* es->s_uuid will be set by e2fsck if empty */
710
711 /*
712 * The rest of the superblock fields should be zero, and if not it
713 * means they are likely already in use, so leave them alone. We
714 * can leave it up to e2fsck to clean up any inconsistencies there.
715 */
716 }
717
718 /*
719 * Open the external journal device
720 */
721 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
722 {
723 struct block_device *bdev;
724 char b[BDEVNAME_SIZE];
725
726 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
727 if (IS_ERR(bdev))
728 goto fail;
729 return bdev;
730
731 fail:
732 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
733 __bdevname(dev, b), PTR_ERR(bdev));
734 return NULL;
735 }
736
737 /*
738 * Release the journal device
739 */
740 static int ext4_blkdev_put(struct block_device *bdev)
741 {
742 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
743 }
744
745 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
746 {
747 struct block_device *bdev;
748 int ret = -ENODEV;
749
750 bdev = sbi->journal_bdev;
751 if (bdev) {
752 ret = ext4_blkdev_put(bdev);
753 sbi->journal_bdev = NULL;
754 }
755 return ret;
756 }
757
758 static inline struct inode *orphan_list_entry(struct list_head *l)
759 {
760 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
761 }
762
763 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
764 {
765 struct list_head *l;
766
767 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
768 le32_to_cpu(sbi->s_es->s_last_orphan));
769
770 printk(KERN_ERR "sb_info orphan list:\n");
771 list_for_each(l, &sbi->s_orphan) {
772 struct inode *inode = orphan_list_entry(l);
773 printk(KERN_ERR " "
774 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
775 inode->i_sb->s_id, inode->i_ino, inode,
776 inode->i_mode, inode->i_nlink,
777 NEXT_ORPHAN(inode));
778 }
779 }
780
781 static void ext4_put_super(struct super_block *sb)
782 {
783 struct ext4_sb_info *sbi = EXT4_SB(sb);
784 struct ext4_super_block *es = sbi->s_es;
785 int i, err;
786
787 ext4_unregister_li_request(sb);
788 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
789
790 flush_workqueue(sbi->dio_unwritten_wq);
791 destroy_workqueue(sbi->dio_unwritten_wq);
792
793 lock_super(sb);
794 if (sb->s_dirt)
795 ext4_commit_super(sb, 1);
796
797 if (sbi->s_journal) {
798 err = jbd2_journal_destroy(sbi->s_journal);
799 sbi->s_journal = NULL;
800 if (err < 0)
801 ext4_abort(sb, "Couldn't clean up the journal");
802 }
803
804 del_timer(&sbi->s_err_report);
805 ext4_release_system_zone(sb);
806 ext4_mb_release(sb);
807 ext4_ext_release(sb);
808 ext4_xattr_put_super(sb);
809
810 if (!(sb->s_flags & MS_RDONLY)) {
811 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
812 es->s_state = cpu_to_le16(sbi->s_mount_state);
813 ext4_commit_super(sb, 1);
814 }
815 if (sbi->s_proc) {
816 remove_proc_entry(sb->s_id, ext4_proc_root);
817 }
818 kobject_del(&sbi->s_kobj);
819
820 for (i = 0; i < sbi->s_gdb_count; i++)
821 brelse(sbi->s_group_desc[i]);
822 kfree(sbi->s_group_desc);
823 ext4_kvfree(sbi->s_flex_groups);
824 percpu_counter_destroy(&sbi->s_freeblocks_counter);
825 percpu_counter_destroy(&sbi->s_freeinodes_counter);
826 percpu_counter_destroy(&sbi->s_dirs_counter);
827 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
828 brelse(sbi->s_sbh);
829 #ifdef CONFIG_QUOTA
830 for (i = 0; i < MAXQUOTAS; i++)
831 kfree(sbi->s_qf_names[i]);
832 #endif
833
834 /* Debugging code just in case the in-memory inode orphan list
835 * isn't empty. The on-disk one can be non-empty if we've
836 * detected an error and taken the fs readonly, but the
837 * in-memory list had better be clean by this point. */
838 if (!list_empty(&sbi->s_orphan))
839 dump_orphan_list(sb, sbi);
840 J_ASSERT(list_empty(&sbi->s_orphan));
841
842 invalidate_bdev(sb->s_bdev);
843 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
844 /*
845 * Invalidate the journal device's buffers. We don't want them
846 * floating about in memory - the physical journal device may
847 * hotswapped, and it breaks the `ro-after' testing code.
848 */
849 sync_blockdev(sbi->journal_bdev);
850 invalidate_bdev(sbi->journal_bdev);
851 ext4_blkdev_remove(sbi);
852 }
853 if (sbi->s_mmp_tsk)
854 kthread_stop(sbi->s_mmp_tsk);
855 sb->s_fs_info = NULL;
856 /*
857 * Now that we are completely done shutting down the
858 * superblock, we need to actually destroy the kobject.
859 */
860 unlock_super(sb);
861 kobject_put(&sbi->s_kobj);
862 wait_for_completion(&sbi->s_kobj_unregister);
863 kfree(sbi->s_blockgroup_lock);
864 kfree(sbi);
865 }
866
867 static struct kmem_cache *ext4_inode_cachep;
868
869 /*
870 * Called inside transaction, so use GFP_NOFS
871 */
872 static struct inode *ext4_alloc_inode(struct super_block *sb)
873 {
874 struct ext4_inode_info *ei;
875
876 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
877 if (!ei)
878 return NULL;
879
880 ei->vfs_inode.i_version = 1;
881 ei->vfs_inode.i_data.writeback_index = 0;
882 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
883 INIT_LIST_HEAD(&ei->i_prealloc_list);
884 spin_lock_init(&ei->i_prealloc_lock);
885 ei->i_reserved_data_blocks = 0;
886 ei->i_reserved_meta_blocks = 0;
887 ei->i_allocated_meta_blocks = 0;
888 ei->i_da_metadata_calc_len = 0;
889 spin_lock_init(&(ei->i_block_reservation_lock));
890 #ifdef CONFIG_QUOTA
891 ei->i_reserved_quota = 0;
892 #endif
893 ei->jinode = NULL;
894 INIT_LIST_HEAD(&ei->i_completed_io_list);
895 spin_lock_init(&ei->i_completed_io_lock);
896 ei->cur_aio_dio = NULL;
897 ei->i_sync_tid = 0;
898 ei->i_datasync_tid = 0;
899 atomic_set(&ei->i_ioend_count, 0);
900 atomic_set(&ei->i_aiodio_unwritten, 0);
901
902 return &ei->vfs_inode;
903 }
904
905 static int ext4_drop_inode(struct inode *inode)
906 {
907 int drop = generic_drop_inode(inode);
908
909 trace_ext4_drop_inode(inode, drop);
910 return drop;
911 }
912
913 static void ext4_i_callback(struct rcu_head *head)
914 {
915 struct inode *inode = container_of(head, struct inode, i_rcu);
916 INIT_LIST_HEAD(&inode->i_dentry);
917 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
918 }
919
920 static void ext4_destroy_inode(struct inode *inode)
921 {
922 ext4_ioend_wait(inode);
923 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
924 ext4_msg(inode->i_sb, KERN_ERR,
925 "Inode %lu (%p): orphan list check failed!",
926 inode->i_ino, EXT4_I(inode));
927 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
928 EXT4_I(inode), sizeof(struct ext4_inode_info),
929 true);
930 dump_stack();
931 }
932 call_rcu(&inode->i_rcu, ext4_i_callback);
933 }
934
935 static void init_once(void *foo)
936 {
937 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
938
939 INIT_LIST_HEAD(&ei->i_orphan);
940 #ifdef CONFIG_EXT4_FS_XATTR
941 init_rwsem(&ei->xattr_sem);
942 #endif
943 init_rwsem(&ei->i_data_sem);
944 inode_init_once(&ei->vfs_inode);
945 }
946
947 static int init_inodecache(void)
948 {
949 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
950 sizeof(struct ext4_inode_info),
951 0, (SLAB_RECLAIM_ACCOUNT|
952 SLAB_MEM_SPREAD),
953 init_once);
954 if (ext4_inode_cachep == NULL)
955 return -ENOMEM;
956 return 0;
957 }
958
959 static void destroy_inodecache(void)
960 {
961 kmem_cache_destroy(ext4_inode_cachep);
962 }
963
964 void ext4_clear_inode(struct inode *inode)
965 {
966 invalidate_inode_buffers(inode);
967 end_writeback(inode);
968 dquot_drop(inode);
969 ext4_discard_preallocations(inode);
970 if (EXT4_I(inode)->jinode) {
971 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
972 EXT4_I(inode)->jinode);
973 jbd2_free_inode(EXT4_I(inode)->jinode);
974 EXT4_I(inode)->jinode = NULL;
975 }
976 }
977
978 static inline void ext4_show_quota_options(struct seq_file *seq,
979 struct super_block *sb)
980 {
981 #if defined(CONFIG_QUOTA)
982 struct ext4_sb_info *sbi = EXT4_SB(sb);
983
984 if (sbi->s_jquota_fmt) {
985 char *fmtname = "";
986
987 switch (sbi->s_jquota_fmt) {
988 case QFMT_VFS_OLD:
989 fmtname = "vfsold";
990 break;
991 case QFMT_VFS_V0:
992 fmtname = "vfsv0";
993 break;
994 case QFMT_VFS_V1:
995 fmtname = "vfsv1";
996 break;
997 }
998 seq_printf(seq, ",jqfmt=%s", fmtname);
999 }
1000
1001 if (sbi->s_qf_names[USRQUOTA])
1002 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1003
1004 if (sbi->s_qf_names[GRPQUOTA])
1005 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1006
1007 if (test_opt(sb, USRQUOTA))
1008 seq_puts(seq, ",usrquota");
1009
1010 if (test_opt(sb, GRPQUOTA))
1011 seq_puts(seq, ",grpquota");
1012 #endif
1013 }
1014
1015 /*
1016 * Show an option if
1017 * - it's set to a non-default value OR
1018 * - if the per-sb default is different from the global default
1019 */
1020 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
1021 {
1022 int def_errors;
1023 unsigned long def_mount_opts;
1024 struct super_block *sb = vfs->mnt_sb;
1025 struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 struct ext4_super_block *es = sbi->s_es;
1027
1028 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1029 def_errors = le16_to_cpu(es->s_errors);
1030
1031 if (sbi->s_sb_block != 1)
1032 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1033 if (test_opt(sb, MINIX_DF))
1034 seq_puts(seq, ",minixdf");
1035 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1036 seq_puts(seq, ",grpid");
1037 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1038 seq_puts(seq, ",nogrpid");
1039 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1040 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1041 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1042 }
1043 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1044 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1045 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1046 }
1047 if (test_opt(sb, ERRORS_RO)) {
1048 if (def_errors == EXT4_ERRORS_PANIC ||
1049 def_errors == EXT4_ERRORS_CONTINUE) {
1050 seq_puts(seq, ",errors=remount-ro");
1051 }
1052 }
1053 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1054 seq_puts(seq, ",errors=continue");
1055 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1056 seq_puts(seq, ",errors=panic");
1057 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1058 seq_puts(seq, ",nouid32");
1059 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1060 seq_puts(seq, ",debug");
1061 if (test_opt(sb, OLDALLOC))
1062 seq_puts(seq, ",oldalloc");
1063 #ifdef CONFIG_EXT4_FS_XATTR
1064 if (test_opt(sb, XATTR_USER))
1065 seq_puts(seq, ",user_xattr");
1066 if (!test_opt(sb, XATTR_USER))
1067 seq_puts(seq, ",nouser_xattr");
1068 #endif
1069 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1070 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1071 seq_puts(seq, ",acl");
1072 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1073 seq_puts(seq, ",noacl");
1074 #endif
1075 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1076 seq_printf(seq, ",commit=%u",
1077 (unsigned) (sbi->s_commit_interval / HZ));
1078 }
1079 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1080 seq_printf(seq, ",min_batch_time=%u",
1081 (unsigned) sbi->s_min_batch_time);
1082 }
1083 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1084 seq_printf(seq, ",max_batch_time=%u",
1085 (unsigned) sbi->s_min_batch_time);
1086 }
1087
1088 /*
1089 * We're changing the default of barrier mount option, so
1090 * let's always display its mount state so it's clear what its
1091 * status is.
1092 */
1093 seq_puts(seq, ",barrier=");
1094 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1095 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1096 seq_puts(seq, ",journal_async_commit");
1097 else if (test_opt(sb, JOURNAL_CHECKSUM))
1098 seq_puts(seq, ",journal_checksum");
1099 if (test_opt(sb, I_VERSION))
1100 seq_puts(seq, ",i_version");
1101 if (!test_opt(sb, DELALLOC) &&
1102 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1103 seq_puts(seq, ",nodelalloc");
1104
1105 if (!test_opt(sb, MBLK_IO_SUBMIT))
1106 seq_puts(seq, ",nomblk_io_submit");
1107 if (sbi->s_stripe)
1108 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1109 /*
1110 * journal mode get enabled in different ways
1111 * So just print the value even if we didn't specify it
1112 */
1113 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1114 seq_puts(seq, ",data=journal");
1115 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1116 seq_puts(seq, ",data=ordered");
1117 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1118 seq_puts(seq, ",data=writeback");
1119
1120 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1121 seq_printf(seq, ",inode_readahead_blks=%u",
1122 sbi->s_inode_readahead_blks);
1123
1124 if (test_opt(sb, DATA_ERR_ABORT))
1125 seq_puts(seq, ",data_err=abort");
1126
1127 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1128 seq_puts(seq, ",noauto_da_alloc");
1129
1130 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1131 seq_puts(seq, ",discard");
1132
1133 if (test_opt(sb, NOLOAD))
1134 seq_puts(seq, ",norecovery");
1135
1136 if (test_opt(sb, DIOREAD_NOLOCK))
1137 seq_puts(seq, ",dioread_nolock");
1138
1139 if (test_opt(sb, BLOCK_VALIDITY) &&
1140 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1141 seq_puts(seq, ",block_validity");
1142
1143 if (!test_opt(sb, INIT_INODE_TABLE))
1144 seq_puts(seq, ",noinit_inode_table");
1145 else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1146 seq_printf(seq, ",init_inode_table=%u",
1147 (unsigned) sbi->s_li_wait_mult);
1148
1149 ext4_show_quota_options(seq, sb);
1150
1151 return 0;
1152 }
1153
1154 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1155 u64 ino, u32 generation)
1156 {
1157 struct inode *inode;
1158
1159 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1160 return ERR_PTR(-ESTALE);
1161 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1162 return ERR_PTR(-ESTALE);
1163
1164 /* iget isn't really right if the inode is currently unallocated!!
1165 *
1166 * ext4_read_inode will return a bad_inode if the inode had been
1167 * deleted, so we should be safe.
1168 *
1169 * Currently we don't know the generation for parent directory, so
1170 * a generation of 0 means "accept any"
1171 */
1172 inode = ext4_iget(sb, ino);
1173 if (IS_ERR(inode))
1174 return ERR_CAST(inode);
1175 if (generation && inode->i_generation != generation) {
1176 iput(inode);
1177 return ERR_PTR(-ESTALE);
1178 }
1179
1180 return inode;
1181 }
1182
1183 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1184 int fh_len, int fh_type)
1185 {
1186 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1187 ext4_nfs_get_inode);
1188 }
1189
1190 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1191 int fh_len, int fh_type)
1192 {
1193 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1194 ext4_nfs_get_inode);
1195 }
1196
1197 /*
1198 * Try to release metadata pages (indirect blocks, directories) which are
1199 * mapped via the block device. Since these pages could have journal heads
1200 * which would prevent try_to_free_buffers() from freeing them, we must use
1201 * jbd2 layer's try_to_free_buffers() function to release them.
