ext4: add ext4_iget_normal() which is to be used for dir tree lookups
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 bdev = sbi->journal_bdev;
715 if (bdev) {
716 ext4_blkdev_put(bdev);
717 sbi->journal_bdev = NULL;
718 }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728 struct list_head *l;
729
730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731 le32_to_cpu(sbi->s_es->s_last_orphan));
732
733 printk(KERN_ERR "sb_info orphan list:\n");
734 list_for_each(l, &sbi->s_orphan) {
735 struct inode *inode = orphan_list_entry(l);
736 printk(KERN_ERR " "
737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738 inode->i_sb->s_id, inode->i_ino, inode,
739 inode->i_mode, inode->i_nlink,
740 NEXT_ORPHAN(inode));
741 }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746 struct ext4_sb_info *sbi = EXT4_SB(sb);
747 struct ext4_super_block *es = sbi->s_es;
748 int i, err;
749
750 ext4_unregister_li_request(sb);
751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753 flush_workqueue(sbi->dio_unwritten_wq);
754 destroy_workqueue(sbi->dio_unwritten_wq);
755
756 if (sbi->s_journal) {
757 err = jbd2_journal_destroy(sbi->s_journal);
758 sbi->s_journal = NULL;
759 if (err < 0)
760 ext4_abort(sb, "Couldn't clean up the journal");
761 }
762
763 ext4_es_unregister_shrinker(sb);
764 del_timer(&sbi->s_err_report);
765 ext4_release_system_zone(sb);
766 ext4_mb_release(sb);
767 ext4_ext_release(sb);
768 ext4_xattr_put_super(sb);
769
770 if (!(sb->s_flags & MS_RDONLY)) {
771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772 es->s_state = cpu_to_le16(sbi->s_mount_state);
773 }
774 if (!(sb->s_flags & MS_RDONLY))
775 ext4_commit_super(sb, 1);
776
777 if (sbi->s_proc) {
778 remove_proc_entry("options", sbi->s_proc);
779 remove_proc_entry(sb->s_id, ext4_proc_root);
780 }
781 kobject_del(&sbi->s_kobj);
782
783 for (i = 0; i < sbi->s_gdb_count; i++)
784 brelse(sbi->s_group_desc[i]);
785 ext4_kvfree(sbi->s_group_desc);
786 ext4_kvfree(sbi->s_flex_groups);
787 percpu_counter_destroy(&sbi->s_freeclusters_counter);
788 percpu_counter_destroy(&sbi->s_freeinodes_counter);
789 percpu_counter_destroy(&sbi->s_dirs_counter);
790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792 brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794 for (i = 0; i < MAXQUOTAS; i++)
795 kfree(sbi->s_qf_names[i]);
796 #endif
797
798 /* Debugging code just in case the in-memory inode orphan list
799 * isn't empty. The on-disk one can be non-empty if we've
800 * detected an error and taken the fs readonly, but the
801 * in-memory list had better be clean by this point. */
802 if (!list_empty(&sbi->s_orphan))
803 dump_orphan_list(sb, sbi);
804 J_ASSERT(list_empty(&sbi->s_orphan));
805
806 invalidate_bdev(sb->s_bdev);
807 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
808 /*
809 * Invalidate the journal device's buffers. We don't want them
810 * floating about in memory - the physical journal device may
811 * hotswapped, and it breaks the `ro-after' testing code.
812 */
813 sync_blockdev(sbi->journal_bdev);
814 invalidate_bdev(sbi->journal_bdev);
815 ext4_blkdev_remove(sbi);
816 }
817 if (sbi->s_mmp_tsk)
818 kthread_stop(sbi->s_mmp_tsk);
819 sb->s_fs_info = NULL;
820 /*
821 * Now that we are completely done shutting down the
822 * superblock, we need to actually destroy the kobject.
823 */
824 kobject_put(&sbi->s_kobj);
825 wait_for_completion(&sbi->s_kobj_unregister);
826 if (sbi->s_chksum_driver)
827 crypto_free_shash(sbi->s_chksum_driver);
828 kfree(sbi->s_blockgroup_lock);
829 kfree(sbi);
830 }
831
832 static struct kmem_cache *ext4_inode_cachep;
833
834 /*
835 * Called inside transaction, so use GFP_NOFS
836 */
837 static struct inode *ext4_alloc_inode(struct super_block *sb)
838 {
839 struct ext4_inode_info *ei;
840
841 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
842 if (!ei)
843 return NULL;
844
845 ei->vfs_inode.i_version = 1;
846 INIT_LIST_HEAD(&ei->i_prealloc_list);
847 spin_lock_init(&ei->i_prealloc_lock);
848 ext4_es_init_tree(&ei->i_es_tree);
849 rwlock_init(&ei->i_es_lock);
850 INIT_LIST_HEAD(&ei->i_es_lru);
851 ei->i_es_lru_nr = 0;
852 ei->i_reserved_data_blocks = 0;
853 ei->i_reserved_meta_blocks = 0;
854 ei->i_allocated_meta_blocks = 0;
855 ei->i_da_metadata_calc_len = 0;
856 ei->i_da_metadata_calc_last_lblock = 0;
857 spin_lock_init(&(ei->i_block_reservation_lock));
858 #ifdef CONFIG_QUOTA
859 ei->i_reserved_quota = 0;
860 #endif
861 ei->jinode = NULL;
862 INIT_LIST_HEAD(&ei->i_completed_io_list);
863 spin_lock_init(&ei->i_completed_io_lock);
864 ei->i_sync_tid = 0;
865 ei->i_datasync_tid = 0;
866 atomic_set(&ei->i_ioend_count, 0);
867 atomic_set(&ei->i_unwritten, 0);
868 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
869
870 return &ei->vfs_inode;
871 }
872
873 static int ext4_drop_inode(struct inode *inode)
874 {
875 int drop = generic_drop_inode(inode);
876
877 trace_ext4_drop_inode(inode, drop);
878 return drop;
879 }
880
881 static void ext4_i_callback(struct rcu_head *head)
882 {
883 struct inode *inode = container_of(head, struct inode, i_rcu);
884 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
885 }
886
887 static void ext4_destroy_inode(struct inode *inode)
888 {
889 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
890 ext4_msg(inode->i_sb, KERN_ERR,
891 "Inode %lu (%p): orphan list check failed!",
892 inode->i_ino, EXT4_I(inode));
893 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
894 EXT4_I(inode), sizeof(struct ext4_inode_info),
895 true);
896 dump_stack();
897 }
898 call_rcu(&inode->i_rcu, ext4_i_callback);
899 }
900
901 static void init_once(void *foo)
902 {
903 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
904
905 INIT_LIST_HEAD(&ei->i_orphan);
906 init_rwsem(&ei->xattr_sem);
907 init_rwsem(&ei->i_data_sem);
908 inode_init_once(&ei->vfs_inode);
909 }
910
911 static int init_inodecache(void)
912 {
913 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
914 sizeof(struct ext4_inode_info),
915 0, (SLAB_RECLAIM_ACCOUNT|
916 SLAB_MEM_SPREAD),
917 init_once);
918 if (ext4_inode_cachep == NULL)
919 return -ENOMEM;
920 return 0;
921 }
922
923 static void destroy_inodecache(void)
924 {
925 /*
926 * Make sure all delayed rcu free inodes are flushed before we
927 * destroy cache.
928 */
929 rcu_barrier();
930 kmem_cache_destroy(ext4_inode_cachep);
931 }
932
933 void ext4_clear_inode(struct inode *inode)
934 {
935 invalidate_inode_buffers(inode);
936 clear_inode(inode);
937 dquot_drop(inode);
938 ext4_discard_preallocations(inode);
939 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
940 ext4_es_lru_del(inode);
941 if (EXT4_I(inode)->jinode) {
942 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
943 EXT4_I(inode)->jinode);
944 jbd2_free_inode(EXT4_I(inode)->jinode);
945 EXT4_I(inode)->jinode = NULL;
946 }
947 }
948
949 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
950 u64 ino, u32 generation)
951 {
952 struct inode *inode;
953
954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
955 return ERR_PTR(-ESTALE);
956 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
957 return ERR_PTR(-ESTALE);
958
959 /* iget isn't really right if the inode is currently unallocated!!
960 *
961 * ext4_read_inode will return a bad_inode if the inode had been
962 * deleted, so we should be safe.
963 *
964 * Currently we don't know the generation for parent directory, so
965 * a generation of 0 means "accept any"
966 */
967 inode = ext4_iget_normal(sb, ino);
968 if (IS_ERR(inode))
969 return ERR_CAST(inode);
970 if (generation && inode->i_generation != generation) {
971 iput(inode);
972 return ERR_PTR(-ESTALE);
973 }
974
975 return inode;
976 }
977
978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
979 int fh_len, int fh_type)
980 {
981 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
982 ext4_nfs_get_inode);
983 }
984
985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
986 int fh_len, int fh_type)
987 {
988 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
989 ext4_nfs_get_inode);
990 }
991
992 /*
993 * Try to release metadata pages (indirect blocks, directories) which are
994 * mapped via the block device. Since these pages could have journal heads
995 * which would prevent try_to_free_buffers() from freeing them, we must use
996 * jbd2 layer's try_to_free_buffers() function to release them.
997 */
998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
999 gfp_t wait)
1000 {
1001 journal_t *journal = EXT4_SB(sb)->s_journal;
1002
1003 WARN_ON(PageChecked(page));
1004 if (!page_has_buffers(page))
1005 return 0;
1006 if (journal)
1007 return jbd2_journal_try_to_free_buffers(journal, page,
1008 wait & ~__GFP_WAIT);
1009 return try_to_free_buffers(page);
1010 }
1011
1012 #ifdef CONFIG_QUOTA
1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1015
1016 static int ext4_write_dquot(struct dquot *dquot);
1017 static int ext4_acquire_dquot(struct dquot *dquot);
1018 static int ext4_release_dquot(struct dquot *dquot);
1019 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1020 static int ext4_write_info(struct super_block *sb, int type);
1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1022 struct path *path);
1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1024 int format_id);
1025 static int ext4_quota_off(struct super_block *sb, int type);
1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1027 static int ext4_quota_on_mount(struct super_block *sb, int type);
1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1029 size_t len, loff_t off);
1030 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1031 const char *data, size_t len, loff_t off);
1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1033 unsigned int flags);
1034 static int ext4_enable_quotas(struct super_block *sb);
1035
1036 static const struct dquot_operations ext4_quota_operations = {
1037 .get_reserved_space = ext4_get_reserved_space,
1038 .write_dquot = ext4_write_dquot,
1039 .acquire_dquot = ext4_acquire_dquot,
1040 .release_dquot = ext4_release_dquot,
1041 .mark_dirty = ext4_mark_dquot_dirty,
1042 .write_info = ext4_write_info,
1043 .alloc_dquot = dquot_alloc,
1044 .destroy_dquot = dquot_destroy,
1045 };
1046
1047 static const struct quotactl_ops ext4_qctl_operations = {
1048 .quota_on = ext4_quota_on,
1049 .quota_off = ext4_quota_off,
1050 .quota_sync = dquot_quota_sync,
1051 .get_info = dquot_get_dqinfo,
1052 .set_info = dquot_set_dqinfo,
1053 .get_dqblk = dquot_get_dqblk,
1054 .set_dqblk = dquot_set_dqblk
1055 };
1056
1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1058 .quota_on_meta = ext4_quota_on_sysfile,
1059 .quota_off = ext4_quota_off_sysfile,
1060 .quota_sync = dquot_quota_sync,
1061 .get_info = dquot_get_dqinfo,
1062 .set_info = dquot_set_dqinfo,
1063 .get_dqblk = dquot_get_dqblk,
1064 .set_dqblk = dquot_set_dqblk
1065 };
1066 #endif
1067
1068 static const struct super_operations ext4_sops = {
1069 .alloc_inode = ext4_alloc_inode,
1070 .destroy_inode = ext4_destroy_inode,
1071 .write_inode = ext4_write_inode,
1072 .dirty_inode = ext4_dirty_inode,
1073 .drop_inode = ext4_drop_inode,
1074 .evict_inode = ext4_evict_inode,
1075 .put_super = ext4_put_super,
1076 .sync_fs = ext4_sync_fs,
1077 .freeze_fs = ext4_freeze,
1078 .unfreeze_fs = ext4_unfreeze,
1079 .statfs = ext4_statfs,
1080 .remount_fs = ext4_remount,
1081 .show_options = ext4_show_options,
1082 #ifdef CONFIG_QUOTA
1083 .quota_read = ext4_quota_read,
1084 .quota_write = ext4_quota_write,
1085 #endif
1086 .bdev_try_to_free_page = bdev_try_to_free_page,
1087 };
1088
1089 static const struct super_operations ext4_nojournal_sops = {
1090 .alloc_inode = ext4_alloc_inode,
1091 .destroy_inode = ext4_destroy_inode,
1092 .write_inode = ext4_write_inode,
1093 .dirty_inode = ext4_dirty_inode,
1094 .drop_inode = ext4_drop_inode,
1095 .evict_inode = ext4_evict_inode,
1096 .put_super = ext4_put_super,
1097 .statfs = ext4_statfs,
1098 .remount_fs = ext4_remount,
1099 .show_options = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101 .quota_read = ext4_quota_read,
1102 .quota_write = ext4_quota_write,
1103 #endif
1104 .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108 .fh_to_dentry = ext4_fh_to_dentry,
1109 .fh_to_parent = ext4_fh_to_parent,
1110 .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116 Opt_nouid32, Opt_debug, Opt_removed,
1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1120 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122 Opt_data_err_abort, Opt_data_err_ignore,
1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126 Opt_usrquota, Opt_grpquota, Opt_i_version,
1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1129 Opt_inode_readahead_blks, Opt_journal_ioprio,
1130 Opt_dioread_nolock, Opt_dioread_lock,
1131 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1132 Opt_max_dir_size_kb,
1133 };
1134
1135 static const match_table_t tokens = {
1136 {Opt_bsd_df, "bsddf"},
1137 {Opt_minix_df, "minixdf"},
1138 {Opt_grpid, "grpid"},
1139 {Opt_grpid, "bsdgroups"},
1140 {Opt_nogrpid, "nogrpid"},
1141 {Opt_nogrpid, "sysvgroups"},
1142 {Opt_resgid, "resgid=%u"},
1143 {Opt_resuid, "resuid=%u"},
1144 {Opt_sb, "sb=%u"},
1145 {Opt_err_cont, "errors=continue"},
1146 {Opt_err_panic, "errors=panic"},
1147 {Opt_err_ro, "errors=remount-ro"},
1148 {Opt_nouid32, "nouid32"},
1149 {Opt_debug, "debug"},
1150 {Opt_removed, "oldalloc"},
1151 {Opt_removed, "orlov"},
1152 {Opt_user_xattr, "user_xattr"},
1153 {Opt_nouser_xattr, "nouser_xattr"},
1154 {Opt_acl, "acl"},
1155 {Opt_noacl, "noacl"},
1156 {Opt_noload, "norecovery"},
1157 {Opt_noload, "noload"},
1158 {Opt_removed, "nobh"},
1159 {Opt_removed, "bh"},
1160 {Opt_commit, "commit=%u"},
1161 {Opt_min_batch_time, "min_batch_time=%u"},
1162 {Opt_max_batch_time, "max_batch_time=%u"},
1163 {Opt_journal_dev, "journal_dev=%u"},
1164 {Opt_journal_checksum, "journal_checksum"},
1165 {Opt_journal_async_commit, "journal_async_commit"},
1166 {Opt_abort, "abort"},
1167 {Opt_data_journal, "data=journal"},
1168 {Opt_data_ordered, "data=ordered"},
1169 {Opt_data_writeback, "data=writeback"},
1170 {Opt_data_err_abort, "data_err=abort"},
1171 {Opt_data_err_ignore, "data_err=ignore"},
1172 {Opt_offusrjquota, "usrjquota="},
1173 {Opt_usrjquota, "usrjquota=%s"},
1174 {Opt_offgrpjquota, "grpjquota="},
1175 {Opt_grpjquota, "grpjquota=%s"},
1176 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1177 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1178 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1179 {Opt_grpquota, "grpquota"},
1180 {Opt_noquota, "noquota"},
1181 {Opt_quota, "quota"},
1182 {Opt_usrquota, "usrquota"},
1183 {Opt_barrier, "barrier=%u"},
1184 {Opt_barrier, "barrier"},
1185 {Opt_nobarrier, "nobarrier"},
1186 {Opt_i_version, "i_version"},
1187 {Opt_stripe, "stripe=%u"},
1188 {Opt_delalloc, "delalloc"},
1189 {Opt_nodelalloc, "nodelalloc"},
1190 {Opt_removed, "mblk_io_submit"},
1191 {Opt_removed, "nomblk_io_submit"},
1192 {Opt_block_validity, "block_validity"},
1193 {Opt_noblock_validity, "noblock_validity"},
1194 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1195 {Opt_journal_ioprio, "journal_ioprio=%u"},
1196 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1197 {Opt_auto_da_alloc, "auto_da_alloc"},
1198 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1199 {Opt_dioread_nolock, "dioread_nolock"},
1200 {Opt_dioread_lock, "dioread_lock"},
1201 {Opt_discard, "discard"},
1202 {Opt_nodiscard, "nodiscard"},
1203 {Opt_init_itable, "init_itable=%u"},
1204 {Opt_init_itable, "init_itable"},
1205 {Opt_noinit_itable, "noinit_itable"},
1206 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1207 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1208 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1209 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1210 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1211 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1212 {Opt_err, NULL},
1213 };
1214
1215 static ext4_fsblk_t get_sb_block(void **data)
1216 {
1217 ext4_fsblk_t sb_block;
1218 char *options = (char *) *data;
1219
1220 if (!options || strncmp(options, "sb=", 3) != 0)
1221 return 1; /* Default location */
1222
1223 options += 3;
1224 /* TODO: use simple_strtoll with >32bit ext4 */
1225 sb_block = simple_strtoul(options, &options, 0);
1226 if (*options && *options != ',') {
1227 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1228 (char *) *data);
1229 return 1;
1230 }
1231 if (*options == ',')
1232 options++;
1233 *data = (void *) options;
1234
1235 return sb_block;
1236 }
1237
1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1240 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1241
1242 #ifdef CONFIG_QUOTA
1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1244 {
1245 struct ext4_sb_info *sbi = EXT4_SB(sb);
1246 char *qname;
1247 int ret = -1;
1248
1249 if (sb_any_quota_loaded(sb) &&
1250 !sbi->s_qf_names[qtype]) {
1251 ext4_msg(sb, KERN_ERR,
1252 "Cannot change journaled "
1253 "quota options when quota turned on");
1254 return -1;
1255 }
1256 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1257 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1258 "when QUOTA feature is enabled");
1259 return -1;
1260 }
1261 qname = match_strdup(args);
1262 if (!qname) {
1263 ext4_msg(sb, KERN_ERR,
1264 "Not enough memory for storing quotafile name");
1265 return -1;
1266 }
1267 if (sbi->s_qf_names[qtype]) {
1268 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1269 ret = 1;
1270 else
1271 ext4_msg(sb, KERN_ERR,
1272 "%s quota file already specified",
1273 QTYPE2NAME(qtype));