1202 */
1203 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1204 gfp_t wait)
1205 {
1206 journal_t *journal = EXT4_SB(sb)->s_journal;
1207
1208 WARN_ON(PageChecked(page));
1209 if (!page_has_buffers(page))
1210 return 0;
1211 if (journal)
1212 return jbd2_journal_try_to_free_buffers(journal, page,
1213 wait & ~__GFP_WAIT);
1214 return try_to_free_buffers(page);
1215 }
1216
1217 #ifdef CONFIG_QUOTA
1218 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1219 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1220
1221 static int ext4_write_dquot(struct dquot *dquot);
1222 static int ext4_acquire_dquot(struct dquot *dquot);
1223 static int ext4_release_dquot(struct dquot *dquot);
1224 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1225 static int ext4_write_info(struct super_block *sb, int type);
1226 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1227 struct path *path);
1228 static int ext4_quota_off(struct super_block *sb, int type);
1229 static int ext4_quota_on_mount(struct super_block *sb, int type);
1230 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1231 size_t len, loff_t off);
1232 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1233 const char *data, size_t len, loff_t off);
1234
1235 static const struct dquot_operations ext4_quota_operations = {
1236 .get_reserved_space = ext4_get_reserved_space,
1237 .write_dquot = ext4_write_dquot,
1238 .acquire_dquot = ext4_acquire_dquot,
1239 .release_dquot = ext4_release_dquot,
1240 .mark_dirty = ext4_mark_dquot_dirty,
1241 .write_info = ext4_write_info,
1242 .alloc_dquot = dquot_alloc,
1243 .destroy_dquot = dquot_destroy,
1244 };
1245
1246 static const struct quotactl_ops ext4_qctl_operations = {
1247 .quota_on = ext4_quota_on,
1248 .quota_off = ext4_quota_off,
1249 .quota_sync = dquot_quota_sync,
1250 .get_info = dquot_get_dqinfo,
1251 .set_info = dquot_set_dqinfo,
1252 .get_dqblk = dquot_get_dqblk,
1253 .set_dqblk = dquot_set_dqblk
1254 };
1255 #endif
1256
1257 static const struct super_operations ext4_sops = {
1258 .alloc_inode = ext4_alloc_inode,
1259 .destroy_inode = ext4_destroy_inode,
1260 .write_inode = ext4_write_inode,
1261 .dirty_inode = ext4_dirty_inode,
1262 .drop_inode = ext4_drop_inode,
1263 .evict_inode = ext4_evict_inode,
1264 .put_super = ext4_put_super,
1265 .sync_fs = ext4_sync_fs,
1266 .freeze_fs = ext4_freeze,
1267 .unfreeze_fs = ext4_unfreeze,
1268 .statfs = ext4_statfs,
1269 .remount_fs = ext4_remount,
1270 .show_options = ext4_show_options,
1271 #ifdef CONFIG_QUOTA
1272 .quota_read = ext4_quota_read,
1273 .quota_write = ext4_quota_write,
1274 #endif
1275 .bdev_try_to_free_page = bdev_try_to_free_page,
1276 };
1277
1278 static const struct super_operations ext4_nojournal_sops = {
1279 .alloc_inode = ext4_alloc_inode,
1280 .destroy_inode = ext4_destroy_inode,
1281 .write_inode = ext4_write_inode,
1282 .dirty_inode = ext4_dirty_inode,
1283 .drop_inode = ext4_drop_inode,
1284 .evict_inode = ext4_evict_inode,
1285 .write_super = ext4_write_super,
1286 .put_super = ext4_put_super,
1287 .statfs = ext4_statfs,
1288 .remount_fs = ext4_remount,
1289 .show_options = ext4_show_options,
1290 #ifdef CONFIG_QUOTA
1291 .quota_read = ext4_quota_read,
1292 .quota_write = ext4_quota_write,
1293 #endif
1294 .bdev_try_to_free_page = bdev_try_to_free_page,
1295 };
1296
1297 static const struct export_operations ext4_export_ops = {
1298 .fh_to_dentry = ext4_fh_to_dentry,
1299 .fh_to_parent = ext4_fh_to_parent,
1300 .get_parent = ext4_get_parent,
1301 };
1302
1303 enum {
1304 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1305 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1306 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1307 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1308 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1309 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1310 Opt_journal_update, Opt_journal_dev,
1311 Opt_journal_checksum, Opt_journal_async_commit,
1312 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1313 Opt_data_err_abort, Opt_data_err_ignore,
1314 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1315 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1316 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1317 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1318 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1319 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1320 Opt_inode_readahead_blks, Opt_journal_ioprio,
1321 Opt_dioread_nolock, Opt_dioread_lock,
1322 Opt_discard, Opt_nodiscard,
1323 Opt_init_inode_table, Opt_noinit_inode_table,
1324 };
1325
1326 static const match_table_t tokens = {
1327 {Opt_bsd_df, "bsddf"},
1328 {Opt_minix_df, "minixdf"},
1329 {Opt_grpid, "grpid"},
1330 {Opt_grpid, "bsdgroups"},
1331 {Opt_nogrpid, "nogrpid"},
1332 {Opt_nogrpid, "sysvgroups"},
1333 {Opt_resgid, "resgid=%u"},
1334 {Opt_resuid, "resuid=%u"},
1335 {Opt_sb, "sb=%u"},
1336 {Opt_err_cont, "errors=continue"},
1337 {Opt_err_panic, "errors=panic"},
1338 {Opt_err_ro, "errors=remount-ro"},
1339 {Opt_nouid32, "nouid32"},
1340 {Opt_debug, "debug"},
1341 {Opt_oldalloc, "oldalloc"},
1342 {Opt_orlov, "orlov"},
1343 {Opt_user_xattr, "user_xattr"},
1344 {Opt_nouser_xattr, "nouser_xattr"},
1345 {Opt_acl, "acl"},
1346 {Opt_noacl, "noacl"},
1347 {Opt_noload, "noload"},
1348 {Opt_noload, "norecovery"},
1349 {Opt_nobh, "nobh"},
1350 {Opt_bh, "bh"},
1351 {Opt_commit, "commit=%u"},
1352 {Opt_min_batch_time, "min_batch_time=%u"},
1353 {Opt_max_batch_time, "max_batch_time=%u"},
1354 {Opt_journal_update, "journal=update"},
1355 {Opt_journal_dev, "journal_dev=%u"},
1356 {Opt_journal_checksum, "journal_checksum"},
1357 {Opt_journal_async_commit, "journal_async_commit"},
1358 {Opt_abort, "abort"},
1359 {Opt_data_journal, "data=journal"},
1360 {Opt_data_ordered, "data=ordered"},
1361 {Opt_data_writeback, "data=writeback"},
1362 {Opt_data_err_abort, "data_err=abort"},
1363 {Opt_data_err_ignore, "data_err=ignore"},
1364 {Opt_offusrjquota, "usrjquota="},
1365 {Opt_usrjquota, "usrjquota=%s"},
1366 {Opt_offgrpjquota, "grpjquota="},
1367 {Opt_grpjquota, "grpjquota=%s"},
1368 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1369 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1370 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1371 {Opt_grpquota, "grpquota"},
1372 {Opt_noquota, "noquota"},
1373 {Opt_quota, "quota"},
1374 {Opt_usrquota, "usrquota"},
1375 {Opt_barrier, "barrier=%u"},
1376 {Opt_barrier, "barrier"},
1377 {Opt_nobarrier, "nobarrier"},
1378 {Opt_i_version, "i_version"},
1379 {Opt_stripe, "stripe=%u"},
1380 {Opt_resize, "resize"},
1381 {Opt_delalloc, "delalloc"},
1382 {Opt_nodelalloc, "nodelalloc"},
1383 {Opt_mblk_io_submit, "mblk_io_submit"},
1384 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1385 {Opt_block_validity, "block_validity"},
1386 {Opt_noblock_validity, "noblock_validity"},
1387 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1388 {Opt_journal_ioprio, "journal_ioprio=%u"},
1389 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1390 {Opt_auto_da_alloc, "auto_da_alloc"},
1391 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1392 {Opt_dioread_nolock, "dioread_nolock"},
1393 {Opt_dioread_lock, "dioread_lock"},
1394 {Opt_discard, "discard"},
1395 {Opt_nodiscard, "nodiscard"},
1396 {Opt_init_inode_table, "init_itable=%u"},
1397 {Opt_init_inode_table, "init_itable"},
1398 {Opt_noinit_inode_table, "noinit_itable"},
1399 {Opt_err, NULL},
1400 };
1401
1402 static ext4_fsblk_t get_sb_block(void **data)
1403 {
1404 ext4_fsblk_t sb_block;
1405 char *options = (char *) *data;
1406
1407 if (!options || strncmp(options, "sb=", 3) != 0)
1408 return 1; /* Default location */
1409
1410 options += 3;
1411 /* TODO: use simple_strtoll with >32bit ext4 */
1412 sb_block = simple_strtoul(options, &options, 0);
1413 if (*options && *options != ',') {
1414 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1415 (char *) *data);
1416 return 1;
1417 }
1418 if (*options == ',')
1419 options++;
1420 *data = (void *) options;
1421
1422 return sb_block;
1423 }
1424
1425 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1426 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1427 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1428
1429 #ifdef CONFIG_QUOTA
1430 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1431 {
1432 struct ext4_sb_info *sbi = EXT4_SB(sb);
1433 char *qname;
1434
1435 if (sb_any_quota_loaded(sb) &&
1436 !sbi->s_qf_names[qtype]) {
1437 ext4_msg(sb, KERN_ERR,
1438 "Cannot change journaled "
1439 "quota options when quota turned on");
1440 return 0;
1441 }
1442 qname = match_strdup(args);
1443 if (!qname) {
1444 ext4_msg(sb, KERN_ERR,
1445 "Not enough memory for storing quotafile name");
1446 return 0;
1447 }
1448 if (sbi->s_qf_names[qtype] &&
1449 strcmp(sbi->s_qf_names[qtype], qname)) {
1450 ext4_msg(sb, KERN_ERR,
1451 "%s quota file already specified", QTYPE2NAME(qtype));
1452 kfree(qname);
1453 return 0;
1454 }
1455 sbi->s_qf_names[qtype] = qname;
1456 if (strchr(sbi->s_qf_names[qtype], '/')) {
1457 ext4_msg(sb, KERN_ERR,
1458 "quotafile must be on filesystem root");
1459 kfree(sbi->s_qf_names[qtype]);
1460 sbi->s_qf_names[qtype] = NULL;
1461 return 0;
1462 }
1463 set_opt(sb, QUOTA);
1464 return 1;
1465 }
1466
1467 static int clear_qf_name(struct super_block *sb, int qtype)
1468 {
1469
1470 struct ext4_sb_info *sbi = EXT4_SB(sb);
1471
1472 if (sb_any_quota_loaded(sb) &&
1473 sbi->s_qf_names[qtype]) {
1474 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1475 " when quota turned on");
1476 return 0;
1477 }
1478 /*
1479 * The space will be released later when all options are confirmed
1480 * to be correct
1481 */
1482 sbi->s_qf_names[qtype] = NULL;
1483 return 1;
1484 }
1485 #endif
1486
1487 static int parse_options(char *options, struct super_block *sb,
1488 unsigned long *journal_devnum,
1489 unsigned int *journal_ioprio,
1490 ext4_fsblk_t *n_blocks_count, int is_remount)
1491 {
1492 struct ext4_sb_info *sbi = EXT4_SB(sb);
1493 char *p;
1494 substring_t args[MAX_OPT_ARGS];
1495 int data_opt = 0;
1496 int option;
1497 #ifdef CONFIG_QUOTA
1498 int qfmt;
1499 #endif
1500
1501 if (!options)
1502 return 1;
1503
1504 while ((p = strsep(&options, ",")) != NULL) {
1505 int token;
1506 if (!*p)
1507 continue;
1508
1509 /*
1510 * Initialize args struct so we know whether arg was
1511 * found; some options take optional arguments.
1512 */
1513 args[0].to = args[0].from = NULL;
1514 token = match_token(p, tokens, args);
1515 switch (token) {
1516 case Opt_bsd_df:
1517 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1518 clear_opt(sb, MINIX_DF);
1519 break;
1520 case Opt_minix_df:
1521 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1522 set_opt(sb, MINIX_DF);
1523
1524 break;
1525 case Opt_grpid:
1526 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1527 set_opt(sb, GRPID);
1528
1529 break;
1530 case Opt_nogrpid:
1531 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1532 clear_opt(sb, GRPID);
1533
1534 break;
1535 case Opt_resuid:
1536 if (match_int(&args[0], &option))
1537 return 0;
1538 sbi->s_resuid = option;
1539 break;
1540 case Opt_resgid:
1541 if (match_int(&args[0], &option))
1542 return 0;
1543 sbi->s_resgid = option;
1544 break;
1545 case Opt_sb:
1546 /* handled by get_sb_block() instead of here */
1547 /* *sb_block = match_int(&args[0]); */
1548 break;
1549 case Opt_err_panic:
1550 clear_opt(sb, ERRORS_CONT);
1551 clear_opt(sb, ERRORS_RO);
1552 set_opt(sb, ERRORS_PANIC);
1553 break;
1554 case Opt_err_ro:
1555 clear_opt(sb, ERRORS_CONT);
1556 clear_opt(sb, ERRORS_PANIC);
1557 set_opt(sb, ERRORS_RO);
1558 break;
1559 case Opt_err_cont:
1560 clear_opt(sb, ERRORS_RO);
1561 clear_opt(sb, ERRORS_PANIC);
1562 set_opt(sb, ERRORS_CONT);
1563 break;
1564 case Opt_nouid32:
1565 set_opt(sb, NO_UID32);
1566 break;
1567 case Opt_debug:
1568 set_opt(sb, DEBUG);
1569 break;
1570 case Opt_oldalloc:
1571 set_opt(sb, OLDALLOC);
1572 break;
1573 case Opt_orlov:
1574 clear_opt(sb, OLDALLOC);
1575 break;
1576 #ifdef CONFIG_EXT4_FS_XATTR
1577 case Opt_user_xattr:
1578 set_opt(sb, XATTR_USER);
1579 break;
1580 case Opt_nouser_xattr:
1581 clear_opt(sb, XATTR_USER);
1582 break;
1583 #else
1584 case Opt_user_xattr:
1585 case Opt_nouser_xattr:
1586 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1587 break;
1588 #endif
1589 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1590 case Opt_acl:
1591 set_opt(sb, POSIX_ACL);
1592 break;
1593 case Opt_noacl:
1594 clear_opt(sb, POSIX_ACL);
1595 break;
1596 #else
1597 case Opt_acl:
1598 case Opt_noacl:
1599 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1600 break;
1601 #endif
1602 case Opt_journal_update:
1603 /* @@@ FIXME */
1604 /* Eventually we will want to be able to create
1605 a journal file here. For now, only allow the
1606 user to specify an existing inode to be the
1607 journal file. */
1608 if (is_remount) {
1609 ext4_msg(sb, KERN_ERR,
1610 "Cannot specify journal on remount");
1611 return 0;
1612 }
1613 set_opt(sb, UPDATE_JOURNAL);
1614 break;
1615 case Opt_journal_dev:
1616 if (is_remount) {
1617 ext4_msg(sb, KERN_ERR,
1618 "Cannot specify journal on remount");
1619 return 0;
1620 }
1621 if (match_int(&args[0], &option))
1622 return 0;
1623 *journal_devnum = option;
1624 break;
1625 case Opt_journal_checksum:
1626 set_opt(sb, JOURNAL_CHECKSUM);
1627 break;
1628 case Opt_journal_async_commit:
1629 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1630 set_opt(sb, JOURNAL_CHECKSUM);
1631 break;
1632 case Opt_noload:
1633 set_opt(sb, NOLOAD);
1634 break;
1635 case Opt_commit:
1636 if (match_int(&args[0], &option))
1637 return 0;
1638 if (option < 0)
1639 return 0;
1640 if (option == 0)
1641 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1642 sbi->s_commit_interval = HZ * option;
1643 break;
1644 case Opt_max_batch_time:
1645 if (match_int(&args[0], &option))
1646 return 0;
1647 if (option < 0)
1648 return 0;
1649 if (option == 0)
1650 option = EXT4_DEF_MAX_BATCH_TIME;
1651 sbi->s_max_batch_time = option;
1652 break;
1653 case Opt_min_batch_time:
1654 if (match_int(&args[0], &option))
1655 return 0;
1656 if (option < 0)
1657 return 0;
1658 sbi->s_min_batch_time = option;
1659 break;
1660 case Opt_data_journal:
1661 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1662 goto datacheck;
1663 case Opt_data_ordered:
1664 data_opt = EXT4_MOUNT_ORDERED_DATA;
1665 goto datacheck;
1666 case Opt_data_writeback:
1667 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1668 datacheck:
1669 if (is_remount) {
1670 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1671 ext4_msg(sb, KERN_ERR,
1672 "Cannot change data mode on remount");
1673 return 0;
1674 }
1675 } else {
1676 clear_opt(sb, DATA_FLAGS);
1677 sbi->s_mount_opt |= data_opt;
1678 }
1679 break;
1680 case Opt_data_err_abort:
1681 set_opt(sb, DATA_ERR_ABORT);
1682 break;
1683 case Opt_data_err_ignore:
1684 clear_opt(sb, DATA_ERR_ABORT);
1685 break;
1686 #ifdef CONFIG_QUOTA
1687 case Opt_usrjquota:
1688 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1689 return 0;
1690 break;
1691 case Opt_grpjquota:
1692 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1693 return 0;
1694 break;
1695 case Opt_offusrjquota:
1696 if (!clear_qf_name(sb, USRQUOTA))
1697 return 0;
1698 break;
1699 case Opt_offgrpjquota:
1700 if (!clear_qf_name(sb, GRPQUOTA))
1701 return 0;
1702 break;
1703
1704 case Opt_jqfmt_vfsold:
1705 qfmt = QFMT_VFS_OLD;
1706 goto set_qf_format;
1707 case Opt_jqfmt_vfsv0:
1708 qfmt = QFMT_VFS_V0;
1709 goto set_qf_format;
1710 case Opt_jqfmt_vfsv1:
1711 qfmt = QFMT_VFS_V1;
1712 set_qf_format:
1713 if (sb_any_quota_loaded(sb) &&
1714 sbi->s_jquota_fmt != qfmt) {
1715 ext4_msg(sb, KERN_ERR, "Cannot change "
1716 "journaled quota options when "
1717 "quota turned on");
1718 return 0;
1719 }
1720 sbi->s_jquota_fmt = qfmt;
1721 break;
1722 case Opt_quota:
1723 case Opt_usrquota:
1724 set_opt(sb, QUOTA);
1725 set_opt(sb, USRQUOTA);
1726 break;
1727 case Opt_grpquota:
1728 set_opt(sb, QUOTA);
1729 set_opt(sb, GRPQUOTA);
1730 break;
1731 case Opt_noquota:
1732 if (sb_any_quota_loaded(sb)) {
1733 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1734 "options when quota turned on");