1274 goto errout;
1275 }
1276 if (strchr(qname, '/')) {
1277 ext4_msg(sb, KERN_ERR,
1278 "quotafile must be on filesystem root");
1279 goto errout;
1280 }
1281 sbi->s_qf_names[qtype] = qname;
1282 set_opt(sb, QUOTA);
1283 return 1;
1284 errout:
1285 kfree(qname);
1286 return ret;
1287 }
1288
1289 static int clear_qf_name(struct super_block *sb, int qtype)
1290 {
1291
1292 struct ext4_sb_info *sbi = EXT4_SB(sb);
1293
1294 if (sb_any_quota_loaded(sb) &&
1295 sbi->s_qf_names[qtype]) {
1296 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1297 " when quota turned on");
1298 return -1;
1299 }
1300 kfree(sbi->s_qf_names[qtype]);
1301 sbi->s_qf_names[qtype] = NULL;
1302 return 1;
1303 }
1304 #endif
1305
1306 #define MOPT_SET 0x0001
1307 #define MOPT_CLEAR 0x0002
1308 #define MOPT_NOSUPPORT 0x0004
1309 #define MOPT_EXPLICIT 0x0008
1310 #define MOPT_CLEAR_ERR 0x0010
1311 #define MOPT_GTE0 0x0020
1312 #ifdef CONFIG_QUOTA
1313 #define MOPT_Q 0
1314 #define MOPT_QFMT 0x0040
1315 #else
1316 #define MOPT_Q MOPT_NOSUPPORT
1317 #define MOPT_QFMT MOPT_NOSUPPORT
1318 #endif
1319 #define MOPT_DATAJ 0x0080
1320 #define MOPT_NO_EXT2 0x0100
1321 #define MOPT_NO_EXT3 0x0200
1322 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1323
1324 static const struct mount_opts {
1325 int token;
1326 int mount_opt;
1327 int flags;
1328 } ext4_mount_opts[] = {
1329 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1330 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1331 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1332 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1333 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1334 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1335 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1336 MOPT_EXT4_ONLY | MOPT_SET},
1337 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338 MOPT_EXT4_ONLY | MOPT_CLEAR},
1339 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1340 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1341 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1342 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1343 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1344 MOPT_EXT4_ONLY | MOPT_CLEAR},
1345 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1346 MOPT_EXT4_ONLY | MOPT_SET},
1347 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1348 EXT4_MOUNT_JOURNAL_CHECKSUM),
1349 MOPT_EXT4_ONLY | MOPT_SET},
1350 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1351 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1355 MOPT_NO_EXT2 | MOPT_SET},
1356 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1357 MOPT_NO_EXT2 | MOPT_CLEAR},
1358 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1359 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1360 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1361 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1362 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1363 {Opt_commit, 0, MOPT_GTE0},
1364 {Opt_max_batch_time, 0, MOPT_GTE0},
1365 {Opt_min_batch_time, 0, MOPT_GTE0},
1366 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1367 {Opt_init_itable, 0, MOPT_GTE0},
1368 {Opt_stripe, 0, MOPT_GTE0},
1369 {Opt_resuid, 0, MOPT_GTE0},
1370 {Opt_resgid, 0, MOPT_GTE0},
1371 {Opt_journal_dev, 0, MOPT_GTE0},
1372 {Opt_journal_ioprio, 0, MOPT_GTE0},
1373 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1376 MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1378 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1380 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1381 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1382 #else
1383 {Opt_acl, 0, MOPT_NOSUPPORT},
1384 {Opt_noacl, 0, MOPT_NOSUPPORT},
1385 #endif
1386 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1387 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1388 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1389 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1390 MOPT_SET | MOPT_Q},
1391 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1392 MOPT_SET | MOPT_Q},
1393 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1394 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1395 {Opt_usrjquota, 0, MOPT_Q},
1396 {Opt_grpjquota, 0, MOPT_Q},
1397 {Opt_offusrjquota, 0, MOPT_Q},
1398 {Opt_offgrpjquota, 0, MOPT_Q},
1399 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1400 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1401 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1402 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1403 {Opt_err, 0, 0}
1404 };
1405
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407 substring_t *args, unsigned long *journal_devnum,
1408 unsigned int *journal_ioprio, int is_remount)
1409 {
1410 struct ext4_sb_info *sbi = EXT4_SB(sb);
1411 const struct mount_opts *m;
1412 kuid_t uid;
1413 kgid_t gid;
1414 int arg = 0;
1415
1416 #ifdef CONFIG_QUOTA
1417 if (token == Opt_usrjquota)
1418 return set_qf_name(sb, USRQUOTA, &args[0]);
1419 else if (token == Opt_grpjquota)
1420 return set_qf_name(sb, GRPQUOTA, &args[0]);
1421 else if (token == Opt_offusrjquota)
1422 return clear_qf_name(sb, USRQUOTA);
1423 else if (token == Opt_offgrpjquota)
1424 return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426 switch (token) {
1427 case Opt_noacl:
1428 case Opt_nouser_xattr:
1429 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430 break;
1431 case Opt_sb:
1432 return 1; /* handled by get_sb_block() */
1433 case Opt_removed:
1434 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435 return 1;
1436 case Opt_abort:
1437 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438 return 1;
1439 case Opt_i_version:
1440 sb->s_flags |= MS_I_VERSION;
1441 return 1;
1442 }
1443
1444 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1445 if (token == m->token)
1446 break;
1447
1448 if (m->token == Opt_err) {
1449 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1450 "or missing value", opt);
1451 return -1;
1452 }
1453
1454 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1455 ext4_msg(sb, KERN_ERR,
1456 "Mount option \"%s\" incompatible with ext2", opt);
1457 return -1;
1458 }
1459 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1460 ext4_msg(sb, KERN_ERR,
1461 "Mount option \"%s\" incompatible with ext3", opt);
1462 return -1;
1463 }
1464
1465 if (args->from && match_int(args, &arg))
1466 return -1;
1467 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1468 return -1;
1469 if (m->flags & MOPT_EXPLICIT)
1470 set_opt2(sb, EXPLICIT_DELALLOC);
1471 if (m->flags & MOPT_CLEAR_ERR)
1472 clear_opt(sb, ERRORS_MASK);
1473 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1474 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1475 "options when quota turned on");
1476 return -1;
1477 }
1478
1479 if (m->flags & MOPT_NOSUPPORT) {
1480 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1481 } else if (token == Opt_commit) {
1482 if (arg == 0)
1483 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1484 sbi->s_commit_interval = HZ * arg;
1485 } else if (token == Opt_max_batch_time) {
1486 sbi->s_max_batch_time = arg;
1487 } else if (token == Opt_min_batch_time) {
1488 sbi->s_min_batch_time = arg;
1489 } else if (token == Opt_inode_readahead_blks) {
1490 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1491 ext4_msg(sb, KERN_ERR,
1492 "EXT4-fs: inode_readahead_blks must be "
1493 "0 or a power of 2 smaller than 2^31");
1494 return -1;
1495 }
1496 sbi->s_inode_readahead_blks = arg;
1497 } else if (token == Opt_init_itable) {
1498 set_opt(sb, INIT_INODE_TABLE);
1499 if (!args->from)
1500 arg = EXT4_DEF_LI_WAIT_MULT;
1501 sbi->s_li_wait_mult = arg;
1502 } else if (token == Opt_max_dir_size_kb) {
1503 sbi->s_max_dir_size_kb = arg;
1504 } else if (token == Opt_stripe) {
1505 sbi->s_stripe = arg;
1506 } else if (token == Opt_resuid) {
1507 uid = make_kuid(current_user_ns(), arg);
1508 if (!uid_valid(uid)) {
1509 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1510 return -1;
1511 }
1512 sbi->s_resuid = uid;
1513 } else if (token == Opt_resgid) {
1514 gid = make_kgid(current_user_ns(), arg);
1515 if (!gid_valid(gid)) {
1516 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1517 return -1;
1518 }
1519 sbi->s_resgid = gid;
1520 } else if (token == Opt_journal_dev) {
1521 if (is_remount) {
1522 ext4_msg(sb, KERN_ERR,
1523 "Cannot specify journal on remount");
1524 return -1;
1525 }
1526 *journal_devnum = arg;
1527 } else if (token == Opt_journal_ioprio) {
1528 if (arg > 7) {
1529 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1530 " (must be 0-7)");
1531 return -1;
1532 }
1533 *journal_ioprio =
1534 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1535 } else if (m->flags & MOPT_DATAJ) {
1536 if (is_remount) {
1537 if (!sbi->s_journal)
1538 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1539 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1540 ext4_msg(sb, KERN_ERR,
1541 "Cannot change data mode on remount");
1542 return -1;
1543 }
1544 } else {
1545 clear_opt(sb, DATA_FLAGS);
1546 sbi->s_mount_opt |= m->mount_opt;
1547 }
1548 #ifdef CONFIG_QUOTA
1549 } else if (m->flags & MOPT_QFMT) {
1550 if (sb_any_quota_loaded(sb) &&
1551 sbi->s_jquota_fmt != m->mount_opt) {
1552 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1553 "quota options when quota turned on");
1554 return -1;
1555 }
1556 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1557 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1558 ext4_msg(sb, KERN_ERR,
1559 "Cannot set journaled quota options "
1560 "when QUOTA feature is enabled");
1561 return -1;
1562 }
1563 sbi->s_jquota_fmt = m->mount_opt;
1564 #endif
1565 } else {
1566 if (!args->from)
1567 arg = 1;
1568 if (m->flags & MOPT_CLEAR)
1569 arg = !arg;
1570 else if (unlikely(!(m->flags & MOPT_SET))) {
1571 ext4_msg(sb, KERN_WARNING,
1572 "buggy handling of option %s", opt);
1573 WARN_ON(1);
1574 return -1;
1575 }
1576 if (arg != 0)
1577 sbi->s_mount_opt |= m->mount_opt;
1578 else
1579 sbi->s_mount_opt &= ~m->mount_opt;
1580 }
1581 return 1;
1582 }
1583
1584 static int parse_options(char *options, struct super_block *sb,
1585 unsigned long *journal_devnum,
1586 unsigned int *journal_ioprio,
1587 int is_remount)
1588 {
1589 struct ext4_sb_info *sbi = EXT4_SB(sb);
1590 char *p;
1591 substring_t args[MAX_OPT_ARGS];
1592 int token;
1593
1594 if (!options)
1595 return 1;
1596
1597 while ((p = strsep(&options, ",")) != NULL) {
1598 if (!*p)
1599 continue;
1600 /*
1601 * Initialize args struct so we know whether arg was
1602 * found; some options take optional arguments.
1603 */
1604 args[0].to = args[0].from = NULL;
1605 token = match_token(p, tokens, args);
1606 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1607 journal_ioprio, is_remount) < 0)
1608 return 0;
1609 }
1610 #ifdef CONFIG_QUOTA
1611 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1612 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1613 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1614 "feature is enabled");
1615 return 0;
1616 }
1617 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1618 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1619 clear_opt(sb, USRQUOTA);
1620
1621 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1622 clear_opt(sb, GRPQUOTA);
1623
1624 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1625 ext4_msg(sb, KERN_ERR, "old and new quota "
1626 "format mixing");
1627 return 0;
1628 }
1629
1630 if (!sbi->s_jquota_fmt) {
1631 ext4_msg(sb, KERN_ERR, "journaled quota format "
1632 "not specified");
1633 return 0;
1634 }
1635 }
1636 #endif
1637 if (test_opt(sb, DIOREAD_NOLOCK)) {
1638 int blocksize =
1639 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1640
1641 if (blocksize < PAGE_CACHE_SIZE) {
1642 ext4_msg(sb, KERN_ERR, "can't mount with "
1643 "dioread_nolock if block size != PAGE_SIZE");
1644 return 0;
1645 }
1646 }
1647 return 1;
1648 }
1649
1650 static inline void ext4_show_quota_options(struct seq_file *seq,
1651 struct super_block *sb)
1652 {
1653 #if defined(CONFIG_QUOTA)
1654 struct ext4_sb_info *sbi = EXT4_SB(sb);
1655
1656 if (sbi->s_jquota_fmt) {
1657 char *fmtname = "";
1658
1659 switch (sbi->s_jquota_fmt) {
1660 case QFMT_VFS_OLD:
1661 fmtname = "vfsold";
1662 break;
1663 case QFMT_VFS_V0:
1664 fmtname = "vfsv0";
1665 break;
1666 case QFMT_VFS_V1:
1667 fmtname = "vfsv1";
1668 break;
1669 }
1670 seq_printf(seq, ",jqfmt=%s", fmtname);
1671 }
1672
1673 if (sbi->s_qf_names[USRQUOTA])
1674 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1675
1676 if (sbi->s_qf_names[GRPQUOTA])
1677 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1678 #endif
1679 }
1680
1681 static const char *token2str(int token)
1682 {
1683 const struct match_token *t;
1684
1685 for (t = tokens; t->token != Opt_err; t++)
1686 if (t->token == token && !strchr(t->pattern, '='))
1687 break;
1688 return t->pattern;
1689 }
1690
1691 /*
1692 * Show an option if
1693 * - it's set to a non-default value OR
1694 * - if the per-sb default is different from the global default
1695 */
1696 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1697 int nodefs)
1698 {
1699 struct ext4_sb_info *sbi = EXT4_SB(sb);
1700 struct ext4_super_block *es = sbi->s_es;
1701 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1702 const struct mount_opts *m;
1703 char sep = nodefs ? '\n' : ',';
1704
1705 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1706 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1707
1708 if (sbi->s_sb_block != 1)
1709 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1710
1711 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1712 int want_set = m->flags & MOPT_SET;
1713 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1714 (m->flags & MOPT_CLEAR_ERR))
1715 continue;
1716 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1717 continue; /* skip if same as the default */
1718 if ((want_set &&
1719 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1720 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1721 continue; /* select Opt_noFoo vs Opt_Foo */
1722 SEQ_OPTS_PRINT("%s", token2str(m->token));
1723 }
1724
1725 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1726 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1727 SEQ_OPTS_PRINT("resuid=%u",
1728 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1729 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1730 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1731 SEQ_OPTS_PRINT("resgid=%u",
1732 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1733 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1734 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1735 SEQ_OPTS_PUTS("errors=remount-ro");
1736 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1737 SEQ_OPTS_PUTS("errors=continue");
1738 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1739 SEQ_OPTS_PUTS("errors=panic");
1740 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1741 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1742 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1743 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1744 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1745 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1746 if (sb->s_flags & MS_I_VERSION)
1747 SEQ_OPTS_PUTS("i_version");
1748 if (nodefs || sbi->s_stripe)
1749 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1750 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1751 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1752 SEQ_OPTS_PUTS("data=journal");
1753 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1754 SEQ_OPTS_PUTS("data=ordered");
1755 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1756 SEQ_OPTS_PUTS("data=writeback");
1757 }
1758 if (nodefs ||
1759 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1760 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1761 sbi->s_inode_readahead_blks);
1762
1763 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1764 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1765 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1766 if (nodefs || sbi->s_max_dir_size_kb)
1767 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1768
1769 ext4_show_quota_options(seq, sb);
1770 return 0;
1771 }
1772
1773 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1774 {
1775 return _ext4_show_options(seq, root->d_sb, 0);
1776 }
1777
1778 static int options_seq_show(struct seq_file *seq, void *offset)
1779 {
1780 struct super_block *sb = seq->private;
1781 int rc;
1782
1783 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1784 rc = _ext4_show_options(seq, sb, 1);
1785 seq_puts(seq, "\n");
1786 return rc;
1787 }
1788
1789 static int options_open_fs(struct inode *inode, struct file *file)
1790 {
1791 return single_open(file, options_seq_show, PDE_DATA(inode));
1792 }
1793
1794 static const struct file_operations ext4_seq_options_fops = {
1795 .owner = THIS_MODULE,
1796 .open = options_open_fs,
1797 .read = seq_read,
1798 .llseek = seq_lseek,
1799 .release = single_release,
1800 };
1801
1802 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1803 int read_only)
1804 {
1805 struct ext4_sb_info *sbi = EXT4_SB(sb);
1806 int res = 0;
1807
1808 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1809 ext4_msg(sb, KERN_ERR, "revision level too high, "
1810 "forcing read-only mode");
1811 res = MS_RDONLY;
1812 }
1813 if (read_only)
1814 goto done;
1815 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1816 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1817 "running e2fsck is recommended");
1818 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1819 ext4_msg(sb, KERN_WARNING,
1820 "warning: mounting fs with errors, "
1821 "running e2fsck is recommended");
1822 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1823 le16_to_cpu(es->s_mnt_count) >=
1824 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1825 ext4_msg(sb, KERN_WARNING,
1826 "warning: maximal mount count reached, "
1827 "running e2fsck is recommended");
1828 else if (le32_to_cpu(es->s_checkinterval) &&
1829 (le32_to_cpu(es->s_lastcheck) +
1830 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1831 ext4_msg(sb, KERN_WARNING,
1832 "warning: checktime reached, "
1833 "running e2fsck is recommended");
1834 if (!sbi->s_journal)
1835 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1836 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1837 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1838 le16_add_cpu(&es->s_mnt_count, 1);
1839 es->s_mtime = cpu_to_le32(get_seconds());
1840 ext4_update_dynamic_rev(sb);
1841 if (sbi->s_journal)
1842 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1843
1844 ext4_commit_super(sb, 1);
1845 done:
1846 if (test_opt(sb, DEBUG))
1847 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1848 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1849 sb->s_blocksize,
1850 sbi->s_groups_count,
1851 EXT4_BLOCKS_PER_GROUP(sb),
1852 EXT4_INODES_PER_GROUP(sb),
1853 sbi->s_mount_opt, sbi->s_mount_opt2);
1854
1855 cleancache_init_fs(sb);
1856 return res;
1857 }
1858
1859 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1860 {
1861 struct ext4_sb_info *sbi = EXT4_SB(sb);
1862 struct flex_groups *new_groups;
1863 int size;
1864
1865 if (!sbi->s_log_groups_per_flex)
1866 return 0;
1867
1868 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1869 if (size <= sbi->s_flex_groups_allocated)
1870 return 0;
1871
1872 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1873 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1874 if (!new_groups) {
1875 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1876 size / (int) sizeof(struct flex_groups));
1877 return -ENOMEM;
1878 }
1879
1880 if (sbi->s_flex_groups) {
1881 memcpy(new_groups, sbi->s_flex_groups,
1882 (sbi->s_flex_groups_allocated *
1883 sizeof(struct flex_groups)));
1884 ext4_kvfree(sbi->s_flex_groups);
1885 }
1886 sbi->s_flex_groups = new_groups;
1887 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1888 return 0;
1889 }
1890
1891 static int ext4_fill_flex_info(struct super_block *sb)
1892 {
1893 struct ext4_sb_info *sbi = EXT4_SB(sb);
1894 struct ext4_group_desc *gdp = NULL;
1895 ext4_group_t flex_group;
1896 unsigned int groups_per_flex = 0;
1897 int i, err;
1898
1899 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1900 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1901 sbi->s_log_groups_per_flex = 0;
1902 return 1;
1903 }
1904 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1905
1906 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1907 if (err)
1908 goto failed;
1909
1910 for (i = 0; i < sbi->s_groups_count; i++) {
1911 gdp = ext4_get_group_desc(sb, i, NULL);
1912
1913 flex_group = ext4_flex_group(sbi, i);
1914 atomic_add(ext4_free_inodes_count(sb, gdp),
1915 &sbi->s_flex_groups[flex_group].free_inodes);
1916 atomic64_add(ext4_free_group_clusters(sb, gdp),
1917 &sbi->s_flex_groups[flex_group].free_clusters);
1918 atomic_add(ext4_used_dirs_count(sb, gdp),
1919 &sbi->s_flex_groups[flex_group].used_dirs);
1920 }
1921
1922 return 1;
1923 failed:
1924 return 0;
1925 }
1926
1927 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1928 struct ext4_group_desc *gdp)
1929 {
1930 int offset;
1931 __u16 crc = 0;
1932 __le32 le_group = cpu_to_le32(block_group);
1933
1934 if ((sbi->s_es->s_feature_ro_compat &
1935 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1936 /* Use new metadata_csum algorithm */
1937 __le16 save_csum;
1938 __u32 csum32;
1939
1940 save_csum = gdp->bg_checksum;
1941 gdp->bg_checksum = 0;
1942 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1943 sizeof(le_group));
1944 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1945 sbi->s_desc_size);
1946 gdp->bg_checksum = save_csum;
1947
1948 crc = csum32 & 0xFFFF;
1949 goto out;
1950 }
1951
1952 /* old crc16 code */
1953 offset = offsetof(struct ext4_group_desc, bg_checksum);
1954
1955 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1956 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1957 crc = crc16(crc, (__u8 *)gdp, offset);
1958 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1959 /* for checksum of struct ext4_group_desc do the rest...*/
1960 if ((sbi->s_es->s_feature_incompat &
1961 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1962 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1963 crc = crc16(crc, (__u8 *)gdp + offset,
1964 le16_to_cpu(sbi->s_es->s_desc_size) -
1965 offset);
1966
1967 out:
1968 return cpu_to_le16(crc);
1969 }
1970
1971 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1972 struct ext4_group_desc *gdp)
1973 {
1974 if (ext4_has_group_desc_csum(sb) &&
1975 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1976 block_group, gdp)))
1977 return 0;
1978
1979 return 1;
1980 }
1981
1982 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1983 struct ext4_group_desc *gdp)
1984 {
1985 if (!ext4_has_group_desc_csum(sb))
1986 return;
1987 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1988 }
1989
1990 /* Called at mount-time, super-block is locked */
1991 static int ext4_check_descriptors(struct super_block *sb,
1992 ext4_group_t *first_not_zeroed)
1993 {
1994 struct ext4_sb_info *sbi = EXT4_SB(sb);
1995 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1996 ext4_fsblk_t last_block;
1997 ext4_fsblk_t block_bitmap;
1998 ext4_fsblk_t inode_bitmap;
1999 ext4_fsblk_t inode_table;
2000 int flexbg_flag = 0;
2001 ext4_group_t i, grp = sbi->s_groups_count;
2002
2003 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2004 flexbg_flag = 1;
2005
2006 ext4_debug("Checking group descriptors");
2007
2008 for (i = 0; i < sbi->s_groups_count; i++) {
2009 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2010
2011 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2012 last_block = ext4_blocks_count(sbi->s_es) - 1;
2013 else
2014 last_block = first_block +
2015 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2016
2017 if ((grp == sbi->s_groups_count) &&
2018 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2019 grp = i;
2020
2021 block_bitmap = ext4_block_bitmap(sb, gdp);
2022 if (block_bitmap < first_block || block_bitmap > last_block) {
2023 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2024 "Block bitmap for group %u not in group "
2025 "(block %llu)!", i, block_bitmap);
2026 return 0;
2027 }
2028 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2029 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2030 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2031 "Inode bitmap for group %u not in group "
2032 "(block %llu)!", i, inode_bitmap);
2033 return 0;
2034 }
2035 inode_table = ext4_inode_table(sb, gdp);
2036 if (inode_table < first_block ||
2037 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2038 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2039 "Inode table for group %u not in group "
2040 "(block %llu)!", i, inode_table);
2041 return 0;
2042 }
2043 ext4_lock_group(sb, i);
2044 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2045 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2046 "Checksum for group %u failed (%u!=%u)",
2047 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2048 gdp)), le16_to_cpu(gdp->bg_checksum));
2049 if (!(sb->s_flags & MS_RDONLY)) {
2050 ext4_unlock_group(sb, i);
2051 return 0;
2052 }
2053 }
2054 ext4_unlock_group(sb, i);
2055 if (!flexbg_flag)
2056 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2057 }
2058 if (NULL != first_not_zeroed)
2059 *first_not_zeroed = grp;
2060
2061 ext4_free_blocks_count_set(sbi->s_es,
2062 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2063 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2064 return 1;
2065 }
2066
2067 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2068 * the superblock) which were deleted from all directories, but held open by
2069 * a process at the time of a crash. We walk the list and try to delete these
2070 * inodes at recovery time (only with a read-write filesystem).
2071 *
2072 * In order to keep the orphan inode chain consistent during traversal (in
2073 * case of crash during recovery), we link each inode into the superblock
2074 * orphan list_head and handle it the same way as an inode deletion during
2075 * normal operation (which journals the operations for us).
2076 *
2077 * We only do an iget() and an iput() on each inode, which is very safe if we
2078 * accidentally point at an in-use or already deleted inode. The worst that
2079 * can happen in this case is that we get a "bit already cleared" message from
2080 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2081 * e2fsck was run on this filesystem, and it must have already done the orphan
2082 * inode cleanup for us, so we can safely abort without any further action.
2083 */
2084 static void ext4_orphan_cleanup(struct super_block *sb,
2085 struct ext4_super_block *es)
2086 {
2087 unsigned int s_flags = sb->s_flags;
2088 int nr_orphans = 0, nr_truncates = 0;
2089 #ifdef CONFIG_QUOTA
2090 int i;
2091 #endif
2092 if (!es->s_last_orphan) {
2093 jbd_debug(4, "no orphan inodes to clean up\n");
2094 return;
2095 }
2096
2097 if (bdev_read_only(sb->s_bdev)) {
2098 ext4_msg(sb, KERN_ERR, "write access "
2099 "unavailable, skipping orphan cleanup");
2100 return;
2101 }
2102
2103 /* Check if feature set would not allow a r/w mount */
2104 if (!ext4_feature_set_ok(sb, 0)) {
2105 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2106 "unknown ROCOMPAT features");
2107 return;
2108 }
2109
2110 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2111 /* don't clear list on RO mount w/ errors */
2112 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2113 jbd_debug(1, "Errors on filesystem, "
2114 "clearing orphan list.\n");
2115 es->s_last_orphan = 0;
2116 }
2117 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2118 return;
2119 }
2120
2121 if (s_flags & MS_RDONLY) {
2122 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2123 sb->s_flags &= ~MS_RDONLY;
2124 }
2125 #ifdef CONFIG_QUOTA
2126 /* Needed for iput() to work correctly and not trash data */
2127 sb->s_flags |= MS_ACTIVE;
2128 /* Turn on quotas so that they are updated correctly */
2129 for (i = 0; i < MAXQUOTAS; i++) {
2130 if (EXT4_SB(sb)->s_qf_names[i]) {
2131 int ret = ext4_quota_on_mount(sb, i);
2132 if (ret < 0)
2133 ext4_msg(sb, KERN_ERR,
2134 "Cannot turn on journaled "
2135 "quota: error %d", ret);
2136 }
2137 }
2138 #endif
2139
2140 while (es->s_last_orphan) {
2141 struct inode *inode;
2142
2143 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2144 if (IS_ERR(inode)) {
2145 es->s_last_orphan = 0;
2146 break;
2147 }
2148
2149 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2150 dquot_initialize(inode);
2151 if (inode->i_nlink) {
2152 ext4_msg(sb, KERN_DEBUG,
2153 "%s: truncating inode %lu to %lld bytes",
2154 __func__, inode->i_ino, inode->i_size);
2155 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2156 inode->i_ino, inode->i_size);
2157 mutex_lock(&inode->i_mutex);
2158 ext4_truncate(inode);
2159 mutex_unlock(&inode->i_mutex);
2160 nr_truncates++;
2161 } else {
2162 ext4_msg(sb, KERN_DEBUG,
2163 "%s: deleting unreferenced inode %lu",
2164 __func__, inode->i_ino);
2165 jbd_debug(2, "deleting unreferenced inode %lu\n",
2166 inode->i_ino);
2167 nr_orphans++;
2168 }
2169 iput(inode); /* The delete magic happens here! */
2170 }
2171
2172 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2173
2174 if (nr_orphans)
2175 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2176 PLURAL(nr_orphans));
2177 if (nr_truncates)
2178 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2179 PLURAL(nr_truncates));
2180 #ifdef CONFIG_QUOTA
2181 /* Turn quotas off */
2182 for (i = 0; i < MAXQUOTAS; i++) {
2183 if (sb_dqopt(sb)->files[i])
2184 dquot_quota_off(sb, i);
2185 }
2186 #endif
2187 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2188 }
2189
2190 /*
2191 * Maximal extent format file size.
2192 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2193 * extent format containers, within a sector_t, and within i_blocks
2194 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2195 * so that won't be a limiting factor.
2196 *
2197 * However there is other limiting factor. We do store extents in the form
2198 * of starting block and length, hence the resulting length of the extent
2199 * covering maximum file size must fit into on-disk format containers as
2200 * well. Given that length is always by 1 unit bigger than max unit (because
2201 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2202 *
2203 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2204 */
2205 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2206 {
2207 loff_t res;
2208 loff_t upper_limit = MAX_LFS_FILESIZE;
2209
2210 /* small i_blocks in vfs inode? */
2211 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2212 /*
2213 * CONFIG_LBDAF is not enabled implies the inode
2214 * i_block represent total blocks in 512 bytes
2215 * 32 == size of vfs inode i_blocks * 8
2216 */
2217 upper_limit = (1LL << 32) - 1;
2218
2219 /* total blocks in file system block size */
2220 upper_limit >>= (blkbits - 9);
2221 upper_limit <<= blkbits;
2222 }
2223
2224 /*
2225 * 32-bit extent-start container, ee_block. We lower the maxbytes
2226 * by one fs block, so ee_len can cover the extent of maximum file
2227 * size
2228 */
2229 res = (1LL << 32) - 1;
2230 res <<= blkbits;
2231
2232 /* Sanity check against vm- & vfs- imposed limits */
2233 if (res > upper_limit)
2234 res = upper_limit;
2235
2236 return res;
2237 }
2238
2239 /*
2240 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2241 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2242 * We need to be 1 filesystem block less than the 2^48 sector limit.
2243 */
2244 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2245 {
2246 loff_t res = EXT4_NDIR_BLOCKS;
2247 int meta_blocks;
2248 loff_t upper_limit;
2249 /* This is calculated to be the largest file size for a dense, block
2250 * mapped file such that the file's total number of 512-byte sectors,
2251 * including data and all indirect blocks, does not exceed (2^48 - 1).
2252 *
2253 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2254 * number of 512-byte sectors of the file.
2255 */
2256
2257 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2258 /*
2259 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2260 * the inode i_block field represents total file blocks in
2261 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2262 */
2263 upper_limit = (1LL << 32) - 1;
2264
2265 /* total blocks in file system block size */
2266 upper_limit >>= (bits - 9);
2267
2268 } else {
2269 /*
2270 * We use 48 bit ext4_inode i_blocks
2271 * With EXT4_HUGE_FILE_FL set the i_blocks
2272 * represent total number of blocks in
2273 * file system block size
2274 */
2275 upper_limit = (1LL << 48) - 1;
2276
2277 }
2278
2279 /* indirect blocks */
2280 meta_blocks = 1;
2281 /* double indirect blocks */
2282 meta_blocks += 1 + (1LL << (bits-2));
2283 /* tripple indirect blocks */
2284 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2285
2286 upper_limit -= meta_blocks;
2287 upper_limit <<= bits;
2288
2289 res += 1LL << (bits-2);
2290 res += 1LL << (2*(bits-2));
2291 res += 1LL << (3*(bits-2));
2292 res <<= bits;
2293 if (res > upper_limit)
2294 res = upper_limit;
2295
2296 if (res > MAX_LFS_FILESIZE)
2297 res = MAX_LFS_FILESIZE;
2298
2299 return res;
2300 }
2301
2302 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2303 ext4_fsblk_t logical_sb_block, int nr)
2304 {
2305 struct ext4_sb_info *sbi = EXT4_SB(sb);
2306 ext4_group_t bg, first_meta_bg;
2307 int has_super = 0;
2308
2309 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2310
2311 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2312 nr < first_meta_bg)
2313 return logical_sb_block + nr + 1;
2314 bg = sbi->s_desc_per_block * nr;
2315 if (ext4_bg_has_super(sb, bg))
2316 has_super = 1;
2317
2318 return (has_super + ext4_group_first_block_no(sb, bg));
2319 }
2320
2321 /**
2322 * ext4_get_stripe_size: Get the stripe size.
2323 * @sbi: In memory super block info
2324 *
2325 * If we have specified it via mount option, then
2326 * use the mount option value. If the value specified at mount time is
2327 * greater than the blocks per group use the super block value.
2328 * If the super block value is greater than blocks per group return 0.
2329 * Allocator needs it be less than blocks per group.
2330 *
2331 */
2332 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2333 {
2334 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2335 unsigned long stripe_width =
2336 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2337 int ret;
2338
2339 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2340 ret = sbi->s_stripe;
2341 else if (stripe_width <= sbi->s_blocks_per_group)
2342 ret = stripe_width;
2343 else if (stride <= sbi->s_blocks_per_group)
2344 ret = stride;
2345 else
2346 ret = 0;
2347
2348 /*
2349 * If the stripe width is 1, this makes no sense and
2350 * we set it to 0 to turn off stripe handling code.