1735 return 0;
1736 }
1737 clear_opt(sb, QUOTA);
1738 clear_opt(sb, USRQUOTA);
1739 clear_opt(sb, GRPQUOTA);
1740 break;
1741 #else
1742 case Opt_quota:
1743 case Opt_usrquota:
1744 case Opt_grpquota:
1745 ext4_msg(sb, KERN_ERR,
1746 "quota options not supported");
1747 break;
1748 case Opt_usrjquota:
1749 case Opt_grpjquota:
1750 case Opt_offusrjquota:
1751 case Opt_offgrpjquota:
1752 case Opt_jqfmt_vfsold:
1753 case Opt_jqfmt_vfsv0:
1754 case Opt_jqfmt_vfsv1:
1755 ext4_msg(sb, KERN_ERR,
1756 "journaled quota options not supported");
1757 break;
1758 case Opt_noquota:
1759 break;
1760 #endif
1761 case Opt_abort:
1762 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1763 break;
1764 case Opt_nobarrier:
1765 clear_opt(sb, BARRIER);
1766 break;
1767 case Opt_barrier:
1768 if (args[0].from) {
1769 if (match_int(&args[0], &option))
1770 return 0;
1771 } else
1772 option = 1; /* No argument, default to 1 */
1773 if (option)
1774 set_opt(sb, BARRIER);
1775 else
1776 clear_opt(sb, BARRIER);
1777 break;
1778 case Opt_ignore:
1779 break;
1780 case Opt_resize:
1781 if (!is_remount) {
1782 ext4_msg(sb, KERN_ERR,
1783 "resize option only available "
1784 "for remount");
1785 return 0;
1786 }
1787 if (match_int(&args[0], &option) != 0)
1788 return 0;
1789 *n_blocks_count = option;
1790 break;
1791 case Opt_nobh:
1792 ext4_msg(sb, KERN_WARNING,
1793 "Ignoring deprecated nobh option");
1794 break;
1795 case Opt_bh:
1796 ext4_msg(sb, KERN_WARNING,
1797 "Ignoring deprecated bh option");
1798 break;
1799 case Opt_i_version:
1800 set_opt(sb, I_VERSION);
1801 sb->s_flags |= MS_I_VERSION;
1802 break;
1803 case Opt_nodelalloc:
1804 clear_opt(sb, DELALLOC);
1805 break;
1806 case Opt_mblk_io_submit:
1807 set_opt(sb, MBLK_IO_SUBMIT);
1808 break;
1809 case Opt_nomblk_io_submit:
1810 clear_opt(sb, MBLK_IO_SUBMIT);
1811 break;
1812 case Opt_stripe:
1813 if (match_int(&args[0], &option))
1814 return 0;
1815 if (option < 0)
1816 return 0;
1817 sbi->s_stripe = option;
1818 break;
1819 case Opt_delalloc:
1820 set_opt(sb, DELALLOC);
1821 break;
1822 case Opt_block_validity:
1823 set_opt(sb, BLOCK_VALIDITY);
1824 break;
1825 case Opt_noblock_validity:
1826 clear_opt(sb, BLOCK_VALIDITY);
1827 break;
1828 case Opt_inode_readahead_blks:
1829 if (match_int(&args[0], &option))
1830 return 0;
1831 if (option < 0 || option > (1 << 30))
1832 return 0;
1833 if (option && !is_power_of_2(option)) {
1834 ext4_msg(sb, KERN_ERR,
1835 "EXT4-fs: inode_readahead_blks"
1836 " must be a power of 2");
1837 return 0;
1838 }
1839 sbi->s_inode_readahead_blks = option;
1840 break;
1841 case Opt_journal_ioprio:
1842 if (match_int(&args[0], &option))
1843 return 0;
1844 if (option < 0 || option > 7)
1845 break;
1846 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1847 option);
1848 break;
1849 case Opt_noauto_da_alloc:
1850 set_opt(sb, NO_AUTO_DA_ALLOC);
1851 break;
1852 case Opt_auto_da_alloc:
1853 if (args[0].from) {
1854 if (match_int(&args[0], &option))
1855 return 0;
1856 } else
1857 option = 1; /* No argument, default to 1 */
1858 if (option)
1859 clear_opt(sb, NO_AUTO_DA_ALLOC);
1860 else
1861 set_opt(sb,NO_AUTO_DA_ALLOC);
1862 break;
1863 case Opt_discard:
1864 set_opt(sb, DISCARD);
1865 break;
1866 case Opt_nodiscard:
1867 clear_opt(sb, DISCARD);
1868 break;
1869 case Opt_dioread_nolock:
1870 set_opt(sb, DIOREAD_NOLOCK);
1871 break;
1872 case Opt_dioread_lock:
1873 clear_opt(sb, DIOREAD_NOLOCK);
1874 break;
1875 case Opt_init_inode_table:
1876 set_opt(sb, INIT_INODE_TABLE);
1877 if (args[0].from) {
1878 if (match_int(&args[0], &option))
1879 return 0;
1880 } else
1881 option = EXT4_DEF_LI_WAIT_MULT;
1882 if (option < 0)
1883 return 0;
1884 sbi->s_li_wait_mult = option;
1885 break;
1886 case Opt_noinit_inode_table:
1887 clear_opt(sb, INIT_INODE_TABLE);
1888 break;
1889 default:
1890 ext4_msg(sb, KERN_ERR,
1891 "Unrecognized mount option \"%s\" "
1892 "or missing value", p);
1893 return 0;
1894 }
1895 }
1896 #ifdef CONFIG_QUOTA
1897 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1898 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1899 clear_opt(sb, USRQUOTA);
1900
1901 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1902 clear_opt(sb, GRPQUOTA);
1903
1904 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1905 ext4_msg(sb, KERN_ERR, "old and new quota "
1906 "format mixing");
1907 return 0;
1908 }
1909
1910 if (!sbi->s_jquota_fmt) {
1911 ext4_msg(sb, KERN_ERR, "journaled quota format "
1912 "not specified");
1913 return 0;
1914 }
1915 } else {
1916 if (sbi->s_jquota_fmt) {
1917 ext4_msg(sb, KERN_ERR, "journaled quota format "
1918 "specified with no journaling "
1919 "enabled");
1920 return 0;
1921 }
1922 }
1923 #endif
1924 return 1;
1925 }
1926
1927 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1928 int read_only)
1929 {
1930 struct ext4_sb_info *sbi = EXT4_SB(sb);
1931 int res = 0;
1932
1933 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1934 ext4_msg(sb, KERN_ERR, "revision level too high, "
1935 "forcing read-only mode");
1936 res = MS_RDONLY;
1937 }
1938 if (read_only)
1939 return res;
1940 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1941 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1942 "running e2fsck is recommended");
1943 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1944 ext4_msg(sb, KERN_WARNING,
1945 "warning: mounting fs with errors, "
1946 "running e2fsck is recommended");
1947 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1948 le16_to_cpu(es->s_mnt_count) >=
1949 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1950 ext4_msg(sb, KERN_WARNING,
1951 "warning: maximal mount count reached, "
1952 "running e2fsck is recommended");
1953 else if (le32_to_cpu(es->s_checkinterval) &&
1954 (le32_to_cpu(es->s_lastcheck) +
1955 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1956 ext4_msg(sb, KERN_WARNING,
1957 "warning: checktime reached, "
1958 "running e2fsck is recommended");
1959 if (!sbi->s_journal)
1960 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1961 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1962 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1963 le16_add_cpu(&es->s_mnt_count, 1);
1964 es->s_mtime = cpu_to_le32(get_seconds());
1965 ext4_update_dynamic_rev(sb);
1966 if (sbi->s_journal)
1967 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1968
1969 ext4_commit_super(sb, 1);
1970 if (test_opt(sb, DEBUG))
1971 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1972 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1973 sb->s_blocksize,
1974 sbi->s_groups_count,
1975 EXT4_BLOCKS_PER_GROUP(sb),
1976 EXT4_INODES_PER_GROUP(sb),
1977 sbi->s_mount_opt, sbi->s_mount_opt2);
1978
1979 cleancache_init_fs(sb);
1980 return res;
1981 }
1982
1983 static int ext4_fill_flex_info(struct super_block *sb)
1984 {
1985 struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 struct ext4_group_desc *gdp = NULL;
1987 ext4_group_t flex_group_count;
1988 ext4_group_t flex_group;
1989 int groups_per_flex = 0;
1990 size_t size;
1991 int i;
1992
1993 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1994 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1995
1996 if (groups_per_flex < 2) {
1997 sbi->s_log_groups_per_flex = 0;
1998 return 1;
1999 }
2000
2001 /* We allocate both existing and potentially added groups */
2002 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
2003 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
2004 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
2005 size = flex_group_count * sizeof(struct flex_groups);
2006 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
2007 if (sbi->s_flex_groups == NULL) {
2008 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
2009 flex_group_count);
2010 goto failed;
2011 }
2012
2013 for (i = 0; i < sbi->s_groups_count; i++) {
2014 gdp = ext4_get_group_desc(sb, i, NULL);
2015
2016 flex_group = ext4_flex_group(sbi, i);
2017 atomic_add(ext4_free_inodes_count(sb, gdp),
2018 &sbi->s_flex_groups[flex_group].free_inodes);
2019 atomic_add(ext4_free_blks_count(sb, gdp),
2020 &sbi->s_flex_groups[flex_group].free_blocks);
2021 atomic_add(ext4_used_dirs_count(sb, gdp),
2022 &sbi->s_flex_groups[flex_group].used_dirs);
2023 }
2024
2025 return 1;
2026 failed:
2027 return 0;
2028 }
2029
2030 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2031 struct ext4_group_desc *gdp)
2032 {
2033 __u16 crc = 0;
2034
2035 if (sbi->s_es->s_feature_ro_compat &
2036 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2037 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2038 __le32 le_group = cpu_to_le32(block_group);
2039
2040 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2041 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2042 crc = crc16(crc, (__u8 *)gdp, offset);
2043 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2044 /* for checksum of struct ext4_group_desc do the rest...*/
2045 if ((sbi->s_es->s_feature_incompat &
2046 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2047 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2048 crc = crc16(crc, (__u8 *)gdp + offset,
2049 le16_to_cpu(sbi->s_es->s_desc_size) -
2050 offset);
2051 }
2052
2053 return cpu_to_le16(crc);
2054 }
2055
2056 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2057 struct ext4_group_desc *gdp)
2058 {
2059 if ((sbi->s_es->s_feature_ro_compat &
2060 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2061 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2062 return 0;
2063
2064 return 1;
2065 }
2066
2067 /* Called at mount-time, super-block is locked */
2068 static int ext4_check_descriptors(struct super_block *sb,
2069 ext4_group_t *first_not_zeroed)
2070 {
2071 struct ext4_sb_info *sbi = EXT4_SB(sb);
2072 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2073 ext4_fsblk_t last_block;
2074 ext4_fsblk_t block_bitmap;
2075 ext4_fsblk_t inode_bitmap;
2076 ext4_fsblk_t inode_table;
2077 int flexbg_flag = 0;
2078 ext4_group_t i, grp = sbi->s_groups_count;
2079
2080 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2081 flexbg_flag = 1;
2082
2083 ext4_debug("Checking group descriptors");
2084
2085 for (i = 0; i < sbi->s_groups_count; i++) {
2086 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2087
2088 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2089 last_block = ext4_blocks_count(sbi->s_es) - 1;
2090 else
2091 last_block = first_block +
2092 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2093
2094 if ((grp == sbi->s_groups_count) &&
2095 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2096 grp = i;
2097
2098 block_bitmap = ext4_block_bitmap(sb, gdp);
2099 if (block_bitmap < first_block || block_bitmap > last_block) {
2100 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2101 "Block bitmap for group %u not in group "
2102 "(block %llu)!", i, block_bitmap);
2103 return 0;
2104 }
2105 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2106 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2107 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2108 "Inode bitmap for group %u not in group "
2109 "(block %llu)!", i, inode_bitmap);
2110 return 0;
2111 }
2112 inode_table = ext4_inode_table(sb, gdp);
2113 if (inode_table < first_block ||
2114 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2115 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2116 "Inode table for group %u not in group "
2117 "(block %llu)!", i, inode_table);
2118 return 0;
2119 }
2120 ext4_lock_group(sb, i);
2121 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2122 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2123 "Checksum for group %u failed (%u!=%u)",
2124 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2125 gdp)), le16_to_cpu(gdp->bg_checksum));
2126 if (!(sb->s_flags & MS_RDONLY)) {
2127 ext4_unlock_group(sb, i);
2128 return 0;
2129 }
2130 }
2131 ext4_unlock_group(sb, i);
2132 if (!flexbg_flag)
2133 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2134 }
2135 if (NULL != first_not_zeroed)
2136 *first_not_zeroed = grp;
2137
2138 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2139 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2140 return 1;
2141 }
2142
2143 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2144 * the superblock) which were deleted from all directories, but held open by
2145 * a process at the time of a crash. We walk the list and try to delete these
2146 * inodes at recovery time (only with a read-write filesystem).
2147 *
2148 * In order to keep the orphan inode chain consistent during traversal (in
2149 * case of crash during recovery), we link each inode into the superblock
2150 * orphan list_head and handle it the same way as an inode deletion during
2151 * normal operation (which journals the operations for us).
2152 *
2153 * We only do an iget() and an iput() on each inode, which is very safe if we
2154 * accidentally point at an in-use or already deleted inode. The worst that
2155 * can happen in this case is that we get a "bit already cleared" message from
2156 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2157 * e2fsck was run on this filesystem, and it must have already done the orphan
2158 * inode cleanup for us, so we can safely abort without any further action.
2159 */
2160 static void ext4_orphan_cleanup(struct super_block *sb,
2161 struct ext4_super_block *es)
2162 {
2163 unsigned int s_flags = sb->s_flags;
2164 int nr_orphans = 0, nr_truncates = 0;
2165 #ifdef CONFIG_QUOTA
2166 int i;
2167 #endif
2168 if (!es->s_last_orphan) {
2169 jbd_debug(4, "no orphan inodes to clean up\n");
2170 return;
2171 }
2172
2173 if (bdev_read_only(sb->s_bdev)) {
2174 ext4_msg(sb, KERN_ERR, "write access "
2175 "unavailable, skipping orphan cleanup");
2176 return;
2177 }
2178
2179 /* Check if feature set would not allow a r/w mount */
2180 if (!ext4_feature_set_ok(sb, 0)) {
2181 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2182 "unknown ROCOMPAT features");
2183 return;
2184 }
2185
2186 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2187 if (es->s_last_orphan)
2188 jbd_debug(1, "Errors on filesystem, "
2189 "clearing orphan list.\n");
2190 es->s_last_orphan = 0;
2191 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2192 return;
2193 }
2194
2195 if (s_flags & MS_RDONLY) {
2196 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2197 sb->s_flags &= ~MS_RDONLY;
2198 }
2199 #ifdef CONFIG_QUOTA
2200 /* Needed for iput() to work correctly and not trash data */
2201 sb->s_flags |= MS_ACTIVE;
2202 /* Turn on quotas so that they are updated correctly */
2203 for (i = 0; i < MAXQUOTAS; i++) {
2204 if (EXT4_SB(sb)->s_qf_names[i]) {
2205 int ret = ext4_quota_on_mount(sb, i);
2206 if (ret < 0)
2207 ext4_msg(sb, KERN_ERR,
2208 "Cannot turn on journaled "
2209 "quota: error %d", ret);
2210 }
2211 }
2212 #endif
2213
2214 while (es->s_last_orphan) {
2215 struct inode *inode;
2216
2217 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2218 if (IS_ERR(inode)) {
2219 es->s_last_orphan = 0;
2220 break;
2221 }
2222
2223 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2224 dquot_initialize(inode);
2225 if (inode->i_nlink) {
2226 ext4_msg(sb, KERN_DEBUG,
2227 "%s: truncating inode %lu to %lld bytes",
2228 __func__, inode->i_ino, inode->i_size);
2229 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2230 inode->i_ino, inode->i_size);
2231 ext4_truncate(inode);
2232 nr_truncates++;
2233 } else {
2234 ext4_msg(sb, KERN_DEBUG,
2235 "%s: deleting unreferenced inode %lu",
2236 __func__, inode->i_ino);
2237 jbd_debug(2, "deleting unreferenced inode %lu\n",
2238 inode->i_ino);
2239 nr_orphans++;
2240 }
2241 iput(inode); /* The delete magic happens here! */
2242 }
2243
2244 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2245
2246 if (nr_orphans)
2247 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2248 PLURAL(nr_orphans));
2249 if (nr_truncates)
2250 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2251 PLURAL(nr_truncates));
2252 #ifdef CONFIG_QUOTA
2253 /* Turn quotas off */
2254 for (i = 0; i < MAXQUOTAS; i++) {
2255 if (sb_dqopt(sb)->files[i])
2256 dquot_quota_off(sb, i);
2257 }
2258 #endif
2259 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2260 }
2261
2262 /*
2263 * Maximal extent format file size.
2264 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2265 * extent format containers, within a sector_t, and within i_blocks
2266 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2267 * so that won't be a limiting factor.
2268 *
2269 * However there is other limiting factor. We do store extents in the form
2270 * of starting block and length, hence the resulting length of the extent
2271 * covering maximum file size must fit into on-disk format containers as
2272 * well. Given that length is always by 1 unit bigger than max unit (because
2273 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2274 *
2275 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2276 */
2277 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2278 {
2279 loff_t res;
2280 loff_t upper_limit = MAX_LFS_FILESIZE;
2281
2282 /* small i_blocks in vfs inode? */
2283 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2284 /*
2285 * CONFIG_LBDAF is not enabled implies the inode
2286 * i_block represent total blocks in 512 bytes
2287 * 32 == size of vfs inode i_blocks * 8
2288 */
2289 upper_limit = (1LL << 32) - 1;
2290
2291 /* total blocks in file system block size */
2292 upper_limit >>= (blkbits - 9);
2293 upper_limit <<= blkbits;
2294 }
2295
2296 /*
2297 * 32-bit extent-start container, ee_block. We lower the maxbytes
2298 * by one fs block, so ee_len can cover the extent of maximum file
2299 * size
2300 */
2301 res = (1LL << 32) - 1;
2302 res <<= blkbits;
2303
2304 /* Sanity check against vm- & vfs- imposed limits */
2305 if (res > upper_limit)
2306 res = upper_limit;
2307
2308 return res;
2309 }
2310
2311 /*
2312 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2313 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2314 * We need to be 1 filesystem block less than the 2^48 sector limit.
2315 */
2316 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2317 {
2318 loff_t res = EXT4_NDIR_BLOCKS;
2319 int meta_blocks;
2320 loff_t upper_limit;
2321 /* This is calculated to be the largest file size for a dense, block
2322 * mapped file such that the file's total number of 512-byte sectors,
2323 * including data and all indirect blocks, does not exceed (2^48 - 1).
2324 *
2325 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2326 * number of 512-byte sectors of the file.
2327 */
2328
2329 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2330 /*
2331 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2332 * the inode i_block field represents total file blocks in
2333 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2334 */
2335 upper_limit = (1LL << 32) - 1;
2336
2337 /* total blocks in file system block size */
2338 upper_limit >>= (bits - 9);
2339
2340 } else {
2341 /*
2342 * We use 48 bit ext4_inode i_blocks
2343 * With EXT4_HUGE_FILE_FL set the i_blocks
2344 * represent total number of blocks in
2345 * file system block size
2346 */
2347 upper_limit = (1LL << 48) - 1;
2348
2349 }
2350
2351 /* indirect blocks */
2352 meta_blocks = 1;
2353 /* double indirect blocks */
2354 meta_blocks += 1 + (1LL << (bits-2));
2355 /* tripple indirect blocks */
2356 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2357
2358 upper_limit -= meta_blocks;
2359 upper_limit <<= bits;
2360
2361 res += 1LL << (bits-2);
2362 res += 1LL << (2*(bits-2));
2363 res += 1LL << (3*(bits-2));
2364 res <<= bits;
2365 if (res > upper_limit)
2366 res = upper_limit;
2367
2368 if (res > MAX_LFS_FILESIZE)
2369 res = MAX_LFS_FILESIZE;
2370
2371 return res;
2372 }
2373
2374 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2375 ext4_fsblk_t logical_sb_block, int nr)
2376 {
2377 struct ext4_sb_info *sbi = EXT4_SB(sb);
2378 ext4_group_t bg, first_meta_bg;
2379 int has_super = 0;
2380
2381 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2382
2383 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2384 nr < first_meta_bg)
2385 return logical_sb_block + nr + 1;
2386 bg = sbi->s_desc_per_block * nr;
2387 if (ext4_bg_has_super(sb, bg))
2388 has_super = 1;
2389
2390 return (has_super + ext4_group_first_block_no(sb, bg));
2391 }
2392
2393 /**
2394 * ext4_get_stripe_size: Get the stripe size.
2395 * @sbi: In memory super block info
2396 *
2397 * If we have specified it via mount option, then
2398 * use the mount option value. If the value specified at mount time is
2399 * greater than the blocks per group use the super block value.
2400 * If the super block value is greater than blocks per group return 0.
2401 * Allocator needs it be less than blocks per group.
2402 *
2403 */
2404 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2405 {
2406 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2407 unsigned long stripe_width =
2408 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2409 int ret;
2410
2411 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2412 ret = sbi->s_stripe;
2413 else if (stripe_width <= sbi->s_blocks_per_group)
2414 ret = stripe_width;
2415 else if (stride <= sbi->s_blocks_per_group)
2416 ret = stride;
2417 else
2418 ret = 0;
2419
2420 /*
2421 * If the stripe width is 1, this makes no sense and
2422 * we set it to 0 to turn off stripe handling code.
2423 */
2424 if (ret <= 1)
2425 ret = 0;
2426
2427 return ret;
2428 }
2429
2430 /* sysfs supprt */
2431
2432 struct ext4_attr {
2433 struct attribute attr;
2434 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2435 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2436 const char *, size_t);
2437 int offset;
2438 };
2439
2440 static int parse_strtoul(const char *buf,
2441 unsigned long max, unsigned long *value)
2442 {
2443 char *endp;
2444
2445 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2446 endp = skip_spaces(endp);
2447 if (*endp || *value > max)
2448 return -EINVAL;
2449
2450 return 0;
2451 }
2452
2453 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2454 struct ext4_sb_info *sbi,
2455 char *buf)
2456 {
2457 return snprintf(buf, PAGE_SIZE, "%llu\n",
2458 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2459 }
2460
2461 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2462 struct ext4_sb_info *sbi, char *buf)
2463 {
2464 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2465
2466 if (!sb->s_bdev->bd_part)
2467 return snprintf(buf, PAGE_SIZE, "0\n");
2468 return snprintf(buf, PAGE_SIZE, "%lu\n",
2469 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2470 sbi->s_sectors_written_start) >> 1);
2471 }
2472
2473 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2474 struct ext4_sb_info *sbi, char *buf)
2475 {
2476 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2477
2478 if (!sb->s_bdev->bd_part)
2479 return snprintf(buf, PAGE_SIZE, "0\n");
2480 return snprintf(buf, PAGE_SIZE, "%llu\n",
2481 (unsigned long long)(sbi->s_kbytes_written +
2482 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2483 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2484 }
2485
2486 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2487 struct ext4_sb_info *sbi, char *buf)
2488 {
2489 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2490 }
2491
2492 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi, char *buf)
2494 {
2495 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2496 }
2497
2498 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2499 struct ext4_sb_info *sbi,
2500 const char *buf, size_t count)
2501 {
2502 unsigned long t;
2503
2504 if (parse_strtoul(buf, 0x40000000, &t))
2505 return -EINVAL;
2506
2507 if (t && !is_power_of_2(t))
2508 return -EINVAL;
2509
2510 sbi->s_inode_readahead_blks = t;
2511 return count;
2512 }
2513
2514 static ssize_t sbi_ui_show(struct ext4_attr *a,
2515 struct ext4_sb_info *sbi, char *buf)
2516 {
2517 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2518
2519 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2520 }
2521
2522 static ssize_t sbi_ui_store(struct ext4_attr *a,
2523 struct ext4_sb_info *sbi,
2524 const char *buf, size_t count)
2525 {
2526 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2527 unsigned long t;
2528
2529 if (parse_strtoul(buf, 0xffffffff, &t))
2530 return -EINVAL;
2531 *ui = t;
2532 return count;
2533 }
2534
2535 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2536 static struct ext4_attr ext4_attr_##_name = { \
2537 .attr = {.name = __stringify(_name), .mode = _mode }, \
2538 .show = _show, \
2539 .store = _store, \
2540 .offset = offsetof(struct ext4_sb_info, _elname), \
2541 }
2542 #define EXT4_ATTR(name, mode, show, store) \
2543 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2544
2545 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2546 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2547 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2548 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2549 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2550 #define ATTR_LIST(name) &ext4_attr_##name.attr
2551
2552 EXT4_RO_ATTR(delayed_allocation_blocks);
2553 EXT4_RO_ATTR(session_write_kbytes);
2554 EXT4_RO_ATTR(lifetime_write_kbytes);
2555 EXT4_RO_ATTR(extent_cache_hits);
2556 EXT4_RO_ATTR(extent_cache_misses);
2557 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2558 inode_readahead_blks_store, s_inode_readahead_blks);
2559 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2560 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2561 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2562 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2563 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2564 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2565 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2566 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2567
2568 static struct attribute *ext4_attrs[] = {
2569 ATTR_LIST(delayed_allocation_blocks),
2570 ATTR_LIST(session_write_kbytes),
2571 ATTR_LIST(lifetime_write_kbytes),
2572 ATTR_LIST(extent_cache_hits),
2573 ATTR_LIST(extent_cache_misses),
2574 ATTR_LIST(inode_readahead_blks),
2575 ATTR_LIST(inode_goal),
2576 ATTR_LIST(mb_stats),
2577 ATTR_LIST(mb_max_to_scan),
2578 ATTR_LIST(mb_min_to_scan),
2579 ATTR_LIST(mb_order2_req),
2580 ATTR_LIST(mb_stream_req),
2581 ATTR_LIST(mb_group_prealloc),
2582 ATTR_LIST(max_writeback_mb_bump),
2583 NULL,
2584 };
2585
2586 /* Features this copy of ext4 supports */
2587 EXT4_INFO_ATTR(lazy_itable_init);
2588 EXT4_INFO_ATTR(batched_discard);
2589
2590 static struct attribute *ext4_feat_attrs[] = {
2591 ATTR_LIST(lazy_itable_init),
2592 ATTR_LIST(batched_discard),
2593 NULL,
2594 };
2595
2596 static ssize_t ext4_attr_show(struct kobject *kobj,
2597 struct attribute *attr, char *buf)
2598 {
2599 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2600 s_kobj);
2601 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2602
2603 return a->show ? a->show(a, sbi, buf) : 0;
2604 }
2605
2606 static ssize_t ext4_attr_store(struct kobject *kobj,
2607 struct attribute *attr,
2608 const char *buf, size_t len)
2609 {
2610 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2611 s_kobj);
2612 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2613
2614 return a->store ? a->store(a, sbi, buf, len) : 0;
2615 }
2616
2617 static void ext4_sb_release(struct kobject *kobj)
2618 {
2619 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2620 s_kobj);
2621 complete(&sbi->s_kobj_unregister);
2622 }
2623
2624 static const struct sysfs_ops ext4_attr_ops = {
2625 .show = ext4_attr_show,
2626 .store = ext4_attr_store,
2627 };
2628
2629 static struct kobj_type ext4_ktype = {
2630 .default_attrs = ext4_attrs,
2631 .sysfs_ops = &ext4_attr_ops,
2632 .release = ext4_sb_release,
2633 };
2634
2635 static void ext4_feat_release(struct kobject *kobj)
2636 {
2637 complete(&ext4_feat->f_kobj_unregister);
2638 }
2639
2640 static struct kobj_type ext4_feat_ktype = {
2641 .default_attrs = ext4_feat_attrs,
2642 .sysfs_ops = &ext4_attr_ops,
2643 .release = ext4_feat_release,
2644 };
2645
2646 /*
2647 * Check whether this filesystem can be mounted based on
2648 * the features present and the RDONLY/RDWR mount requested.
2649 * Returns 1 if this filesystem can be mounted as requested,
2650 * 0 if it cannot be.
2651 */
2652 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2653 {
2654 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2655 ext4_msg(sb, KERN_ERR,
2656 "Couldn't mount because of "
2657 "unsupported optional features (%x)",
2658 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2659 ~EXT4_FEATURE_INCOMPAT_SUPP));
2660 return 0;
2661 }
2662
2663 if (readonly)
2664 return 1;
2665
2666 /* Check that feature set is OK for a read-write mount */
2667 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2668 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2669 "unsupported optional features (%x)",
2670 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2671 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2672 return 0;
2673 }
2674 /*
2675 * Large file size enabled file system can only be mounted
2676 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2677 */
2678 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2679 if (sizeof(blkcnt_t) < sizeof(u64)) {
2680 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2681 "cannot be mounted RDWR without "
2682 "CONFIG_LBDAF");
2683 return 0;
2684 }
2685 }
2686 return 1;
2687 }
2688
2689 /*
2690 * This function is called once a day if we have errors logged
2691 * on the file system
2692 */
2693 static void print_daily_error_info(unsigned long arg)
2694 {
2695 struct super_block *sb = (struct super_block *) arg;
2696 struct ext4_sb_info *sbi;
2697 struct ext4_super_block *es;
2698
2699 sbi = EXT4_SB(sb);
2700 es = sbi->s_es;
2701
2702 if (es->s_error_count)
2703 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2704 le32_to_cpu(es->s_error_count));
2705 if (es->s_first_error_time) {
2706 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2707 sb->s_id, le32_to_cpu(es->s_first_error_time),
2708 (int) sizeof(es->s_first_error_func),
2709 es->s_first_error_func,
2710 le32_to_cpu(es->s_first_error_line));
2711 if (es->s_first_error_ino)
2712 printk(": inode %u",
2713 le32_to_cpu(es->s_first_error_ino));
2714 if (es->s_first_error_block)
2715 printk(": block %llu", (unsigned long long)
2716 le64_to_cpu(es->s_first_error_block));
2717 printk("\n");
2718 }
2719 if (es->s_last_error_time) {
2720 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2721 sb->s_id, le32_to_cpu(es->s_last_error_time),
2722 (int) sizeof(es->s_last_error_func),
2723 es->s_last_error_func,
2724 le32_to_cpu(es->s_last_error_line));
2725 if (es->s_last_error_ino)
2726 printk(": inode %u",
2727 le32_to_cpu(es->s_last_error_ino));
2728 if (es->s_last_error_block)
2729 printk(": block %llu", (unsigned long long)
2730 le64_to_cpu(es->s_last_error_block));
2731 printk("\n");
2732 }
2733 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2734 }
2735
2736 /* Find next suitable group and run ext4_init_inode_table */
2737 static int ext4_run_li_request(struct ext4_li_request *elr)
2738 {
2739 struct ext4_group_desc *gdp = NULL;
2740 ext4_group_t group, ngroups;
2741 struct super_block *sb;
2742 unsigned long timeout = 0;
2743 int ret = 0;
2744
2745 sb = elr->lr_super;
2746 ngroups = EXT4_SB(sb)->s_groups_count;
2747
2748 for (group = elr->lr_next_group; group < ngroups; group++) {
2749 gdp = ext4_get_group_desc(sb, group, NULL);
2750 if (!gdp) {
2751 ret = 1;
2752 break;
2753 }
2754
2755 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2756 break;
2757 }
2758
2759 if (group == ngroups)
2760 ret = 1;
2761
2762 if (!ret) {
2763 timeout = jiffies;
2764 ret = ext4_init_inode_table(sb, group,
2765 elr->lr_timeout ? 0 : 1);
2766 if (elr->lr_timeout == 0) {
2767 timeout = (jiffies - timeout) *
2768 elr->lr_sbi->s_li_wait_mult;
2769 elr->lr_timeout = timeout;
2770 }
2771 elr->lr_next_sched = jiffies + elr->lr_timeout;
2772 elr->lr_next_group = group + 1;
2773 }
2774
2775 return ret;
2776 }
2777
2778 /*
2779 * Remove lr_request from the list_request and free the
2780 * request structure. Should be called with li_list_mtx held
2781 */
2782 static void ext4_remove_li_request(struct ext4_li_request *elr)
2783 {
2784 struct ext4_sb_info *sbi;
2785
2786 if (!elr)
2787 return;
2788
2789 sbi = elr->lr_sbi;
2790
2791 list_del(&elr->lr_request);
2792 sbi->s_li_request = NULL;
2793 kfree(elr);
2794 }
2795
2796 static void ext4_unregister_li_request(struct super_block *sb)
2797 {
2798 mutex_lock(&ext4_li_mtx);
2799 if (!ext4_li_info) {
2800 mutex_unlock(&ext4_li_mtx);
2801 return;
2802 }
2803
2804 mutex_lock(&ext4_li_info->li_list_mtx);
2805 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2806 mutex_unlock(&ext4_li_info->li_list_mtx);
2807 mutex_unlock(&ext4_li_mtx);
2808 }
2809
2810 static struct task_struct *ext4_lazyinit_task;
2811
2812 /*
2813 * This is the function where ext4lazyinit thread lives. It walks
2814 * through the request list searching for next scheduled filesystem.