2351 */
2352 if (ret <= 1)
2353 ret = 0;
2354
2355 return ret;
2356 }
2357
2358 /* sysfs supprt */
2359
2360 struct ext4_attr {
2361 struct attribute attr;
2362 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2363 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2364 const char *, size_t);
2365 int offset;
2366 };
2367
2368 static int parse_strtoull(const char *buf,
2369 unsigned long long max, unsigned long long *value)
2370 {
2371 int ret;
2372
2373 ret = kstrtoull(skip_spaces(buf), 0, value);
2374 if (!ret && *value > max)
2375 ret = -EINVAL;
2376 return ret;
2377 }
2378
2379 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2380 struct ext4_sb_info *sbi,
2381 char *buf)
2382 {
2383 return snprintf(buf, PAGE_SIZE, "%llu\n",
2384 (s64) EXT4_C2B(sbi,
2385 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2386 }
2387
2388 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2389 struct ext4_sb_info *sbi, char *buf)
2390 {
2391 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2392
2393 if (!sb->s_bdev->bd_part)
2394 return snprintf(buf, PAGE_SIZE, "0\n");
2395 return snprintf(buf, PAGE_SIZE, "%lu\n",
2396 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2397 sbi->s_sectors_written_start) >> 1);
2398 }
2399
2400 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2401 struct ext4_sb_info *sbi, char *buf)
2402 {
2403 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2404
2405 if (!sb->s_bdev->bd_part)
2406 return snprintf(buf, PAGE_SIZE, "0\n");
2407 return snprintf(buf, PAGE_SIZE, "%llu\n",
2408 (unsigned long long)(sbi->s_kbytes_written +
2409 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2410 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2411 }
2412
2413 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2414 struct ext4_sb_info *sbi,
2415 const char *buf, size_t count)
2416 {
2417 unsigned long t;
2418 int ret;
2419
2420 ret = kstrtoul(skip_spaces(buf), 0, &t);
2421 if (ret)
2422 return ret;
2423
2424 if (t && (!is_power_of_2(t) || t > 0x40000000))
2425 return -EINVAL;
2426
2427 sbi->s_inode_readahead_blks = t;
2428 return count;
2429 }
2430
2431 static ssize_t sbi_ui_show(struct ext4_attr *a,
2432 struct ext4_sb_info *sbi, char *buf)
2433 {
2434 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2435
2436 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2437 }
2438
2439 static ssize_t sbi_ui_store(struct ext4_attr *a,
2440 struct ext4_sb_info *sbi,
2441 const char *buf, size_t count)
2442 {
2443 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2444 unsigned long t;
2445 int ret;
2446
2447 ret = kstrtoul(skip_spaces(buf), 0, &t);
2448 if (ret)
2449 return ret;
2450 *ui = t;
2451 return count;
2452 }
2453
2454 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2455 struct ext4_sb_info *sbi, char *buf)
2456 {
2457 return snprintf(buf, PAGE_SIZE, "%llu\n",
2458 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2459 }
2460
2461 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2462 struct ext4_sb_info *sbi,
2463 const char *buf, size_t count)
2464 {
2465 unsigned long long val;
2466 int ret;
2467
2468 if (parse_strtoull(buf, -1ULL, &val))
2469 return -EINVAL;
2470 ret = ext4_reserve_clusters(sbi, val);
2471
2472 return ret ? ret : count;
2473 }
2474
2475 static ssize_t trigger_test_error(struct ext4_attr *a,
2476 struct ext4_sb_info *sbi,
2477 const char *buf, size_t count)
2478 {
2479 int len = count;
2480
2481 if (!capable(CAP_SYS_ADMIN))
2482 return -EPERM;
2483
2484 if (len && buf[len-1] == '\n')
2485 len--;
2486
2487 if (len)
2488 ext4_error(sbi->s_sb, "%.*s", len, buf);
2489 return count;
2490 }
2491
2492 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2493 static struct ext4_attr ext4_attr_##_name = { \
2494 .attr = {.name = __stringify(_name), .mode = _mode }, \
2495 .show = _show, \
2496 .store = _store, \
2497 .offset = offsetof(struct ext4_sb_info, _elname), \
2498 }
2499 #define EXT4_ATTR(name, mode, show, store) \
2500 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2501
2502 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2503 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2504 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2505 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2506 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2507 #define ATTR_LIST(name) &ext4_attr_##name.attr
2508
2509 EXT4_RO_ATTR(delayed_allocation_blocks);
2510 EXT4_RO_ATTR(session_write_kbytes);
2511 EXT4_RO_ATTR(lifetime_write_kbytes);
2512 EXT4_RW_ATTR(reserved_clusters);
2513 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2514 inode_readahead_blks_store, s_inode_readahead_blks);
2515 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2516 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2517 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2518 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2519 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2520 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2521 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2522 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2523 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2524 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2525
2526 static struct attribute *ext4_attrs[] = {
2527 ATTR_LIST(delayed_allocation_blocks),
2528 ATTR_LIST(session_write_kbytes),
2529 ATTR_LIST(lifetime_write_kbytes),
2530 ATTR_LIST(reserved_clusters),
2531 ATTR_LIST(inode_readahead_blks),
2532 ATTR_LIST(inode_goal),
2533 ATTR_LIST(mb_stats),
2534 ATTR_LIST(mb_max_to_scan),
2535 ATTR_LIST(mb_min_to_scan),
2536 ATTR_LIST(mb_order2_req),
2537 ATTR_LIST(mb_stream_req),
2538 ATTR_LIST(mb_group_prealloc),
2539 ATTR_LIST(max_writeback_mb_bump),
2540 ATTR_LIST(extent_max_zeroout_kb),
2541 ATTR_LIST(trigger_fs_error),
2542 NULL,
2543 };
2544
2545 /* Features this copy of ext4 supports */
2546 EXT4_INFO_ATTR(lazy_itable_init);
2547 EXT4_INFO_ATTR(batched_discard);
2548 EXT4_INFO_ATTR(meta_bg_resize);
2549
2550 static struct attribute *ext4_feat_attrs[] = {
2551 ATTR_LIST(lazy_itable_init),
2552 ATTR_LIST(batched_discard),
2553 ATTR_LIST(meta_bg_resize),
2554 NULL,
2555 };
2556
2557 static ssize_t ext4_attr_show(struct kobject *kobj,
2558 struct attribute *attr, char *buf)
2559 {
2560 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2561 s_kobj);
2562 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2563
2564 return a->show ? a->show(a, sbi, buf) : 0;
2565 }
2566
2567 static ssize_t ext4_attr_store(struct kobject *kobj,
2568 struct attribute *attr,
2569 const char *buf, size_t len)
2570 {
2571 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2572 s_kobj);
2573 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2574
2575 return a->store ? a->store(a, sbi, buf, len) : 0;
2576 }
2577
2578 static void ext4_sb_release(struct kobject *kobj)
2579 {
2580 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2581 s_kobj);
2582 complete(&sbi->s_kobj_unregister);
2583 }
2584
2585 static const struct sysfs_ops ext4_attr_ops = {
2586 .show = ext4_attr_show,
2587 .store = ext4_attr_store,
2588 };
2589
2590 static struct kobj_type ext4_ktype = {
2591 .default_attrs = ext4_attrs,
2592 .sysfs_ops = &ext4_attr_ops,
2593 .release = ext4_sb_release,
2594 };
2595
2596 static void ext4_feat_release(struct kobject *kobj)
2597 {
2598 complete(&ext4_feat->f_kobj_unregister);
2599 }
2600
2601 static struct kobj_type ext4_feat_ktype = {
2602 .default_attrs = ext4_feat_attrs,
2603 .sysfs_ops = &ext4_attr_ops,
2604 .release = ext4_feat_release,
2605 };
2606
2607 /*
2608 * Check whether this filesystem can be mounted based on
2609 * the features present and the RDONLY/RDWR mount requested.
2610 * Returns 1 if this filesystem can be mounted as requested,
2611 * 0 if it cannot be.
2612 */
2613 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2614 {
2615 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2616 ext4_msg(sb, KERN_ERR,
2617 "Couldn't mount because of "
2618 "unsupported optional features (%x)",
2619 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2620 ~EXT4_FEATURE_INCOMPAT_SUPP));
2621 return 0;
2622 }
2623
2624 if (readonly)
2625 return 1;
2626
2627 /* Check that feature set is OK for a read-write mount */
2628 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2629 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2630 "unsupported optional features (%x)",
2631 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2632 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2633 return 0;
2634 }
2635 /*
2636 * Large file size enabled file system can only be mounted
2637 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2638 */
2639 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2640 if (sizeof(blkcnt_t) < sizeof(u64)) {
2641 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2642 "cannot be mounted RDWR without "
2643 "CONFIG_LBDAF");
2644 return 0;
2645 }
2646 }
2647 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2648 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2649 ext4_msg(sb, KERN_ERR,
2650 "Can't support bigalloc feature without "
2651 "extents feature\n");
2652 return 0;
2653 }
2654
2655 #ifndef CONFIG_QUOTA
2656 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2657 !readonly) {
2658 ext4_msg(sb, KERN_ERR,
2659 "Filesystem with quota feature cannot be mounted RDWR "
2660 "without CONFIG_QUOTA");
2661 return 0;
2662 }
2663 #endif /* CONFIG_QUOTA */
2664 return 1;
2665 }
2666
2667 /*
2668 * This function is called once a day if we have errors logged
2669 * on the file system
2670 */
2671 static void print_daily_error_info(unsigned long arg)
2672 {
2673 struct super_block *sb = (struct super_block *) arg;
2674 struct ext4_sb_info *sbi;
2675 struct ext4_super_block *es;
2676
2677 sbi = EXT4_SB(sb);
2678 es = sbi->s_es;
2679
2680 if (es->s_error_count)
2681 /* fsck newer than v1.41.13 is needed to clean this condition. */
2682 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2683 le32_to_cpu(es->s_error_count));
2684 if (es->s_first_error_time) {
2685 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2686 sb->s_id, le32_to_cpu(es->s_first_error_time),
2687 (int) sizeof(es->s_first_error_func),
2688 es->s_first_error_func,
2689 le32_to_cpu(es->s_first_error_line));
2690 if (es->s_first_error_ino)
2691 printk(": inode %u",
2692 le32_to_cpu(es->s_first_error_ino));
2693 if (es->s_first_error_block)
2694 printk(": block %llu", (unsigned long long)
2695 le64_to_cpu(es->s_first_error_block));
2696 printk("\n");
2697 }
2698 if (es->s_last_error_time) {
2699 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2700 sb->s_id, le32_to_cpu(es->s_last_error_time),
2701 (int) sizeof(es->s_last_error_func),
2702 es->s_last_error_func,
2703 le32_to_cpu(es->s_last_error_line));
2704 if (es->s_last_error_ino)
2705 printk(": inode %u",
2706 le32_to_cpu(es->s_last_error_ino));
2707 if (es->s_last_error_block)
2708 printk(": block %llu", (unsigned long long)
2709 le64_to_cpu(es->s_last_error_block));
2710 printk("\n");
2711 }
2712 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2713 }
2714
2715 /* Find next suitable group and run ext4_init_inode_table */
2716 static int ext4_run_li_request(struct ext4_li_request *elr)
2717 {
2718 struct ext4_group_desc *gdp = NULL;
2719 ext4_group_t group, ngroups;
2720 struct super_block *sb;
2721 unsigned long timeout = 0;
2722 int ret = 0;
2723
2724 sb = elr->lr_super;
2725 ngroups = EXT4_SB(sb)->s_groups_count;
2726
2727 sb_start_write(sb);
2728 for (group = elr->lr_next_group; group < ngroups; group++) {
2729 gdp = ext4_get_group_desc(sb, group, NULL);
2730 if (!gdp) {
2731 ret = 1;
2732 break;
2733 }
2734
2735 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2736 break;
2737 }
2738
2739 if (group >= ngroups)
2740 ret = 1;
2741
2742 if (!ret) {
2743 timeout = jiffies;
2744 ret = ext4_init_inode_table(sb, group,
2745 elr->lr_timeout ? 0 : 1);
2746 if (elr->lr_timeout == 0) {
2747 timeout = (jiffies - timeout) *
2748 elr->lr_sbi->s_li_wait_mult;
2749 elr->lr_timeout = timeout;
2750 }
2751 elr->lr_next_sched = jiffies + elr->lr_timeout;
2752 elr->lr_next_group = group + 1;
2753 }
2754 sb_end_write(sb);
2755
2756 return ret;
2757 }
2758
2759 /*
2760 * Remove lr_request from the list_request and free the
2761 * request structure. Should be called with li_list_mtx held
2762 */
2763 static void ext4_remove_li_request(struct ext4_li_request *elr)
2764 {
2765 struct ext4_sb_info *sbi;
2766
2767 if (!elr)
2768 return;
2769
2770 sbi = elr->lr_sbi;
2771
2772 list_del(&elr->lr_request);
2773 sbi->s_li_request = NULL;
2774 kfree(elr);
2775 }
2776
2777 static void ext4_unregister_li_request(struct super_block *sb)
2778 {
2779 mutex_lock(&ext4_li_mtx);
2780 if (!ext4_li_info) {
2781 mutex_unlock(&ext4_li_mtx);
2782 return;
2783 }
2784
2785 mutex_lock(&ext4_li_info->li_list_mtx);
2786 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2787 mutex_unlock(&ext4_li_info->li_list_mtx);
2788 mutex_unlock(&ext4_li_mtx);
2789 }
2790
2791 static struct task_struct *ext4_lazyinit_task;
2792
2793 /*
2794 * This is the function where ext4lazyinit thread lives. It walks
2795 * through the request list searching for next scheduled filesystem.
2796 * When such a fs is found, run the lazy initialization request
2797 * (ext4_rn_li_request) and keep track of the time spend in this
2798 * function. Based on that time we compute next schedule time of
2799 * the request. When walking through the list is complete, compute
2800 * next waking time and put itself into sleep.
2801 */
2802 static int ext4_lazyinit_thread(void *arg)
2803 {
2804 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2805 struct list_head *pos, *n;
2806 struct ext4_li_request *elr;
2807 unsigned long next_wakeup, cur;
2808
2809 BUG_ON(NULL == eli);
2810
2811 cont_thread:
2812 while (true) {
2813 next_wakeup = MAX_JIFFY_OFFSET;
2814
2815 mutex_lock(&eli->li_list_mtx);
2816 if (list_empty(&eli->li_request_list)) {
2817 mutex_unlock(&eli->li_list_mtx);
2818 goto exit_thread;
2819 }
2820
2821 list_for_each_safe(pos, n, &eli->li_request_list) {
2822 elr = list_entry(pos, struct ext4_li_request,
2823 lr_request);
2824
2825 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2826 if (ext4_run_li_request(elr) != 0) {
2827 /* error, remove the lazy_init job */
2828 ext4_remove_li_request(elr);
2829 continue;
2830 }
2831 }
2832
2833 if (time_before(elr->lr_next_sched, next_wakeup))
2834 next_wakeup = elr->lr_next_sched;
2835 }
2836 mutex_unlock(&eli->li_list_mtx);
2837
2838 try_to_freeze();
2839
2840 cur = jiffies;
2841 if ((time_after_eq(cur, next_wakeup)) ||
2842 (MAX_JIFFY_OFFSET == next_wakeup)) {
2843 cond_resched();
2844 continue;
2845 }
2846
2847 schedule_timeout_interruptible(next_wakeup - cur);
2848
2849 if (kthread_should_stop()) {
2850 ext4_clear_request_list();
2851 goto exit_thread;
2852 }
2853 }
2854
2855 exit_thread:
2856 /*
2857 * It looks like the request list is empty, but we need
2858 * to check it under the li_list_mtx lock, to prevent any
2859 * additions into it, and of course we should lock ext4_li_mtx
2860 * to atomically free the list and ext4_li_info, because at
2861 * this point another ext4 filesystem could be registering
2862 * new one.
2863 */
2864 mutex_lock(&ext4_li_mtx);
2865 mutex_lock(&eli->li_list_mtx);
2866 if (!list_empty(&eli->li_request_list)) {
2867 mutex_unlock(&eli->li_list_mtx);
2868 mutex_unlock(&ext4_li_mtx);
2869 goto cont_thread;
2870 }
2871 mutex_unlock(&eli->li_list_mtx);
2872 kfree(ext4_li_info);
2873 ext4_li_info = NULL;
2874 mutex_unlock(&ext4_li_mtx);
2875
2876 return 0;
2877 }
2878
2879 static void ext4_clear_request_list(void)
2880 {
2881 struct list_head *pos, *n;
2882 struct ext4_li_request *elr;
2883
2884 mutex_lock(&ext4_li_info->li_list_mtx);
2885 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2886 elr = list_entry(pos, struct ext4_li_request,
2887 lr_request);
2888 ext4_remove_li_request(elr);
2889 }
2890 mutex_unlock(&ext4_li_info->li_list_mtx);
2891 }
2892
2893 static int ext4_run_lazyinit_thread(void)
2894 {
2895 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2896 ext4_li_info, "ext4lazyinit");
2897 if (IS_ERR(ext4_lazyinit_task)) {
2898 int err = PTR_ERR(ext4_lazyinit_task);
2899 ext4_clear_request_list();
2900 kfree(ext4_li_info);
2901 ext4_li_info = NULL;
2902 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2903 "initialization thread\n",
2904 err);
2905 return err;
2906 }
2907 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2908 return 0;
2909 }
2910
2911 /*
2912 * Check whether it make sense to run itable init. thread or not.
2913 * If there is at least one uninitialized inode table, return
2914 * corresponding group number, else the loop goes through all
2915 * groups and return total number of groups.
2916 */
2917 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2918 {
2919 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2920 struct ext4_group_desc *gdp = NULL;
2921
2922 for (group = 0; group < ngroups; group++) {
2923 gdp = ext4_get_group_desc(sb, group, NULL);
2924 if (!gdp)
2925 continue;
2926
2927 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2928 break;
2929 }
2930
2931 return group;
2932 }
2933
2934 static int ext4_li_info_new(void)
2935 {
2936 struct ext4_lazy_init *eli = NULL;
2937
2938 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2939 if (!eli)
2940 return -ENOMEM;
2941
2942 INIT_LIST_HEAD(&eli->li_request_list);
2943 mutex_init(&eli->li_list_mtx);
2944
2945 eli->li_state |= EXT4_LAZYINIT_QUIT;
2946
2947 ext4_li_info = eli;
2948
2949 return 0;
2950 }
2951
2952 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2953 ext4_group_t start)
2954 {
2955 struct ext4_sb_info *sbi = EXT4_SB(sb);
2956 struct ext4_li_request *elr;
2957 unsigned long rnd;
2958
2959 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2960 if (!elr)
2961 return NULL;
2962
2963 elr->lr_super = sb;
2964 elr->lr_sbi = sbi;
2965 elr->lr_next_group = start;
2966
2967 /*
2968 * Randomize first schedule time of the request to
2969 * spread the inode table initialization requests
2970 * better.
2971 */
2972 get_random_bytes(&rnd, sizeof(rnd));
2973 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2974 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2975
2976 return elr;
2977 }
2978
2979 int ext4_register_li_request(struct super_block *sb,
2980 ext4_group_t first_not_zeroed)
2981 {
2982 struct ext4_sb_info *sbi = EXT4_SB(sb);
2983 struct ext4_li_request *elr = NULL;
2984 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2985 int ret = 0;
2986
2987 mutex_lock(&ext4_li_mtx);
2988 if (sbi->s_li_request != NULL) {
2989 /*
2990 * Reset timeout so it can be computed again, because
2991 * s_li_wait_mult might have changed.
2992 */
2993 sbi->s_li_request->lr_timeout = 0;
2994 goto out;
2995 }
2996
2997 if (first_not_zeroed == ngroups ||
2998 (sb->s_flags & MS_RDONLY) ||
2999 !test_opt(sb, INIT_INODE_TABLE))
3000 goto out;
3001
3002 elr = ext4_li_request_new(sb, first_not_zeroed);
3003 if (!elr) {
3004 ret = -ENOMEM;
3005 goto out;
3006 }
3007
3008 if (NULL == ext4_li_info) {
3009 ret = ext4_li_info_new();
3010 if (ret)
3011 goto out;
3012 }
3013
3014 mutex_lock(&ext4_li_info->li_list_mtx);
3015 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3016 mutex_unlock(&ext4_li_info->li_list_mtx);
3017
3018 sbi->s_li_request = elr;
3019 /*
3020 * set elr to NULL here since it has been inserted to
3021 * the request_list and the removal and free of it is
3022 * handled by ext4_clear_request_list from now on.
3023 */
3024 elr = NULL;
3025
3026 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3027 ret = ext4_run_lazyinit_thread();
3028 if (ret)
3029 goto out;
3030 }
3031 out:
3032 mutex_unlock(&ext4_li_mtx);
3033 if (ret)
3034 kfree(elr);
3035 return ret;
3036 }
3037
3038 /*
3039 * We do not need to lock anything since this is called on
3040 * module unload.
3041 */
3042 static void ext4_destroy_lazyinit_thread(void)
3043 {
3044 /*
3045 * If thread exited earlier
3046 * there's nothing to be done.
3047 */
3048 if (!ext4_li_info || !ext4_lazyinit_task)
3049 return;
3050
3051 kthread_stop(ext4_lazyinit_task);
3052 }
3053
3054 static int set_journal_csum_feature_set(struct super_block *sb)
3055 {
3056 int ret = 1;
3057 int compat, incompat;
3058 struct ext4_sb_info *sbi = EXT4_SB(sb);
3059
3060 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3061 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3062 /* journal checksum v2 */
3063 compat = 0;
3064 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3065 } else {
3066 /* journal checksum v1 */
3067 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3068 incompat = 0;
3069 }
3070
3071 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3072 ret = jbd2_journal_set_features(sbi->s_journal,
3073 compat, 0,
3074 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3075 incompat);
3076 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3077 ret = jbd2_journal_set_features(sbi->s_journal,
3078 compat, 0,
3079 incompat);
3080 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3081 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3082 } else {
3083 jbd2_journal_clear_features(sbi->s_journal,
3084 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3085 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3086 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3087 }
3088
3089 return ret;
3090 }
3091
3092 /*
3093 * Note: calculating the overhead so we can be compatible with
3094 * historical BSD practice is quite difficult in the face of
3095 * clusters/bigalloc. This is because multiple metadata blocks from
3096 * different block group can end up in the same allocation cluster.
3097 * Calculating the exact overhead in the face of clustered allocation
3098 * requires either O(all block bitmaps) in memory or O(number of block
3099 * groups**2) in time. We will still calculate the superblock for
3100 * older file systems --- and if we come across with a bigalloc file
3101 * system with zero in s_overhead_clusters the estimate will be close to
3102 * correct especially for very large cluster sizes --- but for newer
3103 * file systems, it's better to calculate this figure once at mkfs
3104 * time, and store it in the superblock. If the superblock value is
3105 * present (even for non-bigalloc file systems), we will use it.
3106 */
3107 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3108 char *buf)
3109 {
3110 struct ext4_sb_info *sbi = EXT4_SB(sb);
3111 struct ext4_group_desc *gdp;
3112 ext4_fsblk_t first_block, last_block, b;
3113 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3114 int s, j, count = 0;
3115
3116 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3117 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3118 sbi->s_itb_per_group + 2);
3119
3120 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3121 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3122 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3123 for (i = 0; i < ngroups; i++) {
3124 gdp = ext4_get_group_desc(sb, i, NULL);
3125 b = ext4_block_bitmap(sb, gdp);
3126 if (b >= first_block && b <= last_block) {
3127 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3128 count++;
3129 }
3130 b = ext4_inode_bitmap(sb, gdp);
3131 if (b >= first_block && b <= last_block) {
3132 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3133 count++;
3134 }
3135 b = ext4_inode_table(sb, gdp);
3136 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3137 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3138 int c = EXT4_B2C(sbi, b - first_block);
3139 ext4_set_bit(c, buf);
3140 count++;
3141 }
3142 if (i != grp)
3143 continue;
3144 s = 0;
3145 if (ext4_bg_has_super(sb, grp)) {
3146 ext4_set_bit(s++, buf);
3147 count++;
3148 }
3149 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3150 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3151 count++;
3152 }
3153 }
3154 if (!count)
3155 return 0;
3156 return EXT4_CLUSTERS_PER_GROUP(sb) -
3157 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3158 }
3159
3160 /*
3161 * Compute the overhead and stash it in sbi->s_overhead
3162 */
3163 int ext4_calculate_overhead(struct super_block *sb)
3164 {
3165 struct ext4_sb_info *sbi = EXT4_SB(sb);
3166 struct ext4_super_block *es = sbi->s_es;
3167 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3168 ext4_fsblk_t overhead = 0;
3169 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3170
3171 if (!buf)
3172 return -ENOMEM;
3173
3174 /*
3175 * Compute the overhead (FS structures). This is constant
3176 * for a given filesystem unless the number of block groups
3177 * changes so we cache the previous value until it does.
3178 */
3179
3180 /*
3181 * All of the blocks before first_data_block are overhead
3182 */
3183 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3184
3185 /*
3186 * Add the overhead found in each block group
3187 */
3188 for (i = 0; i < ngroups; i++) {
3189 int blks;
3190
3191 blks = count_overhead(sb, i, buf);
3192 overhead += blks;
3193 if (blks)
3194 memset(buf, 0, PAGE_SIZE);
3195 cond_resched();
3196 }
3197 /* Add the journal blocks as well */
3198 if (sbi->s_journal)
3199 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3200
3201 sbi->s_overhead = overhead;
3202 smp_wmb();
3203 free_page((unsigned long) buf);
3204 return 0;
3205 }
3206
3207
3208 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3209 {
3210 ext4_fsblk_t resv_clusters;
3211
3212 /*
3213 * There's no need to reserve anything when we aren't using extents.
3214 * The space estimates are exact, there are no unwritten extents,
3215 * hole punching doesn't need new metadata... This is needed especially
3216 * to keep ext2/3 backward compatibility.
3217 */
3218 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3219 return 0;
3220 /*
3221 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3222 * This should cover the situations where we can not afford to run
3223 * out of space like for example punch hole, or converting
3224 * uninitialized extents in delalloc path. In most cases such
3225 * allocation would require 1, or 2 blocks, higher numbers are
3226 * very rare.
3227 */
3228 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3229 EXT4_SB(sb)->s_cluster_bits;
3230
3231 do_div(resv_clusters, 50);
3232 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3233
3234 return resv_clusters;
3235 }
3236
3237
3238 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3239 {
3240 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3241 sbi->s_cluster_bits;
3242
3243 if (count >= clusters)
3244 return -EINVAL;
3245
3246 atomic64_set(&sbi->s_resv_clusters, count);
3247 return 0;
3248 }
3249
3250 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3251 {
3252 char *orig_data = kstrdup(data, GFP_KERNEL);
3253 struct buffer_head *bh;
3254 struct ext4_super_block *es = NULL;
3255 struct ext4_sb_info *sbi;
3256 ext4_fsblk_t block;
3257 ext4_fsblk_t sb_block = get_sb_block(&data);
3258 ext4_fsblk_t logical_sb_block;
3259 unsigned long offset = 0;
3260 unsigned long journal_devnum = 0;
3261 unsigned long def_mount_opts;
3262 struct inode *root;
3263 char *cp;
3264 const char *descr;
3265 int ret = -ENOMEM;
3266 int blocksize, clustersize;
3267 unsigned int db_count;
3268 unsigned int i;
3269 int needs_recovery, has_huge_files, has_bigalloc;
3270 __u64 blocks_count;
3271 int err = 0;
3272 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3273 ext4_group_t first_not_zeroed;
3274
3275 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3276 if (!sbi)
3277 goto out_free_orig;
3278
3279 sbi->s_blockgroup_lock =
3280 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3281 if (!sbi->s_blockgroup_lock) {
3282 kfree(sbi);
3283 goto out_free_orig;
3284 }
3285 sb->s_fs_info = sbi;
3286 sbi->s_sb = sb;
3287 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3288 sbi->s_sb_block = sb_block;
3289 if (sb->s_bdev->bd_part)
3290 sbi->s_sectors_written_start =
3291 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3292
3293 /* Cleanup superblock name */
3294 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3295 *cp = '!';
3296
3297 /* -EINVAL is default */
3298 ret = -EINVAL;
3299 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3300 if (!blocksize) {
3301 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3302 goto out_fail;
3303 }
3304
3305 /*
3306 * The ext4 superblock will not be buffer aligned for other than 1kB
3307 * block sizes. We need to calculate the offset from buffer start.
3308 */
3309 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3310 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3311 offset = do_div(logical_sb_block, blocksize);
3312 } else {
3313 logical_sb_block = sb_block;
3314 }
3315
3316 if (!(bh = sb_bread(sb, logical_sb_block))) {
3317 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3318 goto out_fail;
3319 }
3320 /*
3321 * Note: s_es must be initialized as soon as possible because
3322 * some ext4 macro-instructions depend on its value
3323 */
3324 es = (struct ext4_super_block *) (bh->b_data + offset);
3325 sbi->s_es = es;
3326 sb->s_magic = le16_to_cpu(es->s_magic);
3327 if (sb->s_magic != EXT4_SUPER_MAGIC)
3328 goto cantfind_ext4;
3329 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3330
3331 /* Warn if metadata_csum and gdt_csum are both set. */
3332 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3333 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3334 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3335 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3336 "redundant flags; please run fsck.");
3337
3338 /* Check for a known checksum algorithm */
3339 if (!ext4_verify_csum_type(sb, es)) {
3340 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3341 "unknown checksum algorithm.");
3342 silent = 1;
3343 goto cantfind_ext4;
3344 }
3345
3346 /* Load the checksum driver */
3347 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3348 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3349 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3350 if (IS_ERR(sbi->s_chksum_driver)) {
3351 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3352 ret = PTR_ERR(sbi->s_chksum_driver);
3353 sbi->s_chksum_driver = NULL;
3354 goto failed_mount;
3355 }
3356 }
3357
3358 /* Check superblock checksum */
3359 if (!ext4_superblock_csum_verify(sb, es)) {
3360 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3361 "invalid superblock checksum. Run e2fsck?");
3362 silent = 1;
3363 goto cantfind_ext4;
3364 }
3365
3366 /* Precompute checksum seed for all metadata */
3367 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3368 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3369 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3370 sizeof(es->s_uuid));
3371
3372 /* Set defaults before we parse the mount options */
3373 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3374 set_opt(sb, INIT_INODE_TABLE);
3375 if (def_mount_opts & EXT4_DEFM_DEBUG)
3376 set_opt(sb, DEBUG);
3377 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3378 set_opt(sb, GRPID);
3379 if (def_mount_opts & EXT4_DEFM_UID16)
3380 set_opt(sb, NO_UID32);
3381 /* xattr user namespace & acls are now defaulted on */
3382 set_opt(sb, XATTR_USER);
3383 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3384 set_opt(sb, POSIX_ACL);
3385 #endif
3386 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3387 set_opt(sb, JOURNAL_DATA);
3388 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3389 set_opt(sb, ORDERED_DATA);
3390 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3391 set_opt(sb, WRITEBACK_DATA);
3392
3393 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3394 set_opt(sb, ERRORS_PANIC);
3395 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3396 set_opt(sb, ERRORS_CONT);
3397 else
3398 set_opt(sb, ERRORS_RO);
3399 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3400 set_opt(sb, BLOCK_VALIDITY);
3401 if (def_mount_opts & EXT4_DEFM_DISCARD)
3402 set_opt(sb, DISCARD);
3403
3404 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3405 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3406 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3407 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3408 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3409
3410 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3411 set_opt(sb, BARRIER);
3412
3413 /*
3414 * enable delayed allocation by default
3415 * Use -o nodelalloc to turn it off
3416 */
3417 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3418 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3419 set_opt(sb, DELALLOC);
3420
3421 /*
3422 * set default s_li_wait_mult for lazyinit, for the case there is
3423 * no mount option specified.
3424 */
3425 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3426
3427 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3428 &journal_devnum, &journal_ioprio, 0)) {
3429 ext4_msg(sb, KERN_WARNING,
3430 "failed to parse options in superblock: %s",
3431 sbi->s_es->s_mount_opts);
3432 }
3433 sbi->s_def_mount_opt = sbi->s_mount_opt;
3434 if (!parse_options((char *) data, sb, &journal_devnum,
3435 &journal_ioprio, 0))
3436 goto failed_mount;
3437
3438 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3439 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3440 "with data=journal disables delayed "
3441 "allocation and O_DIRECT support!\n");
3442 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3443 ext4_msg(sb, KERN_ERR, "can't mount with "
3444 "both data=journal and delalloc");
3445 goto failed_mount;
3446 }
3447 if (test_opt(sb, DIOREAD_NOLOCK)) {
3448 ext4_msg(sb, KERN_ERR, "can't mount with "
3449 "both data=journal and dioread_nolock");
3450 goto failed_mount;
3451 }
3452 if (test_opt(sb, DELALLOC))
3453 clear_opt(sb, DELALLOC);
3454 }
3455
3456 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3457 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3458
3459 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3460 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3461 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3462 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3463 ext4_msg(sb, KERN_WARNING,
3464 "feature flags set on rev 0 fs, "
3465 "running e2fsck is recommended");
3466
3467 if (IS_EXT2_SB(sb)) {
3468 if (ext2_feature_set_ok(sb))
3469 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3470 "using the ext4 subsystem");
3471 else {
3472 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3473 "to feature incompatibilities");
3474 goto failed_mount;
3475 }
3476 }
3477
3478 if (IS_EXT3_SB(sb)) {
3479 if (ext3_feature_set_ok(sb))
3480 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3481 "using the ext4 subsystem");
3482 else {
3483 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3484 "to feature incompatibilities");
3485 goto failed_mount;
3486 }
3487 }
3488
3489 /*
3490 * Check feature flags regardless of the revision level, since we
3491 * previously didn't change the revision level when setting the flags,
3492 * so there is a chance incompat flags are set on a rev 0 filesystem.
3493 */
3494 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3495 goto failed_mount;
3496
3497 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3498 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3499 blocksize > EXT4_MAX_BLOCK_SIZE) {
3500 ext4_msg(sb, KERN_ERR,
3501 "Unsupported filesystem blocksize %d", blocksize);
3502 goto failed_mount;
3503 }
3504
3505 if (sb->s_blocksize != blocksize) {
3506 /* Validate the filesystem blocksize */
3507 if (!sb_set_blocksize(sb, blocksize)) {
3508 ext4_msg(sb, KERN_ERR, "bad block size %d",
3509 blocksize);
3510 goto failed_mount;
3511 }
3512
3513 brelse(bh);
3514 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3515 offset = do_div(logical_sb_block, blocksize);
3516 bh = sb_bread(sb, logical_sb_block);
3517 if (!bh) {
3518 ext4_msg(sb, KERN_ERR,
3519 "Can't read superblock on 2nd try");
3520 goto failed_mount;
3521 }
3522 es = (struct ext4_super_block *)(bh->b_data + offset);
3523 sbi->s_es = es;
3524 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3525 ext4_msg(sb, KERN_ERR,
3526 "Magic mismatch, very weird!");
3527 goto failed_mount;
3528 }
3529 }
3530
3531 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3532 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3533 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3534 has_huge_files);
3535 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3536
3537 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3538 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3539 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3540 } else {
3541 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3542 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3543 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3544 (!is_power_of_2(sbi->s_inode_size)) ||
3545 (sbi->s_inode_size > blocksize)) {
3546 ext4_msg(sb, KERN_ERR,
3547 "unsupported inode size: %d",
3548 sbi->s_inode_size);
3549 goto failed_mount;
3550 }
3551 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3552 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3553 }
3554
3555 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3556 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3557 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3558 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3559 !is_power_of_2(sbi->s_desc_size)) {
3560 ext4_msg(sb, KERN_ERR,
3561 "unsupported descriptor size %lu",
3562 sbi->s_desc_size);
3563 goto failed_mount;
3564 }
3565 } else
3566 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3567
3568 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3569 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3570 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3571 goto cantfind_ext4;
3572
3573 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3574 if (sbi->s_inodes_per_block == 0)
3575 goto cantfind_ext4;
3576 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3577 sbi->s_inodes_per_block;
3578 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3579 sbi->s_sbh = bh;
3580 sbi->s_mount_state = le16_to_cpu(es->s_state);
3581 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3582 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3583
3584 for (i = 0; i < 4; i++)
3585 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3586 sbi->s_def_hash_version = es->s_def_hash_version;
3587 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3588 i = le32_to_cpu(es->s_flags);
3589 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3590 sbi->s_hash_unsigned = 3;
3591 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3592 #ifdef __CHAR_UNSIGNED__
3593 if (!(sb->s_flags & MS_RDONLY))
3594 es->s_flags |=
3595 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3596 sbi->s_hash_unsigned = 3;
3597 #else
3598 if (!(sb->s_flags & MS_RDONLY))
3599 es->s_flags |=
3600 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3601 #endif
3602 }
3603 }
3604
3605 /* Handle clustersize */
3606 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3607 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3608 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3609 if (has_bigalloc) {
3610 if (clustersize < blocksize) {
3611 ext4_msg(sb, KERN_ERR,
3612 "cluster size (%d) smaller than "
3613 "block size (%d)", clustersize, blocksize);
3614 goto failed_mount;
3615 }
3616 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3617 le32_to_cpu(es->s_log_block_size);
3618 sbi->s_clusters_per_group =
3619 le32_to_cpu(es->s_clusters_per_group);
3620 if (sbi->s_clusters_per_group > blocksize * 8) {
3621 ext4_msg(sb, KERN_ERR,
3622 "#clusters per group too big: %lu",
3623 sbi->s_clusters_per_group);
3624 goto failed_mount;
3625 }
3626 if (sbi->s_blocks_per_group !=
3627 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3628 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3629 "clusters per group (%lu) inconsistent",
3630 sbi->s_blocks_per_group,
3631 sbi->s_clusters_per_group);
3632 goto failed_mount;
3633 }
3634 } else {
3635 if (clustersize != blocksize) {
3636 ext4_warning(sb, "fragment/cluster size (%d) != "
3637 "block size (%d)", clustersize,
3638 blocksize);
3639 clustersize = blocksize;
3640 }
3641 if (sbi->s_blocks_per_group > blocksize * 8) {
3642 ext4_msg(sb, KERN_ERR,
3643 "#blocks per group too big: %lu",
3644 sbi->s_blocks_per_group);
3645 goto failed_mount;
3646 }
3647 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3648 sbi->s_cluster_bits = 0;
3649 }
3650 sbi->s_cluster_ratio = clustersize / blocksize;
3651
3652 if (sbi->s_inodes_per_group > blocksize * 8) {
3653 ext4_msg(sb, KERN_ERR,
3654 "#inodes per group too big: %lu",
3655 sbi->s_inodes_per_group);
3656 goto failed_mount;
3657 }
3658
3659 /* Do we have standard group size of clustersize * 8 blocks ? */
3660 if (sbi->s_blocks_per_group == clustersize << 3)
3661 set_opt2(sb, STD_GROUP_SIZE);
3662
3663 /*
3664 * Test whether we have more sectors than will fit in sector_t,
3665 * and whether the max offset is addressable by the page cache.