2815 * When such a fs is found, run the lazy initialization request
2816 * (ext4_rn_li_request) and keep track of the time spend in this
2817 * function. Based on that time we compute next schedule time of
2818 * the request. When walking through the list is complete, compute
2819 * next waking time and put itself into sleep.
2820 */
2821 static int ext4_lazyinit_thread(void *arg)
2822 {
2823 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2824 struct list_head *pos, *n;
2825 struct ext4_li_request *elr;
2826 unsigned long next_wakeup, cur;
2827
2828 BUG_ON(NULL == eli);
2829
2830 cont_thread:
2831 while (true) {
2832 next_wakeup = MAX_JIFFY_OFFSET;
2833
2834 mutex_lock(&eli->li_list_mtx);
2835 if (list_empty(&eli->li_request_list)) {
2836 mutex_unlock(&eli->li_list_mtx);
2837 goto exit_thread;
2838 }
2839
2840 list_for_each_safe(pos, n, &eli->li_request_list) {
2841 elr = list_entry(pos, struct ext4_li_request,
2842 lr_request);
2843
2844 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2845 if (ext4_run_li_request(elr) != 0) {
2846 /* error, remove the lazy_init job */
2847 ext4_remove_li_request(elr);
2848 continue;
2849 }
2850 }
2851
2852 if (time_before(elr->lr_next_sched, next_wakeup))
2853 next_wakeup = elr->lr_next_sched;
2854 }
2855 mutex_unlock(&eli->li_list_mtx);
2856
2857 if (freezing(current))
2858 refrigerator();
2859
2860 cur = jiffies;
2861 if ((time_after_eq(cur, next_wakeup)) ||
2862 (MAX_JIFFY_OFFSET == next_wakeup)) {
2863 cond_resched();
2864 continue;
2865 }
2866
2867 schedule_timeout_interruptible(next_wakeup - cur);
2868
2869 if (kthread_should_stop()) {
2870 ext4_clear_request_list();
2871 goto exit_thread;
2872 }
2873 }
2874
2875 exit_thread:
2876 /*
2877 * It looks like the request list is empty, but we need
2878 * to check it under the li_list_mtx lock, to prevent any
2879 * additions into it, and of course we should lock ext4_li_mtx
2880 * to atomically free the list and ext4_li_info, because at
2881 * this point another ext4 filesystem could be registering
2882 * new one.
2883 */
2884 mutex_lock(&ext4_li_mtx);
2885 mutex_lock(&eli->li_list_mtx);
2886 if (!list_empty(&eli->li_request_list)) {
2887 mutex_unlock(&eli->li_list_mtx);
2888 mutex_unlock(&ext4_li_mtx);
2889 goto cont_thread;
2890 }
2891 mutex_unlock(&eli->li_list_mtx);
2892 kfree(ext4_li_info);
2893 ext4_li_info = NULL;
2894 mutex_unlock(&ext4_li_mtx);
2895
2896 return 0;
2897 }
2898
2899 static void ext4_clear_request_list(void)
2900 {
2901 struct list_head *pos, *n;
2902 struct ext4_li_request *elr;
2903
2904 mutex_lock(&ext4_li_info->li_list_mtx);
2905 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2906 elr = list_entry(pos, struct ext4_li_request,
2907 lr_request);
2908 ext4_remove_li_request(elr);
2909 }
2910 mutex_unlock(&ext4_li_info->li_list_mtx);
2911 }
2912
2913 static int ext4_run_lazyinit_thread(void)
2914 {
2915 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2916 ext4_li_info, "ext4lazyinit");
2917 if (IS_ERR(ext4_lazyinit_task)) {
2918 int err = PTR_ERR(ext4_lazyinit_task);
2919 ext4_clear_request_list();
2920 kfree(ext4_li_info);
2921 ext4_li_info = NULL;
2922 printk(KERN_CRIT "EXT4: error %d creating inode table "
2923 "initialization thread\n",
2924 err);
2925 return err;
2926 }
2927 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2928 return 0;
2929 }
2930
2931 /*
2932 * Check whether it make sense to run itable init. thread or not.
2933 * If there is at least one uninitialized inode table, return
2934 * corresponding group number, else the loop goes through all
2935 * groups and return total number of groups.
2936 */
2937 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2938 {
2939 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2940 struct ext4_group_desc *gdp = NULL;
2941
2942 for (group = 0; group < ngroups; group++) {
2943 gdp = ext4_get_group_desc(sb, group, NULL);
2944 if (!gdp)
2945 continue;
2946
2947 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2948 break;
2949 }
2950
2951 return group;
2952 }
2953
2954 static int ext4_li_info_new(void)
2955 {
2956 struct ext4_lazy_init *eli = NULL;
2957
2958 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2959 if (!eli)
2960 return -ENOMEM;
2961
2962 INIT_LIST_HEAD(&eli->li_request_list);
2963 mutex_init(&eli->li_list_mtx);
2964
2965 eli->li_state |= EXT4_LAZYINIT_QUIT;
2966
2967 ext4_li_info = eli;
2968
2969 return 0;
2970 }
2971
2972 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2973 ext4_group_t start)
2974 {
2975 struct ext4_sb_info *sbi = EXT4_SB(sb);
2976 struct ext4_li_request *elr;
2977 unsigned long rnd;
2978
2979 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2980 if (!elr)
2981 return NULL;
2982
2983 elr->lr_super = sb;
2984 elr->lr_sbi = sbi;
2985 elr->lr_next_group = start;
2986
2987 /*
2988 * Randomize first schedule time of the request to
2989 * spread the inode table initialization requests
2990 * better.
2991 */
2992 get_random_bytes(&rnd, sizeof(rnd));
2993 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2994 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2995
2996 return elr;
2997 }
2998
2999 static int ext4_register_li_request(struct super_block *sb,
3000 ext4_group_t first_not_zeroed)
3001 {
3002 struct ext4_sb_info *sbi = EXT4_SB(sb);
3003 struct ext4_li_request *elr;
3004 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3005 int ret = 0;
3006
3007 if (sbi->s_li_request != NULL) {
3008 /*
3009 * Reset timeout so it can be computed again, because
3010 * s_li_wait_mult might have changed.
3011 */
3012 sbi->s_li_request->lr_timeout = 0;
3013 return 0;
3014 }
3015
3016 if (first_not_zeroed == ngroups ||
3017 (sb->s_flags & MS_RDONLY) ||
3018 !test_opt(sb, INIT_INODE_TABLE))
3019 return 0;
3020
3021 elr = ext4_li_request_new(sb, first_not_zeroed);
3022 if (!elr)
3023 return -ENOMEM;
3024
3025 mutex_lock(&ext4_li_mtx);
3026
3027 if (NULL == ext4_li_info) {
3028 ret = ext4_li_info_new();
3029 if (ret)
3030 goto out;
3031 }
3032
3033 mutex_lock(&ext4_li_info->li_list_mtx);
3034 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3035 mutex_unlock(&ext4_li_info->li_list_mtx);
3036
3037 sbi->s_li_request = elr;
3038 /*
3039 * set elr to NULL here since it has been inserted to
3040 * the request_list and the removal and free of it is
3041 * handled by ext4_clear_request_list from now on.
3042 */
3043 elr = NULL;
3044
3045 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3046 ret = ext4_run_lazyinit_thread();
3047 if (ret)
3048 goto out;
3049 }
3050 out:
3051 mutex_unlock(&ext4_li_mtx);
3052 if (ret)
3053 kfree(elr);
3054 return ret;
3055 }
3056
3057 /*
3058 * We do not need to lock anything since this is called on
3059 * module unload.
3060 */
3061 static void ext4_destroy_lazyinit_thread(void)
3062 {
3063 /*
3064 * If thread exited earlier
3065 * there's nothing to be done.
3066 */
3067 if (!ext4_li_info || !ext4_lazyinit_task)
3068 return;
3069
3070 kthread_stop(ext4_lazyinit_task);
3071 }
3072
3073 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3074 __releases(kernel_lock)
3075 __acquires(kernel_lock)
3076 {
3077 char *orig_data = kstrdup(data, GFP_KERNEL);
3078 struct buffer_head *bh;
3079 struct ext4_super_block *es = NULL;
3080 struct ext4_sb_info *sbi;
3081 ext4_fsblk_t block;
3082 ext4_fsblk_t sb_block = get_sb_block(&data);
3083 ext4_fsblk_t logical_sb_block;
3084 unsigned long offset = 0;
3085 unsigned long journal_devnum = 0;
3086 unsigned long def_mount_opts;
3087 struct inode *root;
3088 char *cp;
3089 const char *descr;
3090 int ret = -ENOMEM;
3091 int blocksize;
3092 unsigned int db_count;
3093 unsigned int i;
3094 int needs_recovery, has_huge_files;
3095 __u64 blocks_count;
3096 int err;
3097 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3098 ext4_group_t first_not_zeroed;
3099
3100 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3101 if (!sbi)
3102 goto out_free_orig;
3103
3104 sbi->s_blockgroup_lock =
3105 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3106 if (!sbi->s_blockgroup_lock) {
3107 kfree(sbi);
3108 goto out_free_orig;
3109 }
3110 sb->s_fs_info = sbi;
3111 sbi->s_mount_opt = 0;
3112 sbi->s_resuid = EXT4_DEF_RESUID;
3113 sbi->s_resgid = EXT4_DEF_RESGID;
3114 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3115 sbi->s_sb_block = sb_block;
3116 if (sb->s_bdev->bd_part)
3117 sbi->s_sectors_written_start =
3118 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3119
3120 /* Cleanup superblock name */
3121 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3122 *cp = '!';
3123
3124 ret = -EINVAL;
3125 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3126 if (!blocksize) {
3127 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3128 goto out_fail;
3129 }
3130
3131 /*
3132 * The ext4 superblock will not be buffer aligned for other than 1kB
3133 * block sizes. We need to calculate the offset from buffer start.
3134 */
3135 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3136 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3137 offset = do_div(logical_sb_block, blocksize);
3138 } else {
3139 logical_sb_block = sb_block;
3140 }
3141
3142 if (!(bh = sb_bread(sb, logical_sb_block))) {
3143 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3144 goto out_fail;
3145 }
3146 /*
3147 * Note: s_es must be initialized as soon as possible because
3148 * some ext4 macro-instructions depend on its value
3149 */
3150 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3151 sbi->s_es = es;
3152 sb->s_magic = le16_to_cpu(es->s_magic);
3153 if (sb->s_magic != EXT4_SUPER_MAGIC)
3154 goto cantfind_ext4;
3155 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3156
3157 /* Set defaults before we parse the mount options */
3158 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3159 set_opt(sb, INIT_INODE_TABLE);
3160 if (def_mount_opts & EXT4_DEFM_DEBUG)
3161 set_opt(sb, DEBUG);
3162 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3163 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3164 "2.6.38");
3165 set_opt(sb, GRPID);
3166 }
3167 if (def_mount_opts & EXT4_DEFM_UID16)
3168 set_opt(sb, NO_UID32);
3169 /* xattr user namespace & acls are now defaulted on */
3170 #ifdef CONFIG_EXT4_FS_XATTR
3171 set_opt(sb, XATTR_USER);
3172 #endif
3173 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3174 set_opt(sb, POSIX_ACL);
3175 #endif
3176 set_opt(sb, MBLK_IO_SUBMIT);
3177 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3178 set_opt(sb, JOURNAL_DATA);
3179 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3180 set_opt(sb, ORDERED_DATA);
3181 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3182 set_opt(sb, WRITEBACK_DATA);
3183
3184 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3185 set_opt(sb, ERRORS_PANIC);
3186 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3187 set_opt(sb, ERRORS_CONT);
3188 else
3189 set_opt(sb, ERRORS_RO);
3190 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3191 set_opt(sb, BLOCK_VALIDITY);
3192 if (def_mount_opts & EXT4_DEFM_DISCARD)
3193 set_opt(sb, DISCARD);
3194
3195 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3196 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3197 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3198 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3199 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3200
3201 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3202 set_opt(sb, BARRIER);
3203
3204 /*
3205 * enable delayed allocation by default
3206 * Use -o nodelalloc to turn it off
3207 */
3208 if (!IS_EXT3_SB(sb) &&
3209 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3210 set_opt(sb, DELALLOC);
3211
3212 /*
3213 * set default s_li_wait_mult for lazyinit, for the case there is
3214 * no mount option specified.
3215 */
3216 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3217
3218 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3219 &journal_devnum, &journal_ioprio, NULL, 0)) {
3220 ext4_msg(sb, KERN_WARNING,
3221 "failed to parse options in superblock: %s",
3222 sbi->s_es->s_mount_opts);
3223 }
3224 if (!parse_options((char *) data, sb, &journal_devnum,
3225 &journal_ioprio, NULL, 0))
3226 goto failed_mount;
3227
3228 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3229 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3230
3231 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3232 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3233 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3234 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3235 ext4_msg(sb, KERN_WARNING,
3236 "feature flags set on rev 0 fs, "
3237 "running e2fsck is recommended");
3238
3239 if (IS_EXT2_SB(sb)) {
3240 if (ext2_feature_set_ok(sb))
3241 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3242 "using the ext4 subsystem");
3243 else {
3244 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3245 "to feature incompatibilities");
3246 goto failed_mount;
3247 }
3248 }
3249
3250 if (IS_EXT3_SB(sb)) {
3251 if (ext3_feature_set_ok(sb))
3252 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3253 "using the ext4 subsystem");
3254 else {
3255 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3256 "to feature incompatibilities");
3257 goto failed_mount;
3258 }
3259 }
3260
3261 /*
3262 * Check feature flags regardless of the revision level, since we
3263 * previously didn't change the revision level when setting the flags,
3264 * so there is a chance incompat flags are set on a rev 0 filesystem.
3265 */
3266 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3267 goto failed_mount;
3268
3269 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3270
3271 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3272 blocksize > EXT4_MAX_BLOCK_SIZE) {
3273 ext4_msg(sb, KERN_ERR,
3274 "Unsupported filesystem blocksize %d", blocksize);
3275 goto failed_mount;
3276 }
3277
3278 if (sb->s_blocksize != blocksize) {
3279 /* Validate the filesystem blocksize */
3280 if (!sb_set_blocksize(sb, blocksize)) {
3281 ext4_msg(sb, KERN_ERR, "bad block size %d",
3282 blocksize);
3283 goto failed_mount;
3284 }
3285
3286 brelse(bh);
3287 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3288 offset = do_div(logical_sb_block, blocksize);
3289 bh = sb_bread(sb, logical_sb_block);
3290 if (!bh) {
3291 ext4_msg(sb, KERN_ERR,
3292 "Can't read superblock on 2nd try");
3293 goto failed_mount;
3294 }
3295 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3296 sbi->s_es = es;
3297 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3298 ext4_msg(sb, KERN_ERR,
3299 "Magic mismatch, very weird!");
3300 goto failed_mount;
3301 }
3302 }
3303
3304 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3305 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3306 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3307 has_huge_files);
3308 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3309
3310 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3311 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3312 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3313 } else {
3314 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3315 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3316 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3317 (!is_power_of_2(sbi->s_inode_size)) ||
3318 (sbi->s_inode_size > blocksize)) {
3319 ext4_msg(sb, KERN_ERR,
3320 "unsupported inode size: %d",
3321 sbi->s_inode_size);
3322 goto failed_mount;
3323 }
3324 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3325 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3326 }
3327
3328 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3329 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3330 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3331 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3332 !is_power_of_2(sbi->s_desc_size)) {
3333 ext4_msg(sb, KERN_ERR,
3334 "unsupported descriptor size %lu",
3335 sbi->s_desc_size);
3336 goto failed_mount;
3337 }
3338 } else
3339 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3340
3341 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3342 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3343 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3344 goto cantfind_ext4;
3345
3346 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3347 if (sbi->s_inodes_per_block == 0)
3348 goto cantfind_ext4;
3349 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3350 sbi->s_inodes_per_block;
3351 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3352 sbi->s_sbh = bh;
3353 sbi->s_mount_state = le16_to_cpu(es->s_state);
3354 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3355 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3356
3357 for (i = 0; i < 4; i++)
3358 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3359 sbi->s_def_hash_version = es->s_def_hash_version;
3360 i = le32_to_cpu(es->s_flags);
3361 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3362 sbi->s_hash_unsigned = 3;
3363 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3364 #ifdef __CHAR_UNSIGNED__
3365 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3366 sbi->s_hash_unsigned = 3;
3367 #else
3368 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3369 #endif
3370 sb->s_dirt = 1;
3371 }
3372
3373 if (sbi->s_blocks_per_group > blocksize * 8) {
3374 ext4_msg(sb, KERN_ERR,
3375 "#blocks per group too big: %lu",
3376 sbi->s_blocks_per_group);
3377 goto failed_mount;
3378 }
3379 if (sbi->s_inodes_per_group > blocksize * 8) {
3380 ext4_msg(sb, KERN_ERR,
3381 "#inodes per group too big: %lu",
3382 sbi->s_inodes_per_group);
3383 goto failed_mount;
3384 }
3385
3386 /*
3387 * Test whether we have more sectors than will fit in sector_t,
3388 * and whether the max offset is addressable by the page cache.