3666 */
3667 err = generic_check_addressable(sb->s_blocksize_bits,
3668 ext4_blocks_count(es));
3669 if (err) {
3670 ext4_msg(sb, KERN_ERR, "filesystem"
3671 " too large to mount safely on this system");
3672 if (sizeof(sector_t) < 8)
3673 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3674 goto failed_mount;
3675 }
3676
3677 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3678 goto cantfind_ext4;
3679
3680 /* check blocks count against device size */
3681 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3682 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3683 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3684 "exceeds size of device (%llu blocks)",
3685 ext4_blocks_count(es), blocks_count);
3686 goto failed_mount;
3687 }
3688
3689 /*
3690 * It makes no sense for the first data block to be beyond the end
3691 * of the filesystem.
3692 */
3693 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3694 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3695 "block %u is beyond end of filesystem (%llu)",
3696 le32_to_cpu(es->s_first_data_block),
3697 ext4_blocks_count(es));
3698 goto failed_mount;
3699 }
3700 blocks_count = (ext4_blocks_count(es) -
3701 le32_to_cpu(es->s_first_data_block) +
3702 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3703 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3704 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3705 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3706 "(block count %llu, first data block %u, "
3707 "blocks per group %lu)", sbi->s_groups_count,
3708 ext4_blocks_count(es),
3709 le32_to_cpu(es->s_first_data_block),
3710 EXT4_BLOCKS_PER_GROUP(sb));
3711 goto failed_mount;
3712 }
3713 sbi->s_groups_count = blocks_count;
3714 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3715 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3716 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3717 EXT4_DESC_PER_BLOCK(sb);
3718 sbi->s_group_desc = ext4_kvmalloc(db_count *
3719 sizeof(struct buffer_head *),
3720 GFP_KERNEL);
3721 if (sbi->s_group_desc == NULL) {
3722 ext4_msg(sb, KERN_ERR, "not enough memory");
3723 ret = -ENOMEM;
3724 goto failed_mount;
3725 }
3726
3727 if (ext4_proc_root)
3728 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3729
3730 if (sbi->s_proc)
3731 proc_create_data("options", S_IRUGO, sbi->s_proc,
3732 &ext4_seq_options_fops, sb);
3733
3734 bgl_lock_init(sbi->s_blockgroup_lock);
3735
3736 for (i = 0; i < db_count; i++) {
3737 block = descriptor_loc(sb, logical_sb_block, i);
3738 sbi->s_group_desc[i] = sb_bread(sb, block);
3739 if (!sbi->s_group_desc[i]) {
3740 ext4_msg(sb, KERN_ERR,
3741 "can't read group descriptor %d", i);
3742 db_count = i;
3743 goto failed_mount2;
3744 }
3745 }
3746 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3747 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3748 goto failed_mount2;
3749 }
3750 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3751 if (!ext4_fill_flex_info(sb)) {
3752 ext4_msg(sb, KERN_ERR,
3753 "unable to initialize "
3754 "flex_bg meta info!");
3755 goto failed_mount2;
3756 }
3757
3758 sbi->s_gdb_count = db_count;
3759 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3760 spin_lock_init(&sbi->s_next_gen_lock);
3761
3762 init_timer(&sbi->s_err_report);
3763 sbi->s_err_report.function = print_daily_error_info;
3764 sbi->s_err_report.data = (unsigned long) sb;
3765
3766 /* Register extent status tree shrinker */
3767 ext4_es_register_shrinker(sb);
3768
3769 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3770 ext4_count_free_clusters(sb));
3771 if (!err) {
3772 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3773 ext4_count_free_inodes(sb));
3774 }
3775 if (!err) {
3776 err = percpu_counter_init(&sbi->s_dirs_counter,
3777 ext4_count_dirs(sb));
3778 }
3779 if (!err) {
3780 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3781 }
3782 if (!err) {
3783 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3784 }
3785 if (err) {
3786 ext4_msg(sb, KERN_ERR, "insufficient memory");
3787 goto failed_mount3;
3788 }
3789
3790 sbi->s_stripe = ext4_get_stripe_size(sbi);
3791 sbi->s_max_writeback_mb_bump = 128;
3792 sbi->s_extent_max_zeroout_kb = 32;
3793
3794 /*
3795 * set up enough so that it can read an inode
3796 */
3797 if (!test_opt(sb, NOLOAD) &&
3798 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3799 sb->s_op = &ext4_sops;
3800 else
3801 sb->s_op = &ext4_nojournal_sops;
3802 sb->s_export_op = &ext4_export_ops;
3803 sb->s_xattr = ext4_xattr_handlers;
3804 #ifdef CONFIG_QUOTA
3805 sb->dq_op = &ext4_quota_operations;
3806 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3807 sb->s_qcop = &ext4_qctl_sysfile_operations;
3808 else
3809 sb->s_qcop = &ext4_qctl_operations;
3810 #endif
3811 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3812
3813 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3814 mutex_init(&sbi->s_orphan_lock);
3815
3816 sb->s_root = NULL;
3817
3818 needs_recovery = (es->s_last_orphan != 0 ||
3819 EXT4_HAS_INCOMPAT_FEATURE(sb,
3820 EXT4_FEATURE_INCOMPAT_RECOVER));
3821
3822 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3823 !(sb->s_flags & MS_RDONLY))
3824 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3825 goto failed_mount3;
3826
3827 /*
3828 * The first inode we look at is the journal inode. Don't try
3829 * root first: it may be modified in the journal!
3830 */
3831 if (!test_opt(sb, NOLOAD) &&
3832 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3833 if (ext4_load_journal(sb, es, journal_devnum))
3834 goto failed_mount3;
3835 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3836 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3837 ext4_msg(sb, KERN_ERR, "required journal recovery "
3838 "suppressed and not mounted read-only");
3839 goto failed_mount_wq;
3840 } else {
3841 clear_opt(sb, DATA_FLAGS);
3842 sbi->s_journal = NULL;
3843 needs_recovery = 0;
3844 goto no_journal;
3845 }
3846
3847 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3848 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3849 JBD2_FEATURE_INCOMPAT_64BIT)) {
3850 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3851 goto failed_mount_wq;
3852 }
3853
3854 if (!set_journal_csum_feature_set(sb)) {
3855 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3856 "feature set");
3857 goto failed_mount_wq;
3858 }
3859
3860 /* We have now updated the journal if required, so we can
3861 * validate the data journaling mode. */
3862 switch (test_opt(sb, DATA_FLAGS)) {
3863 case 0:
3864 /* No mode set, assume a default based on the journal
3865 * capabilities: ORDERED_DATA if the journal can
3866 * cope, else JOURNAL_DATA
3867 */
3868 if (jbd2_journal_check_available_features
3869 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3870 set_opt(sb, ORDERED_DATA);
3871 else
3872 set_opt(sb, JOURNAL_DATA);
3873 break;
3874
3875 case EXT4_MOUNT_ORDERED_DATA:
3876 case EXT4_MOUNT_WRITEBACK_DATA:
3877 if (!jbd2_journal_check_available_features
3878 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3879 ext4_msg(sb, KERN_ERR, "Journal does not support "
3880 "requested data journaling mode");
3881 goto failed_mount_wq;
3882 }
3883 default:
3884 break;
3885 }
3886 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3887
3888 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3889
3890 /*
3891 * The journal may have updated the bg summary counts, so we
3892 * need to update the global counters.
3893 */
3894 percpu_counter_set(&sbi->s_freeclusters_counter,
3895 ext4_count_free_clusters(sb));
3896 percpu_counter_set(&sbi->s_freeinodes_counter,
3897 ext4_count_free_inodes(sb));
3898 percpu_counter_set(&sbi->s_dirs_counter,
3899 ext4_count_dirs(sb));
3900 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3901
3902 no_journal:
3903 /*
3904 * Get the # of file system overhead blocks from the
3905 * superblock if present.
3906 */
3907 if (es->s_overhead_clusters)
3908 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3909 else {
3910 err = ext4_calculate_overhead(sb);
3911 if (err)
3912 goto failed_mount_wq;
3913 }
3914
3915 /*
3916 * The maximum number of concurrent works can be high and
3917 * concurrency isn't really necessary. Limit it to 1.
3918 */
3919 EXT4_SB(sb)->dio_unwritten_wq =
3920 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3921 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3922 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3923 ret = -ENOMEM;
3924 goto failed_mount_wq;
3925 }
3926
3927 /*
3928 * The jbd2_journal_load will have done any necessary log recovery,
3929 * so we can safely mount the rest of the filesystem now.
3930 */
3931
3932 root = ext4_iget(sb, EXT4_ROOT_INO);
3933 if (IS_ERR(root)) {
3934 ext4_msg(sb, KERN_ERR, "get root inode failed");
3935 ret = PTR_ERR(root);
3936 root = NULL;
3937 goto failed_mount4;
3938 }
3939 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3940 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3941 iput(root);
3942 goto failed_mount4;
3943 }
3944 sb->s_root = d_make_root(root);
3945 if (!sb->s_root) {
3946 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3947 ret = -ENOMEM;
3948 goto failed_mount4;
3949 }
3950
3951 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3952 sb->s_flags |= MS_RDONLY;
3953
3954 /* determine the minimum size of new large inodes, if present */
3955 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3956 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3957 EXT4_GOOD_OLD_INODE_SIZE;
3958 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3959 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3960 if (sbi->s_want_extra_isize <
3961 le16_to_cpu(es->s_want_extra_isize))
3962 sbi->s_want_extra_isize =
3963 le16_to_cpu(es->s_want_extra_isize);
3964 if (sbi->s_want_extra_isize <
3965 le16_to_cpu(es->s_min_extra_isize))
3966 sbi->s_want_extra_isize =
3967 le16_to_cpu(es->s_min_extra_isize);
3968 }
3969 }
3970 /* Check if enough inode space is available */
3971 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3972 sbi->s_inode_size) {
3973 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3974 EXT4_GOOD_OLD_INODE_SIZE;
3975 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3976 "available");
3977 }
3978
3979 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
3980 if (err) {
3981 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3982 "reserved pool", ext4_calculate_resv_clusters(sb));
3983 goto failed_mount4a;
3984 }
3985
3986 err = ext4_setup_system_zone(sb);
3987 if (err) {
3988 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3989 "zone (%d)", err);
3990 goto failed_mount4a;
3991 }
3992
3993 ext4_ext_init(sb);
3994 err = ext4_mb_init(sb);
3995 if (err) {
3996 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3997 err);
3998 goto failed_mount5;
3999 }
4000
4001 err = ext4_register_li_request(sb, first_not_zeroed);
4002 if (err)
4003 goto failed_mount6;
4004
4005 sbi->s_kobj.kset = ext4_kset;
4006 init_completion(&sbi->s_kobj_unregister);
4007 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4008 "%s", sb->s_id);
4009 if (err)
4010 goto failed_mount7;
4011
4012 #ifdef CONFIG_QUOTA
4013 /* Enable quota usage during mount. */
4014 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4015 !(sb->s_flags & MS_RDONLY)) {
4016 err = ext4_enable_quotas(sb);
4017 if (err)
4018 goto failed_mount8;
4019 }
4020 #endif /* CONFIG_QUOTA */
4021
4022 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4023 ext4_orphan_cleanup(sb, es);
4024 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4025 if (needs_recovery) {
4026 ext4_msg(sb, KERN_INFO, "recovery complete");
4027 ext4_mark_recovery_complete(sb, es);
4028 }
4029 if (EXT4_SB(sb)->s_journal) {
4030 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4031 descr = " journalled data mode";
4032 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4033 descr = " ordered data mode";
4034 else
4035 descr = " writeback data mode";
4036 } else
4037 descr = "out journal";
4038
4039 if (test_opt(sb, DISCARD)) {
4040 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4041 if (!blk_queue_discard(q))
4042 ext4_msg(sb, KERN_WARNING,
4043 "mounting with \"discard\" option, but "
4044 "the device does not support discard");
4045 }
4046
4047 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4048 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4049 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4050
4051 if (es->s_error_count)
4052 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4053
4054 kfree(orig_data);
4055 return 0;
4056
4057 cantfind_ext4:
4058 if (!silent)
4059 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4060 goto failed_mount;
4061
4062 #ifdef CONFIG_QUOTA
4063 failed_mount8:
4064 kobject_del(&sbi->s_kobj);
4065 #endif
4066 failed_mount7:
4067 ext4_unregister_li_request(sb);
4068 failed_mount6:
4069 ext4_mb_release(sb);
4070 failed_mount5:
4071 ext4_ext_release(sb);
4072 ext4_release_system_zone(sb);
4073 failed_mount4a:
4074 dput(sb->s_root);
4075 sb->s_root = NULL;
4076 failed_mount4:
4077 ext4_msg(sb, KERN_ERR, "mount failed");
4078 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4079 failed_mount_wq:
4080 if (sbi->s_journal) {
4081 jbd2_journal_destroy(sbi->s_journal);
4082 sbi->s_journal = NULL;
4083 }
4084 failed_mount3:
4085 ext4_es_unregister_shrinker(sb);
4086 del_timer(&sbi->s_err_report);
4087 if (sbi->s_flex_groups)
4088 ext4_kvfree(sbi->s_flex_groups);
4089 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4090 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4091 percpu_counter_destroy(&sbi->s_dirs_counter);
4092 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4093 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4094 if (sbi->s_mmp_tsk)
4095 kthread_stop(sbi->s_mmp_tsk);
4096 failed_mount2:
4097 for (i = 0; i < db_count; i++)
4098 brelse(sbi->s_group_desc[i]);
4099 ext4_kvfree(sbi->s_group_desc);
4100 failed_mount:
4101 if (sbi->s_chksum_driver)
4102 crypto_free_shash(sbi->s_chksum_driver);
4103 if (sbi->s_proc) {
4104 remove_proc_entry("options", sbi->s_proc);
4105 remove_proc_entry(sb->s_id, ext4_proc_root);
4106 }
4107 #ifdef CONFIG_QUOTA
4108 for (i = 0; i < MAXQUOTAS; i++)
4109 kfree(sbi->s_qf_names[i]);
4110 #endif
4111 ext4_blkdev_remove(sbi);
4112 brelse(bh);
4113 out_fail:
4114 sb->s_fs_info = NULL;
4115 kfree(sbi->s_blockgroup_lock);
4116 kfree(sbi);
4117 out_free_orig:
4118 kfree(orig_data);
4119 return err ? err : ret;
4120 }
4121
4122 /*
4123 * Setup any per-fs journal parameters now. We'll do this both on
4124 * initial mount, once the journal has been initialised but before we've
4125 * done any recovery; and again on any subsequent remount.
4126 */
4127 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4128 {
4129 struct ext4_sb_info *sbi = EXT4_SB(sb);
4130
4131 journal->j_commit_interval = sbi->s_commit_interval;
4132 journal->j_min_batch_time = sbi->s_min_batch_time;
4133 journal->j_max_batch_time = sbi->s_max_batch_time;
4134
4135 write_lock(&journal->j_state_lock);
4136 if (test_opt(sb, BARRIER))
4137 journal->j_flags |= JBD2_BARRIER;
4138 else
4139 journal->j_flags &= ~JBD2_BARRIER;
4140 if (test_opt(sb, DATA_ERR_ABORT))
4141 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4142 else
4143 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4144 write_unlock(&journal->j_state_lock);
4145 }
4146
4147 static journal_t *ext4_get_journal(struct super_block *sb,
4148 unsigned int journal_inum)
4149 {
4150 struct inode *journal_inode;
4151 journal_t *journal;
4152
4153 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4154
4155 /* First, test for the existence of a valid inode on disk. Bad
4156 * things happen if we iget() an unused inode, as the subsequent
4157 * iput() will try to delete it. */
4158
4159 journal_inode = ext4_iget(sb, journal_inum);
4160 if (IS_ERR(journal_inode)) {
4161 ext4_msg(sb, KERN_ERR, "no journal found");
4162 return NULL;
4163 }
4164 if (!journal_inode->i_nlink) {
4165 make_bad_inode(journal_inode);
4166 iput(journal_inode);
4167 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4168 return NULL;
4169 }
4170
4171 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4172 journal_inode, journal_inode->i_size);
4173 if (!S_ISREG(journal_inode->i_mode)) {
4174 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4175 iput(journal_inode);
4176 return NULL;
4177 }
4178
4179 journal = jbd2_journal_init_inode(journal_inode);
4180 if (!journal) {
4181 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4182 iput(journal_inode);
4183 return NULL;
4184 }
4185 journal->j_private = sb;
4186 ext4_init_journal_params(sb, journal);
4187 return journal;
4188 }
4189
4190 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4191 dev_t j_dev)
4192 {
4193 struct buffer_head *bh;
4194 journal_t *journal;
4195 ext4_fsblk_t start;
4196 ext4_fsblk_t len;
4197 int hblock, blocksize;
4198 ext4_fsblk_t sb_block;
4199 unsigned long offset;
4200 struct ext4_super_block *es;
4201 struct block_device *bdev;
4202
4203 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4204
4205 bdev = ext4_blkdev_get(j_dev, sb);
4206 if (bdev == NULL)
4207 return NULL;
4208
4209 blocksize = sb->s_blocksize;
4210 hblock = bdev_logical_block_size(bdev);
4211 if (blocksize < hblock) {
4212 ext4_msg(sb, KERN_ERR,
4213 "blocksize too small for journal device");
4214 goto out_bdev;
4215 }
4216
4217 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4218 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4219 set_blocksize(bdev, blocksize);
4220 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4221 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4222 "external journal");
4223 goto out_bdev;
4224 }
4225
4226 es = (struct ext4_super_block *) (bh->b_data + offset);
4227 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4228 !(le32_to_cpu(es->s_feature_incompat) &
4229 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4230 ext4_msg(sb, KERN_ERR, "external journal has "
4231 "bad superblock");
4232 brelse(bh);
4233 goto out_bdev;
4234 }
4235
4236 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4237 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4238 brelse(bh);
4239 goto out_bdev;
4240 }
4241
4242 len = ext4_blocks_count(es);
4243 start = sb_block + 1;
4244 brelse(bh); /* we're done with the superblock */
4245
4246 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4247 start, len, blocksize);
4248 if (!journal) {
4249 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4250 goto out_bdev;
4251 }
4252 journal->j_private = sb;
4253 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4254 wait_on_buffer(journal->j_sb_buffer);
4255 if (!buffer_uptodate(journal->j_sb_buffer)) {
4256 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4257 goto out_journal;
4258 }
4259 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4260 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4261 "user (unsupported) - %d",
4262 be32_to_cpu(journal->j_superblock->s_nr_users));
4263 goto out_journal;
4264 }
4265 EXT4_SB(sb)->journal_bdev = bdev;
4266 ext4_init_journal_params(sb, journal);
4267 return journal;
4268
4269 out_journal:
4270 jbd2_journal_destroy(journal);
4271 out_bdev:
4272 ext4_blkdev_put(bdev);
4273 return NULL;
4274 }
4275
4276 static int ext4_load_journal(struct super_block *sb,
4277 struct ext4_super_block *es,
4278 unsigned long journal_devnum)
4279 {
4280 journal_t *journal;
4281 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4282 dev_t journal_dev;
4283 int err = 0;
4284 int really_read_only;
4285
4286 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4287
4288 if (journal_devnum &&
4289 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4290 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4291 "numbers have changed");
4292 journal_dev = new_decode_dev(journal_devnum);
4293 } else
4294 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4295
4296 really_read_only = bdev_read_only(sb->s_bdev);
4297
4298 /*
4299 * Are we loading a blank journal or performing recovery after a
4300 * crash? For recovery, we need to check in advance whether we
4301 * can get read-write access to the device.
4302 */
4303 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4304 if (sb->s_flags & MS_RDONLY) {
4305 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4306 "required on readonly filesystem");
4307 if (really_read_only) {
4308 ext4_msg(sb, KERN_ERR, "write access "
4309 "unavailable, cannot proceed");
4310 return -EROFS;
4311 }
4312 ext4_msg(sb, KERN_INFO, "write access will "
4313 "be enabled during recovery");
4314 }
4315 }
4316
4317 if (journal_inum && journal_dev) {
4318 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4319 "and inode journals!");
4320 return -EINVAL;
4321 }
4322
4323 if (journal_inum) {
4324 if (!(journal = ext4_get_journal(sb, journal_inum)))
4325 return -EINVAL;
4326 } else {
4327 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4328 return -EINVAL;
4329 }
4330
4331 if (!(journal->j_flags & JBD2_BARRIER))
4332 ext4_msg(sb, KERN_INFO, "barriers disabled");
4333
4334 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4335 err = jbd2_journal_wipe(journal, !really_read_only);
4336 if (!err) {
4337 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4338 if (save)
4339 memcpy(save, ((char *) es) +
4340 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4341 err = jbd2_journal_load(journal);
4342 if (save)
4343 memcpy(((char *) es) + EXT4_S_ERR_START,
4344 save, EXT4_S_ERR_LEN);
4345 kfree(save);
4346 }
4347
4348 if (err) {
4349 ext4_msg(sb, KERN_ERR, "error loading journal");
4350 jbd2_journal_destroy(journal);
4351 return err;
4352 }
4353
4354 EXT4_SB(sb)->s_journal = journal;
4355 ext4_clear_journal_err(sb, es);
4356
4357 if (!really_read_only && journal_devnum &&
4358 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4359 es->s_journal_dev = cpu_to_le32(journal_devnum);
4360
4361 /* Make sure we flush the recovery flag to disk. */
4362 ext4_commit_super(sb, 1);
4363 }
4364
4365 return 0;
4366 }
4367
4368 static int ext4_commit_super(struct super_block *sb, int sync)
4369 {
4370 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4371 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4372 int error = 0;
4373
4374 if (!sbh || block_device_ejected(sb))
4375 return error;
4376 if (buffer_write_io_error(sbh)) {
4377 /*
4378 * Oh, dear. A previous attempt to write the
4379 * superblock failed. This could happen because the
4380 * USB device was yanked out. Or it could happen to
4381 * be a transient write error and maybe the block will
4382 * be remapped. Nothing we can do but to retry the
4383 * write and hope for the best.
4384 */
4385 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4386 "superblock detected");
4387 clear_buffer_write_io_error(sbh);
4388 set_buffer_uptodate(sbh);
4389 }
4390 /*
4391 * If the file system is mounted read-only, don't update the
4392 * superblock write time. This avoids updating the superblock
4393 * write time when we are mounting the root file system
4394 * read/only but we need to replay the journal; at that point,
4395 * for people who are east of GMT and who make their clock
4396 * tick in localtime for Windows bug-for-bug compatibility,
4397 * the clock is set in the future, and this will cause e2fsck
4398 * to complain and force a full file system check.
4399 */
4400 if (!(sb->s_flags & MS_RDONLY))
4401 es->s_wtime = cpu_to_le32(get_seconds());
4402 if (sb->s_bdev->bd_part)
4403 es->s_kbytes_written =
4404 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4405 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4406 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4407 else
4408 es->s_kbytes_written =
4409 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4410 ext4_free_blocks_count_set(es,
4411 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4412 &EXT4_SB(sb)->s_freeclusters_counter)));
4413 es->s_free_inodes_count =
4414 cpu_to_le32(percpu_counter_sum_positive(
4415 &EXT4_SB(sb)->s_freeinodes_counter));
4416 BUFFER_TRACE(sbh, "marking dirty");
4417 ext4_superblock_csum_set(sb);
4418 mark_buffer_dirty(sbh);
4419 if (sync) {
4420 error = sync_dirty_buffer(sbh);
4421 if (error)
4422 return error;
4423
4424 error = buffer_write_io_error(sbh);
4425 if (error) {
4426 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4427 "superblock");
4428 clear_buffer_write_io_error(sbh);
4429 set_buffer_uptodate(sbh);
4430 }
4431 }
4432 return error;
4433 }
4434
4435 /*
4436 * Have we just finished recovery? If so, and if we are mounting (or
4437 * remounting) the filesystem readonly, then we will end up with a
4438 * consistent fs on disk. Record that fact.
4439 */
4440 static void ext4_mark_recovery_complete(struct super_block *sb,
4441 struct ext4_super_block *es)
4442 {
4443 journal_t *journal = EXT4_SB(sb)->s_journal;
4444
4445 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4446 BUG_ON(journal != NULL);
4447 return;
4448 }
4449 jbd2_journal_lock_updates(journal);
4450 if (jbd2_journal_flush(journal) < 0)
4451 goto out;
4452
4453 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4454 sb->s_flags & MS_RDONLY) {
4455 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4456 ext4_commit_super(sb, 1);
4457 }
4458
4459 out:
4460 jbd2_journal_unlock_updates(journal);
4461 }
4462
4463 /*
4464 * If we are mounting (or read-write remounting) a filesystem whose journal
4465 * has recorded an error from a previous lifetime, move that error to the
4466 * main filesystem now.
4467 */
4468 static void ext4_clear_journal_err(struct super_block *sb,
4469 struct ext4_super_block *es)
4470 {
4471 journal_t *journal;
4472 int j_errno;
4473 const char *errstr;
4474
4475 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4476
4477 journal = EXT4_SB(sb)->s_journal;
4478
4479 /*
4480 * Now check for any error status which may have been recorded in the
4481 * journal by a prior ext4_error() or ext4_abort()
4482 */
4483
4484 j_errno = jbd2_journal_errno(journal);
4485 if (j_errno) {
4486 char nbuf[16];
4487
4488 errstr = ext4_decode_error(sb, j_errno, nbuf);
4489 ext4_warning(sb, "Filesystem error recorded "
4490 "from previous mount: %s", errstr);
4491 ext4_warning(sb, "Marking fs in need of filesystem check.");
4492
4493 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4494 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4495 ext4_commit_super(sb, 1);
4496
4497 jbd2_journal_clear_err(journal);
4498 jbd2_journal_update_sb_errno(journal);
4499 }
4500 }
4501
4502 /*
4503 * Force the running and committing transactions to commit,
4504 * and wait on the commit.
4505 */
4506 int ext4_force_commit(struct super_block *sb)
4507 {
4508 journal_t *journal;
4509
4510 if (sb->s_flags & MS_RDONLY)
4511 return 0;
4512
4513 journal = EXT4_SB(sb)->s_journal;
4514 return ext4_journal_force_commit(journal);
4515 }
4516
4517 static int ext4_sync_fs(struct super_block *sb, int wait)
4518 {
4519 int ret = 0;
4520 tid_t target;
4521 struct ext4_sb_info *sbi = EXT4_SB(sb);
4522
4523 trace_ext4_sync_fs(sb, wait);
4524 flush_workqueue(sbi->dio_unwritten_wq);
4525 /*
4526 * Writeback quota in non-journalled quota case - journalled quota has
4527 * no dirty dquots
4528 */
4529 dquot_writeback_dquots(sb, -1);
4530 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4531 if (wait)
4532 jbd2_log_wait_commit(sbi->s_journal, target);
4533 }
4534 return ret;
4535 }
4536
4537 /*
4538 * LVM calls this function before a (read-only) snapshot is created. This
4539 * gives us a chance to flush the journal completely and mark the fs clean.
4540 *
4541 * Note that only this function cannot bring a filesystem to be in a clean
4542 * state independently. It relies on upper layer to stop all data & metadata
4543 * modifications.
4544 */
4545 static int ext4_freeze(struct super_block *sb)
4546 {
4547 int error = 0;
4548 journal_t *journal;
4549
4550 if (sb->s_flags & MS_RDONLY)
4551 return 0;
4552
4553 journal = EXT4_SB(sb)->s_journal;
4554
4555 /* Now we set up the journal barrier. */
4556 jbd2_journal_lock_updates(journal);
4557
4558 /*
4559 * Don't clear the needs_recovery flag if we failed to flush
4560 * the journal.
4561 */
4562 error = jbd2_journal_flush(journal);
4563 if (error < 0)
4564 goto out;
4565
4566 /* Journal blocked and flushed, clear needs_recovery flag. */
4567 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4568 error = ext4_commit_super(sb, 1);
4569 out:
4570 /* we rely on upper layer to stop further updates */
4571 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4572 return error;
4573 }
4574
4575 /*
4576 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4577 * flag here, even though the filesystem is not technically dirty yet.
4578 */
4579 static int ext4_unfreeze(struct super_block *sb)
4580 {
4581 if (sb->s_flags & MS_RDONLY)
4582 return 0;
4583
4584 /* Reset the needs_recovery flag before the fs is unlocked. */
4585 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4586 ext4_commit_super(sb, 1);
4587 return 0;
4588 }
4589
4590 /*
4591 * Structure to save mount options for ext4_remount's benefit
4592 */
4593 struct ext4_mount_options {
4594 unsigned long s_mount_opt;
4595 unsigned long s_mount_opt2;
4596 kuid_t s_resuid;
4597 kgid_t s_resgid;
4598 unsigned long s_commit_interval;
4599 u32 s_min_batch_time, s_max_batch_time;
4600 #ifdef CONFIG_QUOTA
4601 int s_jquota_fmt;
4602 char *s_qf_names[MAXQUOTAS];
4603 #endif
4604 };
4605
4606 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4607 {
4608 struct ext4_super_block *es;
4609 struct ext4_sb_info *sbi = EXT4_SB(sb);
4610 unsigned long old_sb_flags;
4611 struct ext4_mount_options old_opts;
4612 int enable_quota = 0;
4613 ext4_group_t g;
4614 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4615 int err = 0;
4616 #ifdef CONFIG_QUOTA
4617 int i, j;
4618 #endif
4619 char *orig_data = kstrdup(data, GFP_KERNEL);
4620
4621 /* Store the original options */
4622 old_sb_flags = sb->s_flags;
4623 old_opts.s_mount_opt = sbi->s_mount_opt;
4624 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4625 old_opts.s_resuid = sbi->s_resuid;
4626 old_opts.s_resgid = sbi->s_resgid;
4627 old_opts.s_commit_interval = sbi->s_commit_interval;
4628 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4629 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4630 #ifdef CONFIG_QUOTA
4631 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4632 for (i = 0; i < MAXQUOTAS; i++)
4633 if (sbi->s_qf_names[i]) {
4634 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4635 GFP_KERNEL);
4636 if (!old_opts.s_qf_names[i]) {
4637 for (j = 0; j < i; j++)
4638 kfree(old_opts.s_qf_names[j]);
4639 kfree(orig_data);
4640 return -ENOMEM;
4641 }
4642 } else
4643 old_opts.s_qf_names[i] = NULL;
4644 #endif
4645 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4646 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4647
4648 /*
4649 * Allow the "check" option to be passed as a remount option.
4650 */
4651 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4652 err = -EINVAL;
4653 goto restore_opts;
4654 }
4655
4656 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4657 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4658 ext4_msg(sb, KERN_ERR, "can't mount with "
4659 "both data=journal and delalloc");
4660 err = -EINVAL;
4661 goto restore_opts;
4662 }
4663 if (test_opt(sb, DIOREAD_NOLOCK)) {
4664 ext4_msg(sb, KERN_ERR, "can't mount with "
4665 "both data=journal and dioread_nolock");
4666 err = -EINVAL;
4667 goto restore_opts;
4668 }
4669 }
4670
4671 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4672 ext4_abort(sb, "Abort forced by user");
4673
4674 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4675 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4676
4677 es = sbi->s_es;
4678
4679 if (sbi->s_journal) {
4680 ext4_init_journal_params(sb, sbi->s_journal);
4681 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4682 }
4683
4684 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4685 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4686 err = -EROFS;
4687 goto restore_opts;
4688 }
4689
4690 if (*flags & MS_RDONLY) {
4691 err = dquot_suspend(sb, -1);
4692 if (err < 0)
4693 goto restore_opts;
4694
4695 /*
4696 * First of all, the unconditional stuff we have to do
4697 * to disable replay of the journal when we next remount
4698 */
4699 sb->s_flags |= MS_RDONLY;
4700
4701 /*
4702 * OK, test if we are remounting a valid rw partition
4703 * readonly, and if so set the rdonly flag and then
4704 * mark the partition as valid again.
4705 */
4706 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4707 (sbi->s_mount_state & EXT4_VALID_FS))
4708 es->s_state = cpu_to_le16(sbi->s_mount_state);
4709
4710 if (sbi->s_journal)
4711 ext4_mark_recovery_complete(sb, es);
4712 } else {
4713 /* Make sure we can mount this feature set readwrite */
4714 if (!ext4_feature_set_ok(sb, 0)) {
4715 err = -EROFS;
4716 goto restore_opts;
4717 }
4718 /*
4719 * Make sure the group descriptor checksums
4720 * are sane. If they aren't, refuse to remount r/w.
4721 */
4722 for (g = 0; g < sbi->s_groups_count; g++) {
4723 struct ext4_group_desc *gdp =
4724 ext4_get_group_desc(sb, g, NULL);
4725
4726 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4727 ext4_msg(sb, KERN_ERR,
4728 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4729 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4730 le16_to_cpu(gdp->bg_checksum));
4731 err = -EINVAL;
4732 goto restore_opts;
4733 }
4734 }
4735
4736 /*
4737 * If we have an unprocessed orphan list hanging
4738 * around from a previously readonly bdev mount,
4739 * require a full umount/remount for now.
4740 */
4741 if (es->s_last_orphan) {
4742 ext4_msg(sb, KERN_WARNING, "Couldn't "
4743 "remount RDWR because of unprocessed "
4744 "orphan inode list. Please "
4745 "umount/remount instead");
4746 err = -EINVAL;
4747 goto restore_opts;
4748 }
4749
4750 /*
4751 * Mounting a RDONLY partition read-write, so reread
4752 * and store the current valid flag. (It may have
4753 * been changed by e2fsck since we originally mounted
4754 * the partition.)