3389 */
3390 err = generic_check_addressable(sb->s_blocksize_bits,
3391 ext4_blocks_count(es));
3392 if (err) {
3393 ext4_msg(sb, KERN_ERR, "filesystem"
3394 " too large to mount safely on this system");
3395 if (sizeof(sector_t) < 8)
3396 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3397 ret = err;
3398 goto failed_mount;
3399 }
3400
3401 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3402 goto cantfind_ext4;
3403
3404 /* check blocks count against device size */
3405 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3406 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3407 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3408 "exceeds size of device (%llu blocks)",
3409 ext4_blocks_count(es), blocks_count);
3410 goto failed_mount;
3411 }
3412
3413 /*
3414 * It makes no sense for the first data block to be beyond the end
3415 * of the filesystem.
3416 */
3417 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3418 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3419 "block %u is beyond end of filesystem (%llu)",
3420 le32_to_cpu(es->s_first_data_block),
3421 ext4_blocks_count(es));
3422 goto failed_mount;
3423 }
3424 blocks_count = (ext4_blocks_count(es) -
3425 le32_to_cpu(es->s_first_data_block) +
3426 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3427 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3428 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3429 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3430 "(block count %llu, first data block %u, "
3431 "blocks per group %lu)", sbi->s_groups_count,
3432 ext4_blocks_count(es),
3433 le32_to_cpu(es->s_first_data_block),
3434 EXT4_BLOCKS_PER_GROUP(sb));
3435 goto failed_mount;
3436 }
3437 sbi->s_groups_count = blocks_count;
3438 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3439 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3440 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3441 EXT4_DESC_PER_BLOCK(sb);
3442 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3443 GFP_KERNEL);
3444 if (sbi->s_group_desc == NULL) {
3445 ext4_msg(sb, KERN_ERR, "not enough memory");
3446 goto failed_mount;
3447 }
3448
3449 #ifdef CONFIG_PROC_FS
3450 if (ext4_proc_root)
3451 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3452 #endif
3453
3454 bgl_lock_init(sbi->s_blockgroup_lock);
3455
3456 for (i = 0; i < db_count; i++) {
3457 block = descriptor_loc(sb, logical_sb_block, i);
3458 sbi->s_group_desc[i] = sb_bread(sb, block);
3459 if (!sbi->s_group_desc[i]) {
3460 ext4_msg(sb, KERN_ERR,
3461 "can't read group descriptor %d", i);
3462 db_count = i;
3463 goto failed_mount2;
3464 }
3465 }
3466 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3467 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3468 goto failed_mount2;
3469 }
3470 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3471 if (!ext4_fill_flex_info(sb)) {
3472 ext4_msg(sb, KERN_ERR,
3473 "unable to initialize "
3474 "flex_bg meta info!");
3475 goto failed_mount2;
3476 }
3477
3478 sbi->s_gdb_count = db_count;
3479 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3480 spin_lock_init(&sbi->s_next_gen_lock);
3481
3482 init_timer(&sbi->s_err_report);
3483 sbi->s_err_report.function = print_daily_error_info;
3484 sbi->s_err_report.data = (unsigned long) sb;
3485
3486 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3487 ext4_count_free_blocks(sb));
3488 if (!err) {
3489 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3490 ext4_count_free_inodes(sb));
3491 }
3492 if (!err) {
3493 err = percpu_counter_init(&sbi->s_dirs_counter,
3494 ext4_count_dirs(sb));
3495 }
3496 if (!err) {
3497 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3498 }
3499 if (err) {
3500 ext4_msg(sb, KERN_ERR, "insufficient memory");
3501 goto failed_mount3;
3502 }
3503
3504 sbi->s_stripe = ext4_get_stripe_size(sbi);
3505 sbi->s_max_writeback_mb_bump = 128;
3506
3507 /*
3508 * set up enough so that it can read an inode
3509 */
3510 if (!test_opt(sb, NOLOAD) &&
3511 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3512 sb->s_op = &ext4_sops;
3513 else
3514 sb->s_op = &ext4_nojournal_sops;
3515 sb->s_export_op = &ext4_export_ops;
3516 sb->s_xattr = ext4_xattr_handlers;
3517 #ifdef CONFIG_QUOTA
3518 sb->s_qcop = &ext4_qctl_operations;
3519 sb->dq_op = &ext4_quota_operations;
3520 #endif
3521 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3522
3523 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3524 mutex_init(&sbi->s_orphan_lock);
3525 sbi->s_resize_flags = 0;
3526
3527 sb->s_root = NULL;
3528
3529 needs_recovery = (es->s_last_orphan != 0 ||
3530 EXT4_HAS_INCOMPAT_FEATURE(sb,
3531 EXT4_FEATURE_INCOMPAT_RECOVER));
3532
3533 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3534 !(sb->s_flags & MS_RDONLY))
3535 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3536 goto failed_mount3;
3537
3538 /*
3539 * The first inode we look at is the journal inode. Don't try
3540 * root first: it may be modified in the journal!
3541 */
3542 if (!test_opt(sb, NOLOAD) &&
3543 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3544 if (ext4_load_journal(sb, es, journal_devnum))
3545 goto failed_mount3;
3546 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3547 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3548 ext4_msg(sb, KERN_ERR, "required journal recovery "
3549 "suppressed and not mounted read-only");
3550 goto failed_mount_wq;
3551 } else {
3552 clear_opt(sb, DATA_FLAGS);
3553 sbi->s_journal = NULL;
3554 needs_recovery = 0;
3555 goto no_journal;
3556 }
3557
3558 if (ext4_blocks_count(es) > 0xffffffffULL &&
3559 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3560 JBD2_FEATURE_INCOMPAT_64BIT)) {
3561 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3562 goto failed_mount_wq;
3563 }
3564
3565 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3566 jbd2_journal_set_features(sbi->s_journal,
3567 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3568 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3569 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3570 jbd2_journal_set_features(sbi->s_journal,
3571 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3572 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3573 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3574 } else {
3575 jbd2_journal_clear_features(sbi->s_journal,
3576 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3577 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3578 }
3579
3580 /* We have now updated the journal if required, so we can
3581 * validate the data journaling mode. */
3582 switch (test_opt(sb, DATA_FLAGS)) {
3583 case 0:
3584 /* No mode set, assume a default based on the journal
3585 * capabilities: ORDERED_DATA if the journal can
3586 * cope, else JOURNAL_DATA
3587 */
3588 if (jbd2_journal_check_available_features
3589 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3590 set_opt(sb, ORDERED_DATA);
3591 else
3592 set_opt(sb, JOURNAL_DATA);
3593 break;
3594
3595 case EXT4_MOUNT_ORDERED_DATA:
3596 case EXT4_MOUNT_WRITEBACK_DATA:
3597 if (!jbd2_journal_check_available_features
3598 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3599 ext4_msg(sb, KERN_ERR, "Journal does not support "
3600 "requested data journaling mode");
3601 goto failed_mount_wq;
3602 }
3603 default:
3604 break;
3605 }
3606 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3607
3608 /*
3609 * The journal may have updated the bg summary counts, so we
3610 * need to update the global counters.
3611 */
3612 percpu_counter_set(&sbi->s_freeblocks_counter,
3613 ext4_count_free_blocks(sb));
3614 percpu_counter_set(&sbi->s_freeinodes_counter,
3615 ext4_count_free_inodes(sb));
3616 percpu_counter_set(&sbi->s_dirs_counter,
3617 ext4_count_dirs(sb));
3618 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3619
3620 no_journal:
3621 /*
3622 * The maximum number of concurrent works can be high and
3623 * concurrency isn't really necessary. Limit it to 1.
3624 */
3625 EXT4_SB(sb)->dio_unwritten_wq =
3626 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3627 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3628 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3629 goto failed_mount_wq;
3630 }
3631
3632 /*
3633 * The jbd2_journal_load will have done any necessary log recovery,
3634 * so we can safely mount the rest of the filesystem now.
3635 */
3636
3637 root = ext4_iget(sb, EXT4_ROOT_INO);
3638 if (IS_ERR(root)) {
3639 ext4_msg(sb, KERN_ERR, "get root inode failed");
3640 ret = PTR_ERR(root);
3641 root = NULL;
3642 goto failed_mount4;
3643 }
3644 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3645 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3646 goto failed_mount4;
3647 }
3648 sb->s_root = d_alloc_root(root);
3649 if (!sb->s_root) {
3650 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3651 ret = -ENOMEM;
3652 goto failed_mount4;
3653 }
3654
3655 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3656
3657 /* determine the minimum size of new large inodes, if present */
3658 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3659 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3660 EXT4_GOOD_OLD_INODE_SIZE;
3661 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3662 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3663 if (sbi->s_want_extra_isize <
3664 le16_to_cpu(es->s_want_extra_isize))
3665 sbi->s_want_extra_isize =
3666 le16_to_cpu(es->s_want_extra_isize);
3667 if (sbi->s_want_extra_isize <
3668 le16_to_cpu(es->s_min_extra_isize))
3669 sbi->s_want_extra_isize =
3670 le16_to_cpu(es->s_min_extra_isize);
3671 }
3672 }
3673 /* Check if enough inode space is available */
3674 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3675 sbi->s_inode_size) {
3676 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3677 EXT4_GOOD_OLD_INODE_SIZE;
3678 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3679 "available");
3680 }
3681
3682 if (test_opt(sb, DELALLOC) &&
3683 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3684 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3685 "requested data journaling mode");
3686 clear_opt(sb, DELALLOC);
3687 }
3688 if (test_opt(sb, DIOREAD_NOLOCK)) {
3689 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3690 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3691 "option - requested data journaling mode");
3692 clear_opt(sb, DIOREAD_NOLOCK);
3693 }
3694 if (sb->s_blocksize < PAGE_SIZE) {
3695 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3696 "option - block size is too small");
3697 clear_opt(sb, DIOREAD_NOLOCK);
3698 }
3699 }
3700
3701 err = ext4_setup_system_zone(sb);
3702 if (err) {
3703 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3704 "zone (%d)", err);
3705 goto failed_mount4;
3706 }
3707
3708 ext4_ext_init(sb);
3709 err = ext4_mb_init(sb, needs_recovery);
3710 if (err) {
3711 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3712 err);
3713 goto failed_mount4;
3714 }
3715
3716 err = ext4_register_li_request(sb, first_not_zeroed);
3717 if (err)
3718 goto failed_mount4;
3719
3720 sbi->s_kobj.kset = ext4_kset;
3721 init_completion(&sbi->s_kobj_unregister);
3722 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3723 "%s", sb->s_id);
3724 if (err) {
3725 ext4_mb_release(sb);
3726 ext4_ext_release(sb);
3727 goto failed_mount4;
3728 };
3729
3730 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3731 ext4_orphan_cleanup(sb, es);
3732 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3733 if (needs_recovery) {
3734 ext4_msg(sb, KERN_INFO, "recovery complete");
3735 ext4_mark_recovery_complete(sb, es);
3736 }
3737 if (EXT4_SB(sb)->s_journal) {
3738 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3739 descr = " journalled data mode";
3740 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3741 descr = " ordered data mode";
3742 else
3743 descr = " writeback data mode";
3744 } else
3745 descr = "out journal";
3746
3747 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3748 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3749 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3750
3751 if (es->s_error_count)
3752 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3753
3754 kfree(orig_data);
3755 return 0;
3756
3757 cantfind_ext4:
3758 if (!silent)
3759 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3760 goto failed_mount;
3761
3762 failed_mount4:
3763 iput(root);
3764 sb->s_root = NULL;
3765 ext4_msg(sb, KERN_ERR, "mount failed");
3766 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3767 failed_mount_wq:
3768 ext4_release_system_zone(sb);
3769 if (sbi->s_journal) {
3770 jbd2_journal_destroy(sbi->s_journal);
3771 sbi->s_journal = NULL;
3772 }
3773 failed_mount3:
3774 del_timer(&sbi->s_err_report);
3775 if (sbi->s_flex_groups)
3776 ext4_kvfree(sbi->s_flex_groups);
3777 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3778 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3779 percpu_counter_destroy(&sbi->s_dirs_counter);
3780 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3781 if (sbi->s_mmp_tsk)
3782 kthread_stop(sbi->s_mmp_tsk);
3783 failed_mount2:
3784 for (i = 0; i < db_count; i++)
3785 brelse(sbi->s_group_desc[i]);
3786 kfree(sbi->s_group_desc);
3787 failed_mount:
3788 if (sbi->s_proc) {
3789 remove_proc_entry(sb->s_id, ext4_proc_root);
3790 }
3791 #ifdef CONFIG_QUOTA
3792 for (i = 0; i < MAXQUOTAS; i++)
3793 kfree(sbi->s_qf_names[i]);
3794 #endif
3795 ext4_blkdev_remove(sbi);
3796 brelse(bh);
3797 out_fail:
3798 sb->s_fs_info = NULL;
3799 kfree(sbi->s_blockgroup_lock);
3800 kfree(sbi);
3801 out_free_orig:
3802 kfree(orig_data);
3803 return ret;
3804 }
3805
3806 /*
3807 * Setup any per-fs journal parameters now. We'll do this both on
3808 * initial mount, once the journal has been initialised but before we've
3809 * done any recovery; and again on any subsequent remount.
3810 */
3811 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3812 {
3813 struct ext4_sb_info *sbi = EXT4_SB(sb);
3814
3815 journal->j_commit_interval = sbi->s_commit_interval;
3816 journal->j_min_batch_time = sbi->s_min_batch_time;
3817 journal->j_max_batch_time = sbi->s_max_batch_time;
3818
3819 write_lock(&journal->j_state_lock);
3820 if (test_opt(sb, BARRIER))
3821 journal->j_flags |= JBD2_BARRIER;
3822 else
3823 journal->j_flags &= ~JBD2_BARRIER;
3824 if (test_opt(sb, DATA_ERR_ABORT))
3825 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3826 else
3827 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3828 write_unlock(&journal->j_state_lock);
3829 }
3830
3831 static journal_t *ext4_get_journal(struct super_block *sb,
3832 unsigned int journal_inum)
3833 {
3834 struct inode *journal_inode;
3835 journal_t *journal;
3836
3837 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3838
3839 /* First, test for the existence of a valid inode on disk. Bad
3840 * things happen if we iget() an unused inode, as the subsequent
3841 * iput() will try to delete it. */
3842
3843 journal_inode = ext4_iget(sb, journal_inum);
3844 if (IS_ERR(journal_inode)) {
3845 ext4_msg(sb, KERN_ERR, "no journal found");
3846 return NULL;
3847 }
3848 if (!journal_inode->i_nlink) {
3849 make_bad_inode(journal_inode);
3850 iput(journal_inode);
3851 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3852 return NULL;
3853 }
3854
3855 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3856 journal_inode, journal_inode->i_size);
3857 if (!S_ISREG(journal_inode->i_mode)) {
3858 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3859 iput(journal_inode);
3860 return NULL;
3861 }
3862
3863 journal = jbd2_journal_init_inode(journal_inode);
3864 if (!journal) {
3865 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3866 iput(journal_inode);
3867 return NULL;
3868 }
3869 journal->j_private = sb;
3870 ext4_init_journal_params(sb, journal);
3871 return journal;
3872 }
3873
3874 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3875 dev_t j_dev)
3876 {
3877 struct buffer_head *bh;
3878 journal_t *journal;
3879 ext4_fsblk_t start;
3880 ext4_fsblk_t len;
3881 int hblock, blocksize;
3882 ext4_fsblk_t sb_block;
3883 unsigned long offset;
3884 struct ext4_super_block *es;
3885 struct block_device *bdev;
3886
3887 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3888
3889 bdev = ext4_blkdev_get(j_dev, sb);
3890 if (bdev == NULL)
3891 return NULL;
3892
3893 blocksize = sb->s_blocksize;
3894 hblock = bdev_logical_block_size(bdev);
3895 if (blocksize < hblock) {
3896 ext4_msg(sb, KERN_ERR,
3897 "blocksize too small for journal device");
3898 goto out_bdev;
3899 }
3900
3901 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3902 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3903 set_blocksize(bdev, blocksize);
3904 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3905 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3906 "external journal");
3907 goto out_bdev;
3908 }
3909
3910 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3911 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3912 !(le32_to_cpu(es->s_feature_incompat) &
3913 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3914 ext4_msg(sb, KERN_ERR, "external journal has "
3915 "bad superblock");
3916 brelse(bh);
3917 goto out_bdev;
3918 }
3919
3920 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3921 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3922 brelse(bh);
3923 goto out_bdev;
3924 }
3925
3926 len = ext4_blocks_count(es);
3927 start = sb_block + 1;
3928 brelse(bh); /* we're done with the superblock */
3929
3930 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3931 start, len, blocksize);
3932 if (!journal) {
3933 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3934 goto out_bdev;
3935 }
3936 journal->j_private = sb;
3937 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3938 wait_on_buffer(journal->j_sb_buffer);
3939 if (!buffer_uptodate(journal->j_sb_buffer)) {
3940 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3941 goto out_journal;
3942 }
3943 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3944 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3945 "user (unsupported) - %d",
3946 be32_to_cpu(journal->j_superblock->s_nr_users));
3947 goto out_journal;
3948 }
3949 EXT4_SB(sb)->journal_bdev = bdev;
3950 ext4_init_journal_params(sb, journal);
3951 return journal;
3952
3953 out_journal:
3954 jbd2_journal_destroy(journal);
3955 out_bdev:
3956 ext4_blkdev_put(bdev);
3957 return NULL;
3958 }
3959
3960 static int ext4_load_journal(struct super_block *sb,
3961 struct ext4_super_block *es,
3962 unsigned long journal_devnum)
3963 {
3964 journal_t *journal;
3965 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3966 dev_t journal_dev;
3967 int err = 0;
3968 int really_read_only;
3969
3970 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3971
3972 if (journal_devnum &&
3973 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3974 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3975 "numbers have changed");
3976 journal_dev = new_decode_dev(journal_devnum);
3977 } else
3978 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3979
3980 really_read_only = bdev_read_only(sb->s_bdev);
3981
3982 /*
3983 * Are we loading a blank journal or performing recovery after a
3984 * crash? For recovery, we need to check in advance whether we
3985 * can get read-write access to the device.