4755 */
4756 if (sbi->s_journal)
4757 ext4_clear_journal_err(sb, es);
4758 sbi->s_mount_state = le16_to_cpu(es->s_state);
4759 if (!ext4_setup_super(sb, es, 0))
4760 sb->s_flags &= ~MS_RDONLY;
4761 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4762 EXT4_FEATURE_INCOMPAT_MMP))
4763 if (ext4_multi_mount_protect(sb,
4764 le64_to_cpu(es->s_mmp_block))) {
4765 err = -EROFS;
4766 goto restore_opts;
4767 }
4768 enable_quota = 1;
4769 }
4770 }
4771
4772 /*
4773 * Reinitialize lazy itable initialization thread based on
4774 * current settings
4775 */
4776 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4777 ext4_unregister_li_request(sb);
4778 else {
4779 ext4_group_t first_not_zeroed;
4780 first_not_zeroed = ext4_has_uninit_itable(sb);
4781 ext4_register_li_request(sb, first_not_zeroed);
4782 }
4783
4784 ext4_setup_system_zone(sb);
4785 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4786 ext4_commit_super(sb, 1);
4787
4788 #ifdef CONFIG_QUOTA
4789 /* Release old quota file names */
4790 for (i = 0; i < MAXQUOTAS; i++)
4791 kfree(old_opts.s_qf_names[i]);
4792 if (enable_quota) {
4793 if (sb_any_quota_suspended(sb))
4794 dquot_resume(sb, -1);
4795 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4796 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4797 err = ext4_enable_quotas(sb);
4798 if (err)
4799 goto restore_opts;
4800 }
4801 }
4802 #endif
4803
4804 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4805 kfree(orig_data);
4806 return 0;
4807
4808 restore_opts:
4809 sb->s_flags = old_sb_flags;
4810 sbi->s_mount_opt = old_opts.s_mount_opt;
4811 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4812 sbi->s_resuid = old_opts.s_resuid;
4813 sbi->s_resgid = old_opts.s_resgid;
4814 sbi->s_commit_interval = old_opts.s_commit_interval;
4815 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4816 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4817 #ifdef CONFIG_QUOTA
4818 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4819 for (i = 0; i < MAXQUOTAS; i++) {
4820 kfree(sbi->s_qf_names[i]);
4821 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4822 }
4823 #endif
4824 kfree(orig_data);
4825 return err;
4826 }
4827
4828 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4829 {
4830 struct super_block *sb = dentry->d_sb;
4831 struct ext4_sb_info *sbi = EXT4_SB(sb);
4832 struct ext4_super_block *es = sbi->s_es;
4833 ext4_fsblk_t overhead = 0, resv_blocks;
4834 u64 fsid;
4835 s64 bfree;
4836 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4837
4838 if (!test_opt(sb, MINIX_DF))
4839 overhead = sbi->s_overhead;
4840
4841 buf->f_type = EXT4_SUPER_MAGIC;
4842 buf->f_bsize = sb->s_blocksize;
4843 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4844 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4845 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4846 /* prevent underflow in case that few free space is available */
4847 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4848 buf->f_bavail = buf->f_bfree -
4849 (ext4_r_blocks_count(es) + resv_blocks);
4850 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4851 buf->f_bavail = 0;
4852 buf->f_files = le32_to_cpu(es->s_inodes_count);
4853 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4854 buf->f_namelen = EXT4_NAME_LEN;
4855 fsid = le64_to_cpup((void *)es->s_uuid) ^
4856 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4857 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4858 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4859
4860 return 0;
4861 }
4862
4863 /* Helper function for writing quotas on sync - we need to start transaction
4864 * before quota file is locked for write. Otherwise the are possible deadlocks:
4865 * Process 1 Process 2
4866 * ext4_create() quota_sync()
4867 * jbd2_journal_start() write_dquot()
4868 * dquot_initialize() down(dqio_mutex)
4869 * down(dqio_mutex) jbd2_journal_start()
4870 *
4871 */
4872
4873 #ifdef CONFIG_QUOTA
4874
4875 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4876 {
4877 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4878 }
4879
4880 static int ext4_write_dquot(struct dquot *dquot)
4881 {
4882 int ret, err;
4883 handle_t *handle;
4884 struct inode *inode;
4885
4886 inode = dquot_to_inode(dquot);
4887 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4888 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4889 if (IS_ERR(handle))
4890 return PTR_ERR(handle);
4891 ret = dquot_commit(dquot);
4892 err = ext4_journal_stop(handle);
4893 if (!ret)
4894 ret = err;
4895 return ret;
4896 }
4897
4898 static int ext4_acquire_dquot(struct dquot *dquot)
4899 {
4900 int ret, err;
4901 handle_t *handle;
4902
4903 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4904 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4905 if (IS_ERR(handle))
4906 return PTR_ERR(handle);
4907 ret = dquot_acquire(dquot);
4908 err = ext4_journal_stop(handle);
4909 if (!ret)
4910 ret = err;
4911 return ret;
4912 }
4913
4914 static int ext4_release_dquot(struct dquot *dquot)
4915 {
4916 int ret, err;
4917 handle_t *handle;
4918
4919 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4920 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4921 if (IS_ERR(handle)) {
4922 /* Release dquot anyway to avoid endless cycle in dqput() */
4923 dquot_release(dquot);
4924 return PTR_ERR(handle);
4925 }
4926 ret = dquot_release(dquot);
4927 err = ext4_journal_stop(handle);
4928 if (!ret)
4929 ret = err;
4930 return ret;
4931 }
4932
4933 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4934 {
4935 struct super_block *sb = dquot->dq_sb;
4936 struct ext4_sb_info *sbi = EXT4_SB(sb);
4937
4938 /* Are we journaling quotas? */
4939 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4940 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4941 dquot_mark_dquot_dirty(dquot);
4942 return ext4_write_dquot(dquot);
4943 } else {
4944 return dquot_mark_dquot_dirty(dquot);
4945 }
4946 }
4947
4948 static int ext4_write_info(struct super_block *sb, int type)
4949 {
4950 int ret, err;
4951 handle_t *handle;
4952
4953 /* Data block + inode block */
4954 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4955 if (IS_ERR(handle))
4956 return PTR_ERR(handle);
4957 ret = dquot_commit_info(sb, type);
4958 err = ext4_journal_stop(handle);
4959 if (!ret)
4960 ret = err;
4961 return ret;
4962 }
4963
4964 /*
4965 * Turn on quotas during mount time - we need to find
4966 * the quota file and such...
4967 */
4968 static int ext4_quota_on_mount(struct super_block *sb, int type)
4969 {
4970 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4971 EXT4_SB(sb)->s_jquota_fmt, type);
4972 }
4973
4974 /*
4975 * Standard function to be called on quota_on
4976 */
4977 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4978 struct path *path)
4979 {
4980 int err;
4981
4982 if (!test_opt(sb, QUOTA))
4983 return -EINVAL;
4984
4985 /* Quotafile not on the same filesystem? */
4986 if (path->dentry->d_sb != sb)
4987 return -EXDEV;
4988 /* Journaling quota? */
4989 if (EXT4_SB(sb)->s_qf_names[type]) {
4990 /* Quotafile not in fs root? */
4991 if (path->dentry->d_parent != sb->s_root)
4992 ext4_msg(sb, KERN_WARNING,
4993 "Quota file not on filesystem root. "
4994 "Journaled quota will not work");
4995 }
4996
4997 /*
4998 * When we journal data on quota file, we have to flush journal to see
4999 * all updates to the file when we bypass pagecache...
5000 */
5001 if (EXT4_SB(sb)->s_journal &&
5002 ext4_should_journal_data(path->dentry->d_inode)) {
5003 /*
5004 * We don't need to lock updates but journal_flush() could
5005 * otherwise be livelocked...
5006 */
5007 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5008 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5009 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5010 if (err)
5011 return err;
5012 }
5013
5014 return dquot_quota_on(sb, type, format_id, path);
5015 }
5016
5017 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5018 unsigned int flags)
5019 {
5020 int err;
5021 struct inode *qf_inode;
5022 unsigned long qf_inums[MAXQUOTAS] = {
5023 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5024 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5025 };
5026
5027 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5028
5029 if (!qf_inums[type])
5030 return -EPERM;
5031
5032 qf_inode = ext4_iget(sb, qf_inums[type]);
5033 if (IS_ERR(qf_inode)) {
5034 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5035 return PTR_ERR(qf_inode);
5036 }
5037
5038 /* Don't account quota for quota files to avoid recursion */
5039 qf_inode->i_flags |= S_NOQUOTA;
5040 err = dquot_enable(qf_inode, type, format_id, flags);
5041 iput(qf_inode);
5042
5043 return err;
5044 }
5045
5046 /* Enable usage tracking for all quota types. */
5047 static int ext4_enable_quotas(struct super_block *sb)
5048 {
5049 int type, err = 0;
5050 unsigned long qf_inums[MAXQUOTAS] = {
5051 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5052 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5053 };
5054
5055 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5056 for (type = 0; type < MAXQUOTAS; type++) {
5057 if (qf_inums[type]) {
5058 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5059 DQUOT_USAGE_ENABLED);
5060 if (err) {
5061 ext4_warning(sb,
5062 "Failed to enable quota tracking "
5063 "(type=%d, err=%d). Please run "
5064 "e2fsck to fix.", type, err);
5065 return err;
5066 }
5067 }
5068 }
5069 return 0;
5070 }
5071
5072 /*
5073 * quota_on function that is used when QUOTA feature is set.
5074 */
5075 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5076 int format_id)
5077 {
5078 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5079 return -EINVAL;
5080
5081 /*
5082 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5083 */
5084 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5085 }
5086
5087 static int ext4_quota_off(struct super_block *sb, int type)
5088 {
5089 struct inode *inode = sb_dqopt(sb)->files[type];
5090 handle_t *handle;
5091
5092 /* Force all delayed allocation blocks to be allocated.
5093 * Caller already holds s_umount sem */
5094 if (test_opt(sb, DELALLOC))
5095 sync_filesystem(sb);
5096
5097 if (!inode)
5098 goto out;
5099
5100 /* Update modification times of quota files when userspace can
5101 * start looking at them */
5102 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5103 if (IS_ERR(handle))
5104 goto out;
5105 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5106 ext4_mark_inode_dirty(handle, inode);
5107 ext4_journal_stop(handle);
5108
5109 out:
5110 return dquot_quota_off(sb, type);
5111 }
5112
5113 /*
5114 * quota_off function that is used when QUOTA feature is set.
5115 */
5116 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5117 {
5118 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5119 return -EINVAL;
5120
5121 /* Disable only the limits. */
5122 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5123 }
5124
5125 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5126 * acquiring the locks... As quota files are never truncated and quota code
5127 * itself serializes the operations (and no one else should touch the files)
5128 * we don't have to be afraid of races */
5129 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5130 size_t len, loff_t off)
5131 {
5132 struct inode *inode = sb_dqopt(sb)->files[type];
5133 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5134 int err = 0;
5135 int offset = off & (sb->s_blocksize - 1);
5136 int tocopy;
5137 size_t toread;
5138 struct buffer_head *bh;
5139 loff_t i_size = i_size_read(inode);
5140
5141 if (off > i_size)
5142 return 0;
5143 if (off+len > i_size)
5144 len = i_size-off;
5145 toread = len;
5146 while (toread > 0) {
5147 tocopy = sb->s_blocksize - offset < toread ?
5148 sb->s_blocksize - offset : toread;
5149 bh = ext4_bread(NULL, inode, blk, 0, &err);
5150 if (err)
5151 return err;
5152 if (!bh) /* A hole? */
5153 memset(data, 0, tocopy);
5154 else
5155 memcpy(data, bh->b_data+offset, tocopy);
5156 brelse(bh);
5157 offset = 0;
5158 toread -= tocopy;
5159 data += tocopy;
5160 blk++;
5161 }
5162 return len;
5163 }
5164
5165 /* Write to quotafile (we know the transaction is already started and has
5166 * enough credits) */
5167 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5168 const char *data, size_t len, loff_t off)
5169 {
5170 struct inode *inode = sb_dqopt(sb)->files[type];
5171 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5172 int err = 0;
5173 int offset = off & (sb->s_blocksize - 1);
5174 struct buffer_head *bh;
5175 handle_t *handle = journal_current_handle();
5176
5177 if (EXT4_SB(sb)->s_journal && !handle) {
5178 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5179 " cancelled because transaction is not started",
5180 (unsigned long long)off, (unsigned long long)len);
5181 return -EIO;
5182 }
5183 /*
5184 * Since we account only one data block in transaction credits,
5185 * then it is impossible to cross a block boundary.
5186 */
5187 if (sb->s_blocksize - offset < len) {
5188 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5189 " cancelled because not block aligned",
5190 (unsigned long long)off, (unsigned long long)len);
5191 return -EIO;
5192 }
5193
5194 bh = ext4_bread(handle, inode, blk, 1, &err);
5195 if (!bh)
5196 goto out;
5197 err = ext4_journal_get_write_access(handle, bh);
5198 if (err) {
5199 brelse(bh);
5200 goto out;
5201 }
5202 lock_buffer(bh);
5203 memcpy(bh->b_data+offset, data, len);
5204 flush_dcache_page(bh->b_page);
5205 unlock_buffer(bh);
5206 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5207 brelse(bh);
5208 out:
5209 if (err)
5210 return err;
5211 if (inode->i_size < off + len) {
5212 i_size_write(inode, off + len);
5213 EXT4_I(inode)->i_disksize = inode->i_size;
5214 ext4_mark_inode_dirty(handle, inode);
5215 }
5216 return len;
5217 }
5218
5219 #endif
5220
5221 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5222 const char *dev_name, void *data)
5223 {
5224 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5225 }
5226
5227 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5228 static inline void register_as_ext2(void)
5229 {
5230 int err = register_filesystem(&ext2_fs_type);
5231 if (err)
5232 printk(KERN_WARNING
5233 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5234 }
5235
5236 static inline void unregister_as_ext2(void)
5237 {
5238 unregister_filesystem(&ext2_fs_type);
5239 }
5240
5241 static inline int ext2_feature_set_ok(struct super_block *sb)
5242 {
5243 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5244 return 0;
5245 if (sb->s_flags & MS_RDONLY)
5246 return 1;
5247 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5248 return 0;
5249 return 1;
5250 }
5251 #else
5252 static inline void register_as_ext2(void) { }
5253 static inline void unregister_as_ext2(void) { }
5254 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5255 #endif
5256
5257 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5258 static inline void register_as_ext3(void)
5259 {
5260 int err = register_filesystem(&ext3_fs_type);
5261 if (err)
5262 printk(KERN_WARNING
5263 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5264 }
5265
5266 static inline void unregister_as_ext3(void)
5267 {
5268 unregister_filesystem(&ext3_fs_type);
5269 }
5270
5271 static inline int ext3_feature_set_ok(struct super_block *sb)
5272 {
5273 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5274 return 0;
5275 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5276 return 0;
5277 if (sb->s_flags & MS_RDONLY)
5278 return 1;
5279 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5280 return 0;
5281 return 1;
5282 }
5283 #else
5284 static inline void register_as_ext3(void) { }
5285 static inline void unregister_as_ext3(void) { }
5286 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5287 #endif
5288
5289 static struct file_system_type ext4_fs_type = {
5290 .owner = THIS_MODULE,
5291 .name = "ext4",
5292 .mount = ext4_mount,
5293 .kill_sb = kill_block_super,
5294 .fs_flags = FS_REQUIRES_DEV,
5295 };
5296 MODULE_ALIAS_FS("ext4");
5297
5298 static int __init ext4_init_feat_adverts(void)
5299 {
5300 struct ext4_features *ef;
5301 int ret = -ENOMEM;
5302
5303 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5304 if (!ef)
5305 goto out;
5306
5307 ef->f_kobj.kset = ext4_kset;
5308 init_completion(&ef->f_kobj_unregister);
5309 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5310 "features");
5311 if (ret) {
5312 kfree(ef);
5313 goto out;
5314 }
5315
5316 ext4_feat = ef;
5317 ret = 0;
5318 out:
5319 return ret;
5320 }
5321
5322 static void ext4_exit_feat_adverts(void)
5323 {
5324 kobject_put(&ext4_feat->f_kobj);
5325 wait_for_completion(&ext4_feat->f_kobj_unregister);
5326 kfree(ext4_feat);
5327 }
5328
5329 /* Shared across all ext4 file systems */
5330 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5331 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5332
5333 static int __init ext4_init_fs(void)
5334 {
5335 int i, err;
5336
5337 ext4_li_info = NULL;
5338 mutex_init(&ext4_li_mtx);
5339
5340 /* Build-time check for flags consistency */
5341 ext4_check_flag_values();
5342
5343 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5344 mutex_init(&ext4__aio_mutex[i]);
5345 init_waitqueue_head(&ext4__ioend_wq[i]);
5346 }
5347
5348 err = ext4_init_es();
5349 if (err)
5350 return err;
5351
5352 err = ext4_init_pageio();
5353 if (err)
5354 goto out7;
5355
5356 err = ext4_init_system_zone();
5357 if (err)
5358 goto out6;
5359 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5360 if (!ext4_kset) {
5361 err = -ENOMEM;
5362 goto out5;
5363 }
5364 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5365
5366 err = ext4_init_feat_adverts();
5367 if (err)
5368 goto out4;
5369
5370 err = ext4_init_mballoc();
5371 if (err)
5372 goto out3;
5373
5374 err = ext4_init_xattr();
5375 if (err)
5376 goto out2;
5377 err = init_inodecache();
5378 if (err)
5379 goto out1;
5380 register_as_ext3();
5381 register_as_ext2();
5382 err = register_filesystem(&ext4_fs_type);
5383 if (err)
5384 goto out;
5385
5386 return 0;
5387 out:
5388 unregister_as_ext2();
5389 unregister_as_ext3();
5390 destroy_inodecache();
5391 out1:
5392 ext4_exit_xattr();
5393 out2:
5394 ext4_exit_mballoc();
5395 out3:
5396 ext4_exit_feat_adverts();
5397 out4:
5398 if (ext4_proc_root)
5399 remove_proc_entry("fs/ext4", NULL);
5400 kset_unregister(ext4_kset);
5401 out5:
5402 ext4_exit_system_zone();
5403 out6:
5404 ext4_exit_pageio();
5405 out7:
5406 ext4_exit_es();
5407
5408 return err;
5409 }
5410
5411 static void __exit ext4_exit_fs(void)
5412 {
5413 ext4_destroy_lazyinit_thread();
5414 unregister_as_ext2();
5415 unregister_as_ext3();
5416 unregister_filesystem(&ext4_fs_type);
5417 destroy_inodecache();
5418 ext4_exit_xattr();
5419 ext4_exit_mballoc();
5420 ext4_exit_feat_adverts();
5421 remove_proc_entry("fs/ext4", NULL);
5422 kset_unregister(ext4_kset);
5423 ext4_exit_system_zone();
5424 ext4_exit_pageio();
5425 ext4_exit_es();
5426 }
5427
5428 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5429 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5430 MODULE_LICENSE("GPL");
5431 module_init(ext4_init_fs)
5432 module_exit(ext4_exit_fs)