3986 */
3987 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3988 if (sb->s_flags & MS_RDONLY) {
3989 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3990 "required on readonly filesystem");
3991 if (really_read_only) {
3992 ext4_msg(sb, KERN_ERR, "write access "
3993 "unavailable, cannot proceed");
3994 return -EROFS;
3995 }
3996 ext4_msg(sb, KERN_INFO, "write access will "
3997 "be enabled during recovery");
3998 }
3999 }
4000
4001 if (journal_inum && journal_dev) {
4002 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4003 "and inode journals!");
4004 return -EINVAL;
4005 }
4006
4007 if (journal_inum) {
4008 if (!(journal = ext4_get_journal(sb, journal_inum)))
4009 return -EINVAL;
4010 } else {
4011 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4012 return -EINVAL;
4013 }
4014
4015 if (!(journal->j_flags & JBD2_BARRIER))
4016 ext4_msg(sb, KERN_INFO, "barriers disabled");
4017
4018 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
4019 err = jbd2_journal_update_format(journal);
4020 if (err) {
4021 ext4_msg(sb, KERN_ERR, "error updating journal");
4022 jbd2_journal_destroy(journal);
4023 return err;
4024 }
4025 }
4026
4027 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4028 err = jbd2_journal_wipe(journal, !really_read_only);
4029 if (!err) {
4030 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4031 if (save)
4032 memcpy(save, ((char *) es) +
4033 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4034 err = jbd2_journal_load(journal);
4035 if (save)
4036 memcpy(((char *) es) + EXT4_S_ERR_START,
4037 save, EXT4_S_ERR_LEN);
4038 kfree(save);
4039 }
4040
4041 if (err) {
4042 ext4_msg(sb, KERN_ERR, "error loading journal");
4043 jbd2_journal_destroy(journal);
4044 return err;
4045 }
4046
4047 EXT4_SB(sb)->s_journal = journal;
4048 ext4_clear_journal_err(sb, es);
4049
4050 if (!really_read_only && journal_devnum &&
4051 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4052 es->s_journal_dev = cpu_to_le32(journal_devnum);
4053
4054 /* Make sure we flush the recovery flag to disk. */
4055 ext4_commit_super(sb, 1);
4056 }
4057
4058 return 0;
4059 }
4060
4061 static int ext4_commit_super(struct super_block *sb, int sync)
4062 {
4063 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4064 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4065 int error = 0;
4066
4067 if (!sbh)
4068 return error;
4069 if (buffer_write_io_error(sbh)) {
4070 /*
4071 * Oh, dear. A previous attempt to write the
4072 * superblock failed. This could happen because the
4073 * USB device was yanked out. Or it could happen to
4074 * be a transient write error and maybe the block will
4075 * be remapped. Nothing we can do but to retry the
4076 * write and hope for the best.
4077 */
4078 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4079 "superblock detected");
4080 clear_buffer_write_io_error(sbh);
4081 set_buffer_uptodate(sbh);
4082 }
4083 /*
4084 * If the file system is mounted read-only, don't update the
4085 * superblock write time. This avoids updating the superblock
4086 * write time when we are mounting the root file system
4087 * read/only but we need to replay the journal; at that point,
4088 * for people who are east of GMT and who make their clock
4089 * tick in localtime for Windows bug-for-bug compatibility,
4090 * the clock is set in the future, and this will cause e2fsck
4091 * to complain and force a full file system check.
4092 */
4093 if (!(sb->s_flags & MS_RDONLY))
4094 es->s_wtime = cpu_to_le32(get_seconds());
4095 if (sb->s_bdev->bd_part)
4096 es->s_kbytes_written =
4097 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4098 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4099 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4100 else
4101 es->s_kbytes_written =
4102 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4103 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
4104 &EXT4_SB(sb)->s_freeblocks_counter));
4105 es->s_free_inodes_count =
4106 cpu_to_le32(percpu_counter_sum_positive(
4107 &EXT4_SB(sb)->s_freeinodes_counter));
4108 sb->s_dirt = 0;
4109 BUFFER_TRACE(sbh, "marking dirty");
4110 mark_buffer_dirty(sbh);
4111 if (sync) {
4112 error = sync_dirty_buffer(sbh);
4113 if (error)
4114 return error;
4115
4116 error = buffer_write_io_error(sbh);
4117 if (error) {
4118 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4119 "superblock");
4120 clear_buffer_write_io_error(sbh);
4121 set_buffer_uptodate(sbh);
4122 }
4123 }
4124 return error;
4125 }
4126
4127 /*
4128 * Have we just finished recovery? If so, and if we are mounting (or
4129 * remounting) the filesystem readonly, then we will end up with a
4130 * consistent fs on disk. Record that fact.
4131 */
4132 static void ext4_mark_recovery_complete(struct super_block *sb,
4133 struct ext4_super_block *es)
4134 {
4135 journal_t *journal = EXT4_SB(sb)->s_journal;
4136
4137 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4138 BUG_ON(journal != NULL);
4139 return;
4140 }
4141 jbd2_journal_lock_updates(journal);
4142 if (jbd2_journal_flush(journal) < 0)
4143 goto out;
4144
4145 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4146 sb->s_flags & MS_RDONLY) {
4147 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4148 ext4_commit_super(sb, 1);
4149 }
4150
4151 out:
4152 jbd2_journal_unlock_updates(journal);
4153 }
4154
4155 /*
4156 * If we are mounting (or read-write remounting) a filesystem whose journal
4157 * has recorded an error from a previous lifetime, move that error to the
4158 * main filesystem now.
4159 */
4160 static void ext4_clear_journal_err(struct super_block *sb,
4161 struct ext4_super_block *es)
4162 {
4163 journal_t *journal;
4164 int j_errno;
4165 const char *errstr;
4166
4167 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4168
4169 journal = EXT4_SB(sb)->s_journal;
4170
4171 /*
4172 * Now check for any error status which may have been recorded in the
4173 * journal by a prior ext4_error() or ext4_abort()
4174 */
4175
4176 j_errno = jbd2_journal_errno(journal);
4177 if (j_errno) {
4178 char nbuf[16];
4179
4180 errstr = ext4_decode_error(sb, j_errno, nbuf);
4181 ext4_warning(sb, "Filesystem error recorded "
4182 "from previous mount: %s", errstr);
4183 ext4_warning(sb, "Marking fs in need of filesystem check.");
4184
4185 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4186 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4187 ext4_commit_super(sb, 1);
4188
4189 jbd2_journal_clear_err(journal);
4190 }
4191 }
4192
4193 /*
4194 * Force the running and committing transactions to commit,
4195 * and wait on the commit.
4196 */
4197 int ext4_force_commit(struct super_block *sb)
4198 {
4199 journal_t *journal;
4200 int ret = 0;
4201
4202 if (sb->s_flags & MS_RDONLY)
4203 return 0;
4204
4205 journal = EXT4_SB(sb)->s_journal;
4206 if (journal) {
4207 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4208 ret = ext4_journal_force_commit(journal);
4209 }
4210
4211 return ret;
4212 }
4213
4214 static void ext4_write_super(struct super_block *sb)
4215 {
4216 lock_super(sb);
4217 ext4_commit_super(sb, 1);
4218 unlock_super(sb);
4219 }
4220
4221 static int ext4_sync_fs(struct super_block *sb, int wait)
4222 {
4223 int ret = 0;
4224 tid_t target;
4225 struct ext4_sb_info *sbi = EXT4_SB(sb);
4226
4227 trace_ext4_sync_fs(sb, wait);
4228 flush_workqueue(sbi->dio_unwritten_wq);
4229 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4230 if (wait)
4231 jbd2_log_wait_commit(sbi->s_journal, target);
4232 }
4233 return ret;
4234 }
4235
4236 /*
4237 * LVM calls this function before a (read-only) snapshot is created. This
4238 * gives us a chance to flush the journal completely and mark the fs clean.
4239 *
4240 * Note that only this function cannot bring a filesystem to be in a clean
4241 * state independently, because ext4 prevents a new handle from being started
4242 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4243 * the upper layer.
4244 */
4245 static int ext4_freeze(struct super_block *sb)
4246 {
4247 int error = 0;
4248 journal_t *journal;
4249
4250 if (sb->s_flags & MS_RDONLY)
4251 return 0;
4252
4253 journal = EXT4_SB(sb)->s_journal;
4254
4255 /* Now we set up the journal barrier. */
4256 jbd2_journal_lock_updates(journal);
4257
4258 /*
4259 * Don't clear the needs_recovery flag if we failed to flush
4260 * the journal.
4261 */
4262 error = jbd2_journal_flush(journal);
4263 if (error < 0)
4264 goto out;
4265
4266 /* Journal blocked and flushed, clear needs_recovery flag. */
4267 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4268 error = ext4_commit_super(sb, 1);
4269 out:
4270 /* we rely on s_frozen to stop further updates */
4271 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4272 return error;
4273 }
4274
4275 /*
4276 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4277 * flag here, even though the filesystem is not technically dirty yet.
4278 */
4279 static int ext4_unfreeze(struct super_block *sb)
4280 {
4281 if (sb->s_flags & MS_RDONLY)
4282 return 0;
4283
4284 lock_super(sb);
4285 /* Reset the needs_recovery flag before the fs is unlocked. */
4286 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4287 ext4_commit_super(sb, 1);
4288 unlock_super(sb);
4289 return 0;
4290 }
4291
4292 /*
4293 * Structure to save mount options for ext4_remount's benefit
4294 */
4295 struct ext4_mount_options {
4296 unsigned long s_mount_opt;
4297 unsigned long s_mount_opt2;
4298 uid_t s_resuid;
4299 gid_t s_resgid;
4300 unsigned long s_commit_interval;
4301 u32 s_min_batch_time, s_max_batch_time;
4302 #ifdef CONFIG_QUOTA
4303 int s_jquota_fmt;
4304 char *s_qf_names[MAXQUOTAS];
4305 #endif
4306 };
4307
4308 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4309 {
4310 struct ext4_super_block *es;
4311 struct ext4_sb_info *sbi = EXT4_SB(sb);
4312 ext4_fsblk_t n_blocks_count = 0;
4313 unsigned long old_sb_flags;
4314 struct ext4_mount_options old_opts;
4315 int enable_quota = 0;
4316 ext4_group_t g;
4317 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4318 int err = 0;
4319 #ifdef CONFIG_QUOTA
4320 int i;
4321 #endif
4322 char *orig_data = kstrdup(data, GFP_KERNEL);
4323
4324 /* Store the original options */
4325 lock_super(sb);
4326 old_sb_flags = sb->s_flags;
4327 old_opts.s_mount_opt = sbi->s_mount_opt;
4328 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4329 old_opts.s_resuid = sbi->s_resuid;
4330 old_opts.s_resgid = sbi->s_resgid;
4331 old_opts.s_commit_interval = sbi->s_commit_interval;
4332 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4333 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4334 #ifdef CONFIG_QUOTA
4335 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4336 for (i = 0; i < MAXQUOTAS; i++)
4337 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4338 #endif
4339 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4340 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4341
4342 /*
4343 * Allow the "check" option to be passed as a remount option.
4344 */
4345 if (!parse_options(data, sb, NULL, &journal_ioprio,
4346 &n_blocks_count, 1)) {
4347 err = -EINVAL;
4348 goto restore_opts;
4349 }
4350
4351 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4352 ext4_abort(sb, "Abort forced by user");
4353
4354 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4355 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4356
4357 es = sbi->s_es;
4358
4359 if (sbi->s_journal) {
4360 ext4_init_journal_params(sb, sbi->s_journal);
4361 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4362 }
4363
4364 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4365 n_blocks_count > ext4_blocks_count(es)) {
4366 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4367 err = -EROFS;
4368 goto restore_opts;
4369 }
4370
4371 if (*flags & MS_RDONLY) {
4372 err = dquot_suspend(sb, -1);
4373 if (err < 0)
4374 goto restore_opts;
4375
4376 /*
4377 * First of all, the unconditional stuff we have to do
4378 * to disable replay of the journal when we next remount
4379 */
4380 sb->s_flags |= MS_RDONLY;
4381
4382 /*
4383 * OK, test if we are remounting a valid rw partition
4384 * readonly, and if so set the rdonly flag and then
4385 * mark the partition as valid again.
4386 */
4387 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4388 (sbi->s_mount_state & EXT4_VALID_FS))
4389 es->s_state = cpu_to_le16(sbi->s_mount_state);
4390
4391 if (sbi->s_journal)
4392 ext4_mark_recovery_complete(sb, es);
4393 } else {
4394 /* Make sure we can mount this feature set readwrite */
4395 if (!ext4_feature_set_ok(sb, 0)) {
4396 err = -EROFS;
4397 goto restore_opts;
4398 }
4399 /*
4400 * Make sure the group descriptor checksums
4401 * are sane. If they aren't, refuse to remount r/w.
4402 */
4403 for (g = 0; g < sbi->s_groups_count; g++) {
4404 struct ext4_group_desc *gdp =
4405 ext4_get_group_desc(sb, g, NULL);
4406
4407 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4408 ext4_msg(sb, KERN_ERR,
4409 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4410 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4411 le16_to_cpu(gdp->bg_checksum));
4412 err = -EINVAL;
4413 goto restore_opts;
4414 }
4415 }
4416
4417 /*
4418 * If we have an unprocessed orphan list hanging
4419 * around from a previously readonly bdev mount,
4420 * require a full umount/remount for now.
4421 */
4422 if (es->s_last_orphan) {
4423 ext4_msg(sb, KERN_WARNING, "Couldn't "
4424 "remount RDWR because of unprocessed "
4425 "orphan inode list. Please "
4426 "umount/remount instead");
4427 err = -EINVAL;
4428 goto restore_opts;
4429 }
4430
4431 /*
4432 * Mounting a RDONLY partition read-write, so reread
4433 * and store the current valid flag. (It may have
4434 * been changed by e2fsck since we originally mounted
4435 * the partition.)
4436 */
4437 if (sbi->s_journal)
4438 ext4_clear_journal_err(sb, es);
4439 sbi->s_mount_state = le16_to_cpu(es->s_state);
4440 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4441 goto restore_opts;
4442 if (!ext4_setup_super(sb, es, 0))
4443 sb->s_flags &= ~MS_RDONLY;
4444 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4445 EXT4_FEATURE_INCOMPAT_MMP))
4446 if (ext4_multi_mount_protect(sb,
4447 le64_to_cpu(es->s_mmp_block))) {
4448 err = -EROFS;
4449 goto restore_opts;
4450 }
4451 enable_quota = 1;
4452 }
4453 }
4454
4455 /*
4456 * Reinitialize lazy itable initialization thread based on
4457 * current settings
4458 */
4459 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4460 ext4_unregister_li_request(sb);
4461 else {
4462 ext4_group_t first_not_zeroed;
4463 first_not_zeroed = ext4_has_uninit_itable(sb);
4464 ext4_register_li_request(sb, first_not_zeroed);
4465 }
4466
4467 ext4_setup_system_zone(sb);
4468 if (sbi->s_journal == NULL)
4469 ext4_commit_super(sb, 1);
4470
4471 #ifdef CONFIG_QUOTA
4472 /* Release old quota file names */
4473 for (i = 0; i < MAXQUOTAS; i++)
4474 if (old_opts.s_qf_names[i] &&
4475 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4476 kfree(old_opts.s_qf_names[i]);
4477 #endif
4478 unlock_super(sb);
4479 if (enable_quota)
4480 dquot_resume(sb, -1);
4481
4482 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4483 kfree(orig_data);
4484 return 0;
4485
4486 restore_opts:
4487 sb->s_flags = old_sb_flags;
4488 sbi->s_mount_opt = old_opts.s_mount_opt;
4489 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4490 sbi->s_resuid = old_opts.s_resuid;
4491 sbi->s_resgid = old_opts.s_resgid;
4492 sbi->s_commit_interval = old_opts.s_commit_interval;
4493 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4494 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4495 #ifdef CONFIG_QUOTA
4496 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4497 for (i = 0; i < MAXQUOTAS; i++) {
4498 if (sbi->s_qf_names[i] &&
4499 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4500 kfree(sbi->s_qf_names[i]);
4501 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4502 }
4503 #endif
4504 unlock_super(sb);
4505 kfree(orig_data);
4506 return err;
4507 }
4508
4509 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4510 {
4511 struct super_block *sb = dentry->d_sb;
4512 struct ext4_sb_info *sbi = EXT4_SB(sb);
4513 struct ext4_super_block *es = sbi->s_es;
4514 u64 fsid;
4515 s64 bfree;
4516
4517 if (test_opt(sb, MINIX_DF)) {
4518 sbi->s_overhead_last = 0;
4519 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4520 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4521 ext4_fsblk_t overhead = 0;
4522
4523 /*
4524 * Compute the overhead (FS structures). This is constant
4525 * for a given filesystem unless the number of block groups
4526 * changes so we cache the previous value until it does.
4527 */
4528
4529 /*
4530 * All of the blocks before first_data_block are
4531 * overhead
4532 */
4533 overhead = le32_to_cpu(es->s_first_data_block);
4534
4535 /*
4536 * Add the overhead attributed to the superblock and
4537 * block group descriptors. If the sparse superblocks
4538 * feature is turned on, then not all groups have this.
4539 */
4540 for (i = 0; i < ngroups; i++) {
4541 overhead += ext4_bg_has_super(sb, i) +
4542 ext4_bg_num_gdb(sb, i);
4543 cond_resched();
4544 }
4545
4546 /*
4547 * Every block group has an inode bitmap, a block
4548 * bitmap, and an inode table.
4549 */
4550 overhead += ngroups * (2 + sbi->s_itb_per_group);
4551 sbi->s_overhead_last = overhead;
4552 smp_wmb();
4553 sbi->s_blocks_last = ext4_blocks_count(es);
4554 }
4555
4556 buf->f_type = EXT4_SUPER_MAGIC;
4557 buf->f_bsize = sb->s_blocksize;
4558 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4559 bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4560 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4561 /* prevent underflow in case that few free space is available */
4562 buf->f_bfree = max_t(s64, bfree, 0);
4563 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4564 if (buf->f_bfree < ext4_r_blocks_count(es))
4565 buf->f_bavail = 0;
4566 buf->f_files = le32_to_cpu(es->s_inodes_count);
4567 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4568 buf->f_namelen = EXT4_NAME_LEN;
4569 fsid = le64_to_cpup((void *)es->s_uuid) ^
4570 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4571 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4572 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4573
4574 return 0;
4575 }
4576
4577 /* Helper function for writing quotas on sync - we need to start transaction
4578 * before quota file is locked for write. Otherwise the are possible deadlocks:
4579 * Process 1 Process 2
4580 * ext4_create() quota_sync()
4581 * jbd2_journal_start() write_dquot()
4582 * dquot_initialize() down(dqio_mutex)
4583 * down(dqio_mutex) jbd2_journal_start()
4584 *
4585 */
4586
4587 #ifdef CONFIG_QUOTA
4588
4589 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4590 {
4591 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4592 }
4593
4594 static int ext4_write_dquot(struct dquot *dquot)
4595 {
4596 int ret, err;
4597 handle_t *handle;
4598 struct inode *inode;
4599
4600 inode = dquot_to_inode(dquot);
4601 handle = ext4_journal_start(inode,
4602 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4603 if (IS_ERR(handle))
4604 return PTR_ERR(handle);
4605 ret = dquot_commit(dquot);
4606 err = ext4_journal_stop(handle);
4607 if (!ret)
4608 ret = err;
4609 return ret;
4610 }
4611
4612 static int ext4_acquire_dquot(struct dquot *dquot)
4613 {
4614 int ret, err;
4615 handle_t *handle;
4616
4617 handle = ext4_journal_start(dquot_to_inode(dquot),
4618 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4619 if (IS_ERR(handle))
4620 return PTR_ERR(handle);
4621 ret = dquot_acquire(dquot);
4622 err = ext4_journal_stop(handle);
4623 if (!ret)
4624 ret = err;
4625 return ret;
4626 }
4627
4628 static int ext4_release_dquot(struct dquot *dquot)
4629 {
4630 int ret, err;
4631 handle_t *handle;
4632
4633 handle = ext4_journal_start(dquot_to_inode(dquot),
4634 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4635 if (IS_ERR(handle)) {
4636 /* Release dquot anyway to avoid endless cycle in dqput() */
4637 dquot_release(dquot);
4638 return PTR_ERR(handle);
4639 }
4640 ret = dquot_release(dquot);
4641 err = ext4_journal_stop(handle);
4642 if (!ret)
4643 ret = err;
4644 return ret;
4645 }
4646
4647 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4648 {
4649 /* Are we journaling quotas? */
4650 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4651 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4652 dquot_mark_dquot_dirty(dquot);
4653 return ext4_write_dquot(dquot);
4654 } else {
4655 return dquot_mark_dquot_dirty(dquot);
4656 }
4657 }
4658
4659 static int ext4_write_info(struct super_block *sb, int type)
4660 {
4661 int ret, err;
4662 handle_t *handle;
4663
4664 /* Data block + inode block */
4665 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4666 if (IS_ERR(handle))
4667 return PTR_ERR(handle);
4668 ret = dquot_commit_info(sb, type);
4669 err = ext4_journal_stop(handle);
4670 if (!ret)
4671 ret = err;
4672 return ret;
4673 }
4674
4675 /*
4676 * Turn on quotas during mount time - we need to find
4677 * the quota file and such...
4678 */
4679 static int ext4_quota_on_mount(struct super_block *sb, int type)
4680 {
4681 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4682 EXT4_SB(sb)->s_jquota_fmt, type);
4683 }
4684
4685 /*
4686 * Standard function to be called on quota_on
4687 */
4688 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4689 struct path *path)
4690 {
4691 int err;
4692
4693 if (!test_opt(sb, QUOTA))
4694 return -EINVAL;
4695
4696 /* Quotafile not on the same filesystem? */
4697 if (path->mnt->mnt_sb != sb)
4698 return -EXDEV;
4699 /* Journaling quota? */
4700 if (EXT4_SB(sb)->s_qf_names[type]) {
4701 /* Quotafile not in fs root? */
4702 if (path->dentry->d_parent != sb->s_root)
4703 ext4_msg(sb, KERN_WARNING,
4704 "Quota file not on filesystem root. "
4705 "Journaled quota will not work");
4706 }
4707
4708 /*
4709 * When we journal data on quota file, we have to flush journal to see
4710 * all updates to the file when we bypass pagecache...
4711 */
4712 if (EXT4_SB(sb)->s_journal &&
4713 ext4_should_journal_data(path->dentry->d_inode)) {
4714 /*
4715 * We don't need to lock updates but journal_flush() could
4716 * otherwise be livelocked...
4717 */
4718 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4719 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4720 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4721 if (err)
4722 return err;
4723 }
4724
4725 return dquot_quota_on(sb, type, format_id, path);
4726 }
4727
4728 static int ext4_quota_off(struct super_block *sb, int type)
4729 {
4730 struct inode *inode = sb_dqopt(sb)->files[type];
4731 handle_t *handle;
4732
4733 /* Force all delayed allocation blocks to be allocated.
4734 * Caller already holds s_umount sem */
4735 if (test_opt(sb, DELALLOC))
4736 sync_filesystem(sb);
4737
4738 if (!inode)
4739 goto out;
4740
4741 /* Update modification times of quota files when userspace can
4742 * start looking at them */
4743 handle = ext4_journal_start(inode, 1);
4744 if (IS_ERR(handle))
4745 goto out;
4746 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4747 ext4_mark_inode_dirty(handle, inode);
4748 ext4_journal_stop(handle);
4749
4750 out:
4751 return dquot_quota_off(sb, type);
4752 }
4753
4754 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4755 * acquiring the locks... As quota files are never truncated and quota code
4756 * itself serializes the operations (and no one else should touch the files)
4757 * we don't have to be afraid of races */
4758 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4759 size_t len, loff_t off)
4760 {
4761 struct inode *inode = sb_dqopt(sb)->files[type];
4762 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4763 int err = 0;
4764 int offset = off & (sb->s_blocksize - 1);
4765 int tocopy;
4766 size_t toread;
4767 struct buffer_head *bh;
4768 loff_t i_size = i_size_read(inode);
4769
4770 if (off > i_size)
4771 return 0;
4772 if (off+len > i_size)
4773 len = i_size-off;
4774 toread = len;
4775 while (toread > 0) {
4776 tocopy = sb->s_blocksize - offset < toread ?
4777 sb->s_blocksize - offset : toread;
4778 bh = ext4_bread(NULL, inode, blk, 0, &err);
4779 if (err)
4780 return err;
4781 if (!bh) /* A hole? */
4782 memset(data, 0, tocopy);
4783 else
4784 memcpy(data, bh->b_data+offset, tocopy);
4785 brelse(bh);
4786 offset = 0;
4787 toread -= tocopy;
4788 data += tocopy;
4789 blk++;
4790 }
4791 return len;
4792 }
4793
4794 /* Write to quotafile (we know the transaction is already started and has
4795 * enough credits) */
4796 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4797 const char *data, size_t len, loff_t off)
4798 {
4799 struct inode *inode = sb_dqopt(sb)->files[type];
4800 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4801 int err = 0;
4802 int offset = off & (sb->s_blocksize - 1);
4803 struct buffer_head *bh;
4804 handle_t *handle = journal_current_handle();
4805
4806 if (EXT4_SB(sb)->s_journal && !handle) {
4807 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4808 " cancelled because transaction is not started",
4809 (unsigned long long)off, (unsigned long long)len);
4810 return -EIO;
4811 }
4812 /*
4813 * Since we account only one data block in transaction credits,
4814 * then it is impossible to cross a block boundary.
4815 */
4816 if (sb->s_blocksize - offset < len) {
4817 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4818 " cancelled because not block aligned",
4819 (unsigned long long)off, (unsigned long long)len);
4820 return -EIO;
4821 }
4822
4823 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4824 bh = ext4_bread(handle, inode, blk, 1, &err);
4825 if (!bh)
4826 goto out;
4827 err = ext4_journal_get_write_access(handle, bh);
4828 if (err) {
4829 brelse(bh);
4830 goto out;
4831 }
4832 lock_buffer(bh);
4833 memcpy(bh->b_data+offset, data, len);
4834 flush_dcache_page(bh->b_page);
4835 unlock_buffer(bh);
4836 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4837 brelse(bh);
4838 out:
4839 if (err) {
4840 mutex_unlock(&inode->i_mutex);
4841 return err;
4842 }
4843 if (inode->i_size < off + len) {
4844 i_size_write(inode, off + len);
4845 EXT4_I(inode)->i_disksize = inode->i_size;
4846 ext4_mark_inode_dirty(handle, inode);
4847 }
4848 mutex_unlock(&inode->i_mutex);
4849 return len;
4850 }
4851
4852 #endif
4853
4854 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4855 const char *dev_name, void *data)
4856 {
4857 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4858 }
4859
4860 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4861 static inline void register_as_ext2(void)
4862 {
4863 int err = register_filesystem(&ext2_fs_type);
4864 if (err)
4865 printk(KERN_WARNING
4866 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4867 }
4868
4869 static inline void unregister_as_ext2(void)
4870 {
4871 unregister_filesystem(&ext2_fs_type);
4872 }
4873
4874 static inline int ext2_feature_set_ok(struct super_block *sb)
4875 {
4876 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4877 return 0;
4878 if (sb->s_flags & MS_RDONLY)
4879 return 1;
4880 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4881 return 0;
4882 return 1;
4883 }
4884 MODULE_ALIAS("ext2");
4885 #else
4886 static inline void register_as_ext2(void) { }
4887 static inline void unregister_as_ext2(void) { }
4888 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4889 #endif
4890
4891 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4892 static inline void register_as_ext3(void)
4893 {
4894 int err = register_filesystem(&ext3_fs_type);
4895 if (err)
4896 printk(KERN_WARNING
4897 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4898 }
4899
4900 static inline void unregister_as_ext3(void)
4901 {
4902 unregister_filesystem(&ext3_fs_type);
4903 }
4904
4905 static inline int ext3_feature_set_ok(struct super_block *sb)
4906 {
4907 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4908 return 0;
4909 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4910 return 0;
4911 if (sb->s_flags & MS_RDONLY)
4912 return 1;
4913 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4914 return 0;
4915 return 1;
4916 }
4917 MODULE_ALIAS("ext3");
4918 #else
4919 static inline void register_as_ext3(void) { }
4920 static inline void unregister_as_ext3(void) { }
4921 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4922 #endif
4923
4924 static struct file_system_type ext4_fs_type = {
4925 .owner = THIS_MODULE,
4926 .name = "ext4",
4927 .mount = ext4_mount,
4928 .kill_sb = kill_block_super,
4929 .fs_flags = FS_REQUIRES_DEV,
4930 };
4931
4932 static int __init ext4_init_feat_adverts(void)
4933 {
4934 struct ext4_features *ef;
4935 int ret = -ENOMEM;
4936
4937 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4938 if (!ef)
4939 goto out;
4940
4941 ef->f_kobj.kset = ext4_kset;
4942 init_completion(&ef->f_kobj_unregister);
4943 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4944 "features");
4945 if (ret) {
4946 kfree(ef);
4947 goto out;
4948 }
4949
4950 ext4_feat = ef;
4951 ret = 0;
4952 out:
4953 return ret;
4954 }
4955
4956 static void ext4_exit_feat_adverts(void)
4957 {
4958 kobject_put(&ext4_feat->f_kobj);
4959 wait_for_completion(&ext4_feat->f_kobj_unregister);
4960 kfree(ext4_feat);
4961 }
4962
4963 /* Shared across all ext4 file systems */
4964 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4965 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4966
4967 static int __init ext4_init_fs(void)
4968 {
4969 int i, err;
4970
4971 ext4_check_flag_values();
4972
4973 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4974 mutex_init(&ext4__aio_mutex[i]);
4975 init_waitqueue_head(&ext4__ioend_wq[i]);
4976 }
4977
4978 err = ext4_init_pageio();
4979 if (err)
4980 return err;
4981 err = ext4_init_system_zone();
4982 if (err)
4983 goto out7;
4984 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4985 if (!ext4_kset)
4986 goto out6;
4987 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4988 if (!ext4_proc_root)
4989 goto out5;
4990
4991 err = ext4_init_feat_adverts();
4992 if (err)
4993 goto out4;
4994
4995 err = ext4_init_mballoc();
4996 if (err)
4997 goto out3;
4998
4999 err = ext4_init_xattr();
5000 if (err)
5001 goto out2;
5002 err = init_inodecache();
5003 if (err)
5004 goto out1;
5005 register_as_ext3();
5006 register_as_ext2();
5007 err = register_filesystem(&ext4_fs_type);
5008 if (err)
5009 goto out;
5010
5011 ext4_li_info = NULL;
5012 mutex_init(&ext4_li_mtx);
5013 return 0;
5014 out:
5015 unregister_as_ext2();
5016 unregister_as_ext3();
5017 destroy_inodecache();
5018 out1:
5019 ext4_exit_xattr();
5020 out2:
5021 ext4_exit_mballoc();
5022 out3:
5023 ext4_exit_feat_adverts();
5024 out4:
5025 remove_proc_entry("fs/ext4", NULL);
5026 out5:
5027 kset_unregister(ext4_kset);
5028 out6:
5029 ext4_exit_system_zone();
5030 out7:
5031 ext4_exit_pageio();
5032 return err;
5033 }
5034
5035 static void __exit ext4_exit_fs(void)
5036 {
5037 ext4_destroy_lazyinit_thread();
5038 unregister_as_ext2();
5039 unregister_as_ext3();
5040 unregister_filesystem(&ext4_fs_type);
5041 destroy_inodecache();
5042 ext4_exit_xattr();
5043 ext4_exit_mballoc();
5044 ext4_exit_feat_adverts();
5045 remove_proc_entry("fs/ext4", NULL);
5046 kset_unregister(ext4_kset);
5047 ext4_exit_system_zone();
5048 ext4_exit_pageio();
5049 }
5050
5051 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5052 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5053 MODULE_LICENSE("GPL");
5054 module_init(ext4_init_fs)
5055 module_exit(ext4_exit_fs